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A B S T R A C T

An improved one-dimensional mechanistic model is presented for the prediction of unsteady gas–liquid slug
flows in inclined curved pipes, using the slug tracking approach. The equations for mass and momentum
conservation are applied to the slug body, liquid film, and elongated bubble regions constituting a slug unit cell.
The proposed model can be applied to horizontal or inclined upward flows. Statements of mass conservation
result in axial changes of the liquid and gas velocities in the liquid film and elongated bubble. The slug
initiation at the inlet is modelled as a random process with slug length variations. Closure relationships
for the bubble nose velocity, modified by the wake effect, and the slug frequency for slug initiation are
employed. The discretized governing equations are solved fully implicitly, introducing numerical treatments
associated with the outlet boundary conditions and the merging of slug units. Of practical interest is an
upward gas–liquid slug flow in a catenary riser with a high aspect ratio (length over diameter) being an
order of a thousand representing an offshore subsea pipe for the oil and gas production. By considering the
pipe initially fully filled with the travelling liquid, the dynamic scenario of the pipe transporting successive
slug units is simulated, capturing the continuing evolution of slug flow patterns along the pipe exhibiting
the disappearances of liquid slugs due to the bubble coalescences. Spatio-temporal variations of the liquid
holdup, the pressure and its gradient, the film and slug lengths, the slug frequency, the velocities of the slug
front, bubble nose, liquid in the slug body and film, and of the gas in the elongated bubble are evaluated.
The backward flow occurrence in the film zone near the outlet is also predicted due to the pipe inclination.
Parametric investigations are performed by specifying the superficial liquid and gas velocities, and comparing
the cases of catenary pipes (with variable inclinations) versus inclined and horizontal straight pipes (with fixed
inclinations). Results highlight the important effect of gas-to-oil superficial velocity ratio (GOR) in combination
with the pipe inclination and curvature effects. Fluctuations of slug flow properties appear to be considerably
amplified and more intermittent when increasing the GOR. This observation is important towards regulating
the practical flow rates for subsea oil and gas productions as well as designing flexible pipes subject to slug
flow-induced vibrations.

1. Introduction

One-dimensional (1D) mechanistic models and associated numerical
treatments have been improved over the years and applied to predict
the multiphase characteristics of internal flows in long rigid pipes, dis-
playing low input complexity and affordable computational time (Taitel
and Barnea, 1990b; Gomez et al., 2000; Petalas and Aziz, 2000; Zhang
et al., 2003a; Shoham, 2006). Of theoretical and practical interest is the
gas–liquid intermittent slug flow comprising a train of alternating liquid
slugs and elongated gas bubbles accompanied by variable-thickness
liquid films. An unaccounted occurrence or inaccurate prediction of
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slug flows may result in a sudden operational disruption, failure and
related expensive cost. Ongoing research effort to advance a mechanis-
tic model is carried out by transforming the complex three-dimensional
(3D) multiphase fluid dynamics to the 1D balance equations supported
by several closure relationships and expressions of a heuristic nature.
This approach is found to be increasingly helpful when the multi-
fluid characteristics are estimated for a high aspect ratio pipe with
a length-to-diameter ratio being an order of a hundred or thousand,
that would, otherwise, involve significant computational costs with
the Computational Fluid Dynamics (CFD) approach (Hirt and Nichols,
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Nomenclature

𝐴 Pipe internal cross-sectional area
𝐴0, 𝐵0, 𝐶0, 𝐾0 Coefficients in catenary equations
𝐶1, 𝐶2, 𝐶3 Coefficients for wake effect factor
𝐶𝑠 Coefficient for bubble nose velocity
𝐶𝜏 Coefficient in friction factor formula
𝑑 Pipe internal or hydraulic diameter
𝑓 Friction factor
𝐹𝑟 Froude number
𝑔 Gravitational acceleration
GOR Gas-to-oil superficial velocity ratio
ℎ𝑓 Film thickness
𝑗 Superficial velocity
𝑙 Film, slug body, or unit cell length
𝐿 Pipe length
𝑁 Number of slug unit or liquid-only cells
𝑃 Pressure
 Film length to slug body length ratio
𝑅𝑒 Reynolds number
𝑠 Arc-length coordinate
𝑆 Pipe internal perimeter
𝑡 Time
𝑢 Local phase velocity
𝑢 Length-averaged phase velocity
𝑢0 Drift velocity of the elongated bubble
𝑢𝑡 Bubble nose translational velocity
𝑢𝑡∞ Bubble nose translational velocity without

wake effect
𝑥, 𝑦 Cartesian coordinates
𝑧 Axial coordinate within the elongated

bubble-film or slug body regions
𝛼 Liquid holdup or void fraction
𝜁 Spatial coordinate at a cross section
𝜂 Elongated bubble nose position
𝜃 Pipe local inclination angle with respect to

the horizontal
𝛩 Factor in slug frequency correlation
𝜆 Angle subtended by the gas–liquid interface
𝜆𝑙 Non-slip liquid holdup
𝜇 Fluid dynamic viscosity
𝜇𝑁 Mean of logarithmic values
𝜉 Slug body front position
𝜉̇ Slug body front velocity
𝜌 Fluid density
𝜎𝐿 Standard deviation of log-normal distribu-

tion for slug body length
𝜎𝑁 Standard deviation of logarithmic values
𝛴 Centroid of film or elongated-bubble cross

section
𝜏 Shear stress
𝛷, 𝛹 Factor in slug frequency correlation
𝜔𝑃 Pressure frequency
𝜔𝑠 Slug frequency

1981; Sivier et al., 1993; Ferziger and Perić, 2002; Prosperetti and
Tryggvason, 2009; Zikanov, 2019). Therefore, mechanistic models pro-
vide a cost-efficient solution to CFD problems related to the multiple
phase transportations in several industries including the petroleum

Subscripts

𝑒 Elongated bubble-film region tail
𝑓 Liquid film
𝑔 Gas
in Pipe inlet
𝑙 Liquid
𝑜 Elongated bubble nose
𝑠 Slug body
𝑠𝜉 Inside slug body, at position 𝜉
𝑠𝜂 Inside slug body, at position 𝜂
𝑢 Unit cell

Superscripts

𝑎 Quantity of cell after merging
𝑗 Unit cell index
𝑚 Exponent in friction factor formula
𝑛 Time level
∗ Quantity of the exiting unit cell at a specific

instant

oil and gas production, chemical and manufacturing process, nuclear
and geothermal energy. Several numerical industrial tools have been
developed such as OLGA (Bendiksen et al., 1991), Petra (Larsen et al.,
1997), TUFFP (Zhang et al., 2003a,b), LedaFlow (Issa and Kempf,
2003; Danielson et al., 2005), TACITE (Irfansyah et al., 2005), SLUG-
GIT (Kjeldby et al., 2011; Kjeldby and Nydal, 2012; Ortega et al.,
2012, 2013) and 5ESCARGOTS (Ferrari et al., 2019). Nevertheless,
forecasting the spatio-temporal properties of unstable gas–liquid slug
flows in a long inclined curved pipe/riser using 1D models remains
a challenging task, owing to the complex flow pattern evolutions and
multiphase interaction phenomena caused by different fluid properties
and the structural geometry with variable inclination and curvature
along the curved pipe. These are manifested by the unsteadiness of
fluid pressure, momentum and void fraction fluctuations as well as
transient features of flow regimes. The present study aims to address
these challenges through advancing a 1D model and implementing
the numerical methodologies based on the slug tracking approach for
arbitrarily inclined curved risers.

Classification of 1D mechanistic models for the regime of alternating
gas and liquid plugs is well documented in the literature (Shoham,
2006; Mazza et al., 2010; Nydal, 2012; Rosa et al., 2015). The gen-
eral idea behind the flow simplification is considering the flow as a
train of axially propagating ‘slug units’ or ‘unit cells’, each of them
comprising one region filled predominantly with liquid, called ‘liquid
slug’ or ‘slug body’, and one region with an elongated bubble accom-
panied by a liquid film over the surface of the pipe annulus. In the
order of an increasing precision and computational time, models of
a steady-state, slug tracking, hybrid and slug capturing type could
be identified as four main methods operating within a Lagrangian or
Eulerian framework. The hybrid model combines the slug tracking
and capturing approaches. In this case, the slug capturing part of the
approach dictates a refined discretization of the film region of a slug
unit, which is treated with the two-fluid model, as this region shows
a stratified configuration. On the other hand, the liquid slug bodies
are treated as in the slug tracking method. See below for appropriate
references on the hybrid model. In general, a 1D mechanistic model
requires the inputs of phase fundamental properties (e.g., densities,
viscosities, surface tension) and geometric dimensions of the conveying
pipe (diameter, length, inclination) (Taitel and Dukler, 1976; Taitel
and Barnea, 1990b; Barnea, 1990; Zhang et al., 2000; Chatjigeorgiou,
2017; Ma and Srinil, 2020). Closure relationships are further involved
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in obtaining the supporting quantities including, e.g., the translational
flow velocity (Nicklin, 1962; Bendiksen, 1984; Théron, 1989; Petalas
and Aziz, 2000), slug length (Brill et al., 1981; Gordon and Fairhurst,
1987), slug liquid holdup (Gregory et al., 1978; Barnea and Brauner,
1985; Andreussi and Bendiksen, 1989), wetted wall fraction (Meng,
1999) and interfacial friction factor (Grolman and Fortuin, 1997). The
majority of these empirical expressions have been derived based on
the statistical analysis of experimental data at specific flow-structure
conditions. The influence of closure relations has been reviewed and
investigated in several studies (Al-Safran, 2009; Brustur, 2014; Roul-
lier et al., 2017; Mohammadi et al., 2019; Zanganeh et al., 2020).
With closure correlations, mass and momentum balance equations are
then solved in order to obtain quantities characterizing the unit cells
(film lengths, liquid holdups, liquid–gas velocities, pressure variations).
Hence, 3D properties of actual internal flows are estimated through
filtering of statistical correlations to 1D flow characteristics.

A further distinction in the simulation workflow of mechanistic
models is related to the numerical treatment. For steady-state flow
models, such as those by Kordyban (1961), Dukler and Hubbard (1975),
and Taitel and Barnea (1990a,b), time-invariant flow properties are
described for each slug unit. These models only allow observing spatial
variations of flow features. For unsteady flows, a slug tracking method
in the Lagrangian framework may be considered (Nydal and Banerjee,
1996; Taitel and Barnea, 1998; Al-Safran et al., 2004; Ujang et al.,
2006; Xin et al., 2006; Rosa et al., 2015; Grigoleto et al., 2021). These
models compute the position and velocity of the elongated bubble front
and tail, that also indicates the start and end of the film zone. Mass,
momentum and energy balances are solved for a single control volume
of the liquid slug, for the large bubble and the liquid film. Slug tracking
models display a wide range of complexity, and calculations of the film
zone may be simplified by omitting the momentum balance for the gas
bubble. The model complexity may also arise due to the incorporated
slug initiation and dissipation mechanisms or the consideration of
non-uniform thickness of the liquid film along the axial coordinate.
A physical reason for this film non-uniformity may be due to the
propagation of waves and the eddy formation in the liquid slug (Dukler
and Hubbard, 1975). Relevant flow pattern maps (Mandhane et al.,
1974; Spedding, 1980; Barnea et al., 1980; Mukherjee and Brill, 1985;
Wu et al., 2017; Fan et al., 2019), may be used for characterizing the
two-phase flow regime and associated parametric ranges. One of the
recent challenges for the slug tracking approach is the consideration
of a high aspect ratio pipe and associated numerical strategies for
yielding the solution convergence (Ortega et al., 2018; Vásquez and
Avila, 2021). This challenge will be accounted for in the present work
considering a very long inclined curved pipe, based on the slug tracking
approach.

Among the earliest efforts on slug tracking, the works of Barnea and
Taitel (1993), Zheng et al. (1994), Taitel and Barnea (1998), and Xin
et al. (2006) may be referred to. More sophisticated applications of the
slug tracking may be found in Nydal and Banerjee (1996), Al-Safran
et al. (2004), Ujang et al. (2006), Rosa et al. (2015), and Grigoleto
et al. (2021), the latter also including the temperature variation. With
the exception of the model in Nydal and Banerjee (1996), the so-
called quasi-equilibrium or quasi-steady approximation, which neglects
some of the unsteady terms in the equations of mass and momentum
conservation as well as the momentum fluxes, has been adopted in
these models. For Al-Safran et al. (2004) and Ujang et al. (2006), the
steady momentum equations of Taitel and Barnea (1990b,a) have been
applied to the slug body, elongated bubble, and liquid film of uniform
thickness. For Rosa et al. (2015) and Grigoleto et al. (2021), the rate of
change of momentum in the slug body is included; yet, analogous rates
of change remain absent in the descriptions of the elongated bubble and
liquid film. Momentum fluxes are considered in their studies. Further,
Grigoleto et al. (2021) included a pressure difference, given in terms
of a momentum flux, to account for the head loss generated by the
liquid recirculation in the wake of the elongated bubble. Recently, a

slug tracking model has been presented by Vásquez and Avila (2021)
for a problem of slug flow-induced vibration in a flexible curved riser.
With respect to the hydrodynamic slug model, their work applies the
momentum equation for the slug body, containing no gas, considering
the rate of change of momentum and the momentum fluxes at the
boundaries of the control volume. The model has the merit that a single
slug body can span several pipe sections of different inclinations at
a given time. It also considers coalescence of consecutive unit cells.
However, the model does not consider the momentum equations for the
liquid film and elongated bubble during the tracking of the slug units,
assuming that the film holdup does not vary in time, and neglecting the
random effects commonly considered in the slug tracking models. It is
unclear how the velocities of the liquid in the film and the gas in the
elongated bubble are updated as a slug unit moves along the inclined
curved pipe. These features will be herein discussed in detail.

In the present study, we will focus on the development of a slug
tracking model due to its capability to describe the slug flow unsteadi-
ness and convey the analysis in a time-efficient manner, compared to
the slug capturing (Issa and Kempf, 2003; Renault, 2007; Bonizzi et al.,
2009), hybrid tracking–capturing (Kjølaas, 2007; Kjeldby et al., 2011;
Nydal, 2012) or even CFD (Batchvarov et al., 2020; Shin et al., 2018;
Constante-Amores et al., 2021; Valdés et al., 2022; Heaney et al., 2022)
methodologies. The representative model of the slug tracking proposed
by Nydal and Banerjee (1996) serves as a predecessor to the mathe-
matical formulation in the present study. Nydal and Banerjee (1996)
considered the mass balances for the slug body (with no gas), the
elongated bubble, and the liquid film in an unsteady form. For the liq-
uid film, they assumed a uniform thickness, and unsteady momentum
balances were applied to the liquid slug zone and the liquid film, while
the pressure was considered uniform across the gas bubble, so that
the model does not require a momentum balance for the gas bubble.
Unlike the present effort, their approach does not describe changes in
the liquid film velocity with the variation of the axial coordinate. The
recently postulated model in Padrino et al. (2021), applied to straight
inclined pipes, represents a departure from the model in Nydal and
Banerjee (1996). The starting point is given by the equations of mass
and momentum conservation written in integral form for the various
structures of a slug flow unit, namely, the slug body, the liquid film
(assumed to be spatially uniform), and the elongated bubble. Unsteady
terms are kept in the equations describing the slug body and stratified
region, and the pressure is not considered uniform in the latter. Mass
and momentum balances are also prescribed for the borders shared
between the slug body and neighbouring stratified regions, yielding
velocity and pressure ‘jumps’. Within the Lagrangian framework, the
positions of the various structures of the flow are tracked over time.
The two-phase mixture can move in the horizontal or sloping directions.
Under unsteady conditions, although the film thickness does not vary
in space, statements of mass conservation for the stratified region result
in axially-varying fluid velocities. The solution of the resulting system
of non-linear equations is obtained numerically by means of a fully
implicit method.

The purpose of this study is to present a 1D mechanistic model for
tracking unsteady gas–liquid slug flow in long inclined curved pipes.
The model expands and improves on the previous preliminary model
formulated in Padrino et al. (2021). With reference to that work, the
present model has several novelties. First, a correction factor is included
in the momentum exchange between the slug body and the elongated
bubble-film region, taking place at the slug body tail. This accounts
for a smooth contraction of the film underneath the bubble nose,
in contrast with a sudden expansion at the slug body front. Second,
for an upward-inclined flow, variation of the pipe’s inclination angle
is allowed. Third, the slug initiation at the pipe inlet with random
values for the slug body length is implemented by expanding a recent
model from the literature based on the slug frequency definition. Also,
merging of consecutive slug unit cells due to the wake effect is modelled
using simplified mass and momentum balances. Finally, the modelling
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of the flow at the outlet considers various stages, such as whether the
slug body or the elongated bubble-film regions are crossing the outlet
plane.

This paper is organized as follows. In Section 2, the mathematical
formulation of the mass and momentum conservation laws for the
slug tracking model is presented. Conditions of the flow at the pipe
inlet and outlet are discussed in Section 3. The numerical treatment
is described in Section 4 including the discretization of governing
equations, boundary and initial conditions, and the scheme for merging
of consecutive slug unit cells as well as validation of model predictions
with experimental data in the literature for horizontal or upward-
inclined gas–liquid flows in straight pipes. In Section 5, we apply the
slug tracking model to long inclined curved risers with catenary shapes,
and we parametrically investigate several unsteady slug flow character-
istics by specifying the two-phase superficial velocities. The paper ends
with the summary of key findings and conclusions in Section 6.

2. Model formulation for slug tracking

The present model for tracking an unsteady gas–liquid slug flow in
a curved pipe is based on the following main assumptions:

• Gas and liquid flow simultaneously in a rigid pipe of circular cross
section whose area, 𝐴, remains uniform throughout the entire
pipe length. The internal diameter is denoted by 𝑑. The shape
of the pipe is described by the Cartesian components of its axis
— the curve passing through the centres of all cross sections. We
assume that this axis lies in a plane, and the pipe may be curved.
This position is measured by the arc-length coordinate, 𝑠, which
is zero at the pipe inlet, the section where the liquid and gas
enter the pipe. The pipe outlet is located at 𝑠 = 𝐿, where 𝐿 is the
pipe length. The equation of the pipe axis can thus be written as
𝑥 = 𝑥(𝑠) and 𝑦 = 𝑦(𝑠), where 𝑥 and 𝑦 are the Cartesian coordinates.

• The gravity vector, which lies on the plane of the pipe, is aligned
with the 𝑦 axis and points in the direction of decreasing 𝑦.

• The slug flow in the pipeline is modelled as a sequence of slug
unit cells. The flow field in each slug unit is one-dimensional as
quantities only vary with the position along the pipe. The pres-
sure, however, is also allowed to change linearly within a cross
section at a given position to account for hydrostatic (gravity)
effects. Following, for instance, Al-Safran et al. (2004) and Ujang
et al. (2006), each unit cell of the gas–liquid slug flow is labelled
with an (integer) index 𝑗, numbered in ascending order, with the
lowest index closer to the outlet. A slug unit cell lies between
positions 𝑠 = 𝜉𝑗+1 and 𝑠 = 𝜉𝑗 , with its front (tail) at the latter
(former), and it is assumed to occupy a straight pipe element (see
Fig. 1).

• A slug unit cell comprises three regions: (i) the slug body, which
in this work is assumed to contain no gas (typically in small
bubbles) as in the case of Nydal and Banerjee (1996) and Rosa
et al. (2015), (ii) a liquid film, and (iii) an elongated bubble. This
is depicted in Fig. 1. The combined elongated bubble–liquid film
region spans from 𝜉𝑗+1 to 𝜂𝑗 , and the film thickness is assumed to
be uniform; the liquid slug body is bounded by positions 𝜂𝑗 and
𝜉𝑗 . Whilst positions 𝜉𝑗 and 𝜉𝑗+1 fall on the axis of the curved pipe,
position 𝜂𝑗 does not, in general, as this lies on the straight segment
connecting those two points (Fig. 1). We assume the conditions
are such that the flow is horizontal or inclined-upward. The slug
body length, 𝑙𝑗𝑠 , is given by 𝜉𝑗 − 𝜂𝑗 and the film length, 𝑙𝑗𝑓 , by
𝜂𝑗 − 𝜉𝑗+1, both properties may change with time. The inclination
angle of the straight pipe segment occupied by the slug unit cell 𝑗
at a given instant with respect to the horizontal 𝑥-axis is denoted
by 𝜃𝑗 .

• The liquid is incompressible with a constant density 𝜌𝑙 whilst
the gas is compressible with a density 𝜌𝑔 given by the ideal gas
law. The flow is isothermal. The gas density is considered to be
uniform within the slug unit cell 𝑗 but it may change from one
unit cell to the other due to spatial pressure changes. The liquid
and gas dynamic viscosities, denoted by 𝜇𝑙 and 𝜇𝑔 , respectively,
are assumed constant.

• The proposed model consists of integral mass and momentum
balances written for moving and deforming control volumes, as
well as for the borders shared by these control volumes, which
are treated as surfaces of discontinuity. These formulae are based
on those presented in Panton (2013), modified here to be applied
to a one-dimensional, two-phase gas–liquid flow.

The mechanistic model is based on the mass and momentum con-
servation statements written for the various regions of a slug unit cell.
To achieve closure of the system of equations, additional expressions
relating the variables appearing in those balances must be introduced.
They are listed in Appendix A.

2.1. Kinematic relationships

For the slug unit cell 𝑗, at the slug front we set

𝜉̇𝑗 =
𝑑𝜉𝑗

𝑑𝑡
, (1)

whilst at the bubble nose, equivalent to the slug body tail, its displace-
ment follows

𝑢𝑗𝑡 =
𝑑𝜂𝑗

𝑑𝑡
, (2)

where 𝑢𝑗𝑡 is the bubble nose translational velocity and 𝑡 is the time. The
rate of change of the slug body and the elongated bubble-film region
lengths are thus given, respectively, by

𝑙̇𝑗𝑠 =
𝑑𝑙𝑗𝑠
𝑑𝑡

= 𝜉̇𝑗 − 𝑢𝑗𝑡 , (3)

𝑙̇𝑗𝑓 =
𝑑𝑙𝑗𝑓
𝑑𝑡

= 𝑢𝑗𝑡 − 𝜉̇𝑗+1. (4)

2.2. Mass balances in a slug unit

Starting with the slug body of unit cell 𝑗, which contains no gas,
we consider a control volume bounded by the pipe wall with a face
at position 𝜂𝑗 and another at an arbitrary point within the slug body,
separated from the former by a distance 𝑧𝑠, with 0 ⩽ 𝑧𝑠 ⩽ 𝑙𝑠 (Fig. 1).
This second face has thus the velocity 𝑢𝑗𝑡 + 𝑧̇𝑠. The equation of mass
conservation for this moving control volume can be written as
𝑑
𝑑𝑡

(

𝜌𝑙𝑧𝑠𝐴
)

= 𝜌𝑙𝐴
(

𝑢𝑗𝑙𝑠|𝜂 − 𝑢𝑗𝑡
)

− 𝜌𝑙𝐴
(

𝑢𝑗𝑙𝑠|𝜂+𝑧𝑠 − 𝑢𝑗𝑡 − 𝑧̇𝑠
)

, (5)

where 𝑢𝑗𝑙𝑠|𝜂 and 𝑢𝑗𝑙𝑠|𝜂+𝑧𝑠 denote the velocities of the liquid in the slug
body at positions 𝜂𝑗 and 𝜂𝑗 + 𝑧𝑠, respectively. Since 𝜌𝑙 and 𝐴 are
constants, the balance in Eq. (5) reduces to 𝑢𝑗𝑙𝑠|𝜂+𝑧𝑠 = 𝑢𝑗𝑙𝑠|𝜂 . Therefore,
the liquid velocity 𝑢𝑗𝑙𝑠 does not vary spatially within the slug body of
cell 𝑗 and only changes with time.

Applying integral mass balances over expanding or contracting con-
trol volumes enclosing the elongated bubble and the liquid film regions
results in the following one-dimensional conservation equations. For
the gas in the elongated bubble, we may write
𝑑
𝑑𝑡

(

𝜌𝑗𝑔𝛼
𝑗
𝑔𝑙

𝑗
𝑓𝐴

)

= 𝜌𝑗𝑔𝛼
𝑗
𝑔

(

𝑢𝑗𝑔𝑒 − 𝜉̇𝑗+
)

− 𝜌𝑗𝑔𝛼
𝑗
𝑔

(

𝑢𝑗𝑔𝑜 − 𝑢𝑗𝑡
)

, (6)

where 𝛼𝑗𝑔 denotes the void fraction, which does not vary axially, and
𝑢𝑗𝑔𝑜 and 𝑢𝑗𝑔𝑒 are, respectively, the axial gas velocities at positions 𝜂𝑗 and
𝜉𝑗+1. After making use of Eq. (4), this expression reduces to

𝑑
𝑑𝑡

(

𝜌𝑗𝑔𝛼
𝑗
𝑔

)

=
𝜌𝑗𝑔𝛼

𝑗
𝑔

𝑙𝑗𝑓

(

𝑢𝑗𝑔𝑒 − 𝑢𝑗𝑔𝑜
)

. (7)
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Fig. 1. Sketch of a typical slug flow unit cell in a curved pipe with upward flow. The two-phase gas–liquid slug flow in a pipeline is represented by a sequence of unit cells.

Proceeding in a similar manner with the liquid film, we have

𝑑
𝑑𝑡

(

𝜌𝑙𝛼
𝑗
𝑓

)

=
𝜌𝑙𝛼

𝑗
𝑓

𝑙𝑗𝑓

(

𝑢𝑗𝑓𝑒 − 𝑢𝑗𝑓𝑜
)

, (8)

where 𝛼𝑗𝑓 is the holdup of the liquid film, whose thickness is con-
stant, and 𝑢𝑗𝑓𝑜 and 𝑢𝑗𝑓𝑒 denote the axial film velocities at 𝜂𝑗 and 𝜉𝑗+1,
respectively.

The mass conservation analysis on control volumes containing a
fraction of the elongated bubble or liquid film regions described in
Appendix B leads to

𝑢𝑗𝑔 = (1 − 𝑧𝑓∕𝑙
𝑗
𝑓 )𝑢

𝑗
𝑔𝑒 + (𝑧𝑓∕𝑙

𝑗
𝑓 )𝑢

𝑗
𝑔𝑜, (9)

𝑢𝑗𝑓 = (1 − 𝑧𝑓∕𝑙
𝑗
𝑓 )𝑢

𝑗
𝑓𝑒 + (𝑧𝑓∕𝑙

𝑗
𝑓 )𝑢

𝑗
𝑓𝑜, (10)

respectively, and 0 ⩽ 𝑧𝑓 ⩽ 𝑙𝑗𝑓 (see Fig. 1). Integration of these
expressions over the film length yields the average velocities of the gas
in the elongated bubble and of the liquid film

𝑢𝑗𝑔 =
(

𝑢𝑗𝑔𝑜 + 𝑢𝑗𝑔𝑒
)

∕2, (11)

𝑢𝑗𝑓 =
(

𝑢𝑗𝑓𝑜 + 𝑢𝑗𝑓𝑒
)

∕2, (12)

respectively. These average velocities will appear in the momentum
equations, and Eqs. (11) and (12) will prove useful when closing the
system of equations.

We consider the plane at position 𝜉𝑗 as a surface of discontinuity.
Taking into account that there is no gas in the slug body, the gas and
liquid mass balances on this surface result in

𝑢𝑗−1𝑔𝑒 = 𝜉̇𝑗 , (13)

𝛼𝑗−1𝑓

(

𝑢𝑗−1𝑓𝑒 − 𝜉̇𝑗
)

=
(

𝑢𝑗𝑙𝑠 − 𝜉̇𝑗
)

, (14)

respectively. Similarly, at position 𝜂𝑗 we have

𝑢𝑗𝑔𝑜 = 𝑢𝑗𝑡 , (15)

𝛼𝑗𝑓
(

𝑢𝑗𝑓𝑜 − 𝑢𝑗𝑡
)

=
(

𝑢𝑗𝑙𝑠 − 𝑢𝑗𝑡
)

. (16)

Finally, the liquid holdup and gas void fraction satisfy the geometric
constraint

𝛼𝑗𝑓 + 𝛼𝑗𝑔 = 1. (17)

Note that when the time derivatives in Eqs. (7) and (8) are zero, the
classical results for the velocities of the gas and liquid when the film
has a uniform thickness, namely, 𝑢𝑗𝑔𝑜 = 𝑢𝑗𝑔𝑒 = 𝑢𝑗𝑔 and 𝑢𝑗𝑓𝑜 = 𝑢𝑗𝑓𝑒 = 𝑢𝑗𝑓 , are
recovered; Eqs. (9) and (10) reveal that the fluid velocities do not vary
axially.

2.3. Momentum balances in a slug unit

We can write integral linear momentum balances over the ex-
panding or contracting control volumes representing the slug body,
elongated bubble, and liquid film regions to obtain one-dimensional
equations for the momentum conservation. Starting with the slug body
of unit cell 𝑗, and knowing that the liquid velocity does not vary along
it, we may write
𝑑
𝑑𝑡

(

𝜌𝑙𝑢
𝑗
𝑙𝑠𝐴 𝑙𝑗𝑠

)

= 𝜌𝑙𝐴
(

𝑢𝑗𝑙𝑠 − 𝑢𝑗𝑡
)

𝑢𝑗𝑙𝑠 − 𝜌𝑙𝐴
(

𝑢𝑗𝑙𝑠 − 𝜉̇𝑗
)

𝑢𝑗𝑙𝑠

+
(

𝑃 𝑗
𝑠𝜂 − 𝑃 𝑗

𝑠𝜉

)

𝐴 − 𝜏𝑗𝑠𝜋𝑑 𝑙𝑗𝑠 − 𝜌𝑙𝑔𝐴𝑙
𝑗
𝑠 sin 𝜃

𝑗 , (18)

where 𝑃 𝑗
𝑠𝜉 and 𝑃 𝑗

𝑠𝜂 are the pressures at 𝜉𝑗 and 𝜂𝑗 , respectively, on
the side of the slug body; both are taken at the level of the pipe
axis. Pressure 𝑃 𝑗

𝑠𝜉 appears in this equation after integrating the profile
𝑃 𝑗
𝑠𝜉 + 𝜌𝑙𝑔(ℎref − 𝜁 ) cos 𝜃𝑗 over the surface of the pipe cross section at 𝜉𝑗 ,
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Fig. 2. Pipe cross section in the elongated bubble-film region.

where 𝜁 is a local coordinate running in the cross section at 𝜉𝑗 from
its lowest point, with ℎref being set arbitrarily to 𝑑∕2, the level of the
pipe axis; the same can be said about 𝑃 𝑗

𝑠𝜂 . Gravity contributions at each
face cancel. The shear stress at the wall in the slug body is denoted by
𝜏𝑗𝑠 , and 𝑔 is the acceleration of gravity. Expanding the left-hand side of
Eq. (18) and recalling Eq. (3), gives

𝑑
𝑑𝑡

(

𝜌𝑙𝑢
𝑗
𝑙𝑠

)

=

(

𝑃 𝑗
𝑠𝜂 − 𝑃 𝑗

𝑠𝜉

)

𝑙𝑗𝑠
− 𝜏𝑗𝑠

𝜋𝑑
𝐴

− 𝜌𝑙𝑔 sin 𝜃𝑗 . (19)

For the elongated bubble, the momentum conservation can be written
as
𝑑
𝑑𝑡

(

𝜌𝑗𝑔𝛼
𝑗
𝑔𝑢

𝑗
𝑔𝐴 𝑙𝑗𝑓

)

= 𝜌𝑗𝑔𝛼
𝑗
𝑔𝐴

(

𝑢𝑗𝑔𝑒 − 𝜉̇𝑗+1
)

𝑢𝑗𝑔𝑒 − 𝜌𝑗𝑔𝛼
𝑗
𝑔𝐴

(

𝑢𝑗𝑔𝑜 − 𝑢𝑗𝑡
)

𝑢𝑗𝑔𝑜

+
(

𝑃 𝑗
𝑒 − 𝑃 𝑗

𝑜
)

𝛼𝑗𝑔𝐴 − 𝜏𝑗𝑔𝑆
𝑗
𝑔 𝑙

𝑗
𝑓 − 𝜏𝑗𝑖𝑆

𝑗
𝑖 𝑙

𝑗
𝑓 − 𝜌𝑗𝑔𝛼

𝑗
𝑔𝐴 𝑙𝑗𝑓 𝑔 sin 𝜃

𝑗 , (20)

where 𝑃 𝑗
𝑜 and 𝑃 𝑗

𝑒 are the pressures on faces 𝜂𝑗 and 𝜉𝑗+1, respectively, on
the side of the elongated bubble-film combined region, respectively, at
the level of the gas-liquid interface. In addition, 𝜏𝑔 denotes the average
shear stress between the pipe wall and the gas, whilst 𝜏𝑖 is the average
shear stress at the elongated bubble-film interface; 𝑆𝑔 is the wetted
perimeter of the gas, and 𝑆𝑖 is the length of the interface within a given
pipe cross section (Fig. 2). As in the case of the slug body, to account
for hydrostatic pressure variation at a given cross section, we write the
pressure, for instance, at 𝜂𝑗 , as 𝑃 𝑗

𝑜 + 𝜌𝑙𝑔 cos 𝜃𝑗 (ℎ
𝑗
𝑓 − 𝜁 ) in the liquid film,

and as 𝑃 𝑗
𝑜 −𝜌

𝑗
𝑔𝑔 cos 𝜃𝑗 (𝜁−ℎ

𝑗
𝑓 ) in the gas bubble. Here, ℎ𝑓 is the liquid film

thickness and 𝜁 is a local spatial coordinate defined in the same way as
for the analysis of the slug body presented before, and so it is inscribed
to a given cross section (see also Fig. 2). A similar pressure profile is
considered at 𝜉𝑗+1, the position of the elongated bubble tail. Integration
of these pressure profiles over the surface of the cross section yields
the term with pressure difference of Eq. (21), where contributions from
𝑔 cos 𝜃𝑗 from each face cancel since the film thickness is uniform. These
contributions, on the other hand, do appear in the surface momentum
balances described below. A relationship between the film thickness ℎ𝑓
and the film holdup 𝛼𝑓 derived from the geometry in Fig. 2 is given in
Appendix C. Expressions for 𝑆𝑔 and 𝑆𝑖, as well as the relation between
the inclination angle and the arclength coordinates of the front and tail
of a slug unit cell are also included there.

With Eqs. (13) and (15), the first two terms on the right-hand side
vanish. By expanding the left-hand side of Eq. (21), using Eq. (4), the
resulting rearrangement leads to

𝑑
𝑑𝑡

(

𝜌𝑗𝑔𝛼
𝑗
𝑔𝑢

𝑗
𝑔

)

= −
𝜌𝑗𝑔𝛼

𝑗
𝑔

𝑙𝑗𝑓

(

𝑢𝑗𝑡 − 𝜉̇𝑗+1
)

𝑢𝑗𝑔

+
𝛼𝑗𝑔

(

𝑃 𝑗
𝑒 − 𝑃 𝑗

𝑜

)

𝑙𝑗𝑓
−

𝜏𝑗𝑔𝑆
𝑗
𝑔

𝐴
−

𝜏𝑗𝑖𝑆
𝑗
𝑖

𝐴
− 𝜌𝑗𝑔𝛼

𝑗
𝑔𝑔 sin 𝜃

𝑗 , (21)

Proceeding in a similar manner as for the elongated bubble, the
momentum conservation for the liquid film may be expressed as

𝑑
𝑑𝑡

(

𝜌𝑙𝛼
𝑗
𝑓 𝑢

𝑗
𝑓

)

= −
𝜌𝑙𝛼

𝑗
𝑓

𝑙𝑗𝑓

(

𝑢𝑗𝑡 − 𝜉̇𝑗+1
)

𝑢𝑗𝑓

+
𝜌𝑙𝛼

𝑗
𝑓

𝑙𝑗𝑓

(

𝑢𝑗𝑓𝑒 − 𝜉̇𝑗+1
)

𝑢𝑗𝑓𝑒 −
𝜌𝑙𝛼

𝑗
𝑓

𝑙𝑗𝑓

(

𝑢𝑗𝑓𝑜 − 𝑢𝑗𝑡
)

𝑢𝑗𝑓𝑜

+
𝛼𝑗𝑓

(

𝑃 𝑗
𝑒 − 𝑃 𝑗

𝑜

)

𝑙𝑗𝑓
− 𝜏𝑗𝑓

𝑆𝑗
𝑓

𝐴
+ 𝜏𝑗𝑖

𝑆𝑗
𝑖
𝐴

− 𝜌𝑗𝑙 𝛼
𝑗
𝑓 𝑔 sin 𝜃

𝑗 , (22)

where 𝜏𝑓 is the average shear stress between the liquid film and
the pipe wall, and 𝑆𝑓 is the film wetted perimeter (see Fig. 2 and
Appendix C). The average velocities 𝑢𝑔 and 𝑢𝑓 are given, respectively,
by Eqs. (11) and (12).

Equations (13)–(16) are mass balances written at surfaces located
at 𝜉𝑗 and 𝜂𝑗 , respectively. Similarly, we can write momentum balances
at these positions – treated as surfaces of discontinuity – by following,
for example, the ideas in section 5.18 of Panton (2013). At position 𝜉𝑗 ,
we have

𝑃 𝑗
𝑠𝜉 + 𝜌𝑙

(

𝑢𝑗𝑙𝑠 − 𝜉̇𝑗
)

𝑢𝑗𝑙𝑠 = 𝑃 𝑗−1
𝑒 + 𝜌𝑙𝛼

𝑗−1
𝑓

(

𝑢𝑗−1𝑓𝑒 − 𝜉̇𝑗
)

𝑢𝑗−1𝑓𝑒

+𝜌𝑗−1𝑔 𝛼𝑗−1𝑔

(

𝑢𝑗−1𝑔𝑒 − 𝜉̇𝑗
)

𝑢𝑗−1𝑔𝑒

+
(

𝜌𝑙𝛼
𝑗−1
𝑓 𝛴𝑗−1

𝑓 − 𝜌𝑗−1𝑔 𝛼𝑗−1𝑔 𝛴𝑗−1
𝑔

)

𝑔 cos 𝜃𝑗−1, (23)

whilst at position 𝜂𝑗 , the following momentum balance can be written

𝑃 𝑗
𝑠𝜂 + 𝜌𝑙

(

𝑢𝑗𝑙𝑠 − 𝑢𝑗𝑡
)

𝑢𝑗𝑙𝑠 = 𝑃 𝑗
𝑜 + 𝜌𝑙𝛼

𝑗
𝑓

(

𝑢𝑗𝑓𝑜 − 𝑢𝑗𝑡
)

𝑢𝑗𝑓𝑜 + 𝜌𝑗𝑔𝛼
𝑗
𝑔

(

𝑢𝑗𝑔𝑜 − 𝑢𝑗𝑡
)

𝑢𝑗𝑔𝑜

+
(

𝜌𝑙𝛼
𝑗
𝑓𝛴

𝑗
𝑓 − 𝜌𝑗𝑔𝛼

𝑗
𝑔𝛴

𝑗
𝑔

)

𝑔 cos 𝜃𝑗 , (24)

where

𝛼𝑗𝑓𝐴𝛴
𝑗
𝑓 = ∫𝐴𝑗

𝑓

(

ℎ𝑗𝑓 − 𝜁
)

𝑑𝐴, 𝛼𝑗𝑔𝐴𝛴
𝑗
𝑔 = ∫𝐴𝑗

𝑔

(

𝜁 − ℎ𝑗𝑓
)

𝑑𝐴. (25)

In these expressions, 𝐴𝑗
𝑓 = 𝛼𝑗𝑓𝐴 and 𝐴𝑗

𝑔 = 𝛼𝑗𝑔𝐴, and 𝜁 denotes the local
coordinate shown in Fig. 2. The integrals in Eq. (25) introduce the
hydrostatic contribution of the film level that causes gradual pressure
variations in the direction orthogonal to the axis of the pipe. Equations
(23) and (24) can be further simplified by utilizing Eqs. (13)–(16). The
pressure difference resulting from Eq. (23) resembles the acceleration
pressure drop sometimes introduced in the literature in a rather heuris-
tic fashion (see, for example, Dukler and Hubbard, 1975). In the model
proposed here, this pressure difference arises from a formal momentum
balance or ‘‘jump law’’ at a surface at 𝜉𝑗 .

The average shear stresses at the wall, 𝜏𝑔 and 𝜏𝑓 and at the interface,
𝜏 𝑖 are determined by integration of the local shear stresses. These are
evaluated, in turn, from the local fluid velocities described in Eqs. (9)
and (10), using the closure relationships listed in Appendix A. The wall
shear stress in the slug body, 𝜏𝑠, is computed with velocity 𝑢𝑙𝑠 and
the liquid properties, using the same correlations. In this study, the
pipes are considered smooth for the purpose of evaluating the shear
stresses. Finally, the density of the gas in the elongated bubble of unit
cell 𝑗 is obtained with the known temperature and the average pressure
(𝑃 𝑗

𝑜 + 𝑃 𝑗
𝑒 )∕2.

In a reference frame translating with the bubble nose, the liquid
experiences a gradual contraction when it travels from the slug body
to the film region, due to the smooth profile typical of the bubble nose.
With this in mind, we modify the pressure difference 𝑃 𝑗

𝑠𝜂−𝑃
𝑗
𝑜 in Eq. (24)

in a heuristic fashion by introducing the ratio of pressure differences
𝐾𝑐 = (𝛥 𝑃 )gradual∕(𝛥 𝑃 )sudden. Here, these pressure differences are
attained from the Bernoulli (energy) equation with head losses for
steady, single-phase flow of a liquid applied to a gradual and sudden
contraction, respectively, written for a frame moving with the bubble
nose velocity and disregarding changes in potential energy (due to
gravity). Following these considerations, for a sudden contraction, the
pressure difference may be written as

(𝛥𝑃 )sudden =
𝜌𝑙
2

[

(𝑢𝑗𝑓𝑜 − 𝑢𝑗𝑡 )
2 − (𝑢𝑗𝑙𝑠 − 𝑢𝑗𝑡 )

2 +𝐾𝐿(𝑢
𝑗
𝑓𝑜 − 𝑢𝑗𝑡 )

2
]

, (26)

where the last term has the usual form for expressing the head losses,
with 𝐾𝐿 denoting the head loss coefficient for abrupt or sudden con-
tractions. For a gradual contraction, losses are negligible in comparison
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Table 1
Loss coefficient for an abrupt contraction.
𝛼𝑓 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
𝐾𝐿 0.50 0.46 0.41 0.36 0.30 0.24 0.18 0.12 0.06 0.02 0

with a sudden contraction (Street et al., 1996) and so (𝛥𝑃 )gradual is equal
to the right-hand side of Eq. (26) without the last term. From these
considerations, we obtain

𝐾𝑐 =
1 − 𝛼2𝑓

1 − 𝛼2𝑓 +𝐾𝐿
, (27)

where the term 1 − 𝛼2𝑓 results from the change in the kinetic energy
after using Eq. (16) to substitute for 𝑢𝑗𝑙𝑠 − 𝑢𝑗𝑡 . Using 𝐾𝑐 in Eq. (27) to
correct the linear momentum exchange in Eq. (24) yields

𝑃 𝑗
𝑠𝜂−𝑃

𝑗
𝑜 = 𝜌𝑙𝐾𝑐

(

𝑢𝑗𝑙𝑠 − 𝑢𝑗𝑡
)(

𝑢𝑗𝑓𝑜 − 𝑢𝑗𝑙𝑠
)

+
(

𝜌𝑙𝛼
𝑗
𝑓𝛴

𝑗
𝑓 − 𝜌𝑗𝑔𝛼

𝑗
𝑔𝛴

𝑗
𝑔

)

𝑔 cos 𝜃𝑗 , (28)

which has been simplified after employing Eq. (15). The loss coefficient
𝐾𝐿 is interpolated from the arrays given in Table 1 (taken from Table
2 in Section 9.9 of Street et al., 1996) using the actual magnitude of
𝛼𝑓 for the ratio of cross sectional areas after and before the sudden
contraction. We shall use the momentum balance in Eq. (28) instead of
Eq. (24). The correction of the latter by means of factor 𝐾𝑐 is loosely
motivated by the approach implemented by Grigoleto et al. (2021) to
obtain an expression for the pressure jump at the slug body front, where
a sudden expansion exists as the film is picked up by the following slug
body. At the slug body tail (bubble nose plane), those authors neglected
any pressure jump. On the other hand, we introduce no correction to
the momentum balance at the slug body front of Eq. (23) as it precisely
applies to a sudden expansion. Note also that Eq. (23) can be simplified
by invoking Eqs. (13) and (14).

3. Conditions at the pipe ends

3.1. Slug initiation at pipe inlet

In this study, we assume that slugs are initiated only at the pipe
inlet. The slug unit cells entering the pipe are generated from the
mechanistic model described in Section 2 by imposing the steady
state condition (i.e., by dropping the time derivatives). To complete
the model, we furnish the value of the slug body length. For this
purpose, we modify a model recently presented for a horizontal flow
by Klinkenberg and Tijsseling (2021), who postulated that the slug
body length of the entering slug unit cell obeys a log-normal random
distribution with a mean obtained from the slug frequency expression
for steady state, namely, 𝜔𝑠 = 𝑢𝑡∕𝑙𝑢. Using 𝑙𝑢 = 𝑙𝑠 + 𝑙𝑓 for the unit cell
length, the slug frequency reads

⟨𝑙𝑠∕𝑑⟩𝐿 =
𝑢𝑡

𝜔𝑠𝑑 (1 +)
, (29)

where  is the film length to slug body length ratio; an expression for
this ratio can be attained from the relation of the liquid superficial
velocity with the amount of liquid in a unit cell passing through a
fixed pipe cross section in the steady state slug flow (e.g., Taitel and
Barnea, 1990b)

 =
𝑗𝑙 − 𝑢𝑙𝑠

𝛼𝑓 𝑢𝑓 − 𝑗𝑙
. (30)

For the slug frequency, we follow Klinkenberg and Tijsseling (2021)
and apply the correlation by Schulkes (2011). That is,

𝜔𝑠 =
𝑢𝑠
𝑑
𝛹 (𝜆𝑙)𝛷(𝑅𝑒𝑙)𝛩(𝜃in, 𝐹 𝑟), (31)

with

𝛹 (𝜆𝑙) = 0.016𝜆𝑙(2 + 3𝜆𝑙), (32)

𝛷(𝑅𝑒𝑙) =

{

12.1𝑅𝑒−0.37𝑙 , 𝑅𝑒𝑙 < 4000,
1, 𝑅𝑒𝑙 ⩾ 4000,

(33)

and

𝛩(𝜃in, 𝐹 𝑟) =

{

1 + 2𝐹𝑟−1sgn(𝜃in)
√

|𝜃in|, |𝜃in| ⩽ 0.17,
1.8𝐹𝑟−1(0.6 + 2𝜃in − 𝜃2in), 𝜃in > 0.17,

(34)

where the mixture velocity, 𝑢𝑠 = 𝑗𝑙 + 𝑗𝑔 ; 𝜆𝑙 = 𝑗𝑙∕𝑢𝑠 is the non-slip liquid
holdup; 𝑅𝑒𝑙 = 𝜌𝑙𝑢𝑠𝑑∕𝜇𝑙 is a liquid Reynolds number, 𝐹𝑟 = 𝑗𝑙∕

√

𝑑𝑔 cos 𝜃in
is the Froude number, and 𝜃in is the pipe inclination angle (in radians)
with respect to the horizontal axis at the pipe inlet.

For the standard deviation of the slug body length, Klinkenberg and
Tijsseling (2021) used the correlation by Al-Safran et al. (2005) for
horizontal flow. Instead, to generalize the approach to inclined flow,
based on the review by Fabre and Liné (1992), where they reported
that, for horizontal flow, the standard deviation of the slug body length
is between 30 and 70% of the mean, and for vertical flow is 20%, we
propose the linear interpolation

𝜎𝐿 =
[

𝜎̂𝐿𝐻
(

1 − 𝜃in∕(𝜋∕2)
)

+ 𝜎̂𝐿𝑉 𝜃in∕(𝜋∕2)
]

⟨𝑙𝑠∕𝑑⟩𝐿 . (35)

Following Fabre and Liné (1992), we set 𝜎̂𝐿𝐻 = 0.5 (average of 0.3 and
0.7) and 𝜎̂𝐿𝑉 = 0.2.

A log-normal probability distribution is specified by two parame-
ters, the mean of logarithmic values, 𝜇𝑁 , and the standard deviation of
logarithmic values, 𝜎𝑁 . Their relation with the mean and standard de-
viation of the log-normal distribution is well-known (e.g., see appendix
in Al-Safran et al., 2005). These relationships readily yield

𝜎2𝑁 = log
[

1 + 𝜎2𝐿∕ ⟨𝑙𝑠∕𝑑⟩
2
𝐿
]

, (36)

which is then used in computing

𝜇𝑁 = log ⟨𝑙𝑠∕𝑑⟩𝐿 − 𝜎2𝑁∕2. (37)

With parameters 𝜇𝑁 and 𝜎𝑁 , the log-normal distribution for the slug
body length 𝑙𝑠∕𝑑 with the mean ⟨𝑙𝑠∕𝑑⟩𝐿 and standard deviation 𝜎𝐿
is completely determined, entailing random values of the slug body
length.

Finally, we set a lower bound of 4𝑑 for the slug body length at
an initiation. Smaller values may eventually lead to difficulties in the
convergence of the numerical solver.

3.2. Outlet conditions

We may identify three stages as the leading slug unit exits the pipe
outlet. These depend upon which part of that slug unit cell is either
crossing the pipe outlet plane or approaching it. Following the order in
which they occur, each of these stages and the various mathematical
constraints associated with them are described in the following.

• Stage 1: The leading slug body is crossing the plane of the outlet,
and its liquid is allowed to leave the pipe (Fig. 3a). The velocity
of the slug front is set to zero, 𝜉̇(1) = 0, and the pressure in this
location is fixed, 𝑃 (1)

𝑠𝜉 = 𝑃out . Adopting a cautious approach to
avoid non-convergence issues, the leading slug body is removed
from the system when its length is shorter than a critical value,
arbitrarily set here to 2.5 𝑑, or the time scale 𝑙(1)𝑠 ∕𝑢(1)𝑡 correspond-
ing to the leading slug body (crossing the outlet plane) is smaller
than 𝑑∕(𝑗𝑙 + 𝑗𝑔). The same criteria are used for the merging of
consecutive slug unit cells.

• Stage 2: After the leading slug body has left the pipe, the bubble
nose translational velocity 𝑢(1)𝑡 is set to zero, whilst the gas in the
bubble and liquid in the film can cross the plane of the bubble
nose (Fig. 3b). In addition, the film velocity at the outlet plane
is fixed, such that at the bubble nose the film velocity 𝑢(1)𝑓𝑜 = 𝑢(1)∗𝑓𝑜
and the pressure 𝑃 (1)

𝑜 = 𝑃 (1)∗
𝑜 , where 𝑢(1)∗𝑓𝑜 and 𝑃 (1)∗

𝑜 denote their
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Fig. 3. The three stages of the outlet process.

magnitudes at the instant when the leading slug body left the
pipe. Once the film length becomes smaller than the arbitrarily-
set small length of 1.5 𝑑, the leading film and bubble are removed
from the system implying that the entire leading slug unit cell has
exited the pipe.

• Stage 3: After removing the slug unit cell closest to the outlet, the
next slug unit cell becomes the leading one. Its front has yet to
reach the outlet (Fig. 3c). In this stage, we impose the condition
that the amount of liquid mass crossing the rear boundary of the
slug body equals the liquid mass exchange at the front. The other



International Journal of Multiphase Flow 162 (2023) 104410

9

J.C. Padrino et al.

Table 2
Equations governing the motion of a typical slug unit cell.
Physical meaning Equation number

Slug front kinematic condition (1)
Bubble nose kinematic condition (2)
Mass balance for the elongated bubble (7)
Mass balance for the liquid film (8)
Average velocity of the gas in the bubble (11)
Average velocity of the liquid in the film (12)
Gas mass balance at slug front (13)
Liquid mass balance at slug front (14)
Gas mass balance at bubble nose (15)
Liquid mass balance at bubble nose (16)
Volume fraction constraint (17)
Momentum balance for the slug body (19)
Momentum balance for the elongated bubble (21)
Momentum balance for the liquid film (22)
Momentum balance at slug front (23)
Momentum balance at bubble nose (28)
Bubble nose translational velocity (A.1)
Gas equation of state Ideal gas law

imposed condition is that the pressure at the slug front changes
linearly with the distance to the outlet according to the relation

𝑃 (1)
𝑠𝜉 = 𝑃out +

(𝑃 (1)∗
𝑠𝜉 − 𝑃out )

(𝜉(1)∗ − 𝐿)
(𝜉(1) − 𝐿), (38)

where 𝜉(1)∗ is the arclength coordinate of the slug body front when
Stage 3 begins and 𝑃 (1)∗

𝑠𝜉 is the corresponding value of 𝑃 (1)
𝑠𝜉 ; 𝜉(1) is

the arclength coordinate of the slug body front at the current time.
When the slug body front reaches the outlet, the configuration of
Stage 1 is obtained again.

4. Numerical implementation and model validation

4.1. Discretization of the governing equations

For slug unit 𝑗, the model presented in this work consists of 18
equations, which are listed in Table 2. It includes the closure for the
bubble nose translational velocity, Eq. (A.1) of Appendix A, and the
equation of state for the gas density (ideal gas law). The model contains
18 unknowns per slug unit cell. These are {𝑃𝑠𝜉 , 𝜉̇, 𝜉, 𝑢𝑙𝑠, 𝑃𝑠𝜂 , 𝑢𝑡, 𝜂, 𝑃𝑜,
𝑢𝑓𝑜, 𝑢𝑔𝑜, 𝑢𝑓 , 𝑢𝑔 , 𝜌𝑔 , 𝑃𝑒, 𝑢𝑓𝑒, 𝑢𝑔𝑒, 𝛼𝑓 , 𝛼𝑔}. In addition, the slug body
and film lengths are determined from the relations 𝑙𝑗𝑠 = 𝜉𝑗 − 𝜂𝑗 and
𝑙𝑗𝑓 = 𝜂𝑗 − 𝜉𝑗+1, respectively. Note that if one assumes that the pressure
in the elongated bubble is uniform, we have 𝑃𝑜 = 𝑃𝑒, and the number
of unknowns per unit cell is reduced by one. Consequently, one of the
equations in the system, also per unit cell, must be removed.

We discretize the ordinary differential equations in time using an
implicit, first-order backward Euler scheme. For instance, by consid-
ering the mass conservation equation for the elongated gas bubble,
discretizing Eq. (7) yields
(

𝜌𝑗(𝑛+1)𝑔 𝛼𝑗(𝑛+1)𝑔 − 𝜌𝑗(𝑛)𝑔 𝛼𝑗(𝑛)𝑔

)

− 𝛥𝑡
𝜌𝑗(𝑛+1)𝑔 𝛼𝑗(𝑛+1)𝑔

𝑙𝑗(𝑛+1)𝑓

(

𝑢𝑗(𝑛+1)𝑔𝑒 − 𝑢𝑗(𝑛+1)𝑔𝑜

)

= 0, (39)

where the two consecutive time levels 𝑛 and 𝑛+1 are separated by the
time step 𝛥𝑡. Variables at the time level 𝑛 (𝑛+1) are known (unknown)
and at time level 𝑛 + 1 are unknown. In the algebraic expressions of
the model, variables are taken at the time level 𝑛 + 1. External and
internal borders of the unit cells are advanced according to 𝜉𝑗(𝑛+1) =
𝜉𝑗(𝑛) +𝛥𝑡 𝜉̇𝑗(𝑛+1) and 𝜂𝑗(𝑛+1) = 𝜂𝑗(𝑛) +𝛥𝑡 𝑢𝑗(𝑛+1)𝑡 , whilst the lengths are then
obtained from 𝑙𝑗(𝑛+1)𝑠 = 𝜉𝑗(𝑛+1) − 𝜂𝑗(𝑛+1) and 𝑙𝑗(𝑛+1)𝑓 = 𝜂𝑗(𝑛+1) − 𝜉𝑗+1(𝑛+1).
The inclination angle of the slug unit and liquid-only cells, modelled
as straight segments, is related to the arclength positions 𝜉𝑗 and 𝜉(𝑗+1),
considered at the time level 𝑛+1, by means of the geometric expression
(C.6). The integration of local shear stresses leading to the average
shear stresses is carried out using the sixteen-point Gauss–Legendre
quadrature (see, e.g., Katsikadelis, 2016, and Moin, 2010).

4.2. Boundary treatment and initial conditions

At the inlet, the gas and liquid superficial velocities, 𝑗𝑔 and 𝑗𝑙,
respectively, are specified and, initially, the pipe is filled with the liq-
uid, flowing steadily with the velocity 𝑗𝑙. Gas–liquid slug unit cells are
created or ‘initiated’ at the pipe inlet and merging of consecutive unit
cells may take place along the pipe. A slug unit cell in a straight pipe
element of diameter 𝑑 and inclination angle equal to that at the pipe
inlet is generated using the associated steady-state slug model. This
set of equations must be supplemented with a new slug body length,
provided by the scheme in Section 3.1, based on the slug frequency,
and the steady-state mass balance relating the liquid superficial velocity
with the amount of liquid in a slug unit cell passing through a fixed
cross section (e.g., see Eq. 5 in Taitel and Barnea, 1990b). The pressure
at the new slug body front is that resulting from the liquid-only flow
in the pipe with the outlet pressure 𝑃out . For the first slug unit, the
initial bubble nose translational velocity is determined from Eq. (A.1)
neglecting the factor in brackets, and taking 𝑢(𝑁𝑙+𝑁𝑢+1)

𝑙𝑠 = 𝑗𝑙 + 𝑗𝑔 , as the
inlet mixture velocity. Here, 𝑁𝑙 and 𝑁𝑢 are the liquid-only and slug
unit cells in the system. For subsequent new slug unit cells, the bubble
nose velocity is set equal to the velocity of the tail of the preceding
slug unit. This bubble nose velocity determines the initial velocity of
the unit cell tail. Once the entering slug unit cell has been created, its
slug body front coincides with the tail of the preceding cell and the
new one evolves according to the model for unsteady flow described
here. The slug unsteadiness after its initiation introduces two more
unknowns for the next time level, 𝜉̇(𝑁𝑙+𝑁𝑢+1) and 𝜉(𝑁𝑙+𝑁𝑢+1), with three
additional equations, namely, (1), (13), and (14), with 𝑗 = 𝑁𝑙 +𝑁𝑢 + 1
and 𝑢(𝑁𝑙+𝑁𝑢+1)

𝑙𝑠 = 𝑗𝑙 + 𝑗𝑔 . Once the tail of the elongated bubble crosses
the pipe inlet, a new unit cell is generated as described.

The liquid-only section initially filling the pipe is modelled by
dividing it into a number of 𝑁𝑙 control volumes or cells of the same
size, considered as straight segments. The initial number of these cells
depends on the problem. With no loss of generality, we assume that
the borders of these cells move with the velocity of the front of the
first slug unit, 𝜉̇(𝑁𝑙+1). The exception is the border of the liquid cell
coinciding with the pipe exit, where 𝜉̇(1) = 0. Therefore, the length
of this cell changes with time. When it becomes smaller than a set
value (2𝑑) and there are two or more liquid-only cells in the pipe, this
cell is combined with the following one. If only one liquid-only cell
remains, it is removed when its length becomes shorter than a very
small tolerance (≪ 𝑑). We model the flow in the liquid-only cells with
a momentum equation similar to that used for the slug body, Eq. (19),
with an inclination angle determined as for a slug unit cell. The velocity
in the liquid-only cells, which is the same in all these cells due to the
liquid incompressibility, is denoted by 𝑢𝑙, being a function of time only.
The pressure, denoted as 𝑃 𝑗

𝑙 , is continuous across the borders between
two consecutive liquid-only cells.

At the pipe outlet, we set

𝑃 (1)
𝑙 = 𝑃out , (40)

whilst at the cell border between the last liquid cell inside the pipe and
the first slug unit cell we enforce the condition

𝑢𝑙 = 𝑢(𝑁𝑙+1)
𝑙𝑠 , (41)

where the last expression substitutes for Eq. (14) at the front of the
leading slug unit cell. We always keep these constraints in the system of
equations. Depending on the stage of the flow at the outlet, one or both
constraints become just ‘dummy’ equations, acting as placeholders. For
instance, we keep Eqs. (40) and (41) in the system even if there are no
liquid-only cells in the pipe. If this is the case, we simply have 𝑁𝑙 = 0.
If there are liquid-only cells in the pipe, at the front of the leading slug
unit, we also enforce the following conditions

𝜉̇(𝑁𝑙+1) = 𝑢(𝑁𝑙+1)
𝑡 , (42)

𝑃 (𝑁𝑙+1)
𝑙 = 𝑃 (𝑁𝑙+1)

𝑠𝜉 , (43)
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which replace Eqs. (13) and (23), respectively.
With regard to the outlet flow stages described in Section 3.2, in

which case there are no liquid-only cells in the pipe (𝑁𝑙 = 0), for
Stages 1 and 2, instead of Eq. (42), the constraint 𝜉̇(1) = 0 substitutes for
Eq. (14). For the later stage, this expression is just a placeholder. For
Stages 1 and 2, condition in Eq. (43) still replaces that in Eq. (23). If
the outlet flow condition corresponds to Stage 2 in Section 3.2 – the
slug body is effectively out of the pipe – we enforce the conditions
on 𝑢(1)𝑓𝑜 and 𝑃 (1)

𝑜 described there as substitutes for Eqs. (16) and (28),
respectively, and a null value for 𝑢(1)𝑡 instead of the closure relationship,
when modelling the leading unit cell. In this case, and to preserve the
size and structure of the Jacobian matrix associated with the solution
of non-linear equations (see below), we set the placeholders 𝑃 (1)

𝑠𝜉 = 𝑃 (1)
𝑠𝜂

and 𝑢(1)𝑙𝑠 = 𝑢(1)∗𝑙𝑠 , where the last term denotes the value available from
the previous time level, instead of the momentum equation in the
slug body and the gas mass balance condition, Eq. (15), respectively.
When the outlet flow condition is that of Stage 3, the slug body front
𝜉(1) moves, in general, and we impose the condition that the liquid
flows entering and leaving the leading slug body are the same, namely,
𝑢(1)𝑙𝑠 − 𝜉̇(1) = 𝛼(1)𝑓 (𝑢(1)𝑓𝑜 − 𝑢(1)𝑡 ). This is applied instead of Eq. (13) when
considering the leading slug unit cell. Moreover, Eq. (23) is replaced
with Eq. (38) for 𝑃 (1)

𝑠𝜉 .

4.3. Assembling and solving the system of equations

In total, the model comprises 18𝑁𝑢 equations for the pipe section
containing slug unit cells (two-phase section); 3𝑁𝑙 equations for the
liquid-only section of the pipe, and 4 boundary conditions, including 3
at the tail of the entering slug unit cell, and 1 at the pipe outlet, given
by Eq. (40). Regarding the number of unknowns, from the two-phase
section, we have 18𝑁𝑢 unknowns plus 2 needed at the tail of the slug
unit entering the pipe, {𝜉̇(𝑁𝑙+𝑁𝑢+1), 𝜉(𝑁𝑙+𝑁𝑢+1)}; the liquid-only section
contains 3𝑁𝑙 unknowns, namely, {𝑃 𝑗

𝑙 , 𝜉̇
𝑗 , 𝜉𝑗}, with 1 ⩽ 𝑗 ⩽ 𝑁𝑙, plus 2

more, {𝑢𝑙 , 𝑃
𝑁𝑙+1
𝑙 }. When two slug unit cells are merged, the ones that

follow the resulting cell are renumbered by reducing their indexes by
one. Also, more than one pair of cells can be combined at a given time
level.

We seek the solution of the fully-implicit system of non-linear
equations by means of a non-linear solver provided in Matlab®, which
applies a version of the Newton’s method. After discretization, by
writing the algebraic equations of the model in such a way that their
right-hand side is zero, as in Eq. (39), we use the left-hand side to
construct a vector of residuals that we pass to the solver. The vector
of results available from the previous time step, representing now the
values at the time level 𝑛, is provided as the initial guess to the non-
linear solver. They are nondimensionalized using the liquid and gas
densities as density scales; the mixture velocity at the pipe inlet, given
by the sum of the gas and liquid inlet superficial velocities, 𝑗𝑔 and 𝑗𝑙,
respectively, assumed to be known (see below), as the velocity scale;
the product 𝜌𝑙(𝑗𝑙+𝑗𝑔)2, as the pressure scale, and 10 𝑑 as the length scale.
This initial guess is converted back to a dimensional form to compute
the vector of residuals. These residuals are, in turn, nondimensionalized
using the same scales.

The Jacobian matrix is computed numerically, employing finite
differences with a tolerance of approximately 10−6. Taking advantage
of the fact that the model is one-dimensional in space, we arrange
the vectors of initial guessed values and of residuals in such a way
that the Jacobian is block-diagonal. Then, following the approach
in Krasnopolsky and Lukyanov (2018), and to significantly reduce the
computational time, we pass to the solver a sparsity pattern containing
an array of ones, indicating the nonzero elements of the Jacobian
matrix. The number of equations and unknowns in the system and then
the size of the Jacobian matrix changes when a cell is removed at the
outlet, merged with another, or generated at the pipe inlet.

In most of the simulations in this work, we set a time step of 𝛥𝑡 =
5×10−3 s. For validation, in selected cases, we use a much smaller time

step (𝛥𝑡 = 2 × 10−3 s), obtaining results that do not differ significantly
from those computed with the larger time step. Note that Rosa et al.
(2015) and Grigoleto et al. (2021) used the time steps of 10−3 s and
10−4 s, respectively, whilst Vásquez and Avila (2021) used a larger
value of 10−2 s. We notice that in running our computer codes, the
maximum absolute value of the residuals after convergence at a given
time step is typically no more than 10−7. The number of iterations
needed for convergence in the non-linear solver is usually 2; in a few
cases, 3. The exception is at the beginning of a simulation, where up to
8 iterations may be needed. This is likely because of the initial transient
associated with the difference in magnitudes between the fluxes inside
the pipe and at its inlet, and also because a compressible fluid is being
introduced into the dynamic system.

4.4. Scheme for merging of consecutive slug unit cells

In our model, two consecutive slug unit cells are combined or
merged into a single cell if, for the second slug unit cell (farther from
the outlet) of the pair, either the length of its slug body 𝑙𝑠 < 2.5 𝑑 or
the time scale 𝑙𝑠∕𝑢𝑡 < 𝑑∕(𝑗𝑙+𝑗𝑔). These criteria for merging apply to the
second and subsequent slug units in the system, but not to the leading
slug body, which is treated as described in Section 3.2. The critical slug
body length below which merging of consecutive elongated bubbles
happens in a mass conserving manner was set to 0.5 𝑑 to 1 𝑑 by Nydal
and Banerjee (1996), and to 1 𝑑 and 0.5 𝑑 in the works of Rosa et al.
(2015) and Grigoleto et al. (2021), respectively. We acknowledge that
our length threshold is somewhat conservative. However, if its value is
reduced or the time scale criterion is removed, convergence difficulties
may be encountered for some of the flow conditions considered.

Once the above criteria have been satisfied, the merging of slug
units follows a semi-conservative approach for mass and momentum
that we summarize here. The merging process is assumed to occur
instantaneously at a given time level. The calculations of this process
are aimed at finding the attributes of the single slug unit cell replacing
two consecutive cells whose attributes are known. The found attributes
will be used as the initial condition (and initial guess) that enables the
solver to advance the solution to the next time level.

Consider the two consecutive slug unit cells that are going to be
combined. We denote the slug unit cell closer to the outlet with the
superscript ‘1’ and the next one with ‘2’. By using the parametrization
of the pipe axis, 𝑥 = 𝑥(𝑠), 𝑦 = 𝑦(𝑠), we can find the Cartesian coordinates
of the points 𝑠 = 𝜉(1) and 𝑠 = 𝜉(3), where the latter corresponds to the
position of the tail of the second unit cell. The arclength coordinates
of the front and tail of the new unit cell are 𝜉(1) and 𝜉(3), respectively.
The length of the straight segment connecting these two points, 𝑙(𝑎)𝑢 ,
obtained from their Cartesian coordinates, is the ensuing length of the
slug unit cell after merging. Then, its total volume is 𝑙(𝑎)𝑢 𝐴, where ‘𝑎’
denotes a quantity of the cell after merging. The inclination angle of
the unit cell after merging is also determined from these coordinates.
Note that 𝑙(𝑎)𝑢 𝐴 ⩽ 𝑙(1)𝑢 𝐴 + 𝑙(2)𝑢 𝐴, the sum of the volumes of slug units ‘1’
and ‘2’, where the equality holds if the two merging unit cells belong to
the same straight pipe element. If unit cell ‘2’ is still entering the pipe
and its tail is out, this tail is regarded as moving on a straight segment
with the inclination angle of the pipe inlet.

The slug body length after merging is computed assuming that the
ratio of the slug body length to the unit cell length after merging is
equal to the ratio of the sum of the slug body lengths of cells ‘1’ and
‘2’ to the sum of the lengths of these slug unit cells. This yields

𝑙(𝑎)𝑠 =
𝑙(1)𝑠 + 𝑙(2)𝑠

𝑙(1)𝑢 + 𝑙(2)𝑢

𝑙(𝑎)𝑢 . (44)

Then, the film length after merging is 𝑙(𝑎)𝑓 = 𝑙(𝑎)𝑢 − 𝑙(𝑎)𝑠 and the coordinate
of the bubble nose is 𝜂(𝑎) = 𝜉(1) − 𝑙(𝑎)𝑠 . We also assume that the film
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holdup after merging is given by the length-weighted average of the
holdups of the film regions before merging. That is,

𝛼(𝑎)𝑓 =
𝑙(1)𝑓 𝛼(1)𝑓 + 𝑙(2)𝑓 𝛼(2)𝑓

𝑙(1)𝑓 + 𝑙(2)𝑓

, (45)

with the void fraction of the elongated bubble after merging given by
𝛼(𝑎)𝑔 = 1 − 𝛼(𝑎)𝑓 . The velocity of the liquid in the slug body, 𝑢(𝑎)𝑙𝑠 , the
average velocity of the liquid in the film, 𝑢(𝑎)𝑓 , and of the gas in the
elongated bubble, 𝑢(𝑎)𝑔 , are obtained by enforcing the equality of the
linear momenta before and after merging. That is,

𝑚(𝑎)
𝑠 𝑢(𝑎)𝑙𝑠 = 𝑚(1)

𝑠 𝑢(1)𝑙𝑠 + 𝑚(2)
𝑠 𝑢(2)𝑙𝑠 , (46)

𝑚(𝑎)
𝑓 𝑢(𝑎)𝑓 = 𝑚(1)

𝑓 𝑢(1)𝑓 + 𝑚(2)
𝑓 𝑢(2)𝑓 , (47)

𝑚(𝑎)
𝑔 𝑢(𝑎)𝑔 = 𝑚(1)

𝑔 𝑢(1)𝑔 + 𝑚(2)
𝑔 𝑢(2)𝑔 , (48)

where the masses of liquid in the slug body and film of unit cell ‘1’
are 𝑚(1)

𝑠 = 𝜌𝑙𝑙
(1)
𝑠 𝐴, and 𝑚(1)

𝑓 = 𝜌𝑙𝛼
(1)
𝑓 𝑙(1)𝑓 𝐴, respectively, and the mass

of the gas in the elongated bubble is 𝑚(1)
𝑔 = 𝜌(1)𝑔 𝛼(1)𝑔 𝑙(1)𝑓 𝐴. Analogous

expressions are employed for quantities in unit cell ‘2’. After merging,
for the liquid, 𝑚(𝑎)

𝑠 = 𝜌𝑙𝑙
(𝑎)
𝑠 𝐴 and 𝑚(𝑎)

𝑓 = 𝜌𝑙𝛼
(𝑎)
𝑓 𝑙(𝑎)𝑓 𝐴 and, for the gas, its

mass is conserved, hence 𝑚(𝑎)
𝑔 = 𝑚(1)

𝑔 + 𝑚(2)
𝑔 .

For the gas density, after merging, we have 𝜌(𝑎)𝑔 = 𝑚(𝑎)
𝑔 ∕(𝛼(𝑎)𝑔 𝑙(𝑎)𝑓 𝐴).

Initial guesses for the remaining variables for the next time step are
given by 𝑃 (𝑎)

𝑠𝜉 = 𝑃 (1)
𝑠𝜉 , 𝑃 (𝑎)

𝑠𝜂 = 𝑃 (1)
𝑠𝜂 , 𝑃 (𝑎)

𝑜 = 𝑃 (1)
𝑜 , 𝑢(𝑎)𝑓𝑜 = 𝑢(1)𝑓𝑜 , 𝑢

(𝑎)
𝑔𝑜 = 𝑢(1)𝑔𝑜 ,

𝑢(𝑎)𝑓𝑒 = 𝑢(2)𝑓𝑒 , 𝑢
(𝑎)
𝑔𝑒 = 𝑢(2)𝑔𝑒 , and 𝑃 (𝑎)

𝑒 = 𝑃 (2)
𝑒 . This completes the computation

of the attributes of the ensuing slug unit cell after merging; they are
passed to the solver to find the flow field at the next time level.

Since the liquid is incompressible and, in general, the volume of
the slug cell after merging is smaller than the sum of the volumes
of the slug cells before merging, to avoid situations that may cause
spurious results or even halt the execution of a simulation, the proposed
merging scheme does not conserve the mass of the liquid. 𝑚(1,2)

𝑙 =
𝑚(1)
𝑠 +𝑚(2)

𝑠 +𝑚(1)
𝑓 +𝑚(2)

𝑓 and 𝑚(𝑎)
𝑙 = 𝑚(𝑎)

𝑠 +𝑚(𝑎)
𝑓 , the mass of liquid removed

after the merging of two unit cells is 𝑚(1,2)
𝑙 − 𝑚(𝑎)

𝑙 . If the two slug units
being merged are in the same straight pipe element, the mass removed
after their merging is zero. Nevertheless, for various cases considered,
the total mass of liquid artificially removed from the system due to cells
merging during the entire duration of the simulation was insignificant
in comparison to the total mass of liquid introduced through the pipe
inlet in the same period, or to the liquid mass filling the pipe at the
beginning of the simulation.

In summary, when two consecutive slug unit cells merge, the algo-
rithm for this process is as follows. The arclength coordinates of the
front and tail of the new slug unit cell are given by 𝑠 = 𝜉(1) and 𝑠 = 𝜉(3),
respectively, which, in turn, determine their corresponding Cartesian
coordinates from the riser profile equation. The length of the straight
segment connecting the front and tail is 𝑙(𝑎)𝑢 . Next, the slug body length,
𝑙(𝑎)𝑠 , of the new slug unit is computed from Eq. (44), so that the film
length is 𝑙(𝑎)𝑓 = 𝑙(𝑎)𝑢 − 𝑙(𝑎)𝑠 and the coordinate of the bubble nose becomes
𝜂(𝑎) = 𝜉(𝑎)− 𝑙(𝑎)𝑠 . Then, the new slug unit’s film holdup, 𝛼(𝑎)𝑓 , results from
Eq. (45), and the void fraction is 𝛼(𝑎)𝑔 = 1−𝛼(𝑎)𝑓 . By conserving the mass
of the gas before and after merging, void fraction 𝛼(𝑎)𝑔 , together with the
volume of the elongated bubble-film region, 𝑙(𝑎)𝑓 𝐴, give the gas density
in the new elongated bubble, 𝜌(𝑎)𝑔 . Next, the velocities 𝑢(𝑎)𝑙𝑠 , 𝑢(𝑎)𝑓 , and 𝑢(𝑎)𝑔 ,
are given by the linear momentum relationships, Eqs. (46), (47), and
(48). Finally, initial guesses for the rest of the variables of the new slug
unit cell are provided by the values already stored for cells ‘1’ or ‘2’,
depending on the position in the new slug unit (slug body or elongated
bubble-film tail).

4.5. Validation with experimental data of straight pipes

Since experimental data for rigid catenary curved pipes transport-
ing slug flow are unavailable in the literature, we evaluate the per-
formance of the proposed model by comparing its predictions with

Table 3
Conditions used in the simulations of the experimental runs.

Felizola (1992) Hernandez-Perez
(2007)

𝑑 (mm) 50.8 38
𝐿 (m) 15.24 6
Inclination (o) 10, 20, 40, 50, 60 0
Gas–liquid Air–kerosene Air–water
Number of experimental data points 23 8
Gas superficial velocities (m/s) 0.4–2.02 0.122–0.968
Liquid superficial velocities (m/s) 0.05–0.56 0.2–0.73
Pressurea (kPa) 208–255.4 101.3
Temperature (oC) 21.9–37.4 20
Gas specific constant (J kg−1 K−1) 287.058 287.058
Gas dynamic viscosity (Pa s) 1.83 × 10−5–1.90 × 10−5 1.80 × 10−5

Liquid density (kg m−3) 824.14 − 0.6814 𝑇 b 1000
Liquid dynamic viscosity (Pa s) exp(−6.114 − 0.01365 𝑇 )b 10−3

Holdup ‘probe’ positionc (m) 11.1252 4.90
1st pressure ‘probe’ positionc (m) 0.0127 4.75
2nd pressure ‘probe’ positionc (m) 12.2254 5.515

aSet as the outlet pressure.
bTemperature 𝑇 in ◦C
cDistance from the pipe inlet.

experimental measurements for several variables, including the average
liquid holdup and pressure gradient, from the works of Felizola (1992)
and Hernandez-Perez (2007) on steady gas–liquid slug flows in straight
pipes. From the former, we extract data for upward flow in pipes of
various inclinations, whilst from the latter we consider the horizontal
flow. We also compare predictions versus measurements for the bubble
nose translational velocity, slug frequency, and ratio of the film length
to slug body length. The experimental conditions of these two studies
corresponding to the points included in the comparison are listed in
Table 3. The values of the bubble nose translational velocity, the slug
frequency, and the film length-to-slug body length ratio are determined
at the same location as the average liquid holdup.

The average liquid holdup is computed as the length-weighted aver-
age of the holdup in the slug body and the film holdup corresponding to
the slug unit cell passing through a fixed position in the pipe. The pres-
sure gradient is obtained as the difference of the two pressure values
computed simultaneously at two fixed locations along the pipes divided
by the distance between them. The locations of these points, which we
call ‘probes’, are given in Table 3. In the case of Felizola’s experiments,
the distances are obtained from their drawings, although the exact
positioning of the actual pressure probes is not known precisely. As for
the experiments by Hernandez-Perez (2007), actual known distances
are adopted to replicate their experimental set-up.

Fig. 4 shows the comparison of experimental data for the average
holdup and pressure gradient values for gas–liquid slug flows in straight
pipes with various inclinations. If we denote by 𝜗meas the measured
value of a physical quantity in an experiment and by 𝜗pred its corre-
sponding model prediction, we define the relative error in absolute
value as 𝑒𝑖 = |(𝜗pred,𝑖 − 𝜗meas,𝑖)∕𝜗meas,𝑖| for the experimental run 𝑖. For the
average holdup (holdup in a slug unit cell), the average of the relative
errors in absolute value for all the data is 16.34% (10.86%), where
the standard deviations are in parentheses. With the data from Felizola
(1992), it is 18.61% (11.05%). With the data from Hernandez-Perez
(2007), it is 9.80% (7.49%). For the pressure gradient, the average of
the relative errors in absolute value is 55.33% (30.22%) for all the
data. Comparing predictions with the data by Felizola (1992) results
in an average value of the errors of 60.62% (30.07%), whilst with
the data by Hernandez-Perez (2007), the average value is 40.11%
(26.75%). In Fig. 5, we compare measurements with model predictions
for the bubble nose translational velocity, slug frequency, and film-
to-slug body length ratio. For the translational velocity, the average
of the relative errors in absolute value for all the data is 10.20%
(7.97%); for the data from Felizola (1992) is 9.34% (8.10%), whilst
for Hernandez-Perez’s (2007) data is 12.68% (7.53%). In the case of the
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Fig. 4. Comparison of measured and predicted (a) average holdup and (b) pressure gra-
dient for horizontal and inclined-upward gas–liquid flow in straight pipes. Inclination
angles range from 0◦ to 60◦.

slug frequency, for all the data the average error is 20.99% (17.89%);
for Felizola’s (1992) data is 20.83% (17.26%), and for Hernandez-
Perez’s (2007) is 21.44% (20.85%). For the film length-to-slug body
length ratio, the average of the relative errors in absolute value for all
the data is extremely high, 88.75% (195.58%), due to the presence
of two measurements (Hernandez-Perez’s, 2007, data for horizontal
flow) where, uncharacteristically, 𝑙𝑓∕𝑙𝑠 ≲ 0.15 for values of the gas
superficial velocity for which much higher ratios are expected — see
Fig. 5(c). Considering these two points as outliers, discarding them
results in an average value of the errors of 39.96% (36.37%). For the
data from Felizola (1992), the average value of the errors is 33.83%
(28.13%), whilst for Hernandez-Perez’s (2007) is 75.19% (60.98%) —
with the two outliers, the average value of the errors was about four
times this value. It should be noted that Hernandez-Perez (2007) only
reported the ratio of the slug body length-to-film length for a liquid
superficial velocity of 0.73 m s−1, which thus removes two points from
the original list of eight points (see Table 3).

The performance of the model with respect to these data set is
limited especially for the pressure gradient. The tendency is to over-
predict this quantity. This trend might be influenced by the lack of gas
in the slug body. For instance, values of gas void fraction between 0.45

Fig. 5. Comparison of measured and predicted (a) bubble nose translational veloc-
ity, (b) slug frequency, and (c) film-to-slug body length ratio for horizontal and
inclined-upward gas–liquid flow in straight pipes. Inclination angles range from 0◦

to 60◦.

to 0.25 in the slug body, which are not negligible, were reported by Fe-
lizola (1992). Therefore, a path for improvement may be considering
aerated slug bodies, where the gas is in the form of small bubbles that
may slip with respect to the liquid. This can significantly reduce the
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pressure gradient throughout the slug body, and hence decrease the
difference with the experimental data. On the other hand, having gas
in the slug bodies may reduce the length of the film region, which may
contribute to rise the pressure gradient. Also, a different treatment of
the momentum exchange at the bubble nose section may improve the
model’s predictive capabilities.

5. Unsteady slug flow in catenary risers

In this section, simulations based on the present one-dimensional
mechanistic model are performed to track an unsteady gas–liquid slug
flow in a curved inclined pipe with a catenary shape and high aspect
ratio. The catenary configuration is applicable to a deep-water riser
pipe conveying hydrocarbon fluids from the seabed to the sea surface
platform. The equation describing the catenary profile in the Cartesian
coordinate system is (see Fig. 1)

𝑦 = (1∕𝐾0) cosh
(

𝐾0𝑥 + 𝐴0
)

+ 𝐵0, (49)

in which the coordinate 𝑥 can be written as a function of the arclength
𝑠 as follows

𝑥 = (1∕𝐾0) sinh
−1 (𝐾0𝑠 + 𝐶0

)

− 𝐴0∕𝐾0, (50)

where 𝐵0 = −(1∕𝐾0) cosh𝐴0 and 𝐶0 = sinh𝐴0, so that when 𝑠 = 0,
𝑥 = 𝑦 = 0.

For the base case, we consider a long catenary riser of length
𝐿 = 600 m, with horizontal and vertical projections of 503.80 m and
290.87 m, respectively, and an inclination angle at the inlet of 1.86◦.
From these projections, the chord angle of the catenary results in 30◦.
To model this geometry, we have 𝐾0 = 1.972 × 10−3 m−1 and 𝐴0 =
3.247×10−2 in Eqs. (49) and (50). At the outlet (riser top), the catenary
has an inclination angle of 50.56◦ . The inner diameter of this catenary
riser is set to be 0.254 m so that its aspect ratio is 𝐿∕𝑑 = 2362.2. The
dimensions of this catenary are in the order of those of actual curved
risers encountered offshore.

With respect to the flow conditions, the outlet pressure is set to
be atmospheric, 101.3 kPa and the temperature of the flow every-
where along the pipe is 15oC. For the fluids, we follow Chatjigeorgiou
(2017) by considering the methane gas with a specific gas constant of
518.28 J kg−1 K−1, used in the ideal gas law, and a dynamic viscosity of
1.090×10−5 Pa s, and considering an API 48 crude oil with the liquid
density of 790 kg m−3 and a dynamic viscosity of 3.002×10−3 Pa s.

5.1. Effect of superficial velocities

First, we examine the effect of different combinations of liquid and
gas superficial velocities in the one-dimensional flow field for the 600
m-long catenary pipe. These combinations are formed with the values
𝑗𝑙 = {0.2, 2} m 𝑠−1 and 𝑗𝑔 = {0.6, 1, 2} m 𝑠−1, of the same order of
the combination of superficial velocities used by Chatjigeorgiou (2017)
considering a marine riser carrying a steady slug flow. We describe the
flow field by means of the profiles of pressure, liquid holdup, and gas–
liquid actual velocities inside the riser, amongst other variables. To the
best of our knowledge, there are no flow pattern maps available in
the literature for upward gas–liquid flow in curved pipes (pipes with
variable inclination). We are aware, for instance, of the collection of
flow pattern maps compiled in the book by Shoham (2006) for upward
gas–liquid flow in straight pipes with inclinations from horizontal
to vertical, showing that as the inclination angle increases from the
horizontal position, the slug flow region becomes dominant, and the
stratified flow region significantly shrinks until disappearing.

In Fig. 6, we show the contour plots of absolute pressure for the
entire pipe length and for a time of 0 ⩽ 𝑡 ⩽ 1400 s, for four combinations
of liquid and gas superficial velocities. Case (a) is for 𝑗𝑙 = 2 m 𝑠−1 and
𝑗𝑔 = 2 m 𝑠−1, whilst cases (b), (c), and (d) have fixed liquid superficial
velocity, 𝑗𝑙 = 0.2 m 𝑠−1, and increasing gas-to-oil superficial velocity
ratio, GOR = 𝑗𝑔∕𝑗𝑙, of 3, 5, and 10, respectively. Fig. 6(a) shows

an initial transient, lasting about 100 s and characterized by a large
pressure peak. This transient results from a jump in the velocity at
the inlet section from that of the liquid inside the pipe, 2 ms−1, and
that of the first slug body generated at the initial instant, 4 ms−1. It is
also affected by the compressibility of the gas being injected. After this
transient, the pressure contours depict a relatively steady behaviour,
with fluctuations resulting from the randomness of the slug initiation
process at the inlet.

Fig. 6(b) shows that the initial pressure transient lasts longer (about
200 s) than for case (a) and with a lower peak value. The duration of
this transient decreases as GOR increases. After the initial transient,
Fig. 6(b), (c), and (d), depict fluctuations over the entire period con-
sidered, with very noticeable contrasts in the amplitudes. By the pipe
inlet, the amplitudes of these fluctuations appear to increase with GOR.

By using the continuous wavelet transform, the time-varying fre-
quencies of absolute pressure (𝜔𝑃 ) in Fig. 6 are presented in Fig. 7 for
the selected five locations (inlet, 𝑠 = 0.25𝐿, 𝑠 = 0.50𝐿, 𝑠 = 0.75𝐿, and
near the outlet, 𝑠 = 0.975𝐿, or 60 𝑑 from the outlet) along the curved
riser and for the time interval 𝑡 = 400 – 1400 s. The power spectral
densities of the wavelets have been normalized by the maximum values
such that the largest peaks are unity, as shown by the limit of the
contour colour band. For the high values of both 𝑗𝑙 and 𝑗𝑔 of 2 m s−1,
Fig. 7(a) reveals high modulations of 𝜔𝑃 at the five locations, suggest-
ing the greatest space–time fluctuations of pressure. It is also worth
remarking the intermittent switching of the predominant frequencies
at different times and locations. For the cases of lower 𝑗𝑙 = 0.2 m s−1

with greater 𝑗𝑔 = 0.6 (Fig. 7b), 1 (Fig. 7c) and 2 (Fig. 7d) m s−1,
which show similar pressure contour patterns in Fig. 6, the amplitude
modulations as well as the spatial fluctuations of 𝜔𝑃 are enhanced
when the slug flow travels from the inlet towards the outlet as well as
when increasing 𝑗𝑔 . This highlights the greater slug flow intermittency
with the increased flow-transporting distance and GOR. Overall, the
predominant 𝜔𝑃 values are within the first 0.5 Hz, consistent with the
results of slug frequencies presented in the following.

The spatio-temporal evolutions of the liquid holdup and liquid–gas
velocities are presented in Fig. 8 for 𝑗𝑙 = 2 m s−1, 𝑗𝑔 = 2 m s−1 (figures
on the left) and 𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 2 m s−1 (figures on the right) for
the time interval 850 s ⩽ 𝑡 ⩽ 900 s. With the same value of 𝑗𝑔 , for
the first pair of superficial velocities, GOR = 1, whilst for the second
pair, GOR = 10. Figs. 8(a) and (b), for the liquid holdup, show the
length variation of the slug bodies and film-bubble regions arising from
the random slug initiation. Because there is no gas in the slug bodies,
the gas in an elongated bubble at initiation remains in that bubble for
the entire life of the slug unit cell. Only when two slug units merge,
does the gas in a bubble combines with that in another. At any given
time, the size of the bubbles increases towards the pipe outlet, due to
the decreasing pressure. Case (b), with the largest GOR, exhibits longer
elongated bubble-film regions and larger slug bodies than case (a), with
the smallest GOR. Consequently, a greater number of slug unit cells are
needed to fill the pipe for case (a) than for case (b).

Regarding the contour plots of the in situ or actual liquid velocity in
the slug bodies and film regions of Figs. 8(c) and (d), we note that the
reversed flow, with a negative velocity, dominates in the film regions
(dark colours), and its magnitude increases towards the outlet due to
the higher inclination. On the other hand, the velocity in the slug
bodies varies much lesser than in the film (light colours); its magnitude
nevertheless suddenly surges near the outlet in some instances. For the
actual gas velocity, Figs. 8(e) and (f) show that it increases significantly
as the bubble approaches the pipe outlet, following the increase in the
inclination angle and the reduction in pressure. Recall that, according
to the model, the gas velocity varies linearly inside an elongated
bubble.

In Fig. 9, we present the average values over time and, with error
bars, the corresponding standard deviations of relevant slug flow vari-
ables at five positions along the 600 m-long catenary riser for several
pairs of superficial velocities. Here, the distances are measured from the
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Fig. 6. Contour plots of absolute pressure for the 600 m-long catenary riser and (a) 𝑗𝑙 = 2 m s−1, 𝑗𝑔 = 2 m s−1, (b) 𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 0.6 m s−1, (c) 𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 1 m s−1, and
(d) 𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 2 m s−1.

inlet. The position ‘near the outlet’ corresponds to 60𝑑 from the outlet.
The variables included in this figure are the slug body and liquid film
dimensionless lengths, 𝑙𝑠∕𝑑 and 𝑙𝑓∕𝑑; the slug front and bubble nose
translational velocities, 𝜉̇ and 𝑢𝑡; the slug frequency, 𝜔𝑠; the velocity of
the liquid in the slug body, 𝑢𝑙𝑠; the average velocity of the liquid in the
film, 𝑢𝑓 ; the average slug unit liquid holdup, 𝛼𝑢; the liquid film holdup,
𝛼𝑓 , and the pressure gradient, 𝛥𝑃∕𝛥𝑠. This gradient is computed using
the pressure difference and the length between corresponding positions
in two consecutive slug unit cells (𝛥𝑃 = 𝑃1 − 𝑃2, where position ‘1’
is closer to the inlet than position ‘2’). Focusing first on the case of
𝑗𝑙 = 2 m s−1 and 𝑗𝑔 = 2 m s−1, we note that the mean values of the
slug body and film lengths, slug front and bubble nose translational
velocities, slug liquid and film (the negative of their values) velocities,
and pressure gradient increase as the outlet is approached. The mean
of the frequency decreases. The fact that the slug frequency exhibits
a decreasing trend indicates that the rise in the slug body and film
lengths, which together compose the unit cell length, dominates over
the increase in the translational velocity. Fig. 9 also shows that, for
𝑗𝑙 = 2 m s−1 and 𝑗𝑔 = 2 m s−1, the mean of the average unit cell and
film holdups vary moderately. From the values listed, the minimum
occurs at 0.75𝐿 of the pipe inlet. Note also that the slug front and
bubble nose velocities have similar mean values except for the location

near the outlet. There, the former is smaller than the latter. When the
location where the various quantities are recorded lies within the front
and tail of the leading slug body and its slug front reaches the outlet,
the velocity of the front becomes zero, which affects the statistics.

In Fig. 10, we plot the probability density functions for several
slug flow variables at the same five locations used in Fig. 9 for 𝑗𝑙 =
2 m s−1 and 𝑗𝑔 = 2 m s−1. The area under the curve in each of these
figures equals one, and the wider the range in the horizontal axis, the
shorter the maximum value reached by the curve. At the inlet, the slug
body length and the slug frequency follow a log-normal distribution, as
expected. The film length also exhibits this distribution. At the outlet,
the curve for the pressure shows more than one peak, which is likely
the result of the modelling of the various stages of the outlet process.

For most of the cases, the physical time simulated was 0 ⩽ 𝑡 ⩽ 2700 s.
The maximum time was reduced to 1435 s for the case of 𝑗𝑙 = 0.2 m s−1

and 𝑗𝑔 = 1 m s−1. As a reference, for 𝑗𝑙 = 2 m s−1 and 𝑗𝑔 = 2 m s−1

(GOR=1), for the entire simulated period, 1518 slug unit cells were
initiated, 764 left the pipe, and there were 723 merging events; 31 cells
were inside the pipe when the simulation ended. The sum of the last
three amounts equals the number of unit cells initiated. For the same
period, the corresponding quantities for the case of 𝑗𝑙 = 0.2 m s−1 and
𝑗𝑔 = 2 m s−1 (GOR=10) were 291, 265, 12, and 14.
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Fig. 7. Wavelet-based frequency plots of absolute pressure in Fig. 6 at specific locations of the 600 m-long catenary riser: (a) 𝑗𝑙 = 2 m s−1, 𝑗𝑔 = 2 m s−1, (b) 𝑗𝑙 = 0.2 m s−1,
𝑗𝑔 = 0.6 m s−1, (c) 𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 1 m s−1, and (d) 𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 2 m s−1. The location ‘near the outlet’ corresponds to 0.975𝐿.

To examine the effect of varying the superficial velocities on the
slug flow dynamics in the 600 m-long catenary riser, we reduce 𝑗𝑔 from
2 m s−1 to 0.6 m s−1 and 1 m s−1, while keep 𝑗𝑙 = 2 m s−1; hence, GOR
⩽ 1. The results are also plotted in Fig. 9. In both cases, the trends for
the mean values are similar to those for 𝑗𝑔 = 2 m s−1 as the observation
point changes from the inlet to the outlet. Regarding the slug body and
film lengths, for 𝑗𝑔 = 0.6 m s−1, the mean of 𝑙𝑠∕𝑑 is greater than that of
𝑙𝑓∕𝑑 at all the stations. For 𝑗𝑔 = 1 m s−1, this also holds except for the
station near the outlet. For 𝑗𝑔 = 2 m s−1, the mean of 𝑙𝑓∕𝑑 is larger than
that of 𝑙𝑠∕𝑑 for the last two stations. It is somewhat remarkable that
the mean of the average film velocity and the film holdup have similar
values for the three cases where 𝑗𝑙 = 2 m s−1 (i.e. GOR ⩽ 1) in every
station. The mean of the average slug unit liquid holdup increases as

GOR decreases. The same occurs for the mean of the pressure gradient
at 0.25𝐿, 0.50𝐿, and 0.75𝐿; the opposite is observed near the outlet.

Considering cases with GOR > 1, we set 𝑗𝑙 = 0.2 m s−1 whilst
𝑗𝑔 = 0.6, 1 and 2 m s−1. For these cases, the mean values of the flow
variables follow qualitatively the trends reported for the flow with
𝑗𝑙 = 𝑗𝑔 = 2 m s−1. We notice that for 𝑗𝑙 = 0.2 m s−1 and 𝑗𝑔 = 2 m s−1,
the mean of 𝑙𝑓∕𝑑 is larger than the mean of 𝑙𝑠∕𝑑 at every position
considered, due to the large GOR of 10. When 𝑗𝑔 decreases to 1 m s−1, at
the inlet, the mean of 𝑙𝑓∕𝑑 is again larger but they tend to become equal
as the outlet is approached. This trend also occurs for the smallest value
of 𝑗𝑔 , 0.6 ms−1, except that at the inlet, the mean of 𝑙𝑓∕𝑑 is shorter than
that of 𝑙𝑠∕𝑑. Another feature is that the mean of the slug frequency
is significantly smaller for these three cases than for the cases with
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Fig. 8. Contour plots of (a) and (b) liquid holdup, (c) and (d) liquid velocity, and (e) and (f) gas velocity for the catenary riser. The figures on the left are for 𝑗𝑙 = 2 m s−1 and
𝑗𝑔 = 2 m s−1 and those on the right for 𝑗𝑙 = 0.2 m s−1 and 𝑗𝑔 = 2 m s−1.

𝑗𝑙 = 2 m s−1, which exhibit a decreasing frequency mean towards the
outlet. For the flows with 𝑗𝑙 = 0.2 m s−1, the mean of the slug frequency
increases and then decreases with position. Also, even though the mean
of the velocity of the liquid in the slug body increases towards the
outlet in all these cases, lower values are observed for the cases with the
smallest mixture velocity, 𝑗𝑙 + 𝑗𝑔 . In Fig. 11, we present the probability
density functions of several variables for the pair 𝑗𝑙 = 0.2 m s−1 and
𝑗𝑔 = 2 m s−1. The histograms for 𝑙𝑠∕𝑑, 𝑙𝑓∕𝑑, and 𝜔𝑠 depict the shape of
a log-normal distribution.

In Table 4, we report the fraction of merging events discriminated
by whether they result from the critical length or critical time criterion
or from both criteria simultaneously. The relative number of slug bodies
exited at the pipe outlet is also listed. For the same liquid superficial
velocity, the relative number of merging events increases with the
diminishing of the gas superficial velocity. The majority of merging
events are due to the critical length criterion in the cases where 𝑗𝑙 =
2 m s−1, whilst merging by the critical time criterion occurs more often
in the cases where 𝑗𝑙 = 0.2 m s−1. A large relative number of merging
events leads to a low relative number of slug bodies exited at the outlet;
the opposite also holds. Exiting of the slug bodies at the outlet is always
triggered by the critical time criterion — i.e., never by the critical
length criterion.

In Fig. 12 we exemplify the local holdup as a function of position at
two instants before and two instants after the merging of the 99th and
100th cells initiated, for the 600-m long catenary riser and superficial
velocities 𝑗𝑙 = 𝑗𝑔 = 2 m s−1. After merging, the current integer index
ordering the cells is reduced by one for the cells upstream of those
merged. On the other hand, the integer index given to a slug unit cell at
initiation remains unchanged by merging; hence the cell resulting from
the coalescence of two others inherit their initiation indexes. In Fig. 12,

the cells being merged have initiation indexes of 99 and 100, and the
cell arising after merging has thus initiation indexes 99 and 100. The
101th cell initiated keeps that index, although its current ordering index
passes from 𝑗 to 𝑗 − 1. Fig. 13 depicts the dimensionless lengths, 𝑙𝑠∕𝑑
and 𝑙𝑓∕𝑑, for the 100th cell initiated, before and after merging with
the 99th, for 𝑗𝑙 = 𝑗𝑔 = 2 m s−1, and the 600-m long catenary riser. The
coalescence or merging process, governed by the scheme of Section 4.4,
is signalled by the sharp, instantaneous change in both lengths. In the
case shown, merging is triggered by the critical length and critical time
criteria, simultaneously.

5.2. Effect of geometry: Curved versus straight pipes

Here, we investigate the effect on the slug flow dynamics of chang-
ing the geometry of the riser. Instead of the curved catenary shape
introduced at the beginning of Section 5, we shall consider a straight
pipe having the same diameter of that catenary riser. Two cases are
considered. First, a straight pipe spanning the chord of the 600 m-long
catenary, which is the length of the straight segment joining the end
points of the curve. Thus, from the horizontal and vertical projections
of the catenary, the length of this pipe is 𝐿 = 581.74 m (𝐿∕𝑑 =
2290.3) and its (constant) inclination angle is 30◦. As before, the flow
is upwards. Secondly, we consider a horizontal pipe having the length
of the horizontal projection of the 600 m-long catenary (𝐿 = 503.80 m,
𝐿∕𝑑 = 1983.5). The temperature, outlet pressure, and fluid properties
are the same as those used in the simulations involving the curved riser.

Contour plots of the absolute pressure for the straight inclined
and horizontal pipes are presented in Fig. 14 for 𝑗𝑙 = 0.2 m s−1 and
𝑗𝑔 = 1 m s−1, for the complete length of the pipe and for an interval
0 ⩽ 𝑡 ⩽ 900 s. These figures may be compared with Fig. 6(c) for the
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Fig. 9. Slug flow variables at five positions for the 600 m-long catenary riser for various pairs of superficial velocities. The markers represent the mean values and the error bars
correspond to the standard deviations.

flow in the curved pipe with the same superficial velocities. Initially, a
pressure peak rapidly develops near the inlet in both cases. Then, the
pressure decreases leading to an essentially stable behaviour after about
150 s and 200 s for the inclined and horizontal pipes, respectively.
The largest pressure values in the catenary and inclined straight pipe
are of the same order, whereas in the horizontal pipe, because gravity
effects are almost absent, the pressure peak is noticeably smaller. An

important observation is that whilst in the case of the catenary, the
pressure exhibits conspicuous fluctuations for the period shown, for
the straight pipes, the unsteady effects in the pressure are significantly
diminished after the initial transient.

Fig. 15 is the counterpart for the straight, inclined and horizontal
pipes of Fig. 9. This new figure contains results from two pairs of
superficial velocities, 𝑗𝑙 = 2 m s−1, 𝑗𝑔 = 2 m s−1, and 𝑗𝑙 = 0.2 m s−1,
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Fig. 10. Probability density functions of several slug flow variables for the 600 m-long catenary riser at five fixed positions measured from the inlet. The location ‘near the outlet’
corresponds to 0.975𝐿. The inlet superficial velocities are 𝑗𝑙 = 2 m s−1 and 𝑗𝑔 = 2 m s−1.

Table 4
Statistics of the slug units merging events and exited slug bodies for the 600 m-long catenary riser.

Superficial Gas–oil Merging events Exited
velocities ratio slug

(m s−1) (GOR) Totala Critical lengthb Critical timeb Critical length bodiesa

(𝑗𝑙 , 𝑗𝑔 ) (%) (%) (%) & timeb (%) (%)

(2, 2) 1 47.63 57.81 36.24 5.95 50.33
(2, 1) 0.5 54.48 65.32 30.43 4.24 42.98
(2, 0.6) 0.3 57.36 70.35 24.98 4.68 39.80
(0.2 ,2) 10 4.12 25.00 66.67 8.33 91.41
(0.2, 1) 5 6.25 16.67 83.33 0 75.00
(0.2, 0.6) 3 16.52 27.59 72.41 0 75.50

aNormalized with the number of slug units initiated.
bNormalized with the total number of merging events.

𝑗𝑔 = 1 m s−1, and results from the flow in the 600 m-long catenary are
also included for the purpose of discussion. Starting with the case of
𝑗𝑙 = 2 and 𝑗𝑔 = 2 m s−1, the variables exhibit features that are similar
to those of the catenary. For the inclined straight pipe, however, the

magnitude of the means of the average film velocity, the film holdup,
and the pressure gradient show little variation in comparison to the
catenary. For the catenary, the pressure gradient at the first quarter
of the pipe is much smaller than that of the inclined straight pipe.



International Journal of Multiphase Flow 162 (2023) 104410

19

J.C. Padrino et al.

Fig. 11. Probability density functions of several slug flow variables for the 600 m-long catenary riser at five fixed positions measured from the inlet. The location ‘near the outlet’
corresponds to 0.975𝐿. The inlet superficial velocities are 𝑗𝑙 = 0.2 m s−1 and 𝑗𝑔 = 2 m s−1.

This contrasting behaviour is due to the relationship between the pipe
inclination and the effect of gravity. The inclination effect also causes
a higher mean in the velocity of the backward flow in the film and a
thinner holdup in that region for the inclined straight pipe. Note also
that the mean of the dimensionless slug body length is smaller for the
inclined straight pipe than for the catenary. This contributes to the
formation of slug units with a higher frequency for the former. In the
case of the horizontal pipe, for the same superficial velocities, most of
the variables show similar qualitative trends as the catenary riser and
the inclined straight pipe. Unlike the previous cases, for the horizontal
pipe, at the inlet, the mean of the film length is higher than that of the
slug body length, and this relation remains for the other positions along
the pipe. Also, the slug frequency is smaller for the horizontal case than
for the catenary and inclined straight pipes. An important quantitative
result is that the mean of the average film velocity indicates that the
liquid moves forward in this region, in contrast to the catenary and
straight inclined pipes, although with a magnitude much smaller than
the magnitude in those other cases. In fact, for the horizontal pipe,
the mean of the average film velocity is about an order of magnitude

smaller than that of the liquid in the slug body, whilst for the catenary
and inclined straight pipes, the magnitude of the mean velocity in the
film (negative) can be up to twice the mean of the velocity in the
slug body. In addition, the pressure gradient is much smaller for the
horizontal pipe, as gravitational effects are attenuated in this case in
comparison to the catenary and inclined straight cases.

Focusing on the case of superficial velocities 𝑗𝑙 = 0.2 m s−1 and
𝑗𝑔 = 1 m s−1, for the straight inclined pipe, the overall trends depicted
in Fig. 15 of the mean values for 𝑗𝑙 = 0.2 m s−1 and 𝑗𝑔 = 1 m s−1 are
similar to those for 𝑗𝑙 = 2 m s−1 and 𝑗𝑔 = 2 m s−1. For a smaller mixture
velocity, the means of the liquid velocity in the slug body, the slug
front, and the bubble nose velocities are also lower. Nonetheless, the
magnitude of the means of the average film velocity are rather similar.
For the case with the lower superficial velocities, the mean of the slug
frequency is smaller. For this case, the slug initiation model results in
lower means of the slug body and film lengths, but these quantities
become larger than those for the highest superficial velocities when the
outlet is approached. For the flow with 𝑗𝑙 = 0.2 m s−1 and 𝑗𝑔 = 1 m s−1

in the straight horizontal pipe, the mean values of the dimensionless
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Fig. 12. Local liquid holdup 𝛼𝑙 versus position 𝑠 at four different times for the 600-m
long catenary riser and 𝑗𝑙 = 𝑗𝑔 = 2 m s−1. The figures show the merging of the 99th
and 100th cells initiated, which occurs at time 200 s < 𝑡 < 201 s.

Fig. 13. Dimensionless slug body and film lengths, 𝑙𝑠∕𝑑 and 𝑙𝑓 ∕𝑑, respectively, as
function of time, of the 100th cell initiated for the 600-m long catenary riser and
𝑗𝑙 = 𝑗𝑔 = 2 m s−1.

slug body and, especially, of the film length included in Fig. 15 are
much higher than those for 𝑗𝑙 = 2 m s−1 and 𝑗𝑔 = 2 m s−1 in the same
configuration. At the inlet, the means of 𝑙𝑠∕𝑑 and 𝑙𝑓∕𝑑 are about 3
and 20 times higher for the flow with lower superficial velocities. This
corresponds to much longer slug unit cells and hence fewer ones inside
the pipe at a given time. Also, the means of the slug frequency and
average film velocity are very low, for instance, in comparison to the

case with the same superficial velocities in the inclined pipe. When
plotting the probability density functions for 𝑙𝑠∕𝑑, 𝑙𝑓∕𝑑, and the slug
frequency, we notice that, at the inlet, these variables do not follow
the log-normal distribution (not shown). This is affected by the lower
number of unit cells created over the simulated period (see below),
which is the same period considered in the simulation of the flow with
the same superficial velocities in the inclined straight pipe. Based on
flow pattern maps for horizontal gas–liquid flow (e.g., Shoham, 2006),
we conclude that the flow is likely to be stratified or stratified-wavy
for 𝑗𝑙 = 0.2 m s−1 and 𝑗𝑔 = 1 m s−1. The results from our model just
discussed support this assertion. Since these conditions do not seem to
correspond to slug flow, we do not pursue this case further.

Comparing the mean values for the flows with 𝑗𝑙 = 0.2 m s−1 and
𝑗𝑔 = 1 m s−1 in an inclined pipe and in the catenary (discussed in
Section 5.1), we observe that most of the variables exhibit similar
qualitative behaviours. At the inlet, the mean of 𝑙𝑓∕𝑑 is greater than
that of 𝑙𝑠∕𝑑, for the catenary and near the outlet, both attain similar
values. For the straight inclined pipe, near the inlet, the relation is
reversed, and near the outlet the mean of 𝑙𝑓∕𝑑 is larger than that of
𝑙𝑠∕𝑑. The mean of the frequency for the inclined straight pipe decreases
towards the outlet whilst it first increases and then decreases for the
catenary riser. The effect of the shape is noticeable for the means of the
average film velocity (in magnitude) and the pressure gradient. At the
pipe inlet, these values are higher for the pipe with constant inclination
than for the catenary; near the outlet, we notice the opposite. This may
be explained by the fact that, when compared with the straight inclined
pipe, the catenary has a smaller inclination angle at the inlet and a
higher one at the outlet.

The physical time simulated for the straight pipes and 𝑗𝑙 = 2 m s−1,
𝑗𝑔 = 2 m s−1 was 0 ⩽ 𝑡 ⩽ 2700 𝑠 for both inclinations. In the case of
𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 1 m s−1, the maximum time was reduced to 900 s.

Some statistics related to the criterion triggering the merging events
as well as the relative number of slug bodies exiting the pipe are
summarized in Table 5. For the same pair of superficial velocities, a
higher relative number of merging events occur for the inclined pipe.
For the case with the highest superficial velocities, a slightly greater
number of merging events occur due to the critical length criterion
than due to the critical time one for both geometrical setups. For the
other pair of superficial velocities, the majority of merging events are
the result of the critical time criterion. For the top three entries of the
table, the slug bodies exited because of the critical time criterion, as in
the catenary cases. For the last case, most of the slug bodies exited as
a result of the critical length criterion.

5.3. Effect of geometry: Aspect ratio

In this section, we report on the effect of changing the aspect ratio
of a catenary riser. To this end, we simulate the gas–liquid slug flow in
the catenary geometry employed by Chatjigeorgiou (2017) (see also Ma
and Srinil, 2020), which we designate here as the ‘longer’ catenary,
whilst the 600 m-long catenary introduced at the beginning of Section 5
becomes the ‘shorter’ catenary riser. This longer riser has a length of
2025.70 m, horizontal and vertical projections of 1688 m and 1000 m,
and an inclination angle of 1.86◦ at the inlet section (the same as
the shorter catenary). Its chord angle is 30.64◦ . The corresponding
coefficients needed in (49) and (50) are 𝐾0 = 6.024 × 10−4 m−1 and
𝐴0 = 3.247 × 10−2. With an inner diameter of 0.385 m, this catenary
riser thus has an aspect ratio of 𝐿∕𝑑 = 5261.6, which is about twice
that of the shorter catenary.

Results from simulations of the slug flow in the longer catenary are
presented in Table 6 for several variables. This table also includes the
results for the shorter catenary discussed in Section 5.1 for two pairs
of superficial velocities, 𝑗𝑙 = 0.2 m s−1 and 𝑗𝑔 = 2 m s−1, and 𝑗𝑙 = 2 m s−1

and 𝑗𝑔 = 2 m s−1. The trends exhibited by the values in Table 6 are
similar to those observed for the shorter riser. The mean values of
the dimensionless slug body and film lengths at the inlet are similar
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Fig. 14. Contour plots of absolute pressure for the (a) inclined and (b) horizontal straight pipe. The superficial velocities are 𝑗𝑙 = 0.2 m s−1, 𝑗𝑔 = 1 m s−1 in both cases.

Table 5
Statistics of the slug units merging events and exited slug bodies for the straight pipe geometry.

Superficial Merging events Exited
velocities slug

(m s−1) Totala Critical lengthb Critical timeb Critical length bodiesa

(𝑗𝑙 , 𝑗𝑔 ) (%) (%) (%) & timeb (%) (%)

(2, 2) 58.75 49.56 43.20 7.24 39.57Inclined pipe

(2, 2) 53.96 47.27 42.90 9.83 44.53Horizontal pipe

(0.2, 1) 71.88 7.88 91.30 0.82 20.31Inclined pipe

(0.2 ,1) 47.37 0 100 0 31.58Horizontal pipe

aNormalized with the number of slug units initiated.
bNormalized with the total number of merging events.

between the longer and shorter catenaries, but increase more rapidly
for the former, such that by the outlet, the dimensionless lengths for the
longer catenary are about twice those for the shorter one. With respect
to the means of the various velocities, these values are somewhat higher
for the longer catenary. The differences become noticeable towards the
outlet, especially for the bubble nose and average film velocities. As
for the shorter riser, the average film velocity (negative) indicates a
locally backward flow. The mean of the slug frequency is significantly
smaller in this longer catenary than in the shorter catenary. By the
inlet, it is 30% lower and near the outlet is about 50% smaller. This
corresponds to the fact that the change in length for a slug unit is much
larger than the change in speeds of both the slug front and the bubble
nose. The means of the average unit cell and film holdups, and of the
pressure gradient are similar between the two risers. The mean of the
absolute pressure is larger for the longer catenary, which has a vertical
projection three times greater than that of the shorter one. For the
longer catenary, the physical time simulated was again 0 ⩽ 𝑡 ⩽ 2700 s.
In this case, 1064 slug unit cells were initiated, and 360 cells left the
pipe; there were 649 merging events, and 55 unit cells remained in the
pipe when the simulation ended.

The statistics regarding the relative number of merging events and
slug bodies exited at the outlet for the longer riser are similar to those
of the shorter one of Table 4.

6. Conclusions

An improved mechanistic model has been presented for predicting
an unsteady gas–liquid upward slug flow in curved inclined rigid pipes
using the slug tracking approach. The model, with a sequence of slug
unit cells, stems from the mass and momentum conservation laws ap-
plied not only to the moving and deforming control volumes enclosing
the slug body, the elongated bubble, and the liquid film conforming a
unit cell, but also to the surfaces describing the slug bodies fronts and
tails. Closure of the model is provided by a correlation for the bubble
nose velocity, including the wake effect, which drives coalescence of
slug units as a function of the slug body length, and by formulae for
the shear stresses at the wall and bubble-film interface.

By assuming that the slug body contains no gas and that the liquid
film thickness is spatially uniform, the principle of mass conservation
leads to a spatially constant slug liquid velocity and local film and
gas velocities varying linearly in space in transient conditions. Mass
and momentum balances at the slug body front and bubble nose yield
velocity and pressure ‘jumps’.

In the literature on steady or unsteady slug flow modelling, it is not
uncommon to modify the pressure drop in a slug unit by adding, in
a somewhat heuristic manner, a so-called acceleration pressure drop.
This term is given by the difference in momentum fluxes at a certain
boundary of the control volume being considered, typically at the slug
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Fig. 15. Slug flow variables at five positions for the inclined and horizontal straight pipes for two pairs of superficial velocities. Results for the 600 m-long catenary are included
for comparison. The markers represent the mean values and the error bars correspond to the standard deviations.

front. In the present work, pressure jumps driven by differences in mo-
mentum fluxes arise from the formal application of linear momentum
balances at the interfaces between the slug body and the elongated
bubble-film region. This formalism parallels the application of mass
balances at these locations leading to the continuity of mass fluxes for
each phase and to velocity jumps. The momentum exchange at the
bubble nose is modified, heuristically, to account for a bubble shape

that varies gradually rather than sharply. Pressure variation due to
hydrostatic effects of the film level is considered.

The slug initiation at the pipe inlet has been considered and is
governed by a random process where the slug body length is drawn
from a log-normal distribution. The distribution’s mean is obtained
from a frequency correlation valid for horizontal or inclined pipes.
Merging of consecutive slug unit cells is incorporated, taking place
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Table 6
Average over time and, in parenthesis, the associated standard deviation of several flow variables for the shorter and longer catenary risers at different positions along their length
for 𝑗𝑙 = 2 m s−1 and 𝑗𝑔 = 2 m s−1. The location ‘near the outlet’ corresponds to 60 𝑑 from the outlet.

Variable Inlet 0.25𝐿 0.50𝐿 0.75𝐿 Near outlet

Shorter Longer Shorter Longer Shorter Longer Shorter Longer Shorter Longer
pipe pipe pipe pipe pipe pipe pipe pipe pipe pipe

𝑙𝑠∕𝑑
28.845 28.927 40.949 51.477 49.272 66.988 56.937 77.877 82.277 145.301
(15.523) (16.140) (18.655) (22.195) (20.785) (25.960) (22.525) (28.450) (33.733) (57.773)

𝑙𝑓 ∕𝑑
22.871 21.724 29.133 34.670 42.992 58.723 73.864 104.361 113.142 223.609
(12.255) (11.788) (13.499) (14.365) (18.447) (23.390) (30.874) (40.210) (46.877) (78.816)

𝜉̇ (m s−1) 5.850 6.055 6.207 6.514 6.977 7.464 8.672 9.722 11.390 11.301
(0.158) (0.133) (0.990) (1.195) (1.310) (1.617) (2.277) (2.978) (5.125) (7.941)

𝑢𝑡 (m s−1) 5.815 6.001 6.247 6.407 7.066 7.370 9.030 9.946 25.935 50.638
(0.146) (0.124) (0.981) (1.321) (1.301) (1.795) (2.388) (3.356) (11.310) (14.082)

𝜔𝑠 (Hz) 0.706 0.496 0.537 0.295 0.436 0.221 0.380 0.191 0.333 0.165
(0.354) (0.251) (0.280) (0.155) (0.208) (0.116) (0.176) (0.091) (0.127) (0.062)

𝑢𝑙𝑠 (m s−1) 4.007 4.002 4.233 4.315 4.857 5.089 6.264 6.959 7.688 10.476
(0.118) (0.091) (0.806) (0.978) (1.074) (1.335) (1.884) (2.497) (5.207) (10.537)

𝑢𝑓 (m s−1) −2.164 −2.635 −6.701 −8.648 −8.786 −11.215 −9.999 −12.849 −14.599 −22.612
(0.120) (0.129) (0.172) (0.176) (0.234) (0.278) (0.405) (0.647) (1.676) (2.026)

𝛼𝑢
0.658 0.670 0.642 0.649 0.595 0.594 0.515 0.496 0.520 0.537
(0.008) (0.008) (0.062) (0.081) (0.079) (0.086) (0.086) (0.091) (0.124) (0.135)

𝛼𝑓
0.226 0.232 0.151 0.143 0.133 0.126 0.127 0.121 0.167 0.195
(0.007) (0.006) (0.007) (0.006) (0.006) (0.005) (0.007) (0.008) (0.034) (0.052)

𝑃 (MPa) 1.984 5.862 1.780 5.224 1.403 3.984 0.942 2.460 0.496 0.895
(0.105) (0.641) (0.094) (0.620) (0.079) (0.513) (0.057) (0.260) (0.091)) (0.264)

𝛥𝑃∕𝛥𝑠 0.677 0.528 2.024 1.926 2.851 2.730 3.078 2.855 6.284 5.854
(kPa m−1) (0.181) (0.149) (0.447) (0.360) (0.582) (0.505) (0.850) (0.726) (3.249) (3.134)

when the slug body length of the trailing unit cell becomes shorter
than a threshold or a time scale criterion has been satisfied. Merging
is modelled through balances of mass and momentum. Similar criteria
are applied to the slug body withdrawal at the pipe outlet. The system
of non-linear equations is numerically solved with a fully implicit
approach.

By considering deep-water catenary risers transporting natural gas
and oil, when they are initially filled with the flowing single-phase
liquid, various combinations of gas and liquid superficial velocities at
the inlet have been considered as case studies. Equivalent gas–liquid
flows in straight horizontal or inclined pipes have also been studied
for the purpose of comparison. Depending on the gas-to-oil superficial
velocity ratio (GOR), main findings based on simulation results are
summarized as follows.

• Evolution in both space and time of the pressure, local holdup,
and liquid and gas velocities has been presented. Upon the intro-
duction of the first slug unit cell, a large pressure peak appeared
by the inlet owing to a sudden change in the mixture velocity.
This peak is either essentially decayed or paves a way to fluctu-
ations of relatively large amplitudes depending on the superficial
velocities. For high GOR, pressure fluctuations, with maximum
amplitudes near the inlet, persisted over a long physical time due,
presumably, to the gas compressibility effect. Such fluctuating
amplitudes seem to significantly increase with GOR.

• For upward flow in curved risers with variable pipe inclinations,
the magnitudes of the slug body front, bubble nose, slug body
liquid, and film velocities show a strong tendency to increase
towards the pipe outlet depending on GOR and the aspect ratio.
In the liquid film, the backward flow, due to the pipe inclination,
has also been captured.

• When GOR is smaller than one, the mean of the slug frequency
decreases towards the outlet.

• For an inclined straight pipe with GOR > 1, after the initial
transient dynamics, pressure fluctuations practically vanish in
comparison with the same GOR flow in a catenary riser with a
chord connecting its ends having the same length and inclination
as the straight pipe. For the catenary riser, pressure fluctuations
persist over a much longer time interval.

• By simulating catenary risers with two different aspect ratios and
subject to the same combination of gas–liquid superficial veloci-
ties, the means of the slug body and film lengths, of the bubble
nose translational velocity, and of the film velocity (magnitude)
are larger for the slug flow in the longer catenary near the outlet.
For this longer riser, the mean of the slug frequency is about half
of that in the shorter riser at corresponding (relative) positions
along the pipe. On the other hand, at these positions, the means
of the film holdup and pressure gradients are comparable for the
two geometries.

Future work may consider, for curved pipes, a momentum balance
for the slug body with an inclination angle different from the one used
in the momentum balances for the liquid film and elongated bubble.
Also, the presence of gas in the slug bodies, in the form of small
bubbles, may be modelled. After implementing aerated slug bodies,
the performance of the model with and without the correction in the
momentum exchange at the bubble nose may be evaluated. Further,
temperature variations may be modelled by including energy balances
over the slug body, film, and elongated bubble regions within the
framework of the slug tracking approach. Because the model fully ac-
counts for the unsteady fluid mechanics, its coupling with the structural
dynamics of a flexible inclined straight or curved riser may advance
our understanding of multiphase flow-induced vibration effects and
associated flow-structure interaction phenomena.
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Appendix A. Closure relationships

Following Al-Safran et al. (2004), the bubble nose translational
velocity is computed from an expression proposed by Talvy et al. (2000)

𝑢𝑡 = 𝑢𝑡∞
[

1 + 𝐶1 exp(−𝐶2𝑙𝑠∕𝑑) + 𝐶3∕(𝑙𝑠∕𝑑)
]

; (A.1)

the factor in brackets accelerates the bubble nose of a short bubble in
the film region. For 𝑢𝑡∞, we use the expression by Nicklin (1962)

𝑢𝑡∞ = 𝐶𝑠𝑢𝑙𝑠 + 𝑢0, (A.2)

with the fact that there is no gas in the slug body. Here, 𝐶𝑠 = 1.2 for
turbulent flows and 𝐶𝑠 = 2 for laminar flows (Fabre, 1994), and for the
drift velocity of the elongated bubble, 𝑢0, the expression by Bendiksen
(1984) is adopted

𝑢0 = 0.54
√

𝑔𝑑 cos 𝜃 + 0.35
√

𝑔𝑑 sin 𝜃. (A.3)

Values for tunning factors 𝐶1, 𝐶2, and 𝐶3 in (A.1) can be found in Al-
Safran et al. (2004); they suggest 𝐶1 = 8, 𝐶2 = 1.5, and 𝐶3 = 0.5.
Modifications to this model of the translational bubble nose velocity
are discussed by Rosa et al. (2015).

Local shear stresses can be determined by

𝜏𝑓 = 𝑓𝑓 𝜌𝑙|𝑢𝑓 |𝑢𝑓∕2, (A.4)

𝜏𝑔 = 𝑓𝑔𝜌𝑔|𝑢𝑔|𝑢𝑔∕2, (A.5)

𝜏𝑖 = 𝑓𝑖𝜌𝑔|𝑢𝑔 − 𝑢𝑓 |
(

𝑢𝑔 − 𝑢𝑓
)

∕2, (A.6)

𝜏𝑠 = 𝑓𝑠𝜌𝑙|𝑢𝑙𝑠|𝑢𝑙𝑠∕2. (A.7)

The (Fanning) friction factors are computed, in the case of smooth
pipes, using the Blasius expressions,

𝑓𝑘 = 𝐶𝜏𝑅𝑒
𝑚
𝑘 , (A.8)

where 𝑘 = 𝑓 , 𝑔, or 𝑠; 𝐶𝜏 = 16 and 𝑚 = −1 for laminar flows, and
𝐶𝜏 = 0.046 and 𝑚 = −0.2 for turbulent flows (Taitel and Dukler,
1976). For rough pipes, we can use expressions for the friction factor
that consider the relative roughness. The Reynolds number is computed
from

𝑅𝑒𝑓 =
𝜌𝑙|𝑢𝑓 |𝑑𝑓

𝜇𝑙
, 𝑅𝑒𝑔 =

𝜌𝑔|𝑢𝑔|𝑑𝑔
𝜇𝑔

, 𝑅𝑒𝑠 =
𝜌𝑙|𝑢𝑙𝑠|𝑑

𝜇𝑙
, (A.9)

where

𝑑𝑓 =
4𝐴𝑓

𝑆𝑓
and 𝑑𝑔 =

4𝐴𝑔

𝑆𝑔 + 𝑆𝑖
. (A.10)

The friction factor 𝑓𝑖 is also computed with (A.8) based on a Reynolds
number 𝑅𝑒𝑖 = 𝜌𝑔|𝑢𝑔 − 𝑢𝑓 |𝑑𝑔∕𝜇𝑔 . Once the local shear stresses have been
determined, the average shear stresses 𝜏𝑓 , 𝜏𝑔 , and 𝜏 𝑖 can be computed
by integration over the length of the elongated bubble-film region.

An additional closure relationship, in this case for the slug fre-
quency, is given in Section 3.1. This is employed to obtain the slug
body length when a unit cell is initiated.

Fig. B.1. Moving control volume enclosed in the elongated bubble of unit cell 𝑗 with
its left boundary fixed to the bubble rear and its right boundary at an arbitrary distance
𝑧𝑓 from the left edge.

Appendix B. Gas and liquid velocities in elongated bubble and
film regions

Consider the control volume enclosed in the elongated bubble de-
picted in Fig. B.1. The left surface is at position 𝜉𝑗+1 and moves with
the bubble rear at the speed 𝜉̇𝑗+1; the right surface is within the bubble
at an arbitrary position 𝑧𝑓 +𝜉𝑗+1 and moves with the velocity 𝑧̇𝑓 + 𝜉̇𝑗+1.
This control volume is also bounded by the pipe inner wall and the
gas–liquid interface. If 𝑢𝑔(𝑧𝑓 ) is the gas axial velocity at 𝑧𝑓 + 𝜉𝑗+1, the
mass balance for the gas in this control volume can be written as
𝑑
𝑑𝑡

(

𝜌𝑗𝑔𝛼
𝑗
𝑔𝑧𝑓𝐴

)

= 𝜌𝑗𝑔𝛼
𝑗
𝑔𝐴

(

𝑢𝑗𝑔𝑒 − 𝜉̇𝑗+1
)

− 𝜌𝑗𝑔𝛼
𝑗
𝑔𝐴

(

𝑢𝑗𝑔 − 𝑧̇𝑓 − 𝜉̇𝑗+1
)

. (B.1)

In writing Eq. (B.1), we have assumed that the gas volume fraction
is the same at every cross section in the control volume (consistent
with the uniform film thickness assumption). With this hypothesis, the
effects on the volume fraction of the variation of the interface profile,
especially near the bubble nose, are neglected. Expanding the left-hand
side of (B.1) and rearranging, this expression becomes

𝑧𝑓
𝑑
𝑑𝑡

(

𝜌𝑗𝑔𝛼
𝑗
𝑔

)

= 𝜌𝑗𝑔𝛼
𝑗
𝑔

(

𝑢𝑗𝑔𝑒 − 𝑢𝑗𝑔
)

, (B.2)

and the terms with 𝑧̇𝑓 cancel out. By invoking Eq. (7) for the mass
balance of gas over the entire elongated bubble, we can eliminate the
time derivative in Eq. (B.2) and arrive at Eq. (9) for the gas velocity.
A similar procedure for the liquid film leads to Eq. (10) for the liquid
velocity in this region.

Appendix C. Geometric expressions

With the aid of Fig. 2, we may write several geometric relations
among the variables appearing in the model for a given slug unit cell.
For a differential element of cross-sectional area, we may write 𝑑𝐴 =
𝑑
√

1 − (2𝜁∕𝑑 − 1)2𝑑𝜁 . Then, the liquid volume fraction can be expressed
in terms of the dimensionless film thickness ℎ𝑓∕𝑑 as

𝛼𝑓 = 1
𝐴 ∫𝐴𝑓

𝑑𝐴 = 2
𝜋

⎡

⎢

⎢

⎣

(2ℎ𝑓
𝑑

− 1
)

√

ℎ𝑓
𝑑

−
(ℎ𝑓

𝑑

)2

+ sin−1
√

ℎ𝑓
𝑑

⎤

⎥

⎥

⎦

. (C.1)

Furthermore, the integrals in Eq. (25) can be evaluated, leading to

𝛴𝑓 = 𝑑
𝜋𝛼𝑓

⎡

⎢

⎢

⎣

(

2 + (2ℎ𝑓∕𝑑 − 1)2
)

3

√

ℎ𝑓

𝑑
−
(ℎ𝑓

𝑑

)2

+
( 2ℎ𝑓

𝑑
− 1

)

sin−1
√

ℎ𝑓

𝑑

⎤

⎥

⎥

⎦

,

(C.2)
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𝛴𝑔 = 𝑑
𝜋𝛼𝑔

⎡

⎢

⎢

⎣

(

2 + (2ℎ𝑓∕𝑑 − 1)2
)

3

√

ℎ𝑓

𝑑
−
(ℎ𝑓

𝑑

)2

−
( 2ℎ𝑓

𝑑
− 1

)

cos−1
√

ℎ𝑓

𝑑

⎤

⎥

⎥

⎦

.

(C.3)

The length of the gas–liquid interface in the cross section can be
determined from

𝑆𝑖 = 𝑑
√

1 − (1 − 2ℎ𝑓∕𝑑)2. (C.4)

The wetted perimeters of the liquid film and the elongated bubble, 𝑆𝑓
and 𝑆𝑔 , respectively, are given by

𝑆𝑓 = 𝜆 𝑑∕2, 𝑆𝑔 = 𝜋𝑑 − 𝑆𝑓 , (C.5)

where 𝜆, the angle of the circular sector subtended by the interface (see
Fig. 2), is related to the film thickness by sin(𝜆∕2) = 1 − 2ℎ𝑓∕𝑑.

Since an inclination angle 𝜃𝑗 is the angle subtended by the straight
segment connecting points 𝜉𝑗 and 𝜉𝑗+1, which fall on the axis of the
curved pipe, and the horizontal 𝑥-axis, one can write

𝜃𝑗 = tan−1
[

𝑦(𝜉𝑗 ) − 𝑦(𝜉𝑗+1)
𝑥(𝜉𝑗 ) − 𝑥(𝜉𝑗+1)

]

. (C.6)
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