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Abstract: State of charge (SOC) and state of energy (SOE) are the key factors that reflect the safe and range 

driving of new energy vehicles. This paper proposes an optimized convolutional neural network-bidirectional 

gate recurrent unit (CNN-BiGRU) and an improved Kalman bidirectional smoothing algorithm to predict SOC 

and SOE accurately. Firstly, the attention mechanism (AM) is introduced into the CNN-BiGRU to extract 

significant features better. A multi-task learning (MTL) mechanism is constructed to learn the correlation between 

tasks and output the results simultaneously. Then, square root and reverse smoothing methods are added to the 

classical extended Kalman filtering (SREKS) to filter and de-noise the neural network output. Finally, the test 

data of the hybrid pulse power characterization (HPPC) and Beijing bus dynamic stress test (BBDST) at 15℃ 

and 35℃ are used for experimental verification. Under the HPPC condition, the maximum error of SOC and SOE 

is less than 0.01432 and 0.01417, respectively. Under BBDST condition, the maximum error of SOC and SOE 

is less than 0.01827 and 0.01883, respectively. Experimental results show that this algorithm has high accuracy 

and robustness under different complex working conditions. 
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1. Introduction 

With the massive development and utilization of fossil fuels in our country, the problems of resource shortage 

and environmental pollution have become increasingly prominent. New energy vehicles (NEVs) driven by 

batteries are the direction of development in the automotive field. Lithium-ion batteries are widely used as power 

sources for NEVs due to their long cycle life, low self-discharge rate, and high energy density [1, 2]. However, 

lithium-ion battery explosion accidents have occurred frequently at home and abroad in recent years. Therefore, 

a good battery management system (BMS) is essential for lithium-ion batteries' efficiency and safety operation 

[3, 4]. The accurate estimation of SOC and SOE in BMS can further ensure the efficient operation of the battery 

system. SOC represents the battery's remaining capacity, and SOE represents the battery's remaining energy [5, 

6]. At the same time, the unbiased estimation of SOC and SOE can further rationally allocate power and extend 

battery range. 

SOC is expressed as a ratio of the remaining available capacity over the nominal capacity. SOE is expressed as 

a ratio of the battery residual energy under specific operating conditions. The common SOC and SOE estimation 

methods are based on the characteristic parameter (CP), ampere-hour integration (AHI), battery equivalent circuit 

model (ECM), and data-driven [7-10]. The open circuit voltage (OCV) method of CP adopts the nonlinear 

correspondence between voltage and SOE or SOC to achieve the estimation purpose. Such as, Wang et al. [11] 

proposed cloud-based data to construct OCV-SOC complete curve method at different temperatures. Although 

the OCV method can directly reflect SOC changes, the battery needs to undergo long-term quiescence processing, 

which makes the prediction time longer. The AHI method calculates SOC or SOE by integrating voltage and 

current over time. Liu et al. [12] proposed a new method for SOC fuzzy control strategy based on an extended 

Kalman filtering (KF) and ampere-hour. Although AHI can quickly obtain an estimate from a mathematical 

equation, the initial value directly affects the accuracy of estimates and the integration operation results in the 



 

 

accumulation of errors. The method based on the ECM has mainly used the KF. Lai et al. [13] proposed a joint 

SOH and SOE estimation method for lithium-ion batteries by combining the forgetting factor recursive least 

squares (FFRLS) and unscented KF. However, the KF algorithm depends on the accurate construction of the 

ECM, which is bound to consume much time and be challenging. 

The emergence of the data-driven method dramatically reduces the time required for prediction and the 

complexity caused by the accuracy of ECM building. Machine learning and deep learning are the two main data-

driven approaches [14, 15]. Basic machine learning algorithms include support vector machine, linear regression, 

and k-nearest neighbors [16-18]. It is precise because of the simple structure that combining complex 

electrochemical, electrothermal, and degradation dynamic behaviors is challenging under extremely complex 

working conditions [19]. Deep learning is more suitable for estimating BMS-related performance indicators than 

machine learning and is widely used [20, 21]. Deep learning includes generative adversarial networks (GAN), 

convolutional neural networks (CNN), and recurrent neural networks (RNN) [22-25]. RNN is widely used in the 

prediction of time series data because of their memory properties. Zhang et al. [26] proposed an improved method 

of BiGRU networks based on Nesterov Accelerated Gradient (NAG) algorithm, and experimental results show 

that the method can improve the prediction accuracy at different ambient temperatures. 

However, because of the problem of gradient disappearance and gradient explosion of RNN, and the problem 

of long-term dependence, the LSTM network is proposed [27, 28]. LSTM can use different battery data to train 

corresponding network parameter models, which have certain flexibility [29]. Ma et al. [30] investigated a data-

driven approach based on an improved LSTM for simultaneous estimation of SOC and SOE. As an improved 

network of LSTM, the gated recursive unit (GRU) is optimized from three to two gated units. As a result, GRU 

have a much simpler structure, allowing for fewer model parameters and faster computation. In addition, 

literature [31] shows that the prediction speed of GRU is 22.79% faster than LSTM, and experimental results of 

https://www.webofscience.com/wos/woscc/full-record/WOS:000915392000006
https://www.webofscience.com/wos/woscc/full-record/WOS:000915392000006
https://www.webofscience.com/wos/woscc/full-record/WOS:000915392000006


 

 

literature [32-35] all indicate that the prediction effect of GRU model is better than LSTM. Dong et al. [36] 

established BiGRU circuit module, attention circuit module and KF module, formed the strategy of efficient 

information extraction and accurate filtering, and realized the high precision SOC estimation.  

Compared with the single-state estimate, the joint estimation of SOC and SOE can better reflect the battery 

power condition under the condition of sudden voltage change. It provides a firmer basis for the functions of 

energy distribution, balance control, and charge and discharge control in the BMS so as to effectively extend the 

battery mileage and service life. In addition, a multi-task simultaneous estimation can effectively avoid the 

overfitting problem of a single-task estimation model. At present, most of the research on SOC and SOE joint 

estimation is based on ECM, which obtains state value through an improved parameter identification method 

combined with the KF algorithm [37-39]. However, with the continuous aging of the battery, the ECM model 

has difficulty expressing the complex changes inside the battery, which makes the prediction accuracy low[40]. 

In the estimation of SOC and SOE based on neural networks, as in the literature [41, 42]. In the simultaneous 

estimation of SOC and SOE, they ignore the coupling relationship between SOC and SOE. Almost all of them 

use the LSTM network, ignoring the GRU, which is optimized on the basis of LSTM. GRU has fewer model 

parameters and less computational effort. 

In addition, to obtain a more accurate estimate, a filter method is introduced after the operation of the neural 

network, and the data is smoothed and denoised [43]. For example, Pang et al. [44] combined a backpropagation 

(BP) neural network and an extended Kalman particle filter (EKPF) algorithm to comprehensively estimate the 

SOC, the experimental results prove that the combined method based on the neural network has higher accuracy 

and robustness than (particle filter) PF, EKF, and EKPF. The joint of the neural network and KF method does 

not need to establish the ECM of the lithium-ion battery but only needs a certain amount of original data to train 

the network model to obtain accurate estimation results. 



 

 

Based on the above problems, to obtain high precision estimates of SOC and SOE, an improved convolutional 

bidirectional gate recurrent unit-square root extended Kalman smoothing algorithm (AMC-BiGRU-SREKS) is 

proposed for simultaneous estimation of SOC and SOE. The main contributions of this paper are as follows. 

(1) Based on the solid nonlinearity and sequential nature of battery data, CNN-BiGRU model based on multi-

sliding window data preprocessing is constructed. It can learn nonlinear relationships quickly and capture 

feature information bidirectionally, which effectively improves the estimation accuracy and speed. 

(2) A Luong attention model based on the global attention mechanism is constructed to assign different weights 

to the hidden state of CNN-BiGRU to increase the influence of important information on SOC and SOE. 

(3) According to the coupling relationship between SOC and SOE, a multi-task learning framework based on a 

hard sharing mechanism is constructed to form a new method of joint estimation for information sharing and 

complementarity between multiple tasks. 

(4) A high-precision bidirectional filtering strategy is constructed to address the problem of model accuracy 

caused by noise interference. The forward is to introduce a square root algorithm on the basis of EKF to ensure 

filtering performance. The fixed-interval smoothing technique is introduced backward to achieve high-

precision joint prediction of SOC and SOE. 

(5) The accuracy of the novel AMC-BiGRU-SREKS method is verified under HPPC and BBDST working 

conditions at different temperatures. In addition, the mean absolute percentage error (MAPE), mean absolute 

error (MAE), and root mean square error (RMSE) values of this algorithm are significantly better than those 

of other algorithms. 



 

 

2. Principle analysis and model construction 

2.1. Improved convolutional neural network-bidirectional gated recurrent unit 

2.1.1. Convolutional neural network 

Sample data is the key to constructing a neural network prediction model. In view of the strong nonlinearity 

and timing properties of the battery sample data, this paper adopts multi-window sliding window technology to 

process the sample data so as to characterize the data properties effectively. The schematic diagram of multi-

sliding window construction sample data is shown in Fig. 1. Where the total period is T, the sliding window w=3, 

and new sample data is obtained by sliding one time step along the time axis each time, and a total of T−w+1 

sample data can be constructed. 

 

Fig. 1. Multi-sliding window data processing 

As a feedforward neural network, CNN is often used in feature extraction. The most basic CNN is composed 

of the input, convolutional, pooling, full connection, and output layers. The network distribution of CNN is 

shown in Fig. 2. In the convolutional layer, convolution operation is used to extract the features of input data. 

Considering the strong nonlinearity of battery parameters and the linearity of a single convolutional process, 

RELU or other activation functions are introduced after convolutional operation to improve the nonlinear 

characterization ability of the network. The pooling layer integrates features from the convolutional transport 

layer and uses the maximum pooling layer to select the maximum eigenvalues and reduce the dimensions. The 



 

 

fully connected layer integrates the data features from the pooled layer and uses appropriate activation functions 

for nonlinear transformation. It allows the network to gradually understand the complex features of the input data 

to make more accurate predictions. 

 

Fig. 2. Structure of CNN 

2.1.2. Bidirectional gated recurrent unit 

In contrast to the three-door structure of LSTM, the GRU combines the forgot door and the input door into a 

single update door. Thus, the GRU contains only an updated door and a reset door. The update gate defines how 

many steps the previous memory is saved to the current time. The reset gate determines how new input 

information is combined with the previous memory. The proposed GRU structure not only speeds up the 

convergence rate but also avoids the gradient problems in RNN. The internal structure of the GRU and LSTM 

are shown in Fig. 3. 

 

Fig. 3. Internal structure diagram of the GRU and LSTM 

In Fig. 2, It is obvious that the GRU has a simpler internal structure than the LSTM. Where, ℎ𝑡−1 is the state 

transmitted from the previous one, 𝑥𝑡 is the input of the current node, ℎ𝑡 is the output of the hidden layer,  𝑟𝑡 is 

the reset gate, 𝑧𝑡 is the update gate, ℎ̃𝑡  is the candidate's hidden state, and 1- represents the data transmitted 



 

 

forward by the link as 1-𝑧𝑡. The sigmoid function can transform the data into a value in the range of 0 to 1, thus 

acting as a gated signal. When 𝑟𝑡 approaches zero, the model will keep only the current input information and 

delete previously hidden information. When 𝑟𝑡 approaches 1, the model will retain information from the past. 𝑧𝑡 

ranges from 0 to 1. The closer the value of the gated signal is to 1, the more information is saved. The units based 

on GRU can be calculated by Equation (1).  

{
 
 

 
 𝑧𝑡 = 𝜎(𝑊𝑍 ∙ [ℎ𝑡−1, 𝑥𝑡])
𝑟𝑡 = 𝜎(𝑊𝑡 ∙ [ℎ𝑡−1, 𝑥𝑡])

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ∙ [𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡])

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡∗ℎ̃𝑡])

 (1) 

Where, 𝑊𝑧 , 𝑊𝑡  and 𝑊 are trainable parameter matrices. The classical GRU structure propagates 

unidirectionally along the direction of sequence transition, with time t only related to past time. However, In the 

battery power from high to the end of a cycle, the SOC and SOE values will show a decreasing trend with the 

battery use time. When using the time series properties of SOC and SOE for estimation, the influence of past and 

future data on the current value can be considered to achieve accurate estimates. Therefore, establishing a forward 

and reverse BiGRU model is conducive to learning the relationship between past and future factors influencing 

battery and current state parameters. The structure of BiGRU is shown in Fig. 4. 

 

Fig. 4. Structure diagram of BiGRU 

2.1.3. Attention mechanism 

In neural network learning, increasing the complexity of the model is usually used to enhance the 



 

 

expressiveness of the model. However, with the increase in the complexity of the model, the problem of 

information overload will often appear. Therefore, this paper introduces the Luong attention model based on 

global attention, assigns corresponding weights to all hidden states, strengthens the influence of important 

information on output, and ignores irrelevant information. Compared with the Bahdanau attention, which only 

considers partially hidden states, the Luong attention calculation logic is more apparent, which can effectively 

solve the problem of information overload and improve the efficiency and accuracy of the overall model. The 

structure of the improved AM is shown in Fig. 5. 

 

Fig. 5. The structure of the improved AM 

In Fig. 5, ℎ̅𝑗 is the hidden state at the input end, ht is the hidden state at the output end, at is the attention weight, 

Ct is the context vector, ℎ̃𝑡 is the state of the current hidden layer with the attention mechanism added, xj is the 

input of the CNN-BiGRU hidden layer at time j, and yt is the output of AM at time t. It can be seen from the 

figure that Luong attention includes all the current hidden states in the calculation of attention, while Bahdanau 

attention does not consider the current hidden layer state. In contrast, Luong attention contains more feature 

information and has more rigorous logic. The calculation process of Luong attention is shown in Equation 2. 

{
 
 
 
 

 
 
 
 
𝑒𝑡𝑗 = 𝑢𝑡𝑎𝑛ℎ(𝑤𝑎[ℎ𝑡; ℎ̅𝑗])

𝑎𝑡𝑗 = 𝑎𝑙𝑖𝑔𝑛(ℎ𝑡 , ℎ̅𝑗) =
exp(𝑒𝑡𝑗)

∑ exp (𝑒𝑡𝑗)
𝑇
𝑗=1

𝑐𝑡 =∑𝑎𝑡𝑗ℎ̅𝑗

𝑇

𝑗=1

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑦𝑡−1)

ℎ̃𝑡 = tanh (𝑤𝑐[𝑐𝑡; ℎ𝑡])

 (2) 



 

 

Where, 𝑒𝑡𝑗 is the alignment fraction of input sequence time j to output sequence time t, and f is CNN-BiGRU 

cell unit. 𝑢 , 𝑤𝑎  and 𝑤𝑐  are weight coefficients. When t=n, the current output hidden state ℎ𝑛  and each input 

hidden state ℎ̅𝑛  are calculated using the concat function to obtain the alignment score 𝑒𝑛𝑗 , and the attention 

weight 𝑎𝑛𝑗  is obtained using the align function. Finally, the current hidden state with attention is obtained 

according to 𝑐𝑛 and ℎ𝑛, and the output 𝑦𝑛 is obtained. Through the continuous update of 𝑎𝑡𝑗, the final accurate 

estimate is obtained. 

2.1.4. Multi-task learning mechanism 

In BMS, the reliability analysis of the battery's SOC, SOE, SOH, SOP (state of power), and SOS (state of 

safety) is a prerequisite for the management of battery charging and discharge efficiency, safety, and health 

management [45]. However, most kinds of literature predict a single state parameter of the battery, leading to an 

inaccurate judgment of the battery-related performance. In dealing with a problem, the sharing layer can be used 

to learn and obtain the auxiliary coupling information provided by other related subtasks. Compared with single-

task learning (STL), the multi-task learning (MTL) has a better effect, more vital generalization ability, and 

broader application scope. MTL contains a set of task 𝑦𝑡 (𝑡 ∈ 𝑇 ) and data set {𝑥𝑖, 𝑦𝑖
1, 𝑦𝑖

2,⋯ , 𝑦𝑖
𝑡, ⋯ , 𝑦𝑖

𝑇}(𝑖 =

1,2,⋯ ,𝑁), where T is the estimated number of tasks, N is the sample data, and 𝑦𝑖
𝑡 is the label of the tth task at 

the ith data point. The prediction function is defined as 𝑓𝑡(𝑥; 𝜃𝑠ℎ, 𝜃𝑡): 𝑥 → 𝑦𝑡, where 𝜃𝑠ℎ is the parameter shared 

by different tasks, 𝜃𝑡 is the parameter related to tasks. Then the overall optimization loss function of MTL can 

be defined as shown in Equation (3). 

𝑚𝑖𝑛∑𝛼𝑡�̂�𝑡(𝜃𝑠ℎ, 𝜃𝑡)

𝑇

𝑡=1

 (3) 

Where, 𝛼𝑡 is the weight coefficient of the task, �̂�𝑡(𝜃𝑠ℎ , 𝜃𝑡) is the loss function. The optimization goal of the 

model is to minimize the task loss. MSE is used as the loss function and Adam is used as the parameter optimizer. 

Two commonly used methods in MTL based on deep NN are hard sharing and soft sharing of hidden layer 



 

 

parameters. The hard-sharing of parameters uses the same feature-sharing layer for multiple subtasks. It can 

effectively reduce the risk of overfitting through average noise. The parameter soft-sharing mechanism uses 

different network and characteristic parameters for different tasks. Compared with the soft sharing mechanism, 

the hard sharing mechanism builds a simpler model, and the sharing mechanism is more suitable for this study. 

The complex shared MTL of hidden layer parameters estimates SOE and SOC values. Under the condition of 

sharing information such as voltage, current, and temperature, relevant information on the coupling relationship 

between tasks can be found, which not only enhances the estimation accuracy of the model but also speeds up 

the estimation efficiency. The structure of the hard-sharing mechanism for MTL is shown in Fig. 6. 

 

Fig. 6. The structure of the hard-sharing mechanism for multi-tasking learning 

2.1.5. Overall optimization of the BiGRU algorithm 

In the AMC-BiGRU model, constructing BiGRU can solve the timing problem of forecast data well and 

strengthen the time correlation between data. To improve the efficiency of data processing by BiGRU, the CNN-

BIGRU model is constructed by introducing CNN to extract important feature information before BiGRU. Due 

to the large and complex input data, AM is introduced to give BiGRU different probability weights of hidden 

states and focus on more effective messages. A multi-task attention layer is constructed to make the model focus 

on the important and valid information of different tasks. The construction of the AMC-BiGRU model can better 

extract features, solve the long-term dependence problem between time series data, more accurately focus on the 



 

 

key factors affecting the output, better learn the coupling relationship between the output. The structural model 

of AMC-BiGRU is shown in Fig. 7. 

 

Fig. 7. Structure diagram of AMC-BiGRU model 

2.2. Bidirectional smoothing filter 

Although the AMC-BiGRU neural network algorithm can use the original battery data as input and output 

relatively accurate estimates, it will also bring some estimation errors due to the setting of hyperparameters and 

noise interference in practical applications. To increase the robustness of the model, a bidirectional denoising 

SREKS algorithm is constructed. It is divided into forward filtering and backward smoothing, and the SOC and 

SOE numerical curves from AMC-BiGRU are optimized to obtain more accurate estimates. 

1) Forward filtering 

SREKF has the same state-space equation as EKF, is shown in Equation (4). 



 

 

{
𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 +𝑤𝑘
𝑍𝑘 = 𝑔(𝑥𝑘 , 𝑢𝑘) + 𝑣𝑘 = 𝐶𝑘𝑥𝑘 + 𝐷𝑘𝑢𝑘 + 𝑣𝑘

 (4) 

Where, 𝑓(𝑥𝑘 , 𝑢𝑘)  and 𝑔(𝑥𝑘 , 𝑢𝑘)  are nonlinear functions in the system respectively, and state space 

equations of the system are formed by introducing state noise and observation noise. 𝑥𝑘 is the n-dimensional 

state variable of the system, 𝐴𝑘 is the state transition matrix of the system, 𝐵𝑘 is the control input matrix of the 

system, 𝑢𝑘 is the system input variable, 𝑤𝑘 process measurement noise sequence, 𝑍𝑘 is the observation variable, 

𝐶𝑘 is the observation matrix of the system, 𝐷𝑘 is the feedforward matrix of the system, 𝑣𝑘 is the observe the noise 

sequence. The derivation formula of SREKF algorithm is shown as follows. 

First, the error covariance matrix is decomposed into the lower triangular matrix 𝑆𝑘 and the transpose 𝑆𝑘
𝑇 of the 

lower triangular matrix by Cholesky: 

{
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 (5) 

If 𝐹𝑘=(�̃�𝑘+1
− )𝑇𝐶𝑘

𝑇 is satisfied, then it can be proven that： 

{
𝑃𝑘+1 = �̃�𝑘+1

′ {𝐸 − 𝐹𝑘[𝐹𝑘
𝑇𝐹𝑘 + 𝑅𝑘]

−1(�̃�𝑘+1
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′ [𝐸 − 𝛼𝑘𝐹𝑘
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 (6) 

If 𝑃𝑘+1 = �̃�𝑘+1�̃�𝑘+1
𝑇  is satisfied, then it can be shown that: 

{
𝐸 − 𝛼𝑘𝐹𝑘

𝑇𝐹𝑘 = 𝐸 − 𝛼𝑘𝐹𝑘[2𝛾𝑘𝐹𝑘
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𝑇
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𝑇]
 (7) 

According to Equation (5)~(7), the SREKF algorithm can be obtained as follow: 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑥𝑘
′ = 𝑓(𝑥𝑘−1, 𝑢𝑘−1)
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′ + 𝐾𝑘−1[𝑍𝑘−1 −𝐴𝑘−1𝐶𝑘−1𝑥𝑘

′ ]

�̃�𝑘 = �̃�𝑘
′
[𝐸 − 𝛼𝑘−1𝛾𝑘−1𝐹𝑘−1𝐹𝑘−1

𝑇 ]

𝛾𝑘−1 =
1 ± √𝛼𝑘−1𝑅𝑘−1
1 − 𝛼𝑘−1𝑅𝑘−1

 (8) 

2) Reverse smoothing 

The reverse smoothing algorithm smoothes the result based on forward filtering, reducing fluctuation amplitude 



 

 

to obtain stable output results and lower error. The reverse smoothing is shown in Equation (9). 

 

{
 
 

 
 
𝑥𝑘+1
′ = 𝐴𝑘𝑥𝑘
�̃�𝑘+1
′ = 𝐴𝑘�̃�𝑘𝐴𝑘

𝑇 +𝑄𝑘
𝐺𝑘 = �̃�𝑘𝐴𝑘

𝑇(𝑆𝑘+1
′ )−1

𝑥𝑘
𝑠 = 𝑥𝑘 + 𝐺𝑘(𝑥𝑘+1

𝑠 − 𝑥𝑘+1
′ )

�̃�𝑘
𝑠 = 𝑆𝑘 + 𝐺𝑘(�̃�𝑘+1

𝑠 − �̃�𝑘+1
′ )𝐺𝑘

𝑇

 (9) 

Based on the forward calculation of the N-dimensional state variable xk  and covariance matrix 𝑆𝑘 . A new 

Kalman gain 𝐺𝑘 , state variable 𝑥𝑘
𝑠  and covariance matrix �̃�𝑘

𝑠  are obtained. Finally, the results of the AMC-

BiGRU-SREKF algorithm are reverse-smoothed, which improves the robustness of the system and the accuracy 

of the model.  



 

 

2.3. The overall framework of the AMC-BiGRU-SREKS model 

 

Fig. 8. Structure of the AMC-BiGRU-SREKS model 

Firstly, the combined voltage, current, and temperature data after sliding window preprocessing are used as 

input for one-dimensional CNN. CNN also carries out the convolution operation of multiple convolution kernels 

for the whole input sequence data in the form of a sliding window. The default step size of the sliding window is 

1, and the window is the convolution kernel size. The same time step contains voltage, current and temperature 

data. After the convolution operation, the nonlinear mapping of the activation function and dimensionality 



 

 

reduction of the pooling layer is carried out successively on the feature data. In order to extract high-level feature 

data, two convolution layers and pooling layers are used in this paper. The final step in CNN is to expand the 

data from the second pooled layer into one-dimensional data and make it as input to BiGRU. BiGRU uses two 

directional GRU to learn the feature information extracted by the CNN layer in time order and effectively 

overcome the long-term dependence of traditional RNN on time series data. In addition, the global attention 

mechanism of Luong attention is introduced to assign different attention weights to all hidden layers of BiGRU, 

thus strengthening the influence of important feature information on the current output value. The use of dropout 

layers can mask some neurons, thereby preventing the model from overfitting and enhancing the model's 

generalization ability. According to the multi-task learning framework, the initial SOC and SOE values are output 

through two fully connected layers under the mechanism of information sharing and complementarity between 

multiple tasks. The bidirectional filtering strategy of SREKS is used to smooth the initial estimation. SREKS 

first uses the SREKF algorithm for forward filtering, then uses a fixed interval grinding technology for secondary 

filtering on the basis of forward filtering. Finally, the bidirectional filtered values are output to obtain high-

precision estimated SOC and SOE values. 

3. Experimental analysis 

3.1. Lithium-ion battery test platform design 

The test platform of this experiment mainly includes a temperature laboratory, charge and discharge test, and 

BMS. A ternary lithium-ion battery with a standard capacity of 72Ah is selected for lithium-ion batteries. The 

test platform and related parameters of the ternary lithium-ion battery are shown in Fig. 9. 



 

 

 

Fig. 9. The experimental platform 

This study carried out the HPPC and BBDST tests of ternary lithium-ion battery at different temperature 

environments. HPPC and BBDST test data at room temperature (25℃) are used as training data, the training data 

are shown in Fig. 10.  

    

(a) HPPC current test 

under 25℃ 

(b) HPPC voltage test 

under 25℃ 

(c) BBDST current test 

under 25℃ 

(d) BBDST voltage test 

under 25℃ 

Fig. 10. Training data 

HPPC and BBDST test data at 15℃ and 35℃ are used to verify the performance of the AMC-BiGRU-SREKS 

model. To better evaluate the range of new-energy vehicles in the case of daily temperature changes to ensure 

driving safety. The test data are shown in Fig. 11. 

    
(a) HPPC current test 

under 15℃ 

(b) HPPC voltage test 

under 15℃ 

(c) HPPC current test 

under 35℃ 

(d) HPPC voltage test 

under 35℃ 

    



 

 

(e) BBDST current test 

under 15℃ 

(f)BBDST voltage test 

under 15℃ 

(g) BBDST current test 

under 35℃ 

(h) BBDST voltage test 

under 35℃ 

Fig.11. Test data 

3.2. Hyperparameter setting 

To obtain the optimal model, this paper uses control variables to optimize the hyperparameters. To better reflect 

the prediction effect of the algorithms, MAPE is used to reflect the accuracy of the model, MAE is used to reflect 

the actual situation of the prediction error, and RMSE is used to reflect the sample standard deviation of the 

difference between the predicted and actual value. Their calculation formulas are shown in Equation (10). 

{
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2

𝑛
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 (10) 

Where 𝑦𝑖  is the real value and �̂�𝑖  is the estimated value. To get a more accurate model, use MAPE as a 

performance indicator during the tuning process. First, set initial values for some parameters. Suppose the 

number of iterations is 1, the dropout rate is 0.2, and the batch size is 200. Then, using the control variable method 

to adjust the hyperparameters of the CNN layer, BiGRU neurons, batch size, and learning rate. The results are 

shown in Fig. 12.  

  

(a) CNN layer number adjustment (b) BiGRU Neuronal adjustment 



 

 

  
(c) Batch size adjustment (d) Learning rate adjustment 

Fig. 12. Process of hyperparameter adjustment 

According to Fig. 11, when the number of CNN layers is 2, the number of neurons in BiGRU's hidden layer 

is 54, the batch size is 100 and the learning rate is 0.001, the MAPE value is lower. The lower the MAPE value, 

the higher the model's precision. Two convolutional layers in CNN set the convolution kernel size to 3 and filter 

length to 64. To obtain the critical information on SOC and SOE, two attention layers are used, and the dropout 

layer is introduced to prevent the occurrence of overfitting.  

3.3. Prediction results  

3.3.1. SOC and SOE prediction with the AMC-BiGRU network 

The AMC-BiGRU network uses HPPC and BBDST test data at room temperature (25℃) as training data and 

uses HPPC and BBDST test data at 15℃ and 35℃ to evaluate the network performance. In order to verify the 

accuracy of the multi-task prediction model based on the AMC-BiGRU algorithm constructed in this paper. 

Based on the research of lithium-ion battery state prediction, this paper constructed the attention mechanism and 

the bidirectional gate recurrent unit (AM-BiGRU) model based on reference [46], dilated convolutional neural 

network and bidirectional gate recurrent unit (DC-BiGRU) model based on reference [47] and one-dimensional 

convolutional neural network and bidirectional gate recurrent unit (1dC-BiGRU) model based on reference [48]. 

The estimation accuracy and performance of different optimized BiGRU models are compared. The predicted 

results of SOC using HPPC test data at 25℃ as training data are shown in Fig. 13. 



 

 

  
(a) SOC estimation results under HPPC at 15℃ (b) SOC estimation error at 15℃ HPPC 

  
(c) SOC estimation results under HPPC at 35℃ (d) SOC estimation error at 35℃ HPPC 

  
(e) SOC estimation results under BBDST at 15℃ (f) SOC estimation error at 15℃ BBDST 

  
(g) SOC estimation results under BBDST at 35℃ (h) SOC estimation error at 35℃ BBDST 

Fig. 13. SOC prediction results under complex HPPC and BBDST conditions 

According to Fig. 13, the maximum absolute error of the AMC-BiGRU to predict SOC under HPPC conditions at 

15℃ and 35℃ is within 0.04345 and 0.03344, respectively. Meanwhile, the maximum absolute error of SOC under 

BBDST conditions at 15℃ and 35℃ is within 0.04173 and 0.05859, respectively. Compared with the AM-BiGRU, 



 

 

1dC-BiGRU, and DC-BiGRU algorithms, the AMC-BiGRU has a minor error value, so the prediction accuracy is 

higher. The predicted results of SOE using HPPC test data at 25℃ as training data are shown in Fig. 14. 

  
(a) SOE estimation results under HPPC at 15℃ (b) SOE estimation error at 15℃ HPPC 

  
(c) SOE estimation results under HPPC at 35℃ (d) SOE estimation error at 35℃ HPPC 

  
(e) SOE estimation results under BBDST at 15℃ (f) SOE estimation error at 15℃ BBDST 

  
(g) SOE estimation results under BBDST at 35℃ (h) SOE estimation error at 15℃ BBDST 

Fig. 14. SOE prediction results under complex HPPC and BBDST conditions 

Fig. 14 shows that AM-BiGRU, 1dC-BiGRU, and DC-BiGRU algorithms all have high prediction errors. On the 



 

 

contrary, the SOE prediction results of the AMC-BiGRU have a high degree of fitting with the desired value. The 

maximum absolute error of the AMC-BiGRU model to predict SOE at 15℃ and 35℃ is within 0.03896 and 0.04170, 

respectively. Meanwhile, the maximum absolute error of SOC under BBDST conditions at 15℃ and 35℃ is within 

0.05651 and 0.04025, respectively. In this paper, MAE, MAPE, and RMSE are used to reflect the predictive 

performance of the constructed model, and the calculation results are shown in Fig. 15. 

  
(a) MAE results for SOC and SOE estimation under 

HPPC condition 

(b) MAE results for SOC and SOE estimation under 

BBDST condition 

  
(c) MAPE results for SOC and SOE estimation under 

HPPC condition 

(d) MAPE results for SOC and SOE estimation under 

BBDST condition 

  
(e) RMSE results for SOC and SOE estimation under 

HPPC condition 

(f) RMSE results for SOC and SOE estimation under 

BBDST condition 

Fig. 15. MAE, MAPE, and RMSE results of the four algorithms under HHPC and BBDST conditions 

In Fig. 15, the AMC-BiGRU algorithm has low MAE, MAPE, and RMSE values, which are within 1.48%, 



 

 

4.60%, and 1.77%. This can be seen from the experimental results that AMC-BiGRU has higher prediction 

accuracy than AM-BiGRU, 1dC-BiGRU, and DC-BiGRU.  

3.3.2. SOC and SOE prediction after SREKS filtering 

Based on AMC-BiGRU, the SREKS algorithm is proposed to form the AMC-BiGRU-SREKS algorithm. The 

output of AMC-BiGRU is taken as the input of SREKS and smoothed it. BBDST test data at room temperature 

(25℃) are used as training data, and HPPC test data at 15℃ and 35℃ are used to verify the performance of the 

AMC-BiGRU-SREKS algorithm. The predicted results are shown in Fig. 16. 

  
(a) SOC estimation results under HPPC at 15℃ (b) SOC estimation error at 15℃ HPPC 

  
(c) SOE estimation results under HPPC at 15℃ (d) SOE estimation error at 15℃ HPPC 

  
(e) SOC estimation results under HPPC at 35℃ (f) SOC estimation error at 35℃ HPPC 



 

 

  
(g) SOE estimation results under HPPC at 35℃ (h) SOE estimation error at 35℃ HPPC 

Fig. 16. SOC and SOE prediction results for HPPC at 15°C and 35°C 

Based on the above model, the AMC-BiGRU-EKF algorithm is constructed to confirm the high accuracy of the 

AMC-BiGRU-SREKS algorithm. As shown in Fig. 16, compared with AMC-BiGRU and AMC-BiGRU-EKF 

algorithms, the SOC and SOE estimated by the AMC-BiGRU-SREKS method have the lowest error values, 

0.01133, and 0.01134, respectively, under the HPPC conditions at 15℃. At the same time, the error values of 

SOC and SOE estimated by the AMC-BiGRU-SREKS at 35℃ are also the lowest, which are 0.01432 and 0.01417, 

respectively. To further reflect the performance of several algorithm, the MAE and MAPE performance 

parameters of the three algorithms are obtained and compared, and the results are shown in Fig. 17. 

  

(a) MAE results for SOC and SOE estimation (b) MAPE results for SOC and SOE estimation 

Fig. 17. MAE and MAPE results of the algorithms under HPPC working conditions 

In Fig. 17, the results of SOC and SOE using the AMC-BiGRU-SREKS method have lower MAE and MAPE 

values at two different temperatures. Thus, it can be proved that the algorithm has a high degree of fitting, and 

the estimates are close to ideal values. 



 

 

3.3.3. Comparison with a single-task learning model 

Compared with the STL algorithm, MTL obtains more information and improves output accuracy because of 

task coupling. Due to MTL output-related tasks at the same time, it greatly shortens the time of prediction as well 

as improves the efficiency of prediction. The experimental comparison is conducted between single-task (ASC-

BiGRU-SREKS) and multi-task (AMC-BiGRU-SREKS). HPPC test data at room temperature (25℃) are used as 

training data, and BBDST test data at 15℃ and 35℃ are used to verify the algorithm's performance, as shown in 

Fig. 18. 

  
(a) SOC estimation results under BBDST at 15℃ (b) SOC estimation error at 15℃ BBDST 

  
(c) SOE estimation results under BBDST at 15℃ (d) SOE estimation error at 15℃ BBDST 

  
(e) SOC estimation results under BBDST at 35℃ (f) SOC estimation error at 35℃ BBDST 



 

 

  
(g) SOE estimation results under BBDST at 35℃ (h) SOE estimation error at 35℃ BBDST 

Fig. 18. SOC and SOE prediction results for BBDST at 15 °C condition and 35 °C 

In Fig. 18, compared with the STL, the SOC, and SOE estimated by the MTL algorithm at 15℃ have the lowest 

absolute error values, which are 0.01827 and 0.01695, respectively. Meanwhile, the absolute error of SOC and 

SOE estimated by the MTL at 35℃ BBDST are 0.01399 and 0.01883, respectively. The RMSE and MAPE 

performance parameters of the two algorithms are obtained and compared, and the calculation results are shown 

in Fig. 19. 

  
(a) RMSE (b) MAPE 

Fig. 19. RMSE and MAPE results of the algorithms under BBDST working conditions 

It is evident from Fig. 19 that compared with the single-tasking algorithm, the multi-task learning mechanism 

has smaller RMSE and MAPE values, thus a better fitting degree. 

4. Conclusion 

In this paper, a multi-task learning algorithm based on the attention mechanism of the convolutional neural 

network-bidirectional gate recurrent unit and the square root extended Kalman smoothing (AMC-BiGRU-

SREKS) is proposed to predict the SOC and SOE of ternary lithium-ion batteries under different complex 



 

 

conditions. The deep learning is combined with the filter algorithm, which solves the long time, low precision, 

and strong nonlinear in the SOC and SOE estimation of lithium-ion batteries by the traditional algorithm. Thus, 

it improves the safety of the BMS and ensures the safety of new-energy vehicles. Firstly, the CNN-BiGRU model 

is constructed. CNN is used to capture the spatial characteristics of the input data, and BiGRU is used to capture 

the long-term dependencies of the time series data. Secondly, AM and MTL mechanisms are added to strengthen 

the influence of essential feature parameters on output. The hard sharing of parameters is used to obtain the 

output of multiple tasks simultaneously. Finally, the SREKS algorithm is introduced to carry out smooth 

bidirectional filtering on the output results of the neural network model and constantly improve the output 

accuracy of SOC and SOE. In addition, the algorithm's performance is evaluated under HPPC and BBDST 

conditions at 15℃, 25℃, and 35℃. Under HPPC conditions, the MAE and MAPE of SOC are within 0.51% and 

1.07%, and the MAE and MAPE of SOE are within 0.78% and 1.75%, respectively. Under BBDST conditions, 

the RMSE and MAPE of SOC are within 0.54% and 1.47%, and the RMSE and MAPE of SOE are within 0.74% 

and 1.98%, respectively. Experimental results show that the algorithm has high precision and robustness. 
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