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Abstract. The use of Artificial Intelligence-driven solutions in domains
involving end-user interaction and cooperation has been continually grow-
ing. This has also lead to an increasing need to communicate crucial
information to end-users about algorithm behaviour and the quality of
solutions. In this paper, we apply our method of search trajectory mining
through decomposition to the solutions created by a Genetic Algorithm
–– a non-deterministic, population-based metaheuristic. We complement
this method with the use of One-Way ANOVA statistical testing to help
identify explanatory features found in the search trajectories –– subsets
of the set of optimization variables having both high and low influence
on the search behaviour of the GA and solution quality. This allows us to
highlight these to an end-user to allow for greater flexibility in solution
selection. We demonstrate the techniques on a real-world staff rostering
problem and show how, together, they identify the personnel who are
critical to the optimality of the rosters being created.

Keywords: Evolutionary Algorithms · PCA · Explainability · Popula-
tion Diversity

1 Introduction

Artificial Intelligence (AI) including non-deterministic meta-heuristics such as
Genetic Algorithms (GA) have seen a considerable increase in their application
in domains involving end-user interaction and cooperation. These domains typ-
ically include Transport and Logistics [1] and Engineering [2]. An important
aspect of this interaction is the need for some level of trust to be maintained
between the end-users and the results generated. It is often recommended that
such AI-powered systems follow a design philosophy that highly emphasises the
interpretability of the results or the operations of these systems. This can include



the development of methods capable of explaining these processes post-hoc, such
as the recommendations of PHG [3]. More recently, this has become one of the
core considerations of AI, as seen in its inclusion in the European Commission
on Trustworthy AI publications [4]. Explainable AI (XAI) techniques have, in
recent years, also seen an increase in attention, most likely driven by this growth
in the adoption in these key domains.

This growth in XAI methods can be seen in XAI survey papers [5, 6] of
these techniques and approaches which aim to help key stakeholders determine
which AI system and XAI techniques are right for their application. The growing
interest in the intersection of XAI with genetic and evolutionary algorithms can
be seen in the newly created Genetic and Evolutionary Computation Conference
(GECCO) XAI workshop in 2022 and follow-up in 2023.

There is a wide array of approaches to generating explanations regarding
AI-generated solutions and their decision-making processes. These approaches
include the extraction of some level of understanding from the sensitivities of
the fitness function to specific variables. Sensitivity Analysis (SA), applications
of which can be seen in [7, 8], is used to calculate solution fitness sensitivity to
changes in variable values. Feature importance can also be mined from the fitness
function through the use of Surrogate Modelling [9–11]. GAs, however, are often
utilized as tools to enhance XAI techniques such in fuzzy logic systems [12] and
counterfactual creation [13] and are rarely the focus of such analyses.

In this paper, we test our hypothesis that GA-generated search trajectories
can be mined for features capable of adding a level of explanation to the re-
sulting solutions. These explanations have the capacity to aid an end-user in
understanding and interpreting the results and how they reflect the algorithm’s
search behaviour. This, in turn, may help build trust that the solutions provided
are of high quality and relevant to the end users’ goals. We then complement
these results with those generated by an Analysis of Variance (ANOVA) tech-
nique to highlight any overlap between the two approaches.

The remainder of this paper is structured as follows: Section 2 contains an
overview of the experimental setup used to generate the search trajectories. This
section includes our definition of a search trajectory, the optimisation problem
definition and any algorithm-specific setup used. Shown in Section 3 are the
methods used to extract the explanatory features from the search trajectories.
This section covers the implementation of Multiple Correspondence Analysis,
Analysis of Variance implementation and the method by which we compare and
merge the results - Weighted Ranked Biased Overlap. Section 4 presents the
results of our analysis and finally, Section 5 contains our conclusions and plans
for further work to extend this research.



2 Definitions and Target Algorithm

2.1 Search Trajectory Definition

During its run, a population-based algorithm visits a collection of solutions X.
These are ordered by generation g and gathered into a search trajectory T as
shown in Equation (1).

T = [X1, . . . , Xg]

X = {x1, . . . , xN}
x = [x1, . . . , xn] in Zn

(1)

Here, N is the population size and n is the problem size. Thus, we define a
trajectory as a list of ZgN solutions of size n, drawn from the discreet integer
space Z as outlined fully in Section 2.2. It is important to note that this definition
of a trajectory is not limited to the integer domain. The approach has also be
applied to problems in which the solutions lie in real-valued space R as shown
in [14].

2.2 Problem Definition

The search trajectories we analyse in this paper were generated by solving a
modified version of the staff rostering problem detailed in [15,16]. This problem
aims to minimize the variance in the number of workers assigned to work on
each day of the week, over a 3-month period. A pre-generated set of 100 roster
patterns, varying in length from 2 to 13 weeks, details what days a worker will be
required. Each of these rosters ensures two consecutive days off per week. Work-
ers are assigned a sub-pool of between one and five potential rosters from the
initial pool. All optimization runs are initialised with the same, pre-determined
“starting state” which represents the initial configuration of rosters and the cur-
rently worked week of that roster. This allows for secondary goals aiming to
minimize disruption to the workforce. In this problem, all workers may change
from their currently assigned week to a different week within their initial roster
however only a fraction of the workforce are allowed to change to a new roster
in their sub-pool.

Table 1: Solution Representation

x1 x2 x3 . . . xn−1 xn

12 33 15 . . . 9 45

(a) Sol. Extract

Index . . . 32 33 34

Rota,Week . . . 7,2 7,3 7,4

(b) x2 Roster-Week

An example solution representation can be seen in Tables 1a and 1b. Here,
each worker is represented by the variable xi, 1 ≤ i ≤ n in Table 1a. The value



each variable can take refers to the index of a variable-specific table containing
all possible combinations of their roster sub-pool and starting weeks. Table 1b
shows an example of this index table for variable x2. The solution shown indicates
that variable x2 – with a value of 33 – represents Roster 7, starting week 3. This
in turn would be understood by the user as Worker x2 beginning the 3-month
period using the working hours determined by that selection and would repeat
roster 7 from week 1 if the roster is completed before the end of the three-month
period.

We use an “attendance matrix” Akd which, in our 3-month problem, is a
12 × 7 matrix of the sum of the workers assigned to work on week k, day d.
These totals are determined by the variable values in solution X which will in
turn determine the total number of workers scheduled for each day d, in all 12
weeks of k. This maps the original problem definition to our trajectory definition.

The range between total workers assigned for each day is calculated by taking
the minimum and maximum of matrix A for each column d, to calculate the
normalized range of column d as shown in Equation (2). This in turn us used
to calculate the fitness value of a solution, shown in Equation (3) subject to the
constraint detailed in Equation (4).

Rd =
max

d
(akd)−min

d
(akd)

max
d

(akd)
(2)

minimize:
∑

1≤d≤7

wdR
2
d +

(∑
n∈x

Pn

)
S (3)

subject to:

n∑
i=1

CVi ≤ 0.2 · len(x) (4)

The cost function shown in Equation (3) aims to minimise the overall range
between the number of workers assigned to work on each of the week days. This
calculation has a set of weights, w, applied to each day of the week to reduce
the impact of the lower availability of workers during the weekend. These are
applied to each day d, with the values being set at w = (1, 1, 1, 1, 1, 10, 10).
This was done as “. . . a range of 10 on Saturday should not be considered the
same as a range of 10 on any other day of the week due to the smaller number of
attending resources” [15]. The function contains constraints designed to minimize
the disruption to the workforce. The hard constraint, shown in Equation (4),
defines CV as the total number of workers who have been assigned to a new
roster from their sub-pool. This constraint aims to limit the total number of
workers from being assigned new rosters to 20% of the total workforce. The
cost function contains a soft constraint linked to the second summand of x,
the set of all variables in a solution, and P = (pn), a binary array in which
pn = 1 if the value of variable n results in two consecutive Saturdays being
scheduled or 0 otherwise, due to changing from the initial Roster pattern and
week to those outlined in a solution. This soft constraint adds a small penalty



of S = 0.01 for each violation of this constraint in each solution to help reduce
the total occurrences of this. As the aim is to reduce the total range to 0, a
minimum value of 0 would be achieved should all ranges be reduced to 0 and
no consecutive Saturdays be worked. The source data files used for rosters and
allocations can be found here [17].

2.3 Algorithm Runs

The trajectories representing runs of a GA with a population µ form the target
of the explanation techniques presented in this paper. Here, µ is the starting
population of solutions and the resulting next generation of solutions is created
through the application of the internal operators of the GA. The operators are
Selection, Crossover and Mutation which are applied to the parent population to
generate the child population of solutions. Shown in Table 2 are the run settings
used to create the datasets for this paper.

Table 2: Algorithm Run Settings

n N g Runs Sel. Mut. eta Cross.

141 20 100 100 Tournament Polynomial 3.0 SBX

Here, n is the size of the solution string, N is the number of solutions in each
generation and g is the number of generations allowed in each run. The GA was
run for a total of 100 optimization runs.

The Python Multi-Objective Optimisation (PYMOO) library [18] was used
to implement the GA with the required parameters. After some initial testing,
the values in Table 2 were selected to allow for reasonable solution convergence
however it is important to note that refining the algorithm’s performance was
not a consideration in this study. Provided that higher quality solutions were
being generated, we are able to continue with our analysis. As this was the
case, where possible the default values and operators outlined in the PYMOO
documentation were used.

As the mutation used was a polynomial mutation [19] function, details of
which can be found in [20], the setting eta was set to 3. The higher the value is
set the more similar and less mutated the child solution will be. The solutions
were encoded as discrete variable strings, in which each value in the string rep-
resented the value given to a specific worker. These values represented the index
of a worker-specific table that contained all possible combinations of Rota and
Starting Weeks. This representation required an implementation of the GA that
could account for possible disruptions to a solution introduced by the internal
operators.



3 Feature Extraction

3.1 Multiple Correspondence Analysis

The method to extract explanatory features outlined in this paper utilizes the
process of trajectory decomposition into a set of derived variables or dimensions.
There are many decomposition techniques available, and previous work has in-
cluded the use of Principal Component Analysis [21] to that end. In this paper,
we apply a variation of correspondence analysis called Multiple Correspondence
Analysis (MCA) to allow for the decomposition of the dataset in which the vari-
ables, while taking integer values, are in practice nominal which would reduce
the applicability of PCA directly. As shown in [22], it is possible to link MCA
to PCA such that the application of an un-standardized PCA to an indicator
matrix such as a Transformed Complete Disjunctive Table (TCDT), can lead to
the same results as MCA. This process involves the creation of the Complete
Disjunctive Table (CDT) by replacing the categorical variables with one-hot en-
coded dummy variables. This must be transformed as seen in Equation (5) in
which the value of the CDT table, xik is transformed using yik, the proportion
of solutions containing that value.

xik = yik/P k − 1 (5)

The application of PCA to the resulting TCDT provides us with the necessary
directional vectors from our dataset as both approaches project the values to
a lower-dimensional Euclidean space for the purpose of data analysis. Shown
in Equation (6), this creates a set of m, n × 1 orthonormal eigenvectors in
Rn. The elements of the pi vectors represent the weighting of each variable,
[pi1, . . . , p

i
n]. These coefficients help describe the contribution of each variable to

the corresponding principal component in terms of maximizing the variance in
the dataset through a best-fit hyperplane.

P = [p1, . . . , pm],m ≤ n

pi = [pi1, . . . , p
i
n]

(6)

With these, we can calculate the Mean Squared Cosine (MSC) value associ-
ated with each variable in the problem. Equations (7) to (9) outline this process.

PCxnc =
√
λm · Factor Loadings(xn, p

m) (7)

PCxn
=

√√√√numc∑
c=1

λm · Factor Loadings(xn, p
m) (8)

MSC(xn) =
1

numc

numc∑
c=1

(
PCxnc

PCxn

)2

(9)

The principal coordinate of variable xn in category c is denoted as PCxnc,
while PCxn

represents the same variable’s principal coordinate across all cate-
gories, whose count is numc. The eigenvalue of component pm is λm, and the



associated loadings are the Factor Loadings(xn,m). The Mean Squared Cosine
(MSC) value, a measure of the proportion of variance captured by each category
in each variable, is the squared cosine of the angle between a variable and its cat-
egories in the Multiple Correspondence Analysis (MCA) space. A higher MSC
value indicates a stronger relationship between the categories and the variable
in the MCA space, implying greater importance of those categories in capturing
the structure and variability in the MCA analysis. We decompose the search tra-
jectories from each optimization run, resulting in subspaces each characterizing
the algorithm’s search trajectory in terms of the variance of one variable and its
categories. This reveals which variables are crucial to the algorithm’s position
on the fitness gradient. The output of this process is a collection of datasets
representing each variable’s influence, ranked in ascending order from 1 to n
(141), where 1 is the least influential and n is the most, across a subset of the
m eigenvectors created.

3.2 Analysis of Variance

To gain a better understanding of the trajectory analysis results, we employ
Analysis of Variance (ANOVA), which is a statistical method for the compar-
ison of means across multiple groups. This is used to generate a comparative
set of variable rankings. In our datasets, we can use ANOVA to compare the
means of each variable in our solutions to the dependent variable - solution fit-
ness. This analysis technique is used to detect whether there is a relationship
between each variable and the fitness of a solution. This is done by using the
sum of squares between value groups and the sum of squares within groups. The
resulting p-value can be used to indicate whether any detected relationship is
statistically significant. For the purpose of this paper, we consider all variables
to be independent. This decision means that we can apply the ANOVA test
to each variable-fitness pair separately and calculate the “partial eta squared”
value for each pair. Partial eta squared is a measure of effect size in ANOVA
that represents the proportion of total variance that is explained by an effect
while controlling for other effects. To calculate the partial eta squared values,
we use the Python “statsmodel” package [23] implementation of ANOVA. Equa-
tions (10) to (12) show how we calculate the partial eta value (η2p). Here, k is
the number of solutions in our trajectory (gN), n is the number of variables, xij

is the jth variable in the solution i of the whole trajectory. The mean value of
all variables in solution i is shown as x̄i.

SSwithin =

k∑
i=1

ni∑
j=1

(xij − x̄i)
2 (10)

SSbetween =

k∑
i=1

ni(x̄i − x̄)2 (11)

η2p =
SSbetween

SSbetween + SSwithin
(12)



We use the value x̄i, in conjunction with the resulting p-value generated for
each variable, to determine the influence that the variable xi has on Fitness and
whether that influence is statistically significant. For this paper, if p < 0.05, we
reject the null hypothesis that xi has no measurable influence on fitness across all
trajectories. Once complete, we use the partial eta to rank each variable in terms
of the size of their effect on the fitness measured. It is important to note that as
all 100 optimization runs were performed separately, the ANOVA analysis must
be performed a total of 100 times, each resulting in a set of partial eta values
and p−values. There are several methods of accommodating this approach that
would allow us to use the p− values from across multiple runs to determine the
significance of our findings.

One process is Bonferroni [24] however, as we are using 100 total runs, this
would require us to adjust to p-value threshold to a prohibitively small value
due to how the Bonferroni correction is calculated. We opted to use the less
conservative Benjamini-Hochberg [25] process to instead account for the false
discovery rate (FDR) that using 100 runs may introduce. This method, as shown
in Algorithm 1 involves the ranking of all calculated p−values before calculating
the ”Benjamini-Hochberg critical value”.

Algorithm 1 Benjamini-Hochberg Procedure

Require: p-values P [1..m], false discovery rate Q
Ensure: List of rejected hypotheses R
1: Arrange the p-values in ascending order: P [1] ≤ P [2] ≤ ... ≤ P [m]
2: Initialize an empty list of rejected hypotheses: R = []
3: for i = m to 1 do
4: Calculate the Benjamini-Hochberg critical value: BH = i

mQ

5: if P [i] ≤ BH then
6: Add i to the list of rejected hypotheses: R = R + [i]
7: Break the loop
8: end if
9: end for
10: return R

This is then used to determine, for each variable, what the relevant adjusted
p-value should be to keep the FDR below 0.05 and results that are higher are
rejected and removed from the dataset.

3.3 Weighted Ranked Biased Overlap

To facilitate the comparison of the variable rankings produced by both MCA and
ANOVA, we use a method known as Weighted Rank Biased Overlap (WRBO)
[26], which has been used in the past to increase the interpretability of machine
learning results [27]. This method allows the comparison of ranked-lists with
the added benefit that both lists can be of varying length and do not need to
contain all of the same elements. It is this ability that led us to use WRBO over
more classical rank-comparison methods such as Spearman Rank Correlation or
the Kendall Tau method. A further benefit of this method is that it can place a



higher weighing to elements at the top of a list which can be customised. The
output of this method is a similarity score representing the proximity between
both lists. This score takes a value of [0, 1], with 1 showing a complete overlap
and 0 no similarity between the order of the list elements and the number of
shared elements. This process also takes into account any weightings given to
the top elements. This process can be seen in Algorithm 2 which was created
from a Python implementation of the WRBO function outlined in [28].

Algorithm 2 Rank Biased Overlap (RBO) Python

Require: Two lists S and T , weight parameter WP (default: 0.9)
1: Determine the maximum length k ← max(len(S), len(T ))
2: Calculate the intersection at depth k: xk ← |set(S) ∩ set(T )|
3: Initialize summation term: summ term← 0
4: for d = 1 to k do
5: Create sets from the lists:
6: set1← set(S[: d]) if d < len(S) else set(S)
7: set2← set(T [: d]) if d < len(T ) else set(T )
8: Calculate intersection at depth d: xd ← |set1 ∩ set2|
9: Compute agreement at depth d: ad ←

xd
d

10: Update: summ term← summ term + WPd · ad

11: end for
12: Calculate Rank Biased Overlap (extrapolated):

13: rbo ext← xk
k ·WPk +

(1−WP )
WP · summ term

As the results of our analysis are sets of ranked variables, from most to
least influential, the ability of WRBO to set a higher weight in its similarity
calculation to the top members of a list was of great benefit. The method has a
parameter that can increase the weighting of a top subset of variables. This WP
value is dependent on the presumed size of the lists. For our purposes, setting
this value at 0.9 results in the top 10 variables being responsible for 85.56% to
the total scoring. This is done to allow for the most influential variables found
in both methods to influence the scoring more than the other, lower influence
variables. It is also possible to set the WP to 0.98. This will result in requiring
the first 100 items in the list to result in a similar weighting of ∼ 85%.

With this rank-comparison method, we are able to generate a measure of
similarity between the findings of the MCA and ANOVA analyses. As ANOVA
measures the impact that varying a variable has on the variance in fitness, we
can use this measure to show any overlap. This overlap may represent some level
of shared findings, highlighting that our trajectory mining method may also be
able to detect some level of structure that the ANOVA approach is discovering.

4 Results

In this section, we analyse and interpret the results of the optimization of the
rostering problem and the features we are able to mine from the search.



4.1 Rostering Results

The results of running the optimization a total of 100 times can be seen in
Figures 1a and 1b. These show the mean results for fitness and usage of both
the hard and soft constraints in the problem. Figure 1a shows the results between
solution fitness and the number of variables that were assigned a value resulting
in a change of rosters (CV). We see that averaging over 100 runs, the GA was
able to find considerably better solutions than the initial starting state of the
problem – from a mean fitness of 14 to approximately 0.7. Within the first 100
generations, the value of CV increases from 0 to 6.

(a) CV vs Fitness (b) SAT vs Fitness

Fig. 1: Constraints vs. Mean Fitness

Over the course of the remaining 400 generations, this value continues to
increase but at a lower rate. This shows that within the first 100 generations,
a significant improvement in solution quality is achieved with approximately 6
roster reassignments. As the rate of fitness change slows, we see that the GA
makes small, incremental improvements to solutions at the expense of adding new
roster assignments. Figure 1b shows the results of fitness and the soft constraint
SAT - the number of consecutive Saturdays assigned. The results show a slow,
steady reduction in this value over all 500 generations from an initial value of
62 to approximately 52.

The changes in daily range values can be seen in Figure 2. Here, we show
the distribution of range values for each day of the week over all 100 runs.
Figure 2 shows the range values at 3 different generations - 5, 100 and 500.
Between generation 5 and 100 we see a clear reduction in the mean range values
across all runs for all days of the week except Saturday, with this day showing
a small increase from 0.075 to 0.078. We also see a reduction in the upper limit
of ranges seen on Mon, Tue and Wed. Between generations 100 and 500 we see
an increase in the mean range on Mon and Sat while the other days show either
a reduction or little change. As the fitness value continues to reduce over this
period, solutions with a higher range value on some days are being found that



achieve a higher quality solution with a more balanced overall range across the
week.

Fig. 2: Range Results - Unweighted

4.2 MCA and ANOVA Feature Results

After the results of the ANOVA testing were gathered, we performed the Benjamini-
Hochberg p-value adjustment method to allow for the comparison of all 100 runs.
Shown in Figures 3a and 3b is the explained variance by component for MCA
and the distribution of p−values resulting from the adjustment respectivly. The
ANOVA results show that all included values in the analysis are below the set
threshold of 0.05, with nearly all being below 0.003.

(a) MCA Explained Variance (b) ANOVA P-Value Distribution

Fig. 3: MCA and ANOVA Results



This process resulted in roughly 30% of the variable partial eta values being
removed from the dataset as the associated p-value for those results did not meet
the required threshold of 0.05. This ensured that the variable rankings produced
via the ranking of the ANOVA partial eta values remained viable.

Similarly, the results of the MCA decomposition were inspected to ensure
that the results were representative of the level of variance captured by this
method. Seen in Figure 3a is the percentage of variance explained by each of the
components generated when averaged across all 100 runs. These results show
that the first component explains a mean value of around 7.4% of the variance
in the dataset. The level of explained variance from component 2 onwards drops
off significantly. As the first component explains a relatively small amount of
variation, we show the results of using multiple subsets of the components for
comparison.

Table 3 shows the WRBO similarity scores when comparing both the Top-10
ranked variables and all 141 variables between the MCA and ANOVA methods.
We show the similarity between variable ranks using all components, the first
50, 10, 5 and 1st component. We also show the effect of altering the WRBO WP
value from 0.0 to 0.98, shifting the weighting from 85% attributed to the Top-10
to 100 for the same effect. The highest similarity score for each test is shown in
bold.

Table 3: WRBO Similarity Scores - MCA to ANOVA

WP = 0.9 WP=0.98

Dataset WRBO WRBO-Top 10 WRBO WRBO-Top 10

All Comp 0.234 0.166 0.495 0.194
50 Comp 0.301 0.232 0.524 0.293
10 Comp 0.363 0.322 0.568 0.311
5 Comp 0.449 0.394 0.607 0.327
1 Comp 0.664 0.606 0.694 0.449

From these results, we can see that the lowest level of similarity between both
methods across all tests comes from using all components generated by MCA.
The highest similarity scores are found when using only component 1, the highest
explained variance component. As more are added, the overall similarity score
reduces. This holds true for both WP = 0.9 and WP = 0.98. The highest level
of similarity is found when WP = 0.98 and only 1 component is used, giving
a score of 0.694, showing the considerable overlap in findings between the two
methods. This overlap in findings can be seen in Tables 4 and 5 in which we show
the variables identified as being both high and low importance. Table 4 shows
the variables identified as most influential for both MCA and ANOVA. Also
shown are the results for the top 1, 5, 10, 50 and all components for comparison.
Highlighted in bold and brackets are any variables found in both the ANOVA



and any components’ Top-10 list. Here, we show that variables of both high
MCA-cosine squared ranking and high ANOVA partial-eta ranking in common
are [121, 65, 1 and 60]. As these are ranked highly by both methods, these would
be considered highly influential in both algorithm search direction and impact
on fitness, based on the MCA and ANOVA results respectively. The results in
this table also reflect the higher WRBO similarity scores, as the 1 component
results show 4 overlapping variables. The remainder shows only 3 except when
using all components, where the overlap drops to one, mirroring the decreasing
WRBO scores. This would indicate that when viewing these results from the
perspective of an end-user, workers [121,65,1,60] would be of particularly high
interest due to their high influence. Further explanations may be gained from a
closer assessment of their working pattern preferences as those assigned to these
workers are consistently required for high-quality solutions to the scheduling
problem.

Table 4: Most Influential Variables by Dataset

ANOVA 1 Comp 5 Comp 10 Comp 50 Comp All Comp

Rank Var Var Var Var Var Var

141 (121) (121) (1) 96 (1) (1)
140 (65) (65) (65) (1) 96 70
139 51 (1) (121) (65) (65) 135
138 (1) 96 96 (121) 135 67
137 33 135 135 135 48 76
136 (60) (60) 128 119 91 65
135 129 72 72 128 67 68
134 126 128 119 67 119 96
133 110 48 48 72 72 91
132 66 119 68 48 (121) 72

The results in Table 5 show the overlap in rankings between the MCA and
ANOVA methods for the lowest-ranking variables. These variables would be
considered to have a low impact on fitness due to their low partial eta value,
and of low influence on the overall search path due to their low cosine squared
ranking. The overlap between the two methods identifies variables [21, 137 and
69]. These results also show a similar pattern to the highly ranked variable such
that, as more components are used in the calculation, the lower the overlap and
similarity between ANOVA and MCA becomes. To an end-user, these results
could help highlight that workers [21, 137 and 69] have a lower impact on solution
quality and algorithm direction. The results would suggest that these workers
have a higher capacity for roster allocation with minimal impact on the overall
quality of the schedule, allowing for more customization to accommodate any
additional goals.



Table 5: Least Influential Variables by Dataset

ANOVA 1 Comp 5 Comp 10 Comp 50 Comp All Comp

Rank Var Var Var Var Var Var

10 118 97 97 97 97 97
9 (21) 15 15 4 4 15
8 88 (21) 4 15 15 4
7 (137) 4 (21) (21) (21) (21)
6 38 77 9 9 9 77
5 25 9 77 77 77 9
4 83 (69) 93 93 (69) 36
3 84 79 79 79 93 93
2 (69) 93 (69) (69) 79 105
1 37 (137) 105 105 105 (69)

5 Conclusions and Future Work

In this paper, we used Multiple Correspondence Analysis to analyze the search
trajectories generated by a Genetic Algorithm for a staff rostering problem.
We calculated the squared cosine value for each variable from the subspace,
which was derived from decomposing the trajectories. These results were then
compared with the outcomes of one-way ANOVA testing on the same datasets,
leading to a set of statistically significant measurements of the partial-eta value.
This value measures the relative impact a variable has on fitness variance in
the data. We ranked both sets of results and used the Weighted Rank-Biased
Overlap similarity metric to measure the overlap in findings. Our results show a
significant overlap (0.69) when only the first component is used, averaged across
all 100 runs. However, the addition of more components showed diminishing
returns, possibly because the first component captures key structures in a widely
spread dataset. The significant level of residual variance might contain a lot of
noise, which could disrupt the process as more components are added. Further
study would be needed to identify any missed structure in the residual variance.

Our experiments identified key variable subsets, corresponding to individual
workers, using both methods together. The overlap between the two methods
in the top and bottom rankings provides a subset of variables that have either
a high or low influence on the search path and fitness impact. This gives end-
users a way to identify key individuals and those who, due to their lower impact,
could be moved to another observed rota schedule with minimal disruption. This
tool is valuable to end-users, helping to explain key drivers towards high-quality
solutions and the capacity for minimal impact change.
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