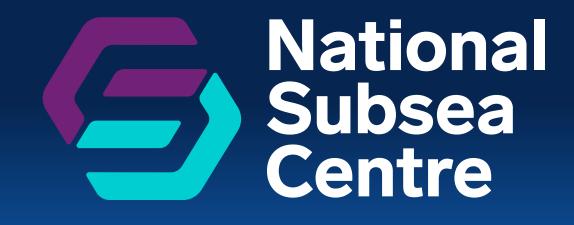
Mapping pipeline bundles for their repurposing used for hydrogen storage.

REYNOLDS, J.


2023

The CC BY licence applied to these slides covers only the author's own text and images. Any third-party materials remain under their original terms of use.

This document was downloaded from https://openair.rgu.ac.uk

Mapping pipeline bundles for their repurposing used for hydrogen storage

Jemma Reynolds, Research Assistant

ROBERT GORDON INVERSITY ABERDEEN

Subsea Centre

Net Zero Challenges and Opportunities

• • •

Net Zero Technology Centre

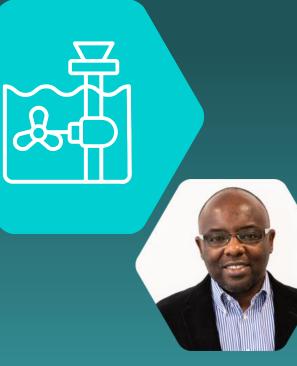
Technology Driving Transition

Our Research Programmes

Transparent Ocean: Professor Jinchang Ren

Aiming to develop cutting-edge capability to detect, monitor and understand subsea and marine, including conditions and activities of the infrastructures and the environments, using the full range of state-of-the-art platforms and sources for data acquisition, visualisation, analysis, interpretation and prediction.

Integrated Marine Energy: Professor James Njuguna


Aiming to develop leading-edge capability to design, model, evaluate and construct an integrated marine energy grid to support the transition to decarbonized energy, using smart materials, digital twins, robotics and mixed energy vector power systems.

Net Zero Marine Operations: Doctor Ciprian Zavoianu

Aiming to develop leading-edge capability to reduce carbon emissions, resource consumption and environmental footprint of marine industry operations using digital twins, machine learning and optimization for operations planning and management, workforce transition planning and supply chain re-design.

Professor James Njuguna Integrated Energy Lead

Integrated Energy

The Integrated Energy programme aims to develop leading-edge capability to design, model, evaluate and construct an integrated marine energy grid to support the transition to decarbonized energy, using smart materials, digital twins, robotics and mixed energy vector power systems.

Project partner: Cygnas Solutions

- Extensive experience across a range of Industries
- Passion for Innovation with a wealth of Engineering Know-how
- Solutions for Companies transitioning to Industry 4.0 leveraging our multi-sectoral experience
- Experienced in Asset Integrity & Management, RBI, RAMS & Fitness For Service
- Advanced Engineering Analysis, AR, IOT and Consulting Services across a range of verticals

Project: Pipeline Bundles Repurposing for Hydrogen Storage

Key Task: Mapping pipeline bundles and offshore windfarms

 H_2

Hydrogen and its importance

Flexible

Resource that can be utilised in a number of different industries; aerospace, automotive and even house hold heating

Clean

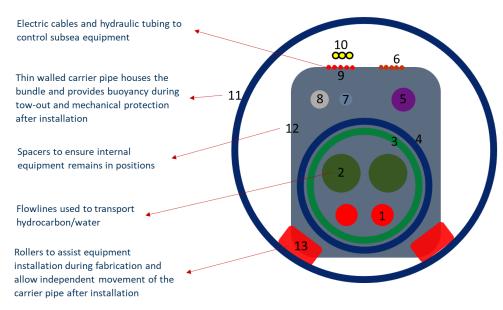
Hydrogen can produce energy when required without any polluting by products to support decarbonisation

Abundant

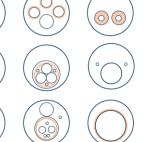
Hydrogen is the most abundant energy source in the world contributing to 75% of the mass of the universe.

Storage Ability

Hydrogen can be stored, transported by pipelines and has a high energy density.

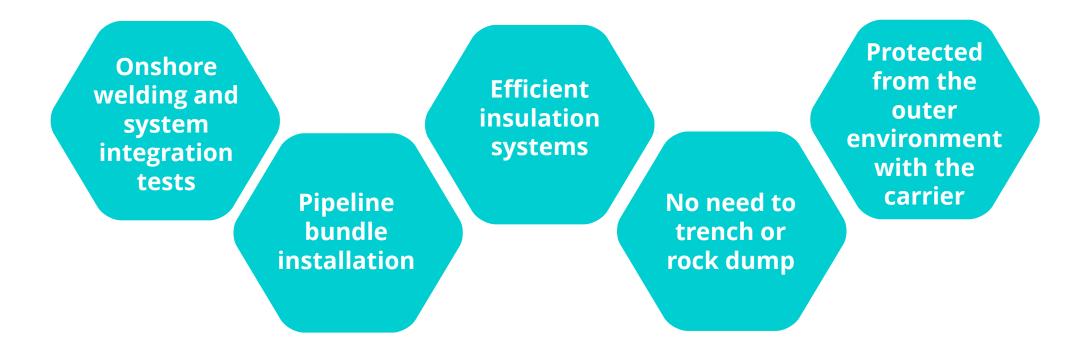

●

Challenges for Hydrogen Storage



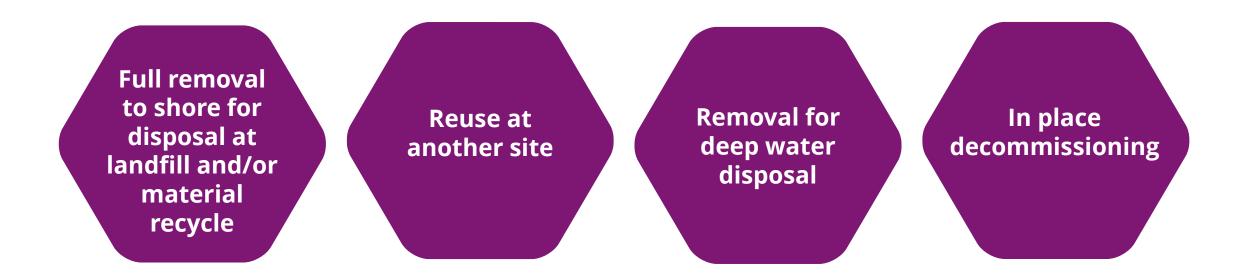
Pipeline bundles

- 1. Hot Water Heating
- 2. Production
- 3. Insulation
- 4. Sleeve Pipe
- 5. Gas Lift
- 6. Control Tubes
- 7. Methanol Injection
- 8. Scale Squeeze
- 9. Chemical Injection
- 10. Power & Signal Cables
- 11. Carrier Pipe
- 12. Main Spacer
- 13. Rollers



Subsea 7 2016

Bundles Advantages



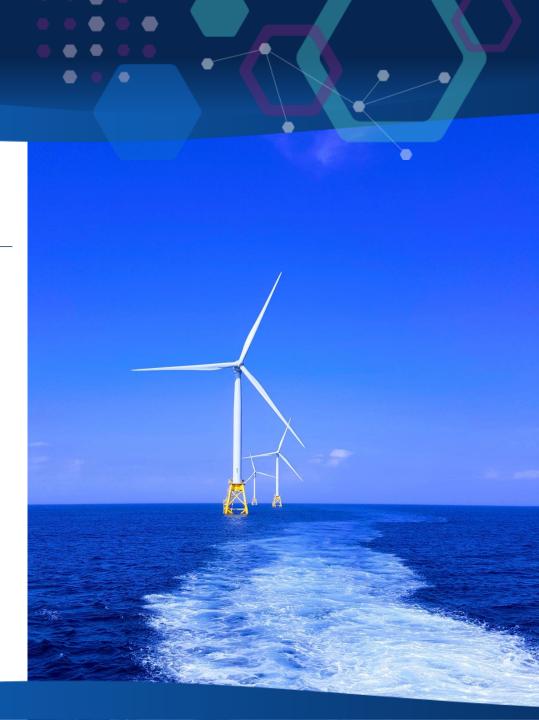
٠

•

Bundles Decommissioning options

Why bundles for hydrogen storage?

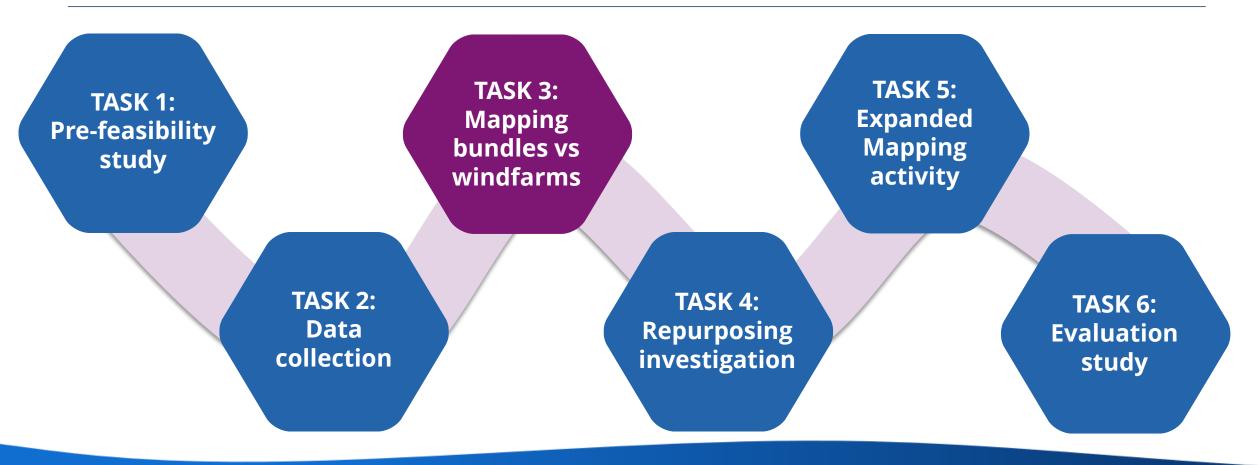
- Sustainable decommissioning option and potential to be profitable
- Bridge gap between wind farm energy production rates and energy usage
- Benefits of pipeline bundles is that by design they are commissioned as low stress and have high fatigue tolerances



Subsea 7 2016

Offshore wind farms

- Wind power produces roughly 5% of the worlds electricity.
- Government ambition of adding up to 50GW by 2030 to offshore wind, of which 5GW from floating offshore wind in deeper seas is expected.
- Wind energy produced offshore is increasing in many countries around the north sea.
- One challenge is transporting the electricity back to shore.
- Potential to produce hydrogen.


Bundles Project Overview

Developments in the H2 economy and need for hydrogen storage

Pipeline bundles being decommissioned Surplus energy being produced from wind turbines

Project status:

٠

TASK1:										
P _{storage} Femp Density Mass of H ₂ Vol	207 4 15.9538 10000 626.8099136	kg/m ³ kg	NPS Sch ID _{unpressurised} Bundle Depth P _{sea}	16 Sch 160 325.424 50 6.034003	mm 0 m 8 bara	ID _{final} A L _{required}	325.494 0.083210273 7.532842856		Length Vol	<mark>7</mark> km 582.4719139 m ³
Material Data Ε α σ _{Fatigue Limit}	207 1.58E-05	GPa mm/mm/C MPa	DP Pressure Effect σ_{θ} e_{θ} Thermal Effect	80.76 3.902E-04	2 MPa	Available H ₂ Outcome based on 100% of fatigue limit	9670.484806 Pass	kg		
Fraugue Linit			e ₀ e _z	-1.738E-04 -1.738E-04						
	<i>Calculation ba</i> at deploymen ater density of	it assumed to	be 15C							

TASK 1: Pre-Feasibility Study

- The calculations were based on NIST data for H₂
- The ambient temperature at deployment was assumed to be 15C
- The average seawater density of 1023kg/m³ used

TASK	
IADN	
	~~ •

objectid lease_desc	tenant_nam	lease_type	property_c	project_ph	capacity_m	shape_leng	shape_area
1 Robin Rigg East	RWE Renewables UK	Lease Marine	Wind Farm	Operational	84	0.174438309	0.001375732
2 Robin Rigg West	RWE Renewables UK	Lease Marine	Wind Farm	Operational	90	0.158276674	0.001182332
3 Inch Cape Offshore Wind Farm	Inch Cape Offshore Ltd	Agreement/Option for Lease	Wind Farm	Consented	1008	0.739036166	0.021772633
4 Moray East Met Mast	Moray Offshore Wind Farm	Lease Marine	Substation	Operational	0	0.008356256	4.79E-06
5 Methil Demo	ORE Catapult Ltd	Lease Marine	Wind Farm	Operational	7	0.00835391	3.44E-06
6 Inch Cape Met Mast	Inch Cape Offshore Ltd	Lease Marine	Substation	Consented	0	0.038869255	0.000101988
7 Forthwind Methil Demonstration	Forthwind Ltd	Agreement/Option for Lease	Wind Farm	Consented	12	0.052654485	5.45E-05
33 Broadshore	Orion Offshore Wind Farm	Agreement/Option for Lease	Wind Farm	Pre Planning	500	0.618858373	0.020447472
34 Bellrock	Gemini Offshore Wind Farm	Agreement/Option for Lease	Wind Farm	Pre Planning	1200	1.170430248	0.041105488
8 Beatrice Offshore Wind Farm	Beatrice Offshore Wind Farm Li	Lease Marine	Wind Farm	Operational	588	0.654697578	0.020103013
9 Beatrice OFTO	TC Beatrice OFTO Limited	Lease Marine	OFTO	Operational	0	0.016736646	9.60E-06
10 Aberdeen Offshore W/F	Aberdeen Offshore WindFarm Ltd	Lease Marine	Wind Farm	Operational	97	0.249356786	0.002975306
11 Buchan Deep Demo	Hywind (Scotland) Ltd	Lease Marine	Wind Farm	Operational	30	0.208187412	0.002305295
12 Pentland Floating Offshore Win Farm	Highland Wind Ltd	Agreement/Option for Lease	Wind Farm	In Planning	100	0.158027054	0.001547737
13 Robin Rigg OFTO	TC Robin Rigg OFTO Ltd	Lease Marine	OFTO	Operational	0	0.018747712	1.20E-05
14 Inch Cape OFTO	Inch Cape Offshore Ltd	Agreement/Option for Lease	OFTO	Consented	0	2.972066753	0.015254147
15 Moray West	Moray Offshore Windfarm (West)	Agreement/Option for Lease	Wind Farm	Consented	850	0.935495784	0.034285235
16 Berwick Bank Wind Farm	Berwick Bank	Agreement/Option for Lease	Wind Farm	Pre Planning	2300	1.424257229	0.094975421
17 Kincardine	Kincardine Offshore WF Ltd	Lease Marine	Wind Farm	Operational	50	0.26026987	0.003750704
18 Moray East OFTO	Moray Offshore Wind Farm	Lease Marine	OFTO	Under construction	0	1.633205752	0.003107417
19 Moray Offshore Windfarm (East)	Moray Offshore Wind Farm	Lease Marine	Wind Farm	Operational	953	1.456378324	0.044732569
20 Marr Bank Wind Farm	Marr Bank	Agreement/Option for Lease	Wind Farm	Pre Planning	1800	1.524123294	0.114222102
21 Neart Na Gaoithe Offshore Wind	Neart Na Gaoithe Offshore Wind	Lease Marine	Wind Farm	Under construction	448	0.71818202	0.014872928
22 Neart na Gaoithe OFTO	Neart Na Gaoithe Offshore Wind	Lease Marine	OFTO	Under construction	0	0.0120763	5.12E-06
23 Moray West OFTO	Moray Offshore Windfarm (West)	Agreement/Option for Lease	OFTO	Consented	0	1.883132572	0.060356619
44 Morven	Morven Offshore Wind Limited	Agreement/Option for Lease	Wind Farm	Pre Planning	2907	1.792697699	0.125365656
24 Seagreen Phase 1 OFTO	Seagreen Wind Energy Limited	Lease Marine	OFTO	Under construction	0	0.040511558	0.000114776
25 Seagreen Phase 1A OFTO	Seagreen 1A Limited	Agreement/Option for Lease	OFTO	Consented	0	3,452365169	0.017533142
26 Seagreen Phase 1 Windfarm	Seagreen Wind Energy Limited	Lease Marine		Under construction	1140	1,692394668	0.048509635
27 Seagreen 1A Offshore Wind Farm	Seagreen 1A Limited	Agreement/Option for Lease	Wind Farm	Consented	360	0.463971567	0.008565016
28 Berwick Bank OFTO	Berwick Bank	Agreement/Option for Lease	OFTO	Pre Planning	0	3,530368568	0.11688525
29 Cluaran Deas Ear	Thistle Wind Partners Cluaran	Agreement/Option for Lease	Wind Farm	Pre Planning	1008	0.891787478	0.027625745
30 Scoprojco1 TBC	Ossian Offshore Windfarm	Agreement/Option for Lease		Pre Planning	2610	2.022451172	0.125805704
31 Buchan Offshore Wind Farm	Floating Energy Allyance 1	Agreement/Option for Lease		Pre Planning	960	0.95833232	0.050810197
32 Stromar	Northern Cross Offshore	Agreement/Option for Lease	Wind Farm	Pre Planning	1000	0.861862763	0.039473526
35 Marram	MarramWind Limited	Agreement/Option for Lease		Pre Planning	3000	1.375839976	
36 MachairWind	MachairWind Limited	Agreement/Option for Lease		Pre Planning	2000		0.108540492
37 Campion	CampionWind Limited	Agreement/Option for Lease		Pre Planning	2000		0.128105494
38 Cluaran Far-Thuath	Thistle Wind Partners Cluaran	Agreement/Option for Lease		Pre Planning	1008	1.38314575	0.031073324
39 Northland Sheena TBC	Northland Sheena Limited	Agreement/Option for Lease		Pre Planning	840		0.024771895
40 Magnora TBC	Magnora Offshore Wind N3	Agreement/Option for Lease		Pre Planning	495		0.016007227
41 Mara Mhor Offshore Wind Farm	Muir Mhor Offshore Wind Farm	Agreement/Option for Lease		Pre Planning	798	0.75067669	0.029861689
42 Northland Mhairi TBC	Northland Mhairi Limited	Agreement/Option for Lease		Pre Planning	1500		0.060663484
43 West of Orkney Wind Farm	Offshore Wind Power Limited	Agreement/Option for Lease		Pre Planning	2000		0.102300202
45 Caledonia Offshore Wind Farm	Caledonia Offshore Wind Farm	Agreement/Option for Lease		Pre Planning	1000		
46 Shetland Offshore Wind	Shetland Offshore Wind Ltd	Agreement/Option for Lease		Pre Planning	500	0.542831128	
47 Ocean Winds Shetland	Ocean Winds Shetland Ltd	Agreement/Option for Lease		Pre Planning	500		0.016217702
48 Arven Offshore Wind Farm	Arven Offshore Wind Farm	Agreement/Option for Lease			1800		0.058397889

TASK 2: Data Collection

- All data was taken as secondary data from various sources
- Data required formatting
- Low accuracy
- Requires more accurate mapping software for further investigation

TASK 3: Δ ~ Inverness Sea of the Hebrides Greenock Ed inburg Atlantic Ocean/Irish Sea Londonderry Belfast

TASK 3: Mapping activity

- Low accuracy
- Requires more accurate mapping software for further investigation
- Unable to obtain all data required at this point

٠

●

Future Project steps:

- Investigate coatings for pipeline repurposing
- Fatigue cycles
- Cleaning
- Services
- Hydrogen Compatibility with coatings
- All pipelines
- Costing evaluation

Concluding remarks:

- Bundles have the potential to be repurposed for H2 storage for windfarms, but not just bundles
- Many bundles would be requiring decommissioning and a new and current wind farms might offer the best way forward
- Further work could be carried out on a real opportunity in the North Sea and further a field
- The inclusion of bundles might offer the platform to be repurposed to produce and process hydrogen

ALL THINGS HYDROGEN CONFERENCE

A COLLABORATION BETWEEN THE NATIONAL SUBSEA CENTRE & ROBERT GORDON UNIVERSITY #ATH23

Net Zero Technology Centre

Technology Driving Transition

CONFERENCE TOPICS:

NIGEL HOLMES SCOTTISH HYDROGEN & FUEL CELL ASSOCIATION

HYDROGEN PRODUCTION DEVELOPMENTS

HYDROGEN STORAGE FACILITATING THE FUTURE

THE INTEGRATION OF HYDROGEN INTO THE ENERGY MIX

SUPPORTED BY:

GLOBAL

JOHN BUTLER

Thank You

●