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Abstract
Background Resistance exercise is the most common training modality included within strength and conditioning (S&C) 
practice. Understanding dose–response relationships between resistance training and a range of outcomes relevant to physi-
cal and sporting performance is of primary importance for quality S&C prescription.
Objectives The aim of this meta-analysis was to use contemporary modelling techniques to investigate resistance-only 
and resistance-dominant training interventions, and explore relationships between training variables (frequency, volume, 
intensity), participant characteristics (training status, sex), and improvements across a range of outcome domains including 
maximum strength, power, vertical jump, change of direction, and sprinting performance.
Methods Data were obtained from a database of training studies conducted between 1962 and 2018, which comprised 
healthy trained or untrained adults engaged in resistance-only or resistance-dominant interventions. Studies were not 
required to include a control group. Standardized mean difference effect sizes were calculated and interventions categorized 
according to a range of training variables describing frequency (number of sessions per week), volume (number of sets and 
repetitions performed), overall intensity (intensity of effort and load, categorised as low, medium or high), and intensity 
of load (represented as % of one-repetition maximum [1RM] prescribed). Contemporary modelling techniques including 
Bayesian mixed-effects meta-analytic models were fitted to investigate linear and non-linear dose-responses with models 
compared based on predictive accuracy.
Results Data from a total of 295 studies comprising 535 groups and 6,710 participants were included with analyses con-
ducted on time points ≤ 26 weeks. The best performing model included: duration from baseline, average number of sets, 
and the main and interaction effects between outcome domain and intensity of load (% 1RM) expressed non-linearly. Model 
performance was not improved by the inclusion of participant training status or sex.
Conclusions The current meta-analysis represents the most comprehensive investigation of dose–response relationships 
across a range of outcome domains commonly targeted within strength and conditioning to date. Results demonstrate the 
magnitude of improvements is predominantly influenced by training intensity of load and the outcome measured. When 
considering the effects of intensity as a % 1RM, profiles differ across outcome domains with maximum strength likely to 
be maximised with the heaviest loads, vertical jump performance likely to be maximised with relatively light loads (~ 30% 
1RM), and power likely to be maximised with low to moderate loads (40–70% 1RM).

1 Introduction

Resistance exercise is established as one of the most effec-
tive training modalities within strength and conditioning 
(S&C) [1, 2]. Researchers have shown that improvements 
in strength and power can be transferred to a range of 
important activities associated with sports performance 
including sprinting and jumping [1, 3, 4]. Results from a 
recent large meta-analysis also highlighted the importance 
of training specificity, in relation to the imposed demands 
of training, with the greatest improvements made when Extended author information available on the last page of the article
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Key Points 

Results from the current large-scale meta-analysis 
demonstrate that intervention duration combined with 
manipulation of training intensity are the most relevant 
factors in altering magnitude of improvement following 
resistance training.

Different % 1RM intensity profiles exist across out-
come domains, highlighting the importance of selecting 
domain-specific loads.

Across the heterogeneous research, training status, sex 
and training frequency were shown to provide limited 
predictive capabilities. These factors should still be con-
sidered when developing holistic periodised strength and 
conditioning programs with further research required.

matching the training stimulus and the outcomes assessed 
(e.g., traditional resistance exercise with heavy loads 
matched with one-repetition maximum (1RM) assessment) 
[5]. Beyond specificity, appropriate prescription of resist-
ance exercise requires consideration of a range of acute 
program variables including volume, intensity, frequency 
and potentially more subtle variables including exercise 
selection and exercise order [6]. There have been attempts 
to provide general recommendations of training dose to 
maximise a range of outcome domains including strength, 
hypertrophy, power and muscular endurance [6]. Previous 
researchers have also indicated that the training status of 
participants quantified as years of resistance training expe-
rience may play an important role and interact with training 
dose [7, 8]. Greater understanding of dose–response rela-
tionships across a range of factors including the training 
modality, outcome domain, participant characteristics (e.g., 
training status) and length of intervention is key for con-
tinued development of resistance exercise and the desire to 
avoid over- or under-loading.

Several systematic reviews have investigated training 
dose within S&C, with most focusing on development of 
strength and hypertrophy [7–17]. Seminal studies con-
ducted by Rhea and colleagues [7–9] were among the first 
to use meta-analytic techniques to quantify dose–response 
relationships. Initial research from Rhea et al. [9] incor-
porated data from 16 studies to compare single versus 
multiple sets and concluded that performance of three sets 
was more effective than a single set. Follow-up research 
was conducted by the authors by (1) substantially increas-
ing the number of studies included in the analysis [7], and 
(2) focusing on higher-level athletes [8]. The large-scale 

meta-analysis conducted by Rhea et al. [7] included data 
from 140 studies and provided further support for the supe-
riority of multiple sets, with four sets per muscle group 
concluded to produce the greatest improvements [7]. The 
results from the comprehensive analysis indicated differ-
ent dose–response relationships for trained and untrained 
participants, with a higher intensity of load (80% 1RM) 
and a frequency of 2 days per week judged most effective 
for trained participants; and lower intensity of load (60% 
1RM) and a frequency of 3 days per week judged most 
effective for untrained participants. In the follow-up meta-
analysis restricted to 37 studies including competitive ath-
letes, Peterson et al. [8] concluded higher volumes (eight 
sets per muscle group) and intensity of load intensities 
(85% 1RM) resulted in the largest effects with no differ-
ences found between frequencies of 2 or 3 days per week. 
Collectively, the work from Rhea and colleagues synthe-
sised results from almost 200 studies and confirmed the 
existence of dose–response relationships for the develop-
ment of strength and the likely moderation by participant 
characteristics including training status [18].

The most recent meta-analyses investigating 
dose–response relationships in S&C have tended to focus 
on the manipulation of a smaller number of program vari-
ables and restricting analyses to more homogeneous studies 
[10–17]. Meta-analyses from Grgic et al. [12] and Ralston 
et al. [13] investigated the effects of manipulating training 
frequency on strength improvements and incorporated data 
from 22 studies directly comparing frequencies of 1–4 days 
per week, and from 12 studies directly comparing frequen-
cies of 1–3 days per week, respectively. Grgic et al. [12] 
concluded that higher training frequencies resulted in greater 
improvements in strength, but that these increases appeared 
to be primarily mediated through increased weekly volume. 
Similar conclusions were presented by Ralston et al. [13] 
showing that when resistance volume was equated across 
low (1  day   week−1), medium (2  days   week−1) or high 
(≥ 3 days  week−1) frequencies, similar increases in strength 
were obtained for both isolation and multi-joint exercises. 
Restricting analyses to trained athletes, Cuthbert et al. [17] 
identified no differences in improvements to either lower 
(effect size: 0.06; CI – 0.20, 0.32) or upper (effect size: 0.09; 
CI – 0.17, 0.35) body strength when comparing training fre-
quencies during competitive periods.

Another smaller and more focused meta-analysis was 
conducted by Schoenfeld et al. [15] comparing low-load 
(≤ 60% 1RM) versus high-load (> 60% 1RM) resistance 
training. The meta-analysis included 21 relatively homoge-
neous studies tending to focus on exercises including the 
bench press, knee extension and leg press, all performed to 
momentary muscular failure. Results from the meta-analy-
sis identified greater improvements in 1RM strength with 
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high-load resistance training; however, the transfer of train-
ing to isometric strength testing showed marginally greater 
effects favouring higher versus lower loads (effect size: 0.16; 
95% CI – 0.06, 0.37) [15]. Moreover, similar improvements 
were observed in muscle hypertrophy across conditions. 
The results presented by Schoenfeld et al. [15] highlight the 
potential for different dose–response relationships across 
outcomes routinely targeted in S&C.

Whilst both large meta-analyses comprising heteroge-
neous studies and smaller, more focussed meta-analyses 
present different strengths and weaknesses, there is likely 
a benefit in simultaneously modelling dose–response rela-
tions across a broader range of outcome domains than has 
been investigated previously. The response to any training 
program is ultimately a complex interaction of a range of 
variables and participant characteristics; however, large 
modelling analyses have the potential to identify general 
trends that provide researchers and practitioners with impor-
tant information on which to design more specific programs. 
With this perspective in mind, the purpose of this encom-
passing meta-analysis was to use contemporary modelling 
techniques to investigate resistance training interventions 
and explore relationships between training variables (e.g., 
frequency, volume, overall intensity, and intensity of load), 
participant characteristics (training status, sex), and a range 
of outcome domains including maximum strength, power, 
vertical jump, change of direction (COD), and sprinting per-
formance, which are key targets in S&C program design.

2  Methods

2.1  Overview of Meta‑analysis

The meta-analysis was conducted on a database of S&C 
training studies with analyses restricted to interventions 
that comprised resistance training only, or combined inter-
ventions where resistance training accounted for more than 
half of the training volume (e.g., resistance combined with 
plyometrics, speed, COD or power training). The database 
included information describing outcome variables, partic-
ipant characteristics, training-dose parameters along with 
baseline and follow-up means and standard deviations, as 
has been described elsewhere [1]. The information was used 
to calculate intervention-only (e.g., non-controlled) effect 
sizes designed to draw inferences from indirect comparisons. 
To conduct the meta-analysis, sequential hierarchical models 
were fitted to account for dependencies (e.g., reporting of 
multiple outcomes at multiple time points from the same 
study) and structure within the data (e.g., time points nested 
in outcomes, nested in studies). Participant, training dose, 
and intervention characteristics were sequentially added to 

models to identify the most influential factors whilst moni-
toring changes caused by underlying associations among the 
variables. The focus of this meta-analysis was to quantify 
and describe the general influence of training dose across a 
range of outcomes commonly investigated in S&C studies.

2.2  Search Strategy and Reporting

The present review was conducted as a follow-up to a larger 
review that featured a broader range of training interven-
tions [1]. The search for the original review was performed 
using Embase, Medline, Web of Science, SPORTDiscus 
and Google Scholar. Hand searching of relevant journals 
including Medicine and Science in Sports and Exercise, 
the Journal of Strength and Conditioning Research, and 
Research Quarterly was also conducted. Database search 
terms were included to identify various training modes and 
a range of outcome measures. The following keywords and 
phrases were combined with Boolean operators; “strength” 
OR “resistance” OR “sprint” OR “plyometric” OR “exer-
cise” AND “intervention” OR “training” OR “program” 
OR “programme” AND “1RM” OR “repetition maximum” 
OR “speed” OR “velocity” OR “power” OR “jump” OR 
“change of direction” OR “agility” OR “acceleration” OR 
“rate of force development”. No restriction was placed on 
the date of the study, with searching conducted in January 
2018. Reporting of this review was guided by the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) 2020 [19] statement, with the checklist included 
for transparency (Online Supplementary Material (OSM) 1). 
Risk of bias assessment was not conducted.

2.3  Inclusion Criteria and Data Extraction

Inclusion and exclusion criteria for the current meta-analysis 
were set to include as many relevant S&C training studies 
as possible. Inclusion criteria comprised: (1) any resistance 
training or majority resistant training-based study ≥ 4 weeks; 
(2) healthy trained or untrained participants with a mean age 
between 14 and 60 years; (3) training group with a minimum 
of four participants; (4) pre- and post-training means and 
standard deviations; and (5) sufficient information provided to 
quantify training intensity, volume, and frequency. Studies did 
not require a control or comparator group to be included. A 
standardised extraction codebook was developed using Micro-
soft Excel, with data extracted and coded independently by 
four researchers in duplicate, with one reviewer (AM) com-
pleting extraction for all studies to provide consistency. Study 
selection followed a two-stage selection strategy (title or 
abstract screen and full-text screen) undertaken primarily by 
AM and two researchers as part of the original larger review 
during 2018–2020. The independent screeners convened at 
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the end of each screening stage to resolve any discrepancies. 
Data regarding the study (authors, year, total number of active 
intervention groups); participant characteristics (final study 
n, sex, training status, and age); outcome domain (maximum 
strength, power, jump performance, and sprinting perfor-
mance); training dose (overall intensity, intensity of load, vol-
ume, frequency, number of exercises, number of sets, number 
of repetitions), and pre- and post-training means and standard 
deviations were obtained. The definitions used to categorise 
outcome domains included: (1) maximum strength: a measure 
of maximum force production where time was not limited 
(e.g., 1–6 repetition maximum, isometric mid-thigh pull, 
peak torque); (2) power: a direct measurement (e.g., Wingate 
test) or indirect estimation (e.g., vertical jump) of mechanical 
power output measured in Watts (absolute and normalised 
relative to body mass); (3) jump performance: measure of 
jump height or distance; (4) sprint performance: a measure-
ment of the time to complete a specified linear distance or the 
velocity achieved; and (5) COD performance: a measurement 
of the time to complete a non-reactive change of direction or 

reactive task. Training status was categorised based on the 
mean S&C training experience as untrained (< 1 year), rec-
reationally trained (1–5 years), or highly trained (> 5 years). 
If the mean S&C training experience was not stated, the mini-
mum required experience was used for categorisation. Sex 
of the groups was categorised as male-only, female-only or 
mixed sex. Criteria used to quantify overall intensity and vol-
ume for each training mode can be found in Table 1. In brief, 
overall intensity was categorised specific to each domain and 
considered both intensity of effort and mechanical factors. In 
addition, intensity of load was also quantified based on the 
mean percentage of one repetition maximum (% 1RM) used 
in the resistance training. In cases where % 1RM was not 
explicitly stated, % 1RM values were estimated based on the 
number of repetitions performed per set using methods out-
lined by Haff and Triplett [20] (OSM 2). Training frequency 
was classified as the average number of sessions per week 
throughout the intervention.

Table 1  Criteria used to categorise overall intensity and volume of each training mode included

COD change of direction, cm centimetre, % 1RM percentage one-repetition maximum

Training mode Intensity categorisation Volume categorisation

Resistance training Coding based on % 1RM
1 = Low 0–59.9% 1RM
2 = Moderate 60–84.9% 1RM
3 = High ≥ 85% 1RM
In cases where % 1RM was not explicitly stated, % 1RM value and cat-

egory were estimated based on the number of repetitions performed 
per set using methods outlined by Haff and Triplett [19] (Online 
Supplementary Material 2)

Average number of repetitions performed per set 
in key exercises

1: Low – 1–5
2: Mid – 6–10
3: High – 11 + 

Plyometric Based on the exercises included, for example:
1 = Low – low amplitude hopping, box jumps, squat jumps
2 = Moderate – bounding, lateral jumps, hurdle jumps, countermove-

ment jump, drop jump with < 30 cm drop
3 = High – drop jump with > 30 cm drop, multidirectional bounding, 

single leg jumps, rebounding jumps

Average number of foot contacts per session
1: Low – < 80
2: Mid – 80–120
3: High – 120 + 

Ballistic Always categorised as high intensity due to high levels of relative effort 
required, unless it was explicitly stated sub-maximal effort was used

Average number of repetitions performed per set
1: Low – 1–3
2: Mid – 4–6
3: High – 7 + 

Sprint Always categorised as high intensity due to high levels of relative effort 
required, unless it was explicitly stated sub-maximal effort was used 
(e.g. skipping, marching sub-maximal runs)

Average number of runs per session
1: Low – 1–4
2: Mid – 5–9
3: High 10 + 

Change of direction Based on exercises included: 1 = Low – ladder drills, footwork drills, 
single turn run with <  900 change of direction (COD), 2 = Moderate 
– lateral movement drills, single turn with >  900 COD, 3 = High – 
multiple sharp CODs, 505 drills, reactive drills

Average number of runs per session
1: Low – 1–5
2: Mid – 6–9
3: High 10 + 

Combined Combinations of resistance, sprint, ballistic, plyometric and agility 
training. To be considered a combined training mode, the second-
ary mode must account for at least 30% of total lower body training 
volume

Categorisation of 1 = Low, 2 = Mid, 3 = High, based on categorisation 
of included training types

Categorisation of
1 = Low
2 = Mid
3 = High
based on categorisation of included training types
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2.4  Statistical Analysis

Effect sizes and their sampling variance were calculated 
using group mean and standard deviation values calculated 
pre-intervention and at any subsequent time-point.  SMDpre 
was calculated by dividing the relevant mean difference by 
the pre-intervention standard deviation. The sampling vari-
ance �2

e
(SMDpre) of the effect size [21] was calculated using 

the following formula:

where n is the sample size, r is the correlation between 
repeated measures, and c(n − 1) is the bias function, which 
was approximated by 1 − 3

4n−5
[22]. To account for the small 

sample sizes generally used in S&C, a bias correction was 
applied to the effect size and sampling variance by mul-
tiplying by the approximated bias function and its square, 
respectively.

All meta-analyses were conducted using a nested four-
level mixed-effects meta-analytic model. The series of 
nestings and a full overview of the model framework are 
presented in the Online Supplementary files (OSM 3). Pre-
dictors were added at level 2 (time of measurement from 
baseline), level 3 (outcome domain as a categorical predic-
tor (strength, power, sprint, vertical jump, COD)) and level 
4 (number of repetitions per set as a categorical predictor 
(low < 8, high ≥ 8); number of repetitions per set as a smooth 
predictor; number of sets; number of sets as a smooth pre-
dictor; number of sets as a categorical predictor (low < 4, 
high ≥ 4); number of sessions per week as a categorical 
predictor (low < 3, high ≥ 3); number of sessions per week 
as a smooth predictor; number of exercises as a categori-
cal predictor (low < 4, high ≥ 4); number of exercises as a 
smooth predictor; volume as a categorical predictor (low < 2, 
mid = 2, high > 2); overall intensity as a categorical predictor 
(low < 2, mid = 2, high > 2); intensity of load (% 1RM) as a 
categorical predictor (low < 80; high ≥ 80); intensity of load 
(% 1RM) as a smooth predictor; sex as a categorical variable 
(males, females, mixed); and training status as a categorical 
predictor (untrained, recreationally trained, highly trained)).

Candidate models were fitted and compared based on 
predictive accuracy using ELPD-LOO (see OSM for fur-
ther details) [23]. Median values and 95% credible inter-
vals (CrIs) were presented for regression coefficients where 
predictors were found to improve the previous model, with 
the marginal effect of smooth terms visualised using plots 
and illustrating uncertainties. All analyses were conducted 
in R [24], with models fit using the brms package interfaced 
with Stan [25] to perform sampling, and leave-one-out cross-
validation performed using the loo package [26]. Analyses 
were completed across the entire data set including both 

�
2
e

(

SMDpre

)

=
n − 1

n(n − 3)

(

2(1 − r) + nSMD2
pre

)

−
SMD2

pre

c(n − 1)2

resistance-only and resistance-dominant training interven-
tions, with a sensitivity analysis completed with resistance-
only training interventions. Outlier  SMDpre values were 
identified by adjusting the distribution by a Tukey g-and-h 
distribution and obtaining the 0.0035- and 0.9965-quantiles, 
with values beyond these points removed prior to further 
analysis [27]. Convergence of parameter estimates was 
obtained for all models with Gelman-Rubin R-hat values 
below 1.1 [28]. No attempts were made to assess certainty 
in the body of evidence for an outcome.

3  Results

3.1  Descriptions of Data

Data from a total of 295 studies comprising 535 groups and 
6,710 participants were obtained (Fig. 1 and reference list 
provided in OSM 4). Of the 535 groups, 372 comprised 
resistance training only (n = 4,664), and 163 comprised 
resistance training combined with other training modali-
ties (n = 2,046). Sixty-five percent of groups were catego-
rised as male-only, 23% were categorised as mixed sex, and 
12% were categorised as female-only. Fifty-four percent of 
groups were categorised as untrained, 41% were catego-
rised as recreationally trained, and 5% were categorised as 
highly trained. The duration of interventions ranged from 
4 to 208 weeks, with 97% of the data obtained from inter-
ventions ≤ 26 weeks. Analyses were thus restricted to time 
points ≤ 26 weeks following baseline, which provided data 
from 3,065 outcomes (maximum strength: 1,546 (50%); 
power: 550 (18%); jump performance: 512 (17%); sprint 
performance: 370 (12%); COD performance 87 (3%)). 
Results presented in text are from the complete data set 
comprising both resistance-only and resistance-dominant 
training interventions. Sensitivity analyses conducted with 
resistance-only training interventions were consistent with 
the larger data set. Full details of the best predictor models at 
each level for both resistance-only and resistance-dominant 
training interventions are presented in Tables 2 and 3.

3.2  Null Model

A total of 61 outliers were removed from the analysis such 
that effect sizes ranged from – 0.83 to 4.7. For the null model 
the pooled mean effect size was SMD0.5 = 0.55 [95% CrI 
0.51–0.60], with between-study standard deviation �0.5 = 
0.33 [75% CrI 0.31–0.36] (Table 2).

3.3  Level 2 Predictors

The only level 2 predictor included was time of measure-
ment following baseline. The median time of measurement 
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was 8 weeks (interquartile range (IQR): 6–12), with binary 
(short: ≤ 8 weeks, long: > 8 weeks) and linear predictors 
investigated. Binary categorisation showed an increase 
in mean pooled effect size with longer interventions 
( SMDshort∶long,0.5 = 0.17 [95% CrI 0.11–0.23]), and for the 
continuous linear predictor the weekly increase was esti-
mated as SMDβTime,0.5

 = 0.03 [95% CrI 0.02–0.04]. The ELPD-
LOO difference comparing the null model and inclusion of 
categorical time or continuous time showed improved model 
performance and was equal to – 11.9 (se: 5.2) and – 12.1 (se: 
4.2), respectively. All subsequent models including those 
assessed as part of the sensitivity analysis featured time as a 
linear predictor (Tables 2 and 3).

3.4  Level 3 Predictors

The only level 3 predictor assessed was the outcome domain 
measured (Fig. 2). Using maximum strength as the refer-
ence level, the mean pooled value was higher in this domain 
compared to all others ( SMDstrength∶COD,0.5 = – 0.28 [95% CrI 
– 0.39 to – 0.17]; SMDstrength∶jump,0.5 = – 0.26 [95% CrI – 0.32 
to – 0.21]; SMDstrength∶power,0.5 = – 0.28 [95% CrI – 0.33 
to – 0.23]; SMDstrength∶sprint,0.5 = – 0.40 [95%CrI – 0.47 to 
– 0.34]). The effect of time remained positive after including 
outcome domain ( SMDβTime,0.5

 = 0.03 [95%CrI 0.02–0.03]), 
with a large improvement in model performance (ELPD-
LOO difference: – 46.8 (se: 12.0)). All subsequent models 
including those assessed as part of the sensitivity analysis 

Records identified from initial 
wide S&C search:

(n = 110,662)

Records removed before screening

Duplicate records removed:  
(n = 19,365)

Records screened:
(n = 91,297)

Records excluded as irrelevant:
(n = 90,591)

Full-text articles sought for 
eligibility:
(n = 706)

Full-text articles excluded, 
with reasons: (n = 411)

Wrong intervention (n = 339)
Wrong duration (n = 25)
Wrong population (n = 19)
Wrong age (n = 15)
Wrong outcome (n = 13)

Studies included in review:
(n = 295)
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Fig. 1  Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for included studies. S&C strength and 
conditioning
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featured time as a continuous predictor and outcome domain 
(Table 2 and 3).

3.5  Level 4 Predictors

Initial analyses were conducted using the categorical vol-
ume and overall intensity predictors. No improvement 
in model performance relative to inclusion of time and 
outcome domain was obtained for volume (ELPD-LOO 
difference: + 5.2 (se: 4.6)). In contrast, improvement was 
observed for overall intensity (ELPD-LOO difference: 
– 6.6 (se: 2.2)) with evidence of greater mean pooled 
values for medium ( SMDlow∶medium,0.5 = 0.07 [95% CrI 
0.00–0.15]) and high categories ( SMDlow∶high,0.5 = 0.10 
[95% CrI 0.01–0.19]). The inclusion of smooth terms 
showed no improvement in model performance when add-
ing the number of sessions per week (ELPD-LOO differ-
ence: + 3.4 (se: 2.0)) or the average number of exercises 

per session (ELPD-LOO difference: + 1.0 (se: 2.6)). 
Limited evidence of model improvement was obtained 
with inclusion of smooth terms for the average number 
of repetitions per session (ELPD-LOO difference: – 6.4 
(se: 3.7)). The marginal effect illustrated a consistent 
decrease in effect size with a greater number of repeti-
tions that slowed after ten repetitions. Stronger evidence 
of model improvement using smooth terms was obtained 
for intensity of load with values expressed as percentage 
of maximum (ELPD-LOO difference: – 18.0 (se: 4.5)) and 
the average number of sets per session (ELPD-LOO dif-
ference: – 17.5 (se: 4.4)) Marginal smooths illustrated that 
the relationship was monotonic but non-linear for intensity 
of load with a reduced incline between 65 and 100% of 
maximum. The relationship was found to be linear for the 
average number of sets per session, with an increasing 
mean effect size association with a greater number of sets 
( SMDβSets,0.5

 = 0.05 [95% CrI 0.03–0.07]).

Table 2  Best performing models at each stage of analysis for complete data set comprising both resistance-only and resistance-dominant training 
interventions

COD change of direction, CrI credible interval
Table shows the additional variables included at each stage of the sequential process along with posterior estimates of model parameters, except 
for variables where smooth terms were added. At each stage, models also include variables identified as providing the best performance at the 
preceding stage

Level Included data Additional 
included vari-
ables
[95% CrI]

ELPD-LOO
[Standard error]

ELPD-LOO dif-
ference

Level 2 standard 
deviation [75% 
CrI]

Level 3 standard 
deviation [75% 
CrI]

Level 4 standard 
deviation [75% 
CrI]

1 291 studies 3004 
outcomes

Null model; 
Mean:

0.55 [0.51–0.60]

– 1805 [60.9] 0.33 [0.31–0.36] 0.25 [0.24–0.26] 0.05 [0.02–0.07]

2 291 studies 3004 
outcomes

Time (Weeks):
0.03 [0.02–0.04]

– 1792 [61.2] – 12.1 [4.2] 0.33 [0.32–0.35] 0.24 [0.22–0.25] 0.05 [0.02–0.08]

2 + 3 291 studies 3004 
outcomes

Outcome domain:
Strength: 0.79 

[0.74–0.84]
Jump: 0.53 

[0.47–0.59]
Power: 0.52 

[0.45–0.58]
COD: 0.51 

[0.39–0.63]
Sprint: 0.39 

[0.32–0.46]

– 1728 [62.0] – 46.8 [12.0] 0.33 [0.31–0.36] 0.20 [0.19–0.22] 0.05 [0.02–0.08]

2 + 3 + 4 265 studies
2795 outcomes

Average number 
sets

0.05 [0.03–0.07]
Smooth(Intensity 

value % 1RM)

– 1600 [59.9] – 12.8 [3.8] 0.33 [0.31–0.36] 0.21 [0.20–0.22] 0.04 [0.01–0.07]

2 + 3*4 265 studies
2795 outcomes

Interaction 
between

Outcome domain 
and

Smooth(Intensity 
value % 1RM)

– 1588 [59.8] – 11.7 [4.8] 0.33 [0.31–0.36] 0.20 [0.19–0.22] 0.05 [0.02–0.08]
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No improvement in model performance was obtained for 
the addition of sex (ELPD-LOO difference: + 2.9 (se: 2.3)) 
or training status (ELPD-LOO difference: + 0.2 (se: 2.3)). 
The same lack of improvement in model performance was 
obtained with sensitivity analyses conducted with resistance-
only interventions. A final best performing model including 
both the average number of sets per session ( SMDβSets,0.5

 = 
0.05 [95% CrI 0.03–0.07]) and smoothed intensity of load 
was obtained for the complete data set and for resistance-
only training interventions (Table 2 and 3).

3.6  Cross‑Level Interactions Between Levels 3 and 4

Potential cross-level interactions were investigated sepa-
rately between outcome domain and both average number 
sets per session and intensity of load. No improvement in 
model performance was obtained for the cross-level inter-
action between outcome domain and average number of 
sets per session (ELPD-LOO difference: – 0.6 (se: 3.5)). In 

contrast, model performance was increased for the cross-
level interaction between outcome domain and intensity of 
load (ELPD-LOO difference: – 0.6 (se: 3.5)), with spline 
modelled intensity showing markedly different relation-
ships across the different outcome domains (Table 2 and 
Fig. 3).

4  Discussion

The primary aim of this meta-analysis was to produce a 
comprehensive modelling of the dose–response relationships 
between resistance exercise and commonly used measures of 
physical performance within S&C. The analyses identified 
that a range of factors are associated with the magnitude 
of change across resistance-only and resistance-dominant 
training interventions. These factors include the length of 
the intervention, outcome type, volume, overall intensity 
of training, and the intensity of load. The analyses also 

Table 3  Best performing models at each stage of analysis for resistance-only training interventions

CrI credible interval, ELPD-LOO expected log pointwise predictive density for a new dataset that was estimated with leave-one-out cross valida-
tion, COD change of direction
Table shows the additional variables included at each stage of the sequential process along with posterior estimates of model parameters, except 
for variables where smooth terms were added. At each stage, models also include variables identified as providing the best performance at the 
preceding stage

Level Included data Additional 
Included variables 
[95% CrI]

ELPD-LOO 
[Standard 
error]

ELPD-LOO dif-
ference

Level 2 standard 
deviation [75% 
CrI]

Level 3 standard 
deviation [75% 
CrI]

Level 4 standard 
deviation [75% 
CrI]

1 197 studies 1,876 
outcomes

Null model; 
Mean:

0.58 [0.52–0.64]

– 1197 [45.8] 0.36 [0.33–0.39] 0.26 [0.24–0.27] 0.10 [0.08–0.13]

2 197 studies 1,876 
outcomes

Time (Weeks):
0.03 [0.02–0.04]

– 1189 [45.7] – 8.3 [3.3] 0.36 [0.34–0.39] 0.24 [0.22–0.26] 0.11 [0.08–0.13]

2 + 3 197 studies 1,876 
outcomes

Outcome domain:
Strength: 0.79 

[0.74–0.85]
Jump: 0.54 

[0.46–0.62]
Power: 0.50 

[0.42–0.58]
COD: 0.58 

[0.42–0.70]
Sprint: 0.45 

[0.36–0.55]

– 1162 [62.0] – 18.4 [6.5] 0.34 [0.32–0.38] 0.22 [0.20–0.23] 0.10 [0.08–0.13]

2 + 3 + 4 177 studies
1,714 outcomes

Average number 
sets:

0.07 [0.04–0.09]
Smooth(Intensity 

value %1RM)

– 1077 [41.6] – 8.5 [3.1] 0.36 [0.33–0.40] 0.22 [0.20–0.24] 0.11 [0.09–0.13]

2 + 3*4 177 studies
1,714 outcomes

Interaction 
between

Outcome domain 
and

Smooth(Intensity 
value %1RM)

– 1061 [41.8] – 12.0 [4.2] 0.35 [0.31–0.39] 0.23 [0.20–0.25] 0.10 [0.08–0.13]
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identified important interactions between loading intensity 
and outcome domain, such that some outcomes are more 
likely to experience greater improvements with a range of 
sub-maximum loads (30–70% 1RM).

Length of intervention has generally not been explored 
in dose–response modelling due to most reviews focus-
ing on a smaller number of homogeneous studies with a 
restricted range of durations. Across the studies included 
in this meta-analysis, durations were found to be relatively 
short, with the median duration equal to 8 weeks and 97% of 
interventions lasting less than 26 weeks. The prevalence of 
shorter duration studies may be due to multiple challenges 
associated with longer duration interventions including an 
increased need for resources as well as greater inclusion 
and agreement from key stakeholders (athlete, organisation 
and management), increased dropouts, and scheduling dif-
ficulties to fit within non-competitive periods [29]. Despite 
the relatively short intervention durations, the results show 
that substantive improvements can be made, and that longer 
durations within these time frames create greater mean 
improvements. Therefore, practitioners and athletes could 
use shorter time periods, potentially during off-season or 
preseason, to maximise physiological improvements when 

competition or sporting demands are lowest. The effect of 
duration remained consistent throughout the model-building 
process with standardised mean differences estimated to 
increase by approximately 0.03 for each additional week of 
training. Given the relatively short and homogeneous dura-
tions included, there was limited ability to explore the func-
tional form of changes over longer durations (e.g., playing 
seasons, years). In a recent large modelling study investi-
gating the time-course of strength adaptations, Steele et al. 
[30] showed that linear-log growth models were appropri-
ate to describe improvements of relatively untrained par-
ticipants over the course of almost 7 years, with improve-
ments tending to plateau after approximately 1 year. The 
training stimulus investigated by Steele et al. [30] focused 
on minimal dose resistance training (1x/week, single sets 
to momentary failure of six exercises), which is likely to 
have influenced the parameters obtained. Our analysis was 
limited to durations of no more than 26 weeks and thus we 
cannot draw inferences as to how results might change over 
longer time frames. Further research is required to better 
understand the influence of duration of an intervention and 
likely interactions between participant characteristics, the 
specific outcome, the training stimulus, and changes in the 

Fig. 2  (Top): Posterior distributions of pooled mean effect sizes across outcome domains. (Bottom): Values represent shrunken values after fit-
ting meta-analytic model also accounting for time of measurement. Black lines represent 75% and 95% credible intervals
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training stimulus following, for example, different perio-
dized approaches.

The manipulation of acute program variables within 
resistance training interventions is often focused on the 
development of a single outcome domain. Previous meta-
analyses investigating dose–response relationships have 

predominantly focused on the development of muscular 
strength and/or hypertrophy [7–17]. The current meta-
analysis demonstrated varying effects across multiple out-
come domains commonly targeted with the greatest effect 
sizes obtained for strength, and the lowest obtained for 
sprint performance. Resistance training for the purpose of 

Fig. 3  (Top): Marginal effects of smooth terms illustrating interac-
tions between intensity of load expressed as percentage of maximum 
and outcome domain. (Bottom): Density plots at the top of each fig-
ure illustrate the distribution of the load intensity variable for the 

given outcome domain. Solid lines represent the best estimate of the 
smooth relationship and shaded regions represent intervals of uncer-
tainty (75% and 95%)
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improving maximum strength is arguably the most inves-
tigated and well-understood area within S&C [1, 2], and 
greater effect sizes may reflect this increased refinement and 
specificity between traditional resistance-training methods 
and maximum strength outcomes [1]. In addition, research-
ers frequently test maximum strength using the same exer-
cises included in the training intervention, further increas-
ing specificity and potentially the improvements measured 
[31]. Results from a previous meta-analysis indicate that the 
dose–response relationship between the % 1RM and strength 
gains diminishes when testing is carried out isometrically 
[15]. Practitioners should be advised to select an appropriate 
testing mode for the given training stimulus applied, whilst 
being aware of any potential upward or downward shift in 
expected results dependent on the measurement used. Fur-
ther study is needed to provide greater context to the transfer 
of strength from varied magnitudes of load to neutral testing 
modalities.

Following maximum strength, jump performance and 
power generated the next largest effects. Similar magni-
tude improvements in jump performance and power may 
be expected given the well-established relationship between 
the two factors [32–35]. In addition, many of the studies 
measured power during loaded and unloaded jumps, further 
increasing associations and similar magnitude improve-
ments. Outcomes relating to sprint performance demon-
strated the lowest magnitude improvements. Sprinting 
comprises a substantial and complex technique element 
[36–40], and given the relatively low number of studies 
(~ 12%) that included sprint specific interventions, a lower 
effect size distribution may be expected. More broadly, the 
lower effect size distribution for sprint outcomes may also 
reflect a lack of specificity with regards to development of 
relevant physical outputs. Transference between improve-
ments and long-term adaptations in S&C is dependent pri-
marily on the training principles of specificity and progres-
sive overload, respectively [41, 42]. Most training methods 
included in the meta-analysis focused on bilateral production 
of maximum vertical forces over long durations. In contrast, 
sprinting activities require high forces produced over short 
ground contact times that are predominantly unilateral with 
substantive horizontal components in relation to the body’s 
position relative to the ground [37, 38, 43, 44]. In a recent 
meta-analysis, Murphy et al. [4] showed moderate to strong 
relationships between improvements in strength, power and 
sprint performance in team sport athletes, concluding that 
greater development of physical capacities may result in 
further improvements in sprint performance. Despite these 
correlations, however, researchers have also shown that large 
increases in maximum strength (~ 12–18%) translate into 
only small decreases in sprint times (~ -2–8%) [45–47]. With 
evidence to suggest restrictions may exist in the transference 
of physical capacities to sprinting, further sprint-specific 

training modes such as resisted sprint training may provide 
additional benefits allowing for the ability to overload kinetic 
output with increased kinematic specificity to the complex 
movement of sprinting [48]. Collectively, there appears to be 
scope for future research to investigate why improvements 
in sprint performance are generally much smaller than other 
outcome domains and whether this difference can be amelio-
rated with a focus on certain training practices.

Movements associated with COD and agility could be 
considered even more complex than sprinting due to the high 
acceleration and deceleration demands, the ability to rapidly 
alter body position, combined with the need in some activi-
ties to react to an external stimulus [49, 50]. The results 
of the current meta-analysis suggest improvements in COD 
are likely to be of similar magnitude to those measured dur-
ing vertical jump and tasks focusing on the development 
of power, albeit with a greater level of uncertainty. Out-
comes measuring COD and the related construct of change 
of direction speed and agility represent a developing area 
within S&C [51, 52] with only ~ 3% of outcomes assessing 
COD performance. Whilst reasons for the larger effect size 
distribution in comparison to linear sprinting require further 
study, potential explanations include the complex, multifac-
eted nature of the tasks and the scope for multiple limiting 
factors to be addressed. Additionally, it is recognised that 
many agility and COD tasks include substantive skill ele-
ments [52], such that failure to appropriately familiarize par-
ticipants could lead to systematic biases in regard to learning 
effects and subsequent overestimations of effect sizes.

The results of the current meta-analysis demonstrate the 
importance of training intensity. Previous researchers inves-
tigating dose–response relationships have tended to contex-
tualise and quantify intensity based on load and thereby % 
1RM [7, 8, 14, 15]. This approach works best when consid-
ering traditional strength or hypertrophy focused interven-
tions comprising large compound movements where 1RMs 
can be measured and appropriately summarise a relevant 
feature of intensity [53]. An aim of the current meta-analy-
sis was to investigate dose–response relationships across a 
range of resistance-based training modalities and outcomes; 
therefore, in addition to intensity of load expressed as a % 
1RM, a more general categorisation scheme was included. 
Interventions comprising predominantly ballistic, loaded 
jumping or sprinting exercises were always considered high 
intensity, due to the high mechanical loads and assumption 
that they are conducted with maximal intent, unless stated 
otherwise. Across all outcomes, evidence was obtained 
that greater overall intensity was associated with increased 
effect sizes, with interventions judged to be of medium and 
high overall intensity expected to increase effect sizes by 
approximately 0.10 relative to low overall intensity. When 
prescribing intensity, practitioners should consider train-
ing intensity beyond simply intensity of load (% 1RM). For 
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example, ensuring maximum intent during ballistic exercise 
exemplifies a simplistic method of prescribing higher inten-
sity training. Incorporating methods such as velocity-based 
training provides the opportunity for instantaneous feedback 
during ballistic movements to encourage maximal intent 
[54]. Adjusting the intensity of plyometric training may be 
more complex and largely dependent on exercise selection 
to increase or decrease take-off and landing ground reaction 
forces [55].

Additional detailed information on the dose–response 
relationship of intensity was obtained when investigating 
potential interaction effects between outcome and intensity 
of load measured by % 1RM. The results identified a range 
of different profiles, with no clear pattern for COD, mono-
tonic increases for strength and speed, a monotonic decrease 
for jump performance, and a parabolic profile for power. 
The best estimate profile for maximum strength appeared 
non-linear with an inflection point ~ 70% 1RM, where fur-
ther increases in effect size estimates started to slow with 
additional load. The results of the present meta-analysis 
are consistent with previous reviews, e.g. Peterson et al. [8] 
identified increased effects with heavier % 1RM loads but 
diminishing effects, particularly with untrained participants 
[18]. The results also align with previous research indicating 
that heavy load training may increase muscle activation by 
up to 30% [56], conceivably providing a stronger stimulus 
for adaptation. Some authors have also suggested, however, 
that improvements in strength with greater loads may be 
inflated due to high specificity of task and outcome, given 
that strength testing is often conducted performing the 1RM 
of the movement being trained [15].

Analysis of sprint performance also identified a mono-
tonic increase in effect, with the greatest increases obtained 
with the heaviest loads. The most common sprint outcomes 
investigated in S&C research include the time to sprint 
between 5 and 50 m, with the most frequent intervals com-
prising 10, 20 and 30 m [4]. Most studies have been con-
ducted with either team sport or untrained participants who 
achieve maximum velocity between 15 and 40 m, in compar-
ison to trained sprinters who require distances of 40–80 m to 
achieve maximum velocity [38, 44, 57, 58]. Consequently, 
sprint data collected over 10–30 m may provide researchers 
with divergent outcomes describing both acceleration and 
maximum velocity. Previous studies have reported strong 
associations with outcomes designed to assess acceleration 
(e.g., 10 m) and horizontal force, power and relative strength 
with longer duration ground contact times (approximately 
200 ms) [37, 38]. In contrast, maximum velocity sprinting 
has been shown to be dependent on the ability to maintain 
large horizontal and vertical forces whilst minimizing brak-
ing forces with reduced ground contact time (approximately 
100 ms) [38, 39, 58]. Previous meta-analyses have con-
cluded that high-intensity non-specific resistance exercise 

is among the most effective training methods to improve 
sprint performance in team sport athletes [4, 36, 59]. Neural 
and morphological adaptations associated with high-load 
resistance exercise and improved force output may pro-
vide a mechanism for positive transfer to the high levels 
of horizontal force required during early-phase acceleration 
to improve sprint performance. Highly trained individuals 
may require more specific training methods, however, that 
target improvements in physical qualities while matching the 
kinematic demands of sprinting [1, 4].

In contrast to the increasing dose–response relationships 
with intensity for strength and sprint performance, results 
identified monotonic decreases for jump performance with 
the largest effects obtained at ~ 30% 1RM. Jump perfor-
mance is dependent on net impulse and take-off velocity 
such that % 1RM loads lifted with maximum intent provide 
sufficient stimulus but do not limit velocity to a large extent 
may provide the greatest transfer to improvements in jump 
performance [33, 60]. Previous researchers have also dem-
onstrated that jump squat training with low (< 30% 1RM) 
or no additional load can produce velocity-specific adapta-
tions associated with improvements in jump performance 
[61]. The intensity profile for outcomes measuring power 
production was parabolic, with the greatest improvements 
obtained between ~ 40 and 70% 1RM. These results sup-
port the hypothesis that performing resistance exercise with 
loads that elicit the largest power outputs is the most effec-
tive method to improve power and that for most exercises 
power is maximised between 30 and 70% 1RM [62]. During 
weightlifting exercises (clean, snatch, hang and pull varia-
tions), power is maximised with heavier loads (≥ 70% 1RM), 
whereas loads of 0–30% 1RM maximise power during jump 
squat exercises [62]. As the optimum load for power produc-
tion is exercise-dependent, practitioners should be aware of 
the appropriate load required to stimulate peak power out-
put within the prescribed exercises and endeavour to create 
athlete-specific profiles where access to relevant measure-
ment devices is available.

The influence of training frequency and volume on 
strength and hypertrophy has been assessed in several pre-
vious meta-analyses [10–12, 16]. The results obtained herein 
were mixed but showed limited evidence that these factors 
were influential. No improvement in model performance 
was obtained when including the number of sessions per 
week as a categorical or continuous predictor, or the aver-
age number of exercises per session. Only limited evidence 
of model improvement was obtained for the average num-
ber of repetitions per set, with the marginal effect showing 
declines as the number of repetitions increased. In contrast, 
evidence was obtained for greater effect sizes with increas-
ing number of sets per session. Seminal research by Rhea 
et al. [9] was among the first, within S&C, to use meta-ana-
lytical techniques to assess the use of single versus multiple 
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sets in resistance exercise for strength development. The 
authors concluded multiple sets were more beneficial than 
single-set training. A follow-up meta-regression by Krieger 
et al. [63] found a 46% increase in muscular strength when 
completing two to three sets, in comparison to single sets, 
although no further difference was found for resistance 
exercise with more than four sets. More recently, research-
ers have concluded that increasing weekly training volume 
through increased number of sets can produce similar results 
to increasing training frequency [11, 12]. The current meta-
analysis demonstrates that focussing on a smaller number of 
key exercises while completing multiple sets at an appropri-
ate intensity for a targeted outcome may be more beneficial 
than attempting to perform many exercises with an increased 
frequency.

The training status of participants is a key consideration 
when designing and implementing resistance exercise. Pre-
vious meta-analyses have demonstrated rank-order effects, 
with the largest improvements obtained by untrained par-
ticipants [1, 7], followed by recreationally trained and then 
highly trained participants. In contrast, the current meta-
analysis found a lack of evidence to support different effects 
across the training status categories. Differences in results 
obtained in the present versus previous meta-analyses may 
be due to several reasons. Previous analyses have been less 
formal than those conducted herein, with authors identifying 
differences based primarily on point estimates. In contrast, 
participant training status was assessed in the present analy-
sis with predictor variables for lower levels already included 
in the model and addition of the factor was assessed based 
on ability to improve model performance. The lack of data 
for highly trained participants, disproportionate inclusion 
of untrained participants, combined with short-duration 
(≤ 26 weeks) interventions, which are known limitations 
within S&C research [64], may have also influenced the 
results obtained and discordance with what is generally 
believed in the field. With advancements in technology and 
ability to collect valid and reliable high-frequency data over 
longer periods across all levels of sport and recreation, use 
of longitudinal data collected in the field provides oppor-
tunities to better investigate differences in dose-responses 
relative to participant training status.

In addition to training status, the current meta-anal-
ysis found a lack of evidence to support different effects 
between sexes. Although males exhibit greater levels of 
baseline strength and muscle mass [65], the current meta-
analysis results are consistent with previous research that 
has failed to identify any difference in effects between sexes 
in improvements in strength or hypertrophy, with indica-
tions that varying levels of adaptations may be more related 
to relative strength [10, 65–67]. A previous meta-analysis 
conducted by de Villareal et al. [68], however, reported 
greater improvement in males following plyometric training 

relative to females. The authors were unable to provide a 
strong rationale for the finding, and speculated that large 
differences in sample sizes between the sexes may have con-
founded results. Research has shown that stronger individu-
als are able to produce a greater rate of force development 
and power during time-restricted tasks [3], and so there is the 
potential that increased strength at baseline may be advanta-
geous for plyometric training. Further research is required to 
identify potential differences in the dose–response relation-
ship between sexes and more complex sport-specific out-
comes. Female participants are largely under-represented in 
S&C research, with only 12% of the studies included here 
conducted with female-only groups. In addition, research 
suggests that only 39% of all published sport science data are 
collected with female participants [69]. To better address the 
question of potential differences in dose–response relation-
ships, more female participant data are required.

Whilst this is the most comprehensive meta-analysis 
to date investigating dose–response relationships between 
resistance and resistance-dominant interventions, there are 
multiple limitations that should be considered when inter-
preting the findings. There are clear limitations in summaris-
ing different dose components from a training intervention 
based on, for example, the average number of sets, where 
this variable may change substantially depending on the 
periodisation or progression model. In addition, for vari-
ables such as overall training volume and intensity, there 
was a high degree of subjectivity and challenge in obtain-
ing a single value, particularly when considering different 
training modes. The current meta-analysis was intended to 
uncover general relationships, but the extensive heterogene-
ity across the data set limits nuance and there are limitations 
in drawing strong inferences from pooling of indirect data. It 
is expected that there will be many instances where factors 
such as training frequency and volume strongly influence the 
effectiveness of an intervention; however, variables quantify-
ing frequency and volume in the present analysis lacked pre-
dictive power across this large and heterogeneous data set. 
Despite these results and considering the limitations of the 
meta-analysis, practitioners are still recommended to imple-
ment periodized training interventions that include appropri-
ate manipulations in intensity, volume and frequency over 
time in an attempt to maximise a given outcome. Overall, the 
results of the present meta-analysis suggest that practitioners 
should focus first on overall intensity and intensity of load 
with the appropriate target outcomes in mind.

5  Conclusion

The current meta-analysis is the most comprehensive to 
date to investigate dose–response relationships of resistance 
and resistance-dominant training with respect to a range 
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of commonly studied outcome domains in S&C research. 
The findings are that resistance exercise is effective over 
relatively short durations (~ 8 weeks) and extending a single 
intervention over longer periods is likely to result in further 
improvements. The expected magnitude of improvement 
appears to be predominantly influenced by intensity and the 
outcome domain measured. Performance of resistance train-
ing with a higher intensity as measured by a composite of 
the effort applied, the difficulty of the exercise, and maximis-
ing target biomechanical quantities result in greater improve-
ments. When considering the magnitude of the load lifted as 
a % 1RM, the profile that creates the greatest improvements 
is dependent on the outcome domain. Improvements in 
strength are likely to be maximised with the heaviest loads, 
whereas vertical jump performance may be maximised with 
relatively light loads (~ 30% 1RM), and power with low to 
moderate loads (40–70% 1RM). Sprinting performance rep-
resents the most difficult outcome domain to improve with 
resistance and resistance-dominant training, and this may be 
influenced by lower specificity.
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Title  1 Identify the report as a systematic review. Reported as a meta-
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INTRODUCTION   
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METHODS   
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Information 
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6 Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify 
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Selection process 8 Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers 

screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation 
tools used in the process. 
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Data collection 
process  

9 Specify the methods used to collect data from reports, including how many reviewers collected data from each report, 
whether they worked independently, any processes for obtaining or confirming data from study investigators, and if 
applicable, details of automation tools used in the process. 
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Data items  10a List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome 
domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which 
results to collect. 
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10b List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding 
sources). Describe any assumptions made about any missing or unclear information. 
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Study risk of bias 
assessment 

11 Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many 
reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in 
the process. 

Stated that risk of 
bias was not 
assessed on pg 8 

Effect measures  12 Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of 11 
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results. 

Synthesis 
methods 

13a Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention 
characteristics and comparing against the planned groups for each synthesis (item #5)). 

11,12 

13b Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary 
statistics, or data conversions. 

12 

13c Describe any methods used to tabulate or visually display results of individual studies and syntheses. 12 
13d Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, 

describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) 
used. 

12 

13e Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-
regression). 

13 

13f Describe any sensitivity analyses conducted to assess robustness of the synthesized results. 13 
Reporting bias 
assessment 

14 Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). Stated that risk of 
bias was not 
assessed on pg 8 

Certainty 
assessment 

15 Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. Stated that no 
methods were used 
to assess certainty in 
the body of evidence 
for an outcome on pg 
13 

RESULTS   
Study selection  16a Describe the results of the search and selection process, from the number of records identified in the search to the number of 

studies included in the review, ideally using a flow diagram. 
15 

16b Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. 15 
Study 
characteristics  

17 Cite each included study and present its characteristics. Citations for included 
studies presented in 
supplementary 3.  

Risk of bias in 
studies  

18 Present assessments of risk of bias for each included study. Stated that risk of 
bias was not 
assessed on pg 8 

Results of 
individual studies  

19 For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect 
estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots. 

15-21 

Results of 20a For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. 15-21 



Section and 
Topic  

Item 
# Checklist item  Location where item 

is reported  
syntheses 20b Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and 

its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the 
direction of the effect. 

15-21 

20c Present results of all investigations of possible causes of heterogeneity among study results. 15-21 
20d Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. 16-20 

Reporting biases 21 Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. Stated that risk of 
bias was not 
assessed on pg 8 

Certainty of 
evidence  

22 Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. Stated that no 
methods were used 
to assess certainty in 
the body of evidence 
for an outcome on pg 
13 

DISCUSSION   
Discussion  23a Provide a general interpretation of the results in the context of other evidence. 22-30 

23b Discuss any limitations of the evidence included in the review. 30 
23c Discuss any limitations of the review processes used. 30 
23d Discuss implications of the results for practice, policy, and future research. 31 

OTHER INFORMATION  
Registration and 
protocol 

24a Provide registration information for the review, including register name and registration number, or state that the review was 
not registered. 

Stated that this is a 
follow-on review from 
a previous review.  

24b Indicate where the review protocol can be accessed, or state that a protocol was not prepared. No protocol was 
prepared.  

24c Describe and explain any amendments to information provided at registration or in the protocol. No protocol was 
prepared. 

Support 25 Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. 31 
Competing 
interests 

26 Declare any competing interests of review authors. 31 

Availability of 
data, code and 
other materials 

27 Report which of the following are publicly available and where they can be found: template data collection forms; data 
extracted from included studies; data used for all analyses; analytic code; any other materials used in the review. 

Supplementary files 
include checklist, 
conversion chart, and 
included references.  



Supplementary File 2: Table outlining %1RM estimation based on repetitions performed, adapted from 

Haff and Triplett [19]. 

Repetitions Performed %1RM 

1 100 

2 95 

3 93 

4 90 

5 87 

6 85 

7 83 

8 80 

9 77 

10 75 

11 70 

12 67 

15 65 

 

 

 

  



Supplementary File 3: Further details of statistical approach 

All meta-analyses were conducted using a nested four-level mixed effects meta-analytic model. The 

series of nestings included the individual study (level 4), the outcome (level 3), the measurement 

occasion (level 2) as many studies included more than just pre- and post-intervention assessments, 

and the within study sampling variance (level 1). A representation of the meta-analyses conducted 

includes:    

Level1: 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖   = 𝛽𝛽0𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 ,                                                                    𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑒𝑒2) 

Level2: 𝛽𝛽0𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜂𝜂0𝑖𝑖𝑖𝑖 + 𝛽𝛽2,1𝑥𝑥2,1𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 ,                                          𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑟𝑟2) 

Level3: 𝜂𝜂0𝑖𝑖𝑖𝑖   = 𝜃𝜃0𝑖𝑖 + 𝛽𝛽3,1𝑥𝑥3,1𝑖𝑖𝑖𝑖 + 𝛽𝛽3,2�𝑥𝑥3,1𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥4,1𝑖𝑖�+ 𝑢𝑢0𝑖𝑖𝑖𝑖 ,    𝑢𝑢0𝑖𝑖𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑢𝑢2) 

Level4: 𝜃𝜃0𝑖𝑖     = 𝛾𝛾0 + 𝛽𝛽4,1𝑥𝑥4,1𝑖𝑖 + 𝑠𝑠�𝑥𝑥4,2𝑖𝑖� + 𝑣𝑣0𝑖𝑖,                     𝑣𝑣0𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣2) 

where 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 is the observed effect size at measurement occasion 𝑖𝑖 (𝑖𝑖 = 1,2, … , 𝐼𝐼𝑖𝑖𝑖𝑖), from outcome 

𝑗𝑗 (𝑗𝑗 = 1,2, … , 𝐽𝐽𝑖𝑖) and from study 𝑘𝑘 (𝑘𝑘 = 1,2, … ,𝐾𝐾). The indexing 𝐼𝐼𝑖𝑖𝑖𝑖  denotes that the number 

of measurement occasions may vary across outcomes and studies, and 𝐽𝐽𝑖𝑖  denotes the number of 

outcomes may vary across studies. The random effects across the different levels 

(𝑣𝑣0𝑖𝑖 ,𝑢𝑢0𝑖𝑖𝑖𝑖, 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖, 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖) were assumed to be independent. 𝛽𝛽 terms represent regression coefficients 

for the predictor variables 𝑥𝑥 included at levels 2 to 4. Cross-level interactions are denoted by ∗ and 

for some continuous predictors, smooth functions (simple basis functions) were used to model 

non-linear effects of the predictor and are denoted by 𝑠𝑠(𝑥𝑥).   

 

Candidate models were fitted and compared based on predictive accuracy using the theoretical 

expected log pointwise predictive density (ELPD) for a new dataset that was estimated with 

leave-one-out cross validation (ELPD-LOO) [23]. The ELPD-LOO generates a standard error 

that describes the uncertainty in the predictive performance for unknown future data. Candidate 



models were fit gradually increasing the number of predictors starting at level 2 and progressing 

to level 4. The ELPD-LOO difference between a new and previous model was calculated and 

addition of the predictor judged as an improvement and maintained in subsequent models if the 

value was at least two times the standard error.   
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