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the noise estimation is not accurate, the filtering accuracy will 
decrease, and even lead to filtering divergence [10]. 

Due to issues such as inaccurate noise estimation and 
filtering divergence, many scholars have proposed some 
improved methods to improve estimation accuracy. It consists 
of real-time estimation of noise and robust Kalman filter, 
respectively. The first method adds noise to the state vector 
and updates the noise in real-time. However, this method has 
some limitations due to inaccurate process noise estimation 
and small deviation [11]. The second method is the robust 
Kalman filter. For example,  some scholars proposed a robust 
unscented Kalman filter based on H infinite norm [12]. This 
algorithm improves the simplified UKF in Krein space and 
changes the filtering gain through specific function parameters, 
making the filtering effect more robust. 

In order to cope with the uncertainty of random noise in 
nonlinear systems, this paper proposes an improved estimation 
error processing method: robust function correction. 
Combining the adaptive method, an improved robust function 
correction-adaptive extended Kalman filtering (RFC-AEKF) 
algorithm is proposed for SOC prediction. The robust function 
is an abstract method that describes system state noise and 
observation noise, and performs real-time correction, 
combined with adaptive methods to estimate SOC. The 
covariance matrix Q of system state noise and the covariance 
matrix R are dynamically modified by the simplified robust 
function. Estimate and correct random noise to achieve better 
filtering performance. Use the FFRLS method to identify the 
internal parameters of the battery model using the Dual 
Polarization (DP) model established in this paper. Transfer the 
identified battery model parameters in real-time to the RFC-
AEKF algorithm to obtain more accurate SOC estimates. 

II. Mathematical analysis

A. DP model

In this paper, the Dual Polarization (DP) model is built as
the equivalent circuit model of batteries. It can simulate 
concentration polarization and electrochemical polarization 
separately so that it can accurately simulate the dynamic 
characteristics of batteries. Compared to traditional equivalent 
circuit models, the DP model has a stronger characterization 
ability for batteries and can more comprehensively reflect the 
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I. Introduction

With the increasing use of new energy vehicles, more 
attention has been paid to vehicle lithium-ion batteries [1-3]. 
Lithium-ion batteries have advantages such as high energy 
density, long cycle life, and no memory effect, but they also 
have disadvantages related to safety and lifespan [4]. The state 
of charge (SOC) of the battery, indicates the remaining power 
of the battery [5]. It is one of the important parameters to 
describe the battery status [6]. Therefore, accurately 
estimating the SOC of batteries is of great significance for 
evaluating the transition state of electric vehicles. 

In reference [7], using EKF to estimate the remaining 
battery capacity improves the accuracy of the estimation. 
However, the above literature cannot update the parameters of 
the battery model in real-time and cannot be applied to 
complex environments with random noise. To avoid this 
shortcoming, the literature [8] uses AEKF and recursive least 
squares (RLS) to update the model parameters in real-time [9]. 
The AEKF algorithm uses approximate methods to solve the 
nonlinear problem of battery systems and adaptive methods to 
reduce the impact of random noise. For typical nonlinear 
systems, accurately obtaining noise variance is a necessary 
part. A large number of experiments have shown that when  



internal chemical changes of batteries. The Dual Polarization model is shown in Figure 1. 
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Figure 1. Dual Polarization model 

R0 is the internal resistance, R1 is the internal resistance of 
polarization caused by the battery polarization effect, and R2 is 
the internal resistance of polarization caused by the battery 
concentration polarization effect. C1 and C2 are polarized 
capacitors. U0 is the voltage divided by R0. U1 and U2 are 
voltage when resistors R1 and R2 are current I. UOCV is open 
circuit voltage. UL is output voltage. The voltage and current 
obtained by analyzing the equivalent circuit model are shown 
in equation (1). 
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B. Parameter identification based on the FFRLS

The forgetting factor recursive least square (FFRLS) is an
improvement on RLS. It performs well in large-scale datasets 
and situations that require real-time computation. The 
forgetting factor can adjust the weights of old and new data to 
reduce the impact of previous data on current calculations and 
avoid data saturation issues. The recursive relationship of this 
algorithm is shown in equation (2). 
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ˆ( )k is the predicted value of the identified parameter, 

( )k is the input parameter, ( )y k is the output parameter, 

( )K k is the gain, ( )P k is the covariance matrix, 0 ( )e k is 

the system error.   is the forgetting factor. In this paper, 

0.98 = .  

C. SOC estimation based on the RFC-AEKF

In order to enhance the algorithm's responsiveness to noisy
environments, the robust function is abstraction and applied to 
the AEKF algorithm. According to the mathematical 
expression of the robust function, the covariance matrix Q is 
optimized and modified in real-time. The system state noise 
covariance matrix Q equation is shown in equation (3). 
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Wherein, ˆ( ) /k k k kr z z −= − , the value of c is a number 

of the same order of magnitude as kr . Due to objective factors 

such as system state noise, model error, or inaccurate state 
estimation, it is impossible to accurately estimate a residual of 
0 between the state estimation and the actual measured values. 

So set a threshold   to determine whether to correct Q. After 

multiple iterations, the Q value is still not 0. After many 
iterations, the Q value will gradually approach 0. The 
equations to determine whether Q is corrected are shown in 
equation (4) and equation (5). 
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Due to the fact that batteries are highly nonlinear systems, 
equivalent circuit models cannot fully simulate the 
characteristics of batteries. When SOC approaches 0 or 1, the 
internal chemistry of the battery undergoes drastic changes, 
resulting in significant changes in the battery model 
parameters. In order to suppress the reduction of SOC 
estimation accuracy caused by parameter errors, when the 
SOC is close to 0 or 1, the observation noise covariance 
matrix R is updated in real-time. The judgment conditions and 
specific correction methods are shown in equation (6) to 
equation (8). 

if 

0 1, [1 ( )]H k k HSOC SOC R R G SOC SOC = + − (6) 



if 0 2, [1 ( )]L k k LSOC SOC R R G SOC SOC = + − (7) 

else 0k kR R= (8) 

Wherein, 0.8HSOC = , 0.2LSOC = , 1G and 2G  are 

constants, 1 2 10G G= = . The SOC estimation flowchart of 

RFC-AEKF algorithm is shown in Figure 2. 
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Figure 2. SOC estimation flowchart of RFC-AEKF algorithm 

Firstly, the voltage and current data obtained from 
experimental testing are used as algorithm inputs, and the 
FFRLS algorithm identifies the DP model parameters online. 
Then, the identified model parameters are used as input again, 
and the SOC of the battery is estimated using the RFC-AEKF 
algorithm. In the RFC-AEKF algorithm, the robust function 
correction method is used to determine whether the system 
state covariance Q and observation noise covariance R are 
corrected. If it is at the set threshold, correct it; Otherwise, it 
remains unchanged. Then, based on the adaptive method in 
AEKF, Q and P are estimated to obtain the latest Kalman gain 
K for system state update. Finally, output the predicted SOC 
value. 

III. Experimental verification

A. Model validation

To verify the reliability of the established DP model, the
hybrid pulse power characterization (HPPC) conditions were 
tested on the battery. The FFRLS algorithm was used for 
online parameter identification of the DP model, and the 
actual voltage was compared with the simulated voltage 
output by the FFRLS. The voltage comparison under HPPC is 
shown in Figure 3. 

(a) Real voltage and simulation voltage (b) Voltage simulation error 

Figure 3. Voltage comparison under HPPC 

According to Figure 3, the MAE and RMSE of the FFRLS 
algorithm are 1.21% and 1.34%, respectively. Without regard 
to the error at the convergence stage of the algorithm, the 
maximum error is 0.01965V. The FFRLS can effectively 

characterize the DP model, and obtain more accurate internal 
parameters of the battery model. 



B. SOC estimation results

To validate the proposed RFC-AEKF algorithm, its
accuracy needs to be verified under different complex working 

conditions, including HPPC, dynamic stress test (DST), and 
Beijing bus dynamic stress test (BJDST). The SOC 
comparison under complex conditions are shown in Figure 4. 

(a) SOC estimation results under HPPC (b) error under HPPC 

(c) SOC estimation results under DST (d) error under DST 

(e) SOC estimation results under BJDST (f) error under BJDST 

Figure 4. SOC comparison under complex working conditions 

The experimental results show that the proposed RFC-
AEKF algorithm has the smallest MAE and RMSE compared 
to EKF and AEKF under three complex working conditions. 
Under the BJDST conditions, the MAE and RMSE of the 
RFC-AEKF algorithm are 0.354% and 0.658%, respectively. 

The calculation time of the RFC-AEKF algorithm is 5.436 
seconds, while the calculation time of the AEKF algorithm is 
10.084 seconds. Table 1 shows the error analysis of SOC 
estimation. 

Table 1. Error analysis of SOC estimation 

Metrics 

Algorithm 

MAE(%) RMSE(%) 

HPPC DST BJDST HPPC DST BJDST 

EKF 2.248 1.211 1.192 2.408 1.617 1.917 

AEKF 1.488 1.142 1.056 1.564 1.438 1.196 

RFC-AEKF 0.644 0.564 0.354 0.832 0.642 0.658 

According to Table 1, under different complex working 
conditions, the various indicators of the RFC-AEKF algorithm 
are optimal. Under the BJDST conditions, the accuracy of 

SOC estimation reaches 99.65%. This indicates that robust 
function correction methods can reduce errors caused by 



uncertain noise, improve SOC prediction accuracy, and 
improve robustness. 

IV.  Conclusion

In order to cope with the uncertainty of random noise in 
nonlinear systems, this paper proposes an RFC-AEKF 
algorithm for SOC prediction. Dynamic correction of random 
noise using robust functions and combined with AEKF 
adaptive method. Using the FFRLS algorithm for online 
parameter identification of the established DP model. Transfer 
the identified battery model parameters in real-time to the 
RFC-AEKF algorithm to obtain more accurate SOC estimates. 
The experimental results show that under complex working 
conditions, the MAE and RMSE of the proposed RFC-AEKF 
algorithm are both smaller than EKF and AEKF. This 
indicates that the RFC-AEKF algorithm can reduce errors 
caused by uncertain noise, improve SOC prediction accuracy, 
and improve robustness. 
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