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Abstract
 One of the most important areas in medical image analysis is segmentation, in which raw image data is partitioned into 
structured and meaningful regions to gain further insights. By using Deep Neural Networks (DNN), AI-based automated 
segmentation algorithms can potentially assist physicians with more effective imaging-based diagnoses. However, since it 
is difficult to acquire high-quality ground truths for medical images and DNN hyperparameters require significant manual 
tuning, the results by DNN-based medical models might be limited. A potential solution is to combine multiple DNN models 
using ensemble learning. We propose a two-layer ensemble of deep learning models in which the prediction of each training 
image pixel made by each model in the first layer is used as the augmented data of the training image for the second layer of 
the ensemble. The prediction of the second layer is then combined by using a weight-based scheme which is found by solving 
linear regression problems. To the best of our knowledge, our paper is the first work which proposes a two-layer ensemble 
of deep learning models with an augmented data technique in medical image segmentation. Experiments conducted on five 
different medical image datasets for diverse segmentation tasks show that proposed method achieves better results in terms 
of several performance metrics compared to some well-known benchmark algorithms. Our proposed two-layer ensemble of 
deep learning models for segmentation of medical images shows effectiveness compared to several benchmark algorithms. 
The research can be expanded in several directions like image classification.
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Introduction

Medical image analysis refers to the science of examining 
visual representations acquired in clinical practice to help 
radiologists and clinicians with more efficient decision-
making and treatment processes. One of the most important 
areas in medical image analysis is segmentation, in which 
raw image data is partitioned into structured and meaningful 
regions to gain further insights such as anatomy research, dis-
ease diagnosis, treatment planning, and prognosis monitoring 
[1]. With the global advancements in imaging techniques, 
the volume of medical image data is increasing substan-
tially, which puts increased stress on the limited number of 
medical professionals [2]. In order to efficiently handle this 
ever-growing amount of data and exploit its rich information, 

Artificial Intelligence (AI) has been considered one of the 
most prominent solutions, promising to revolutionise medical 
research and practices. AI refers to computer algorithms that 
can perform human-level tasks, and AI-based automated seg-
mentation algorithms can potentially assist physicians with 
more effective imaging-based diagnoses. Before the rise of 
deep learning, there have been many works on medical image 
segmentation [3, 4]. However, these works relied on creat-
ing handcrafted features which are time-consuming and it is 
more difficult to extract discriminating features from medical 
images compared to RGB images, due to various noises, blur, 
and low contrast, among others [5]. 

In recent years, the field of deep learning has witnessed 
many successes, especially with Deep Neural Networks 
(DNNs) in many areas such as computer vision [6] or nat-
ural language processing [7]. An important advantage of 
deep learning compared to traditional machine learning 
techniques is its ability to automatically learn the represen-
tation of the data with multiple levels of abstraction [7], 
which relieves the practitioners from having to construct 

 *	 Tien Thanh Nguyen 
	 t.nguyen11@rgu.ac.uk

1	 School of Computing, Robert Gordon University, Aberdeen, 
UK

http://orcid.org/0000-0002-7107-5611
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-024-10257-5&domain=pdf


1142	 Cognitive Computation (2024) 16:1141–1160

handcrafted features. DNNs have also been widely used for 
medical image segmentation and have shown encouraging 
results. Popular medical segmentation tasks which have seen 
successful applications of deep learning include liver seg-
mentation [8], brain-tumour segmentation [9], cardiac image 
segmentation [10], polyp segmentation [11], etc.

However, unlike in other fields where images are widely 
available, it is difficult to acquire high-quality ground truths 
for medical images due to the high-level medical knowledge 
required. For comparison, it is known that ImageNet, one of 
the most popular datasets, contains one million annotated 
images [6], while most medical image datasets have only 
around 1,000 instances [12]. The lack of labeled and high-
quality data is an important obstacle in the application of 
deep learning to medical image analysis tasks [1]. Moreover, 
it is known that DNN hyperparameters are usually found 
via trial-and-error and the optimal set of hyperparameters 
is very difficult to find. A potential approach to solve these 
problems is to combine the results of multiple deep learning 
models to achieve better predictions.

Ensemble learning is a technique in which multiple clas-
sifiers are combined to make a collaborated decision. By 
combining the predictions of multiple classifiers, the poor 
results of some classifiers are likely to be compensated by 
more well-performing ones. Many studies have shown that 
ensemble learning can achieve much better results compared 
to just using a single classifier [13]. Ensemble learning has 
been applied in many areas, such as computer vision [14] 
and bioinformatics [15]. In recent years, the medical image 
analysis community has also applied ensemble learning to 
improve the results of deep learning models [14, 16–18].

Recently, Zhou et al. [19] noted that the success of deep 
learning was due to layer-by-layer processing and feature 
transformation between layers. Based on this observation, 
the authors proposed a deep ensemble of random forests and 
completely random trees. The output of each layer is used 
as the input to the next layer. Nguyen et al. [20] proposed 
a heterogeneous multi-layer ensemble learning framework 
in which each layer contains several different classifiers 
generated by training different learning algorithms on the 
layer input data. Considering the critical nature of medi-
cal applications, it is necessary to leverage the power of 
ensemble learning, particularly the multi-layer ensemble 
framework on deep learning for medical segmentation to 
achieve optimal results.

In this paper, we propose a novel two-layer ensemble 
of deep medical segmentation algorithms which achieves 
competitive results compared to benchmark methods. In the 
first layer, each model performs a prediction on each pixel, 
and then these predictions are used as additional channels 
of the training image for the second layer of the ensemble. 
This potentially increases the discriminative capability of 
the ensemble. The second layer's prediction will then be 

combined via a weight-based scheme. To the best of our 
knowledge, our paper is the first work which proposes a 
two-layer ensemble for deep learning-based medical image 
segmentation via augmenting the input images using the pre-
dictions of the first layer as additional channels in the second 
layer. Our proposed two-layer ensemble is a general model 
and can be potentially extended to other deep learning tasks 
as well. Our contributions are as follows:

•	 We propose a heterogeneous ensemble of deep segmenta-
tion models for the medical image segmentation problem.

•	 We propose to use the predictions of each deep segmen-
tation model in the ensemble as additional channels of 
the original training image to create the training data for 
the second layer. A second layer of the ensemble will use 
this new training data as input to perform the predictions.

•	 We propose a weight-based scheme for the combination 
of predictions in the second layer. The weights are found 
by solving linear regression problems based on the rela-
tionship between the predictions and ground truth labels 
of training observations.

•	 Experiments conducted on five medical image seg-
mentation datasets demonstrate the effectiveness of 
our approach.

The paper is organised as follows. In "Background 
and Related Works" section, we briefly review the exist-
ing approaches relating to segmentation in medical image 
analysis and ensemble learning. The proposed ensemble is 
introduced in "Proposed Ensemble" section. The details of 
experimental studies on five medical image segmentation 
datasets are described in "Experimental Details" section. 
Finally, the conclusion is given in "Conclusion" section.

Background and Related Works

Deep Learning for Medical Image Segmentation

With the success of [6] in applying DNNs to the problem 
of image classification, deep learning has become the most 
popular approach in computer vision. Since then, many nota-
ble deep architectures have been proposed to solve vision 
problems. For example, VGG16 [21] was a deep CNN for 
image classification using a stack of convolution layers 
with small receptive fields in the first layers instead of a 
few layers with big receptive fields like previous models. 
This allows the model to have much fewer parameters and 
more non-linearity, which makes the decision function more 
discriminative and the model easier to train. VGG16 man-
aged to achieve a top-5 accuracy of 92.7% on the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC)-2013 
dataset. Another notable model is ResNet [21], which was 
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motivated by the problem of training a really deep archi-
tecture. The network uses shortcut connections for identity 
mapping, i.e. instead of learning a function, the layers having 
shortcut connections learn the residual mapping. This allows 
ResNet to have a very deep network at 152 layers while 
achieving 96.4% accuracy in the ILSVRC-2016 competition.

Most deep learning-based segmentation architectures 
are inspired by Fully Convolutional Network (FCN) [22], 
which creates a segmentation network by using an existing 
classification network and replacing the fully connected lay-
ers with convolutional ones to output spatial maps instead 
of classification scores. Those maps are then upsampled to 
produce dense pixel-level output. The design of FCN has 
influenced many popular deep learning architectures for seg-
mentation [23]. Another notable example is DeepLab [24] 
which makes use of Conditional Random Fields (CRF) [25] 
as a post-processing step for the refinement of the segmenta-
tion result. The proposed architecture models each pixel as a 
node in the random field and employs a fully connected fac-
tor graph in which one pairwise term is used for each pixel 
pair irrespective of their distance. This allows the model 
to incorporate both short-range and long-range information 
into account, facilitating the restoration of detailed structures 
in the segmentation process that were lost due to the spatial 
invariance of CNN.

Reliable computer-assisted segmentation of anatomical 
structures in medical images is considered very impor-
tant for the diagnosis and monitoring of diseases. This 
has motivated considerable research efforts in applying 
deep learning to medical image segmentation. Compared 
to image segmentation in general, each human organ has 
its specific challenge concerning medical segmentation. 
For example, the segmentation area of the brain and lung 
required for diagnosis is relatively large, while blood ves-
sels require higher segmentation accuracy [26]. This has 
led to the development of new deep learning architectures, 
such as UNet, which was developed to overcome the limits 
of previous architectures due to the loss of spatial resolu-
tion in the case of small or irregular objects [27]. Due to its 
excellent performance, UNet has been widely used in medi-
cal image segmentation and other areas of computer vision 
with many variants [26]. UNet consists of a contracting 
path and an expanding path designed symmetrically. To 
help with localization, high-resolution features from the 
contracting path are combined with the upsampled out-
put. An important difference between UNet compared to 
previous architectures is that the upsampling part also has 
a large number of feature channels, which allow the net-
work to propagate context information to higher resolution 
layers. This makes UNet suitable for medical image seg-
mentation and UNet is a winner of the ISBI 2015 bioim-
age segmentation challenge. Other notable examples are 
LinkNet [28] which takes the sum of the upsampled output 

and the corresponding features in the convolutional path, 
and Feature Pyramid Network (FPN) [29] which uses the 
concatenation of features of all levels in the upsampling 
part to help with the final prediction. V-Net, which is a 
3D extension of UNet, was proposed in [30]. A cascade 
of V-Net for brain tumour segmentation was proposed in 
[31] to segment each region separately before combin-
ing the results. Another novel deep learning-based image 
segmentation model is UNet +  + [32], a variant of the 
popular UNet architecture. Unlike UNet, which uses plain 
skip connections in its architecture, UNet +  + consists of 
an encoder and a decoder which are connected through 
a series of nested dense convolutional blocks, effectively 
reducing the semantic gap between the feature maps of 
the encoder and decoder. UNet +  + has achieved good 
results on many benchmark datasets in recent years and 
has become an algorithm of choice in medical image seg-
mentation. Nie et al. [33] used 3D FCN to integrate con-
textual information and features of different scales to seg-
ment multimodal infant brain MRI images. Zhang et al. 
[34] noted that retinal vessel segmentation is challenging 
due to various imaging conditions, low image contrast, and 
the presence of pathologies. The authors proposed an edge-
sensing mechanism to add additional boundary labels to 
segment blood vessels and achieved competitive results 
on three retinal segmentation datasets. Jue et al. [35] pro-
posed cross-modality educed deep learning segmentation 
(CMEDL), which combines CT and pseudo-MR images 
produced from CT to improve chest X-ray segmentation. 
The study in [36] proposed SSNet to handle spatial varia-
tions for MRI spleen segmentation by integrating a variant 
of Generative Adversarial Network (GAN) [37] to create 
synthetic spleen labels to improve predictions.

Ensemble Learning

Ensemble learning is a popular approach in machine learn-
ing for combining a collection of classifiers for a collabora-
tive decision. Designing an ensemble system requires two 
stages, namely ensemble generation, and ensemble integra-
tion. In the ensemble generation, multiple classifiers are 
generated by using either a homogeneous strategy (train-
ing a learning algorithm on multiple training sets gener-
ated from the original training data) [37, 38] or a hetero-
geneous strategy (training different learning algorithms on 
the original training data) [39–41]. A combining method 
is then used to aggregate the predictions of the constituent 
classifiers in the ensemble integration stage to obtain the 
collaborated prediction.

There have been many applications of ensemble of DNNs 
to medical image segmentation. For example, [16] used an 
ensemble of 2D and 3D segmentation models with a meta-
learner to segment 3D cardiac MRI data, while [42] used an 
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ensemble of 5 CNNs for brain MRI lesion segmentation. In 
[14], the authors proposed a bagging ensemble of deep seg-
mentation models to train multiple UNets to segment dense 
nuclei pathological images. [17] used Dirichlet distribution 
and Mahalanobis distance to learn dynamic weights for an 
ensemble of deep learning models with online ensemble 
learning and achieved good results on 2 out of 4 medical 
datasets. [43] used a pre-trained CNN to extract features 
that were used to train an ensemble of classifiers to demon-
strate competitive results on the ImageCLEF 2016 medical 
image public dataset. In [18], the authors proposed a two-
stage selective ensemble of medical image classifiers based 
on accuracy and diversity criteria. Dang et. al. proposed a 
weighted ensemble of deep learning-based segmentation 
algorithms for cardiographic segmentation and achieved 
competitive results in the CAMUS competition [44].

Recently, there has been increasing interest in the ensem-
ble generation inspired by the success of DNNs. Instead of 
using only one layer like in traditional ensemble models, 
the ensemble systems were made to train deeply through 
multiple layers. The first deep ensemble system was pro-
posed by Zhou and Feng [19] (called gcForest), containing 
multiple layers of two Completely-Random Tree Forests and 
two Random Forests in each layer. Each forest in a layer 
outputs a class vector, which is then concatenated to the 
original data as the input data to the next layer. Utkin et al. 
[45] proposed a weighted average approach for gcForest by 
associating each tree with a weighted vector for its class 
distribution vector. The optimal weight vectors of each tree 
in one layer are found by minimising the distance between 
the class label vector in a binary encoding scheme and the 
weighted prediction vector of this forest. The authors pro-
posed to set only a weight vector for each group to reduce 
the computational overhead. Nguyen et al. [20] proposed 
MULES, a deep ensemble system with classifier and feature 
selection in each layer. The optimal configuration of each 
layer is found by using a bi-objective optimisation problem 
in which the two objectives to be maximised are classifica-
tion accuracy and diversity of the ensemble in each layer.

Proposed Ensemble

Our proposed method is inspired by multi-layer ensemble 
learning architectures, in which the segmentation algorithms 
in one layer train the segmentation model of that layer, while 
also generating the new training data generated by the preced-
ing layer [19]. This facilitates the successive refinement of 
medical image segmentation results through each layer. It is 
recognised that the most successful segmentation algorithms in 
recent years have been based on DNNs [46], and even though 
deep learning models can be trained in parallel using a Graph-
ics Processing Unit (GPU), a multi-layer ensemble model of 

deep learning-based segmentation algorithms would require a 
lot of computational resources. Therefore, an important question 
arises: How many layers should a deep ensemble model extend? 
In [20], the authors showed that on some datasets, the number 
of layers obtained on ensembles was two or three only. Based 
on this observation, we introduce a novel two-layer ensemble 
model for the segmentation of medical images. Figure 1 shows 
the high-level overview of our proposed ensemble.

Two‑layer Ensemble for Segmentation

Let � = {�n,�n}
N

n=1
 be the training set where N is the num-

ber of images, �n is an input image of size (H,W,C) in which 
H is the image height, W  is the image width, and C is the 
number of channels ( C = 1 for grayscale, C = 3 for colour 
images). The mask �n is also an image of size (W,H) , in 
which each entry shows which group the pixel belongs to, 
i.e. �n(i, j) ∈ Y where Y =

{
ym
}
,m = 1,…M is the set of 

all classes and M is the number of classes.
We aim to learn a hypothesis � ∶ �n → �n (i.e. segmen-

tation model) to approximate the unknown relationship 
between each image and its corresponding mask, and then 
use this hypothesis to assign a label for each unsegmented 
image. We also denote {Kk}

K

k=1
 by the set of K segmentation 

algorithms. Each segmentation algorithm Kk learns from 
the dataset � to obtain a trained segmentation model �k . 
In ensemble learning, we train K segmentation algorithms 
{Kk}

K

k=1
 on � to get K segmentation models {�k}

K

k=1
.

In the next step, we generate the training data for the 
second layer of the ensemble. Based on the results of [20] 
and the stacking generalisation model [40], we propose a 
two-layer deep ensemble architecture for segmentation in 
medical image analysis (Fig. 1). Firstly, the training set � is 
divided into T  disjointed parts {�1,�2,… ,�T} , where 
� = �1 ∪ �2 ∪⋯ ∪ �T , �ti

∩ �tj
= ∅ , ti, tj = 1,… , T , ti ≠ tj . 

Then for each part �t(t = 1,… , T) , the segmentation algo-
rithms {Kk}

K

k=1
 will learn on its complimentary �∖�t to 

obtain segmentation models �k,t . The images in �t are then 
segmented by using these segmentation models. Let 
Pk(ym|�n(i, j)) be probability prediction that �k,t assigns pixel 
�n(i, j) to be in class ym . The prediction of �k,t showing the 
probability all pixels of the image �n belonged to class ym is 
given by a matrix:

For each image �n there will be M × K prediction matrices 
�k

(
ym|�n

)
 . An example is shown in Fig. 2, in which two seg-

mentation models, UNet-VGG16 and LinkNet-ResNet34, pre-
dict an image of the CAMUS datasets for three classes. In this 
case M = 3,K = 2 , and the first three images on the left show 

(1)

�k

�
ym��n

�
=

⎡
⎢⎢⎣

Pk(ym��n(1, 1)) Pk(ym��n(1, 2)) … Pk(ym��n(1,H))

… … … …

Pk(ym��n(W, 1)) Pk(ym��n(W, 2)) … Pk(ym��n(W,H))

⎤⎥⎥⎦
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the predictions by UNet-VGG16 for three classes and the images 
on the right show the predictions by LinkNet-ResNet34. The 
predictions have been multiplied by 255 for visualisation.

In this study, we propose to augment the training data 
for the second layer of the ensemble by concatenating these 
M × K prediction matrices to the original training images 
to create new images �∗

n
 . The prediction matrix {�k

(
ym|�n

)
} 

serves as an additional channel of the original image�n . In 
total, the new images �∗

n
 will have C +M × K channels:

The new training data for the second layer of the ensem-
ble will be given as follows:

(2)�∗
n
= �n ∪

{
�k

(
ym|�n

)}
, k = 1,… ,K; m = 1,… ,M

For the second layer of the ensemble, we train {Kk}
K

k=1
 

on �∗ to get trained segmentation models {�∗
k
}K
k=1

 . We then 
train a combiner � to merge the trained models �({�∗

k
}K
k=1

) 
for the final decision making. The training of a combiner 
will be conducted on the predictions for all pixels of train-
ing images in �∗ . Once again, the new training data �∗ is 
divided into disjoint parts {�∗

1
,�∗

2
,… ,�∗

T
} . Then, for each 

part �∗
t
(t = 1,… , T) , the segmentation algorithms {Kk}

K

k=1
 

will learn on �∗��∗
t
 to obtain segmentation models �∗

k,t
 . 

Therefore, these models will now predict on �∗
t
 . The sec-

ond layer probability prediction for all images in �∗ is 
given as follows:

Normally, a learning algorithm trains the combiner on 
�∗ with given labels of each pixel to combine the pre-
diction of segmentation models for the final prediction. 
It is noted that each row in �∗ is the probability predic-
tion by K  segmentation models on a pixel of each train-
ing image. Therefore 𝐋∗ will be a matrix of N ×W × H 

(3)�∗ =
{
�∗
n
,�n

}
, n = 1,… ,N

(4)

�∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1(y1��∗1(1, 1)) P1(y2��∗1(1, 1)) … PK(yM��∗1(1, 1))
P1(y1��∗1(1, 2)) P1(y2��∗1(1, 2)) … PK(yM��∗1(1, 2))

… … … …

P1(y1��∗1(W,H)) P1(y2��∗1(W,H)) … PK(yM��∗1(W,H))

P1(y1��∗2(1, 1)) P1(y2��∗2(1, 1)) … PK(yM��∗2(1, 1))
… … … …

P1(y1��∗2(W,H)) P1(y2��∗2(W,H)) … PK(yM��∗2(W,H))

… … … …

P1(y1��∗N(W,H)) P1(y2��∗N(W,H)) … PK(yM��∗N(W,H))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Fig. 1   High-level overview of the proposed ensemble

Fig. 2   Example of prediction results on CAMUS dataset. Top: Origi-
nal image. The bottom is the predictions for the Left ventricle, Myo-
cardium, and Left atrium classes, made by UNet and LinkNet with 
backbones ResNet34 and VGG16, respectively. The result has been 
multiplied by 255 for visualization
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rows and M × K  columns. With a large training set and 
large image sizes, the size of 𝐋∗ will be very large. For 
instance, on the Kvasir-SEG dataset of 800 training images 
with an image size of (640,544), the matrix 𝐋∗ will have 
800*640*544 = 278,528,000 rows. The large size of 𝐋∗ 
causes a challenge for conventional machine learning algo-
rithms to train the combiner on all data at once. In this 
paper, we use a weight-based combining method for the 
segmentation algorithms {�∗

k
}K
k=1

 , in which each segmen-
tation algorithm has its own weight in the combiner. The 
weights are found via an optimisation method, which will 
be discussed in the next section. This approach is practical 
to train the combiner on the whole 𝐋∗ at once.

Combining Method

Let � = {wk,m} be the weight matrix, in which wk,m is the 
weight associated with the segmentation model �∗

k
 and class 

ym(k = 1,… ,K,m = 1, ..,M) . Since the class labels of the 
training observations are known in advance, the weights � 
can be obtained by exploring the relationship between the sec-
ond-layer probability predictions in �∗ and the class labels of 
the training pixels. The weight matrix is found by minimizing 
the difference between the prediction for pixel �n(i, j) and its 
true class label. From the second-layer probability prediction 
matrix �∗ , we extract the probabilities associated with class ym 
to create a matrix of size (N ×W × H,K):

We also define a crisp label vector (i.e. belonging to {0, 1} ) 
of size (N ×W × H, 1) associated with class ym as follows:

(5)

�∗
m
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P1(ym��∗1(1, 1)) P2(ym��∗1(1, 1)) … PK(ym��∗1(1, 1))
P1(ym��∗1(1, 2)) P2(ym��∗1(1, 2)) … PK(ym��∗1(1, 2))

… … … …

P1(ym��∗1(W,H)) P2(ym��∗1(W,H)) … PK(ym��∗1(W,H))

P1(ym��∗2(1, 1)) P2(ym��∗2(1, 1)) … PK(ym��∗2(1, 1))
… … … …

P1(ym��∗2(W,H)) P2(ym��∗2(W,H)) … PK(ym��∗2(W,H))

… … … …

P1(ym��∗N(W,H)) P2(ym��∗N(W,H)) … PK(ym��∗N(W,H))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)�m =

⎡
⎢⎢⎢⎢⎢⎣

�[�1(1, 1) = ym]

…

�[�N(1, 1) = ym]

…

�[�N(W,H) = ym]

⎤
⎥⎥⎥⎥⎥⎦

.

where �[.] is the indicator function. The weight vector 
�m =

{
wk,m

}
, k = 1,… ,K of size (K, 1) for class ym is then 

found by solving a linear regression problem:

�m can be imposed with different constraints, such as  
Non-Negative Least Squares, i.e. wk,m ≥ 0 [46, 47], 
Bounded Variable Least Squares, i.e. lk,m ≤ wk,m ≤ uk,m in 
which lk,m and uk,m are lower and upper bounds [48, 49], 
respectively, and Bounded Variable with Constant Sum, i.e. 
−1 < wk,m < 1,

∑K

k=1
wk,m = 1 [50]. In this study, we simply 

constrain the weights between 0 and 1, i.e. 0 ≤ wk,m ≤ 1 . By 
solving M different linear regression problems, we will get 
the optimal weight matrix � = {�m}

M

m=1
.

Given an unsegmented image �test  , it is seg-
mented firstly by {�k}

K

k=1
 to get the prediction matri-

ce s  {�k

(
ym|�test

)
}(k = 1,… ,K,m = 1,… ,M)  .  Then , 

the augmented data of �test is created by concatenating it 
with {�k

(
ym|�test

)
} which are considered as additional 

image channels by using the following equation (with 
k = 1,… ,K,m = 1,… ,M):

The trained segmentation models of the second layer 
{�∗

k
}K
k=1

 are then applied on �∗
test

 to get the prediction matrices {
�k

(
ym|�∗test

)}
 (k = 1,… ,K,m = 1,… ,M) . The weighted 

combining of predicted probabilities by linear combination 
for each pixel �∗

test
(i, j) is performed as follows:

in which ℙm

(
𝐈∗
test

(i, j)
)
 and �m are defined as:

Finally, the predicted class label is obtained by getting the 
label corresponding to the maximum value of the weighted 
combination:

(7)min
�m

||||�∗
m
�m − �m

||||2

(8)�∗
test

= �test ∪
{
�k

(
ym|�test

)}

(9)

CMm

(
�test(i, j)

)
=

K∑
k=1

wk,mPk

(
ym|�∗test(i, j)

)
= ℙm

(
�∗
test

(i, j)
)
𝕎m

(10)
ℙm

(
�∗
test

(i, j)
)
= [P1

(
ym|�∗test(i, j)

)
,… ,PK

(
ym|�∗test(i, j)

)
]

(11)�m =
[
w1,m,w2,m,… ,wK,m

]T

(12)
�test(i, j) ∈ ym̂wherem̂ = argmaxm=1,…,MCMm{�test(i, j)}
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Algorithm 1   Two-layer ensemble for segmentation



1148	 Cognitive Computation (2024) 16:1141–1160

Algorithm 2   Test process for the two-layer ensemble for segmentation

The combining and training procedure is described 
in Algorithm 1. This algorithm receives inputs including 
training set � = {�n,�n}

N

n=1
 and segmentation algorithms 

{Kk}
K

k=1
 . Lines 2–7 create the probability matrices by using 

T-fold cross-validation procedure. Line 8 creates the aug-
mented input data for the second layer by using Eq. 2. Lines 
10–14 create the second-level predictions for all training pix-
els �∗ by using the T-fold cross-validation procedure. Lines 
16–20 find the optimal weight matrix by using Eq. 7. In 
lines 21–24, the segmentation models are generated. Lines 
23 trains the models for the first layer while line 24 trains 
the models for the second layer. Line 25 returns the trained 
models and the optimal weight matrix.

The testing procedure receives as input an image �test , 
the trained models, and the optimal weight matrix (see 
Algorithm 2). In lines 1–2, the segmentation models perform 
predictions on the image to create the probability matrix, 
while in line 3, the augmented input to the second layer is 
created by using Eq. 8. Lines 4–5 create the second-level 
probability matrix from augmented input. Line 6–7 uses Eq. 9 
and Eq. 12 to combine the second-level prediction predictions 
of segmentation models by using the weight matrix � . 
Finally, line 8 returns the final segmentation result.

Experimental Details

Experimental Settings

For the experimental validation, we used UNet [51], LinkNet 
[28], and Feature Pyramid Network (FPN) [29], which are 
three popular segmentation architectures for medical image 
analysis. The backbones used were VGG16 [52], ResNet34 
and ResNet101 [53], pre-trained on the ImageNet dataset [54]. 
In total, we started with nine segmentation models. In this 
paper, the number of cross-validation folds was set to 5, the 
batch size was set to 8, each segmentation model was run for 
300 epochs, the learning rate was set to 0.0001, and the Adam 
optimizer [55] was used in the experiments. We compared the 
performance of the proposed ensemble to the nine segmenta-
tion algorithms and three other benchmark algorithms:

•	 The first one is one layer ensemble system in which the 
outputs of segmentation models are combined by using a 
weight-based combining algorithm (denoted by OLE-9 in 
the tables) [56].

•	 The second one is Decision Template [57], denoted by 
DT-9 in the tables. In this algorithm, each class is repre-

Input: Test image , trained segmentation models { } = , { ∗ } = and the weight matrix 

Output: Prediction for 

1:  for ← to do

2: { ( | )} = = ( , )

3: ∗ is created from and { ( | )} = using Eq. (8)

4:  for ← to do

5:          ( | ∗ ) = ( | ) ∪ ( ∗ , ∗ )( = ,… , )

6:  Use Eq. (9) to combine the predictions { ( | ∗ )} with = ,… , ; = ,… ,

7: Use Eq. (12) to get the final prediction

8: return The final prediction for .
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sented by a decision template, which is calculated by tak-
ing the average of the predictions of all training instances 
associated with that class. For each test instance, the class 
having the smallest distance between the predictions and 
the corresponding decision template is chosen.

•	 The third one is the weighted ensemble of deep learn-
ing medical segmentation models [44], in which the pre-
dictions of each segmentation model are combined via 
weighted summation. The weights are found by solving 
an optimisation problem using Comprehensive Learning 
Particle Swarm Optimisation (CLPSO). This benchmark 
algorithm is denoted by WE-CLPSO in the next sections.

•	 The fourth one is UNet +  + [32], one of the state-of-
the-art deep learning-based segmentation models intro-
duced recently.

Performance Metrics

The performance of our proposed ensemble and the related 
benchmarks were evaluated using four popular segmentation 
metrics. Suppose there are M classes, and there are N images 
each having size (W,H) . Let � and � be the prediction of a 
segmentation model on these images and the corresponding 
ground truth:

where �m is a vector with size (N ×W × H, 1) associated 
with class label ym in which its element is the prediction for 
each pixel in the form of crisp label i.e. belonging to {0, 1} . 
Likewise, �m is a vector with size (N ×W × H, 1) associated 
with class label ym in which each element is the ground truth 

of each pixel in the form of a crisp label. Hence, the Dice 
coefficient for the mth class is then defined as follows [58]:

Another well-known overlap-based metric is Intersection-
over-Union (IoU) (also known as Jaccard index) [59] which is 
defined for the mth class as follows:

Notice that the measures the intersection between the pre-
diction and the ground truth pixels divided by their union. 
The IoU coefficient is the average of all IoU coefficients 
associated with the class labels.

(13)� =
[
�1, �2,… , �M

]
,� = [�1, �2,… , �M]

(14)DCm =
2�T

m
�m

||||�m||||2 + ||||�m||||2

(15)IoUm =
�T
m
�m

||||�m||||2 + ||||�m||||2 − �T
m
�m

In the context of medical image analysis, local dis-
crepancies between contours are often of interest as well. 
For example, radiation treatment planning applications 
require quantified errors in geometric displacement to 
ensure target coverage, normal tissue avoidance, and simi-
lar analyses [60]. Overlap-based metrics such as the Dice 
coefficient and IoU usually do not account for spatial dis-
tribution. For example, a segmentation with “leaks” has 
the same score as a leak-free one with a separate discon-
nected region of false positives having the same size as the 
leaked area [61]. Therefore, we reported two additional 
measures based on distances between geometrical con-
tours. Let GTm and PRm be the set of coordinate vectors of 
the ground truth contour and prediction contour for class 
ym respectively. The Hausdorff distance HDm associated 
with class ym is defined as the maximum of all distances 
between a point in a contour to the closest point in the 
other one and is calculated as follows [59]:

where d(A,B) is the directed Hausdorff distance:

Meanwhile, the Mean Absolute Distance (MAD) for class 
ym[61] is the average of all the distances from points of the 
prediction contour to the ground truth contour, and vice 
versa and is calculated as follows:

It is noted that a low Hausdorff distance and MAD, or a high 
Dice coefficient and IoU indicate good segmentation results.

Datasets

Several public medical image segmentation datasets were 
used in these experiments, which are shown in Table 1. The 
first dataset is CVC-ColonDB [11], a public polyp dataset 
consisting of 300 images, each containing polyps and back-
ground, selected from 15 short colonoscopy videos such that 
variation in scale and view angles of the polyps are max-
imised. The second dataset is CVC-EndoSceneStill [62], a 
four-class dataset of 912 images obtained from 44 video 
sequences acquired from 36 patients for endoluminal scene 
object segmentation. This dataset contains some informa-
tion like lumen and specular highlights which are essential 

(16)IoUavg =
1

M

M∑
m=1

IoUm

(17)HDm = max(d
(
GTm,PRm

)
, d(PRm,GTm))

(18)d(A,B) =
1

|A|
∑
a∈A

min
b∈B

||a − b| |

(19)MADm =
1

|GTm| + |PRm| (
∑

gt∈GTm

min
pr∈PRm

)||gt − pr|| +∑
pr∈PRm

min
gt∈GTm

)||pr − gt||.
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for helping clinicians navigate through the colon during the 
inspection procedure. The third dataset in our experiment is 
from the MICCAI 2015 Endoscopic Vision Challenge [63], 
which is a colorectal polyp detection and localisation chal-
lenge. The dataset contains 612 training images and 196 
test images. Each image contains at least one polyp and has 
been selected to have shots in which polyp appearance can 
be mistaken with other elements of the scene. There are two 
classes: polyp and background. The final two datasets are 
from the Cardiac Acquisitions for Multi-structure Ultra-
sound Segmentation (CAMUS) challenge [10], a compe-
tition for accurate segmentation of 2D echocardiographic 
images. These datasets are well-known for cardiographic 
[64], consisting of cardiographic images of 500 patients. The 
data of 50 patients are withheld for testing in which the sub-
mission link for evaluation is available,1 and the results are 
reported for End Diastolic (ED) and End Systolic (ES) cases 
separately, which are denoted by CAMUS-ED and CAMUS-
ES respectively. For the CAMUS dataset, we submitted our 
results to the organisers' server to get the Dice and Hausdorff 
result, while for the CVC-EndoSceneStill and MICCAI2015 
dataset we used the pre-specified train and test set. For the 
CVC-ColonDB we used 20% of the total data as the test set.

Influence of Using Different Number 
of Segmentation Algorithms 

Figure 3 shows the performance of the proposed ensemble 
for two cases:

•	 Proposed ensemble (6): Using 6 segmentation models 
generated by VGG16 and ResNet34 backbone.

•	 Proposed ensemble (9): Using all 9 segmentation models

From this figure, it can be seen that the proposed ensemble 
(9) obtains better results, with noticeable improvements in 
Hausdorff and MAD scores, while the results for CAMUS-ED 
and CAMUS-ES are generally similar for the two cases. For 
the Dice metric (top left), the proposed ensemble (9) achieves 
a score of 0.956 as compared to just 0.939 by the proposed 

ensemble (6), which is an improvement of 1.7%. On the 
MICCAI2015 dataset, there is also an improvement from 
0.772 to 0.838. For the remaining datasets, namely CVC-
EndoSceneStill, CAMUS-ED, and CAMUS-ES, the results 
for both cases are identical. For the Hausdorff distance (top 
right), the proposed ensemble (9) achieves much better results 
on CVC-ColonDB, CVC-EndoSceneStill, and MICCAI2015.

For CVC-ColonDB, the proposed ensemble (9) reduces 
the Hausdorff distance by 1.58 times compared to the pro-
posed ensemble (6), from 23.293 to 14.751, while for the 
MICCAI2015 dataset, there is also a reduction of 11.397. 
For the MAD metric (bottom left), there is a small improve-
ment from around 0.5 to 1.5 for the CVC-ColonDB and 
CVC-EndoSceneStill dataset, while for MICCAI2015, the 
decrease in MAD is 4.308. Concerning the IoU measure 
(bottom right), the results for CAMUS-ED and CAMUS-ES 
are not available, since the evaluation server only returns 
Dice, Hausdorffx, and MAD metrics. For CVC-ColonDB 
and MICCAI2015, there is an improvement of 3% and 7.5% 
respectively, while for CVC-EndoSceneStill, the results 
for both cases are just slightly above 0.6. From the results 
discussed above, it can be observed that the results for the 
proposed ensemble (9) are better, especially on Hausdorff 
and MAD scores.

Results and Discussions

Table 2 shows the Dice results, in which the first nine rows 
denote the results of the base segmentation models, and the 
next five rows denote the results of four selected benchmark 
algorithms and the proposed ensemble respectively. It can 
be seen that the proposed ensemble achieves better results 
compared to the benchmark algorithms on all datasets. For 
the CVC-ColonDB dataset, the proposed ensemble obtains 
0.95618 while the segmentation models only gain a score 
from 0.81227 (UNet-VGG16) to 0.94794 (FPN-ResNet101). 
The proposed ensemble also yields higher performance com-
pared to the other benchmark algorithms for the remaining 
datasets. WE-CLPSO, DT-9, and UNet +  + gained slightly 
lower results than the proposed ensemble, at 0.95382, 
0.95210, and 0.94591 respectively, while the score for 
OLE-9 is lower by 1.897%. For CVC-EndoSceneStill and 
MICCAI2015, DT-9 performs much less effective compared 

Table 1   The information of experimental datasets

Dataset Number of instances Number of classes Image size

CVC-ColonDB 300 2 (polyp, background) 512 × 576
CVC-EndoSceneStill-2017 912 4 (polyp, lumen, specular, background) 224 × 224
MICCAI2015 808 2 (polyp, background) 288 × 384
CAMUS-ED 1000 4 (left ventricle, myocardium, left atrium, background) 928 × 576
CAMUS-ES 1000 4 (left ventricle, myocardium, left atrium, background) 928 × 576

1  https://​www.​creat​is.​insa-​lyon.​fr/​Chall​enge/​camus/​scien​tific​Inter​ests.​html

https://www.creatis.insa-lyon.fr/Challenge/camus/scientificInterests.html
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to the proposed ensemble (lower than 8.72% and 7.55% 
respectively). The proposed ensemble obtained a Dice coef-
ficient of 0.73238 on CVC-EndoSceneStill as opposed to 
just around 0.68, 0.71, and 0.72 by UNet +  + , OLE-9, and 
WE-CLPSO, respectively. Concerning the MICCAI2015 
dataset, the proposed ensemble obtained a score of 0.83776, 
which is higher than OLE-9 by 1.596%. The score of WE-
CLPSO is only slightly higher than 0.72 while the score 
of UNet +  + is just around 0.6. For the CAMUS-ED and 
CAMUS-ES datasets, the proposed ensemble is higher than 
the other benchmark algorithms by a small margin (from 
0.16% to 0.27% for CAMUS-ED and from 0.27% to 0.3% 
for CAMUS-ES).

The Hausdorff results are shown in Table 3. For CVC-
ColonDB, the scores of segmentation models range from 
119.6171 (LinkNet-VGG16) to 16.02841 (FPN-ResNet101). 
The proposed ensemble obtains the best result at 14.75129 
which is better than FPN-ResNet101 by 1.277. The Haus-
dorff distances achieved by DT-9, OLE-9, WE-CLPSO, 
and UNet +  + are higher than that of the proposed ensem-
ble, which indicates their worse performance (16.69677 
of WE-CLPSO, 21.97803 of OLE-9, and 22.62884 of 
UNet +  + vs. 14.75129 of the proposed ensemble). For 
CVC-EndoSceneStill, the predictions by FPN-ResNet34 
obtain the best Hausdorff distance at 60.13216, followed 
by FPN-ResNet101 (around 60.55597) and the proposed 
ensemble (at 60.86643). In contrast, both WE-CLPSO and 
OLE-9 obtained a score of around 68, UNet +  + had a score 
of around 67.78 while DT-9 is much worse at 103.45. The 

proposed ensemble obtains the best results on the remaining 
three datasets. For the MICCAI2015 dataset, the proposed 
ensemble obtains a score of 37.73843 which is better than 
the best segmentation model (FPN-ResNet101) by a differ-
ence of 2.0675. The Hausdorff scores of WE-CLPSO, DT-9, 
and OLE-9 are much worse compared to that of the proposed 
ensemble (from around 45.84 by OLE-9 to around 63.37 by 
WE-CLPSO), while the score of UNet +  + is twice as large 
(at around 111.68). For both CAMUS-ED and CAMUS-ES, 
the scores by the base models generally range from around 
5.0 to 10.33. The Hausdorff distances obtained by WE-
CLPSO and OLE-9 are very similar (4.866 for CAMUS-
ED and 4.8 for CAMUS-ES) while DT-9 performed slightly 
worse with Hausdorff distances of 4.899 and 4.833 respec-
tively. The score of UNet +  + is 5.966 (CAMUS-ED) and 5.6 
(CAMUS-ES) which is not as good as the other benchmark 
algorithms. Compared to these benchmark algorithms, the 
best results are obtained by the proposed ensemble at 4.699 
(CAMUS-ED) and 4.566 (CAMUS-ES).

Table 4 shows the MAD results by the benchmark algo-
rithms and the proposed ensemble. It can be seen that the 
proposed ensemble obtains the best score for all datasets 
except MICCAI2015, in which FPN-ResNet101 has the 
best results. The results by segmentation models on CVC-
ColonDB range from 25.9 (LinkNet-VGG16) to 3.17290 
(FPN-ResNet101). The results by WE-CLPSO (3.30906), 
DT-9 (3.34359), OLE-9 (4.43871), and UNet +  + (6.00943) 
are worse than that of the proposed ensemble (rank first with 
3.08421 of MAD). For the CVC-EndoSceneStill dataset, 

Fig. 3   The performance of the proposed ensemble using 6 and 9 segmentation algorithms



1152	 Cognitive Computation (2024) 16:1141–1160

the proposed ensemble obtained a score of 13.72005 which 
is better than WE-CLPSO, OLE-9, and UNet +  + by 2.56, 
3.02, and 3.953 respectively. DT-9 meanwhile performed 
much worse with 31.19257 of MAD. The best-performing 
method for the MICCAI2015 dataset is FPN-ResNet101 
at 9.13451 followed by the proposed ensemble at 10.3611. 
The remaining segmentation models range from 14.877 
(FPN-ResNet34) to 46.04682 (LinkNet-VGG16), while 
WE-CLPSO has a slightly better MAD score than FPN-
VGG16 at 21.64301, which is twice the distance as that of 
the proposed ensemble. Both DT-9 and OLE-9 are slightly 
worse than the proposed ensemble by a difference of 5.44 
and 2.91 respectively. On the other hand, the performance 
of UNet +  + for this dataset is very poor, at around 42.76 
of MAD. For CAMUS-ED, all four methods: WE-CLPSO, 

DT-9, OLE-9, and the proposed ensemble yielded the same 
MAD score at 1.63, which is better than the best-performing 
method among the segmentation models by 0.167, and bet-
ter than UNet +  + by 0.3. For CAMUS-ES, the MAD score 
by the proposed ensemble is 1.533 which is the best result, 
followed by DT-9 at 1.566, WE-CLPSO and OLE-9 which 
are both at 1.599, and UNet +  + at 1.9.

Table 5 shows the IoU results by the benchmark algo-
rithms and the proposed ensemble. The results for CAMUS 
are not available since the evaluation server only returns 
Dice, Hausdorff, and MAD scores. It can be seen that the 
proposed ensemble achieves the best results on all three 
datasets. For CVC-ColonDB, the proposed ensemble gains 
a score of 0.91879, which is better than the highest-perform-
ing model (FPN-ResNet101) by 1.39%. WE-CLPSO, DT-9, 

Table 2   Comparison of 
Dice score between 9 base 
segmentation algorithms, 
benchmark algorithms, and the 
proposed ensemble

Bold values indicates the best result among all methods on each dataset

Model CVC-ColonDB CVC-
EndoSceneStill

MICCAI2015 CAMUS-ED CAMUS-ES

UNet-VGG16 0.81227 0.62501 0.59604 0.9093 0.9103
LinkNet-VGG16 0.88822 0.62978 0.52461 0.874 0.8576
FPN-VGG16 0.88119 0.65474 0.59909 0.8533 0.84933
UNet-ResNet34 0.92281 0.70467 0.75645 0.93467 0.93467
LinkNet-ResNet34 0.94722 0.6845 0.77767 0.93233 0.93467
FPN-ResNet34 0.93055 0.73016 0.76523 0.934 0.93533
UNet-ResNet101 0.91962 0.68474 0.72566 0.93067 0.93
LinkNet-ResNet101 0.93651 0.64733 0.71433 0.87633 0.87767
FPN-ResNet101 0.94794 0.72395 0.83399 0.913 0.90767
WE-CLPSO 0.95382 0.72573 0.72587 0.93666 0.93766
DT-9 0.9521 0.64518 0.76226 0.93733 0.938
OLE-9 0.93721 0.71371 0.82179 0.93633 0.938
UNet +  +  0.94591 0.68695 0.60791 0.925 0.92533
Proposed ensemble 0.95618 0.73238 0.83776 0.939 0.94066

Table 3   Comparison of 
Hausdorff score between 9 
base segmentation algorithms, 
benchmark algorithms, and the 
proposed ensemble

Bold values indicates the best result among all methods on each dataset

Method CVC-ColonDB CVC-EndoSceneStill MICCAI2015 CAMUS-ED CAMUS-ES

UNet-VGG16 85.00296 97.06509 93.1726 8.13 9.9
LinkNet-VGG16 119.6171 96.71459 114.6831 9.766 10.2
FPN-VGG16 39.2416 87.709 76.44703 8.466 10.33
UNet-ResNet34 28.9293 75.34879 65.70021 5.1 5.1
LinkNet-ResNet34 19.30709 80.66761 62.4856 5.23333 5.1
FPN-ResNet34 23.28578 60.13216 50.53678 5.2 5.13333
UNet-ResNet101 26.61305 70.04111 73.42515 5.83333 5.43333
LinkNet-ResNet101 22.81325 73.01387 74.4993 5.06667 4.83333
FPN-ResNet101 16.02841 60.55597 39.80595 5.6 5.4
WE-CLPSO 16.69677 68.1574 63.36689 4.866 4.8
DT-9 17.13916 103.4518 50.85759 4.899 4.833
OLE-9 21.97803 68.68501 45.84166 4.866 4.8
UNet +  +  22.62884 67.78712 111.68482 5.966 5.6
Proposed ensemble 14.75129 60.86643 37.73843 4.699 4.566
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and UNet +  + obtained slightly lower scores, while the score 
of OLE-9 is only around 0.88. For the CVC-EndoSceneStill 
dataset, the highest score is achieved by the proposed ensem-
ble at 0.6015, which is higher than OLE-9 by 2.23%, while 
the result by DT-9 is only around 0.5. For MICCAI2015, the 
proposed ensemble also yields the highest result at 0.74947, 
while OLE-9 only scores around 0.72. Both WE-CLPSO 
and DT-9 have much lower results at just around 0.62 and 
0.66 respectively.

From the results discussed above, it can be seen that:

•	 The proposed ensemble achieves higher results compared 
to the segmentation models, especially for the Hausdorff 
and MAD metrics. This demonstrates that the proposed 
ensemble of segmentation models is effective.

•	 The proposed ensemble is better than DT-9 on all 
datasets, especially on CVC-EndoSceneStill and MIC-
CAI2015 with a difference of 8.72% and 7.55% for 
Dice score respectively. This is because DT-9 takes the 
average of the predictions of all training instances of 
each class as the representation of that class, while the 
proposed ensemble uses the predictions as additional 
information for the second ensemble layer. Since the 
average might not be the best representative for each 
class, the performance of DT-9 is worse than the pro-
posed ensemble.

•	 The proposed ensemble is better than OLE-9 on all 
datasets and all metrics. The best results were obtained 
on CVC-EndoSceneStill and MICCAI2015 in which 
the proposed ensemble is better by 1.867% and 1.596% 

Table 4   Comparison of 
MAD score between 9 base 
segmentation algorithms, 
benchmark algorithms, and the 
proposed ensemble

Bold values indicates the best result among all methods on each dataset

Method CVC-ColonDB CVC-EndoSceneStill MICCAI2015 CAMUS-ED CAMUS-ES

UNet-VGG16 25.56598 29.2703 36.31338 2.566 2.8333
LinkNet-VGG16 25.90662 28.61254 46.04682 2.766 2.9333
FPN-VGG16 8.72541 23.77789 27.254 2.56 2.83
UNet-ResNet34 7.69548 18.47708 23.69092 1.73333 1.66667
LinkNet-ResNet34 4.0483 22.6211 20.62498 1.8 1.7
FPN-ResNet34 4.71461 13.85228 14.87703 1.73333 1.66667
UNet-ResNet101 5.2808 17.28837 25.7939 1.83333 1.76667
LinkNet-ResNet101 5.24861 18.97017 26.90045 1.73333 1.63333
FPN-ResNet101 3.1729 14.81169 9.13451 1.8 1.76667
WE-CLPSO 3.30906 16.28011 21.64301 1.633 1.599
DT-9 3.34359 31.19257 15.80289 1.633 1.566
OLE-9 4.43871 16.73726 13.27487 1.633 1.599
UNet +  +  6.00943 17.67296 42.76071 1.933 1.9
Proposed ensemble 3.08421 13.72005 10.3611 1.633 1.533

Table 5   Comparison of 
IoU score between 9 base 
segmentation algorithms, 
benchmark algorithms, and the 
proposed ensemble

Bold values indicates the best result among all methods on each dataset

Method CVC-ColonDB CVC-
EndoSceneStill

MICCAI2015 CAMUS-ED CAMUS-ES

UNet-VGG16 0.7197 0.48681 0.50829 - -
LinkNet-VGG16 0.8134 0.49107 0.4356 - -
FPN-VGG16 0.80448 0.51218 0.50998 - -
UNet-ResNet34 0.86437 0.56898 0.6595 - -
LinkNet-ResNet34 0.90359 0.54707 0.67967 - -
FPN-ResNet34 0.87653 0.60004 0.66542 - -
UNet-ResNet101 0.85966 0.55178 0.62661 - -
LinkNet-ResNet101 0.88605 0.50592 0.61908 - -
FPN-ResNet101 0.90482 0.58973 0.74507 - -
WE-CLPSO 0.91472 0.59457 0.62379 - -
DT-9 0.91181 0.50204 0.66277 - -
OLE-9 0.88722 0.57911 0.72961 - -
UNet +  +  0.90147 0.54866 0.51274 - -
Proposed ensemble 0.91879 0.6015 0.74947 - -
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for Dice score, respectively. This is because the pro-
posed ensemble uses a two-layer ensemble in contrast 
to OLE-9 which only uses one ensemble layer.

•	 The proposed ensemble achieves higher results com-
pared to WE-CLPSO on most datasets and metrics. For 
example, on the MICCAI2015 dataset, the Hausdorff 
distance by the proposed ensemble is only half of the 
distance by WE-CLPSO. This can also be observed 
for the MAD metric on both CVC-EndoSceneStill and 
MICCAI2015. This shows that the proposed ensemble 
which uses the two-layer ensemble performs better than 
WE-CLPSO.

•	 The proposed ensemble achieved higher results compared 
to UNet +  + on all datasets and metrics. For example, on 
the CVC-EndoSceneStill dataset, the proposed ensem-
ble achieved a MAD score of 13.72 while UNet +  + only 
obtained a score of 17.67296. On the CVC-ColonDB 
dataset, the Dice value of the proposed ensemble is 
0.95618 compared to only 0.94591 by UNet +  + . This 
shows that the proposed ensemble performed better than 
UNet +  + on all datasets in our experiments.

Figure 4 (left) shows two example results for the CVC-
ColonDB dataset. From left to right, top to bottom are: UNet-
VGG16, LinkNet-VGG16, FPN-VGG16, UNet-ResNet34, 
LinkNet-ResNet34, FPN-ResNet34, UNet-ResNet101, 
LinkNet-ResNet101, FPN-ResNet101, WE-CLPSO, DT-9, 
OLE-9, UNet +  + , proposed ensemble, input image and the 
ground truth. It can be seen that the VGG16-based models 

and UNet-ResNet34 failed to predict the area in the mid-
dle of the polyp, while the polyps predicted by LinkNet-
ResNet34 and FPN-ResNet34 are much thinner compared 
to the ground truth. The ResNet101-based models (2nd row, 
3rd-4th columns, and 3rd row, 1st column) give better pre-
dictions but still contain many rough edges, especially on 
the left side. The predictions by WE-CLPSO (3rd row, 2nd 
column) and DT-9 (3rd row, 3rd column) leave a small black 
area on the right. Meanwhile, the polyp prediction by OLE-9 
(3rd row, 4th column) and UNet +  + (4th row, 1st column) 
is divided into two separate areas. The prediction by the 
proposed ensemble agrees the most with the ground truth. 
The bottom left figure provides another example for CVC-
ColonDB. The predictions by the VGG16-based models and 
FPN-ResNet101 contain significant deformations from the 
ground truth, while LinkNet-ResNet34 and FPN-ResNet34 
fail to predict a large bell-like area on the left of the polyp. 
The polyp predicted by LinkNet-ResNet101 (2nd row, 4th 
column) contains a spurious area at the bottom, while the 
predictions by both FPN-ResNet101 and WE-CLPSO (3rd 
row, first two columns) do not preserve the curvature in the 
upper area as compared to the ground truth. For DT-9 and 
OLE-9 (3rd row, last two columns), there are many rough 
edges, and some areas on the middle left of the polyp are 
considered background (especially for OLE-9). On the other 
hand, for UNet +  + (4th row, 1st column), the prediction has 
a spurious area on the lower left of the polyp, while the pre-
diction for the upper area is smaller compared to the ground 
truth. In contrast, the prediction by the proposed ensemble 
(4th row, 2nd column) resembles the ground truth the most, 
although there are still some rough edges present.

On the right are two examples of the CVC-EndoSceneStill 
dataset, with indigo denoting polyp, pink denoting lumen, 
and olive denoting specular highlights. It can be seen that the 
predictions for polyp and specular highlights are similar and 
the most noticeable differences are seen in the predictions 
for lumen. For the first example (top right), the VGG16-
based models, UNet-ResNet34 and LinkNet-ResNet34 (1st 
row and 2nd row, 1st column) wrongly predict lumen on the 
top right while there is none. On the second row, the lumen 
prediction by FPN-ResNet34, UNet-ResNet101, and FPN-
ResNet101 (2nd, 3rd, and 4th column respectively) have a 
pointed area at the bottom part which is not present in the 
ground truth, while the prediction by LinkNet-ResNet101 
for lumen contains an area at the bottom part of the lumen 
which is not present in the ground truth.

WE-CLPSO, DT-9, and OLE-9 wrongly predict an 
additional lumen area on the right which is actually the 
background while UNet +  + (4th row, 1st column) fails to 
predict the lower lumen area. It is recognised that only the 
proposed ensemble segments the lumen correctly. For the 
second example (bottom right), the models with VGG16 and 
ResNet34 as backbone, such as UNet-VGG16 fail to predict 

Fig. 4   Two examples of CVC-ColonDB (left) and CVC-EndoSceneStill 
(right). In each example, from left to right, top to bottom are the results of 
UNet-VGG16, LinkNet-VGG16, FPN-VGG16, UNet-ResNet34, LinkNet-
ResNet34, FPN-ResNet34, UNet-ResNet101, LinkNet-ResNet101, FPN-
ResNet101, WE-CLPSO, DT-9, OLE-9, UNet +  + , proposed ensemble, 
input image and the ground truth
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many areas within the lumen. The prediction for polyp by 
UNet-ResNet101 contains several small, disjointed areas 
on the left while LinkNet-ResNet101 and FPN-ResNet101 
either fail to predict the left part of the lumen or wrongly 
predict only a small dot of the lumen. The prediction by 
WE-CLPSO and OLE-9 both contain holes within the 
lumen, while the lumen prediction by DT-9 is more correct. 
However, it should be noted that DT-9 wrongly predicts the 
existence of specular highlights within the polyps, and its 
prediction for polyp overshoots a sizable area on the top left. 
On the other hand, UNet +  + only predicts some small areas 
of the lumen, while wrongly considering some small areas 
on the upper left of the polyp as lumen. Even though the 
proposed ensemble does not correctly predict the left part 
of the lumen, the predicted lumen does not contain holes 

like other methods and the polyp and specular highlights 
predictions are generally correct.

Figure 5 shows the examples for CAMUS-ED (left) and 
CAMUS-ES (right), with indigo representing the left ven-
tricle, pink representing the myocardium, and olive green 
representing the left atrium. From left to right, top to bot-
tom are: UNet-VGG16, LinkNet-VGG16, FPN-VGG16, 
UNet-ResNet34, LinkNet-ResNet34, FPN-ResNet34, 
UNet-ResNet101, LinkNet-ResNet101, FPN-ResNet101, 
WE-CLPSO, DT-9, OLE-9, UNet +  + , proposed ensemble, 
input image (the ground truths are not available for these 
datasets, and the metrics were evaluated by submitting the 
predictions to an evaluation system). For the top left exam-
ple, it can be seen that the UNet-VGG16 and FPN-VGG16 
fail to predict the lower-left area of the left ventricle, while 

Fig. 5   Two examples of CAMUS-ED (left) and CAMUS-ES (right). 
In each example, from left to right, top to bottom are the results of 
UNet-VGG16, LinkNet-VGG16, FPN-VGG16, UNet-ResNet34, 

LinkNet-ResNet34, FPN-ResNet34, UNet-ResNet101, LinkNet-
ResNet101, FPN-ResNet101, WE-CLPSO, DT-9, OLE-9, UNet +  + , 
proposed ensemble, and input image
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LinkNet-VGG16 wrongly predicts a large area to the right as 
myocardium. The remaining segmentation models wrongly 
predict a separate area at the top as myocardium and also 
only manage to predict a small left atrium area. Even though 
WE-CLPSO, DT-9, and OLE-9 give better results compared 
to the segmentation models, they still predict a small area 
at the top as myocardium and the predicted left atrium is 
still small. On the other hand, UNet +  + correctly predicts 
the left atrium but fails to predict the lower right area of the 
myocardium. In contrast, the proposed ensemble predicts 
the correct shapes of the left ventricle, myocardium, and 
left atrium. The reason for the incorrect predictions by the 
benchmark algorithms can be seen by visually inspecting the 
image (3rd row, 5th column). It can be seen that the image 
quality is lower on the right, with a large black area present 
on the bottom right. For the second example (bottom left), 
UNet-VGG16 and FPN-VGG16 fail to predict a left atrium 
area on the right and on the top left respectively.

The remaining segmentation models generally predict the 
correct shapes, except for LinkNet-ResNet101 (2nd row, 3rd 
column) which fails to segment the left area of both myocar-
dium and left ventricle. In comparison, WE-CLPSO, DT-9, 
and OLE-9 provide better results even though there is still 
a pointed myocardium area on the left, which is not present 
in the prediction by the proposed ensemble. The predictions 
for the left ventricle and left atrium by UNet +  + are gener-
ally correct, however, UNet +  + mistakes a myocardium on 
the top left as background. The two examples on the right 
are from CAMUS-ES. For the top right example, it can be 
seen that the predictions by segmentation models gener-
ally contain various deformations. For example, LinkNet-
VGG16 fails to predict correctly the middle areas of the left 
ventricle and myocardium and mistake some part for left 
atrium. Other segmentation models also have many mistakes 
in segmenting the left and right areas of the myocardium, 
such as leaving non-predicted holes within the object (UNet-
ResNet34, FPN-ResNet34, and the ResNet101-based mod-
els). WE-CLPSO, DT-9, and OLE-9 provide better segmen-
tation, but their predictions still contain unpredicted areas on 
the right, especially for OLE-9 and DT-9, while the predic-
tion by UNet +  + has many unstable curves and still contains 
a hole on the lower right area. In contrast, even though the 
proposed ensemble still predicts a redundant myocardium 
area on the right, the segmented areas are generally cor-
rect. With respect to the second example (bottom right), the 
VGG16-based models either fail to predict the right area of 
the myocardium (UNet-VGG16 and FPN-VGG16) or pre-
dict it as left ventricle instead (LinkNet-VGG16). LinkNet-
ResNet34, LinkNet-ResNet101, and FPN-ResNet101 fail to 
predict the left atrium while the left atrium prediction by 
UNet-ResNet101 contains many unpredicted small areas, 
and only UNet-ResNet34 and FPN-ResNet34 provide over-
all correct result. The predictions by WE-CLPSO, DT-9, 

OLE-9, and UNet +  + are better than the segmentation mod-
els but still contain a small, unsegmented myocardium area 
on the middle right. It is noted that this problem is not pre-
sent in the proposed ensemble.

Figure 6 shows two examples of MICCAI2015. With 
respect to the first example (top), all VGG16-based mod-
els, UNet-ResNet34 and LinkNet-ResNet101 wrongly seg-
ment the entire left region of the image as polyp. This can 
be explained by inspecting the image, in which the polyp 
is a very small region in the center and is nearly indistin-
guishable from the surrounding left area. The remaining 
segmentation models correctly identify the polyp region 

Fig. 6   Two examples of MICCAI2015. In each example, from left to 
right, top to bottom are the results of UNet-VGG16, LinkNet-VGG16, 
FPN-VGG16, UNet-ResNet34, LinkNet-ResNet34, FPN-ResNet34, 
UNet-ResNet101, LinkNet-ResNet101, FPN-ResNet101, WE-CLPSO, 
DT-9, OLE-9, UNet +  + , proposed ensemble, input image and the 
ground truth
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but still mistakenly predict other areas as polyp as well. 
For example, FPN-ResNet101 predicts a small region on 
the right as polyp in contrast to the ground truth. WE-
CLPSO, DT-9, and UNet +  + wrongly predict the entire 
left region as a polyp, while the result by OLE-9 contains 
several small areas to the left of the real polyp. In con-
trast, the proposed ensemble correctly identifies the polyp 
region and does not make incorrect predictions in other 
areas. For the second example (bottom), it can be seen 
that many of the benchmark algorithms incorrectly predict 
many regions as polyp, due to the fact that the input image 
contains many areas which on first glance can be mistaken 
for polyp. The VGG16-based models mistake a large area 
as polyp, while the remaining benchmark algorithms usu-
ally mistake a large region on the left or three separate 
regions on the right as polyp. Among the segmentation 
models, only UNet-ResNet34 and FPN-ResNet101 have 
generally correct predictions. WE-CLPSO, DT-9, and 
UNet +  + have a lot of spurious predictions around the 
real polyp, while the prediction by OLE-9 has a small area 
on the left wrongly identified as a polyp. In contrast, the 
proposed ensemble provides the correct segmentation of 
the polyp.

Table 6 shows the weights found by OLE-9 (top) and the 
proposed ensemble (bottom) for the CVC-EndoSceneStill 
dataset. It can be seen that for the lumen class, the weights 
found by the proposed method for the less-performing seg-
mentation models are much smaller compared to OLE-9. 
For example, FPN-VGG16's weight is 0.38013 for OLE-9 

but for the proposed ensemble it is just 0.20808. In con-
trast, the weight by LinkNet-ResNet101 increases from 0 
for OLE-9 to 0.26 for the proposed ensemble. This can be 
seen from the examples described in the previous section 
in which the predictions made by ResNet101-based models 
are better than the other models. For the Polyp class, since 
the predictions by the segmentation models are similar, the 
weights assigned by the proposed ensemble are more evenly 
distributed compared to those of OLE-9. The same can also 
be seen for the remaining classes. For both OLE-9 and the 
proposed ensemble, there exists a number of weights that are 
very small since their contribution to the final predictions 
is minimal and have been rounded to zero for readability. 
However, while OLE-9 has nine zero weights, there are only 
five zero weights for the proposed ensemble.

With respect to the computational time required by each 
algorithm, it can be seen that:

•	 Overall, the proposed ensemble required more time 
compared to OLE-9 and DT-9 since the proposed 
ensemble is a two-layer ensemble of deep learning seg-
mentation models while the OLE-9 and DT-9 are one-
layer ensembles. For the CVC-ColonDB dataset, the 
required time for the proposed ensemble was 12.81 h 
as opposed to 5.2 and 5.3 h by DT-9 and OLE-9. The 
proposed ensemble took 54.12 h on the CVC-EndoSce-
neStill dataset while DT-9 and OLE-9 took only 15.56 
and 15.72 h respectively. For MICCAI2015, 13.21 h 
were required for the proposed method compared to 

Table 6   The weights of OLE-9 and the proposed ensemble for CVC-EndoSceneStill

OLE-9 Polyp Lumen Specular Background

UNet-VGG16 0.09459 0.0577 0.07159 0.13734
LinkNet-VGG16 0.05498 0 0.03219 0
FPN-VGG16 0.26744 0.38013 0.18295 0.3185
UNet-ResNet34 0.11722 0.11464 0.11573 0.13752
LinkNet-ResNet34 0.186 0.15637 0.20135 0.20735
FPN-ResNet34 0.08969 0.07533 0.10691 0.17958
UNet-ResNet101 0 0 0 0
LinkNet-ResNet101 0.11963 0 0.00796 0
FPN-ResNet101 0.19017 0 0.12135 0.00683

Proposed ensemble

UNet-VGG16 0.31845 0 0.06505 0.07941
LinkNet-VGG16 0.24299 0 0.09584 0.124
FPN-VGG16 0 0.20808 0.07764 0.09951
UNet-ResNet34 0.04911 0.12985 0.13017 0.16163
LinkNet-ResNet34 0.10423 0.11275 0.12538 0.18732
FPN-ResNet34 0.07549 0.08996 0.07904 0.07822
UNet-ResNet101 0 0 0.157 0
LinkNet-ResNet101 0.02832 0.26 0.04756 0.138
FPN-ResNet101 0.20933 0.0097 0.03008 0.1111
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around 5 h for DT-9 and OLE-9. The same can be seen 
for both CAMUS-ED and CAMUS-ES with the pro-
posed ensemble taking 40 h, while DT-9 and OLE-9 
took only around 20 h.

•	 The proposed ensemble requires roughly the same 
computational time as WE-CLPSO. For CVC-
ColonDB and CVC-EndoSceneStill, WE-CLPSO 
required 10.42 and 58.96  h respectively compared 
to 12.81 and 54.12 h by the proposed ensemble. For 
the MICCAI2015, WE-CLPSO took 12.08 h which is 
lower than the proposed ensemble by 1.13 h. In con-
trast, for CAMUS-ED and CAMUS-ES, while the 
proposed ensemble requires only around 38 h, WE-
CLPSO took 58.5 h. It is noted that the image size of 
the CAMUS dataset is much bigger than those of other 
experimental datasets, resulting in a larger prediction 
matrix. It is noted that WE-CLPSO searches the opti-
mal weights for classifiers in 𝐋∗ and the larger 𝐋∗ is, 
the more computational time required. The compu-
tational time required for the proposed ensemble can 
be further reduced by parallelizing the T-fold cross-
validation procedure to create the predictions in the 
first and second layers.

Conclusion

In this paper, we presented a two-layer ensemble of deep 
learning models for the segmentation of medical images. 
The key idea is to use the probability prediction by the 
constituent models in the first layer as augmented data for 
the second layer. The output probability prediction by the 
second layer is combined by using a weight-based scheme 
which is not only an effective combiner but also compu-
tationally efficient. The weights are found by solving a 
linear regression problem associated with each class label. 
Our results on five benchmark datasets show that the pro-
posed ensemble method is able to combine the strengths 
and mitigate the drawbacks of the constituent segmenta-
tion methods, resulting in an overall improvement.

Several directions can be conducted to improve the 
proposed ensemble in the future. Firstly, parallelization 
implemented in the cross-validation procedures at the 
first and second layers is a potential approach to reduce 
computational requirements. Secondly, it is noted that the 
presence of some models might degrade the ensemble 
performance because of their poor performance or less 
diversity in predictions. Therefore, a potential solution is 
to perform ensemble selection to find the optimal sub-
set of models which would not only reduce the compu-
tational complexity of the ensemble but also increase its 
performance as well. Finally, due to the general structure 
of the two-layer ensemble, the proposed ensemble could 

be extended to solve other supervised learning tasks such 
as image classification.
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