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Abstract: At present, the accurate establishment of the battery model and the effective state of health (SOH) estimation 

under actual energy storage conditions have become the main problems in new energy storage stations. Therefore, a SOH 

estimation method based on cooperative competitive particle swarm optimization (CCPSO) and nonlinear coefficient 

temperature decreasing simulated annealing-back propagation (NSA-BP) is proposed. The novelty of this research mainly 

includes the design of extraction methods in different health indicators (HIs) and the construction of developed NSA-BP 

network for SOH estimation. In this research, the contributions of SOH estimation are mainly to assist in battery 

replacement and provide relevant economic reference. Low-rate constant current energy storage degradation experiments 

and a variable-rate energy storage degradation experiment are performed for different battery packs at 25 ℃. The 

experimental results indicate that the root mean square error (RMSE) and the mean absolute error (MAE) of the proposed 

method are 0.00588 and 0.00481 under the 0.5 rate condition, and the corresponding values are 0.00732 and 0.00639 under 

the variable-rate condition. Under the same condition, the proposed SOH estimation method is superior to the methods 

before improvement in RMSE and MAE, which can provide a basis for efficient monitoring of energy storage batteries. 
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1. Introduction 

Due to the significant changes in the power structure, electrochemical energy storage becomes popular [1, 2]. The safe 

use of lithium-ion (Li-ion) batteries and the efficient estimation of battery states are necessary [3, 4]. One of main functions 

of battery management system (BMS) is to ensure the safe and stable operation by efficiently monitoring the SOH and 

other states [5]. The SOH reflects the maximum available capacity and the energy supply [6-8]. The definition of SOH is 

generally based on capacity, internal resistance, recyclable Li-ion, and cathode solid-phase Li-ion diffusion time [9, 10]. For 

the pack SOH definition, Diao et al. defined it through the current pack maximum available energy and the rated pack 

energy [11]. The significance of SOH lies in three aspects. The first aspect is to judge the energy supply capacity and 

available capacity space [12]. The second aspect is to quantify the current battery economy [13]. The last aspect is to screen 

abnormal cells and replace degraded cells [14]. Most existing battery pack SOH estimation methods lack the engineering 

applicability. Hence, it is urgent to improve the estimation idea and promote its universality [15-18]. 

The main motivation to encourage this research is the current demand of effective energy storage based on Li-ion 

batteries. It reflects the impact of the work on the related research field. For this field, the most important problem is to 

efficiently replace degraded cells and screen abnormal cells. The developed SOH estimation method is applied to multiple 

working conditions, which can provide an efficient reference for the replacement of cells in new energy storage systems.  

SOH obtaining approaches includes direct measurement and indirect estimation methods. Common direct measurement 

methods are Coulomb counting method and electrochemical impedance spectroscopy (EIS) method [19, 20]. The 

Coulomb counting method calculates SOH through the current and the state of charge (SOC) [21, 22]. However, the errors 

of this method accumulate continuously [23, 24]. The EIS method can accurately quantify the SOH by part of the internal 

impedance, but it requires plenty of complex experiments and a long time [25].  
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Indirect estimation methods are more in line with the engineering requirements. Among them, model-based methods, 

data-driven methods and hybrid methods are included. Model-based methods mainly consist of equivalent circuit model-

based (ECM-based) and electrochemical model-based (EM-based) methods. The steps of model-based methods include 

model establishment, parameter identification and filtering framework construction. By analyzing complexity, accuracy 

and robustness of various ECMs, Hu et al. verified the first-order RC model with hysteresis effect is the most suitable ECM 

for lithium iron phosphate (LiFePO4) battery [26]. ECM parameter identification methods involve curve fitting comparison 

methods, least square methods and intelligent optimization methods [15, 27]. Then, filtering algorithms are introduced. Wu 

et al. constructed a firefly particle filtering algorithm to estimate SOH [28]. ECMs are hard to explain internal changes, 

which affects the accuracy. Therefore, EM-based methods are often used in scenarios requiring more accurate estimation. 

Common EMs include pseudo-two-dimensional (P2D) model and its simplified models. There are two methods to simplify 

the P2D model. The first method is to simplify the formula expression [29, 30], and the second method is to simplify the 

structure or parameters [31]. Single particle (SP) model and extended single particle (ESP) model are based on the second 

method. Based on the SP model, Wu et al. achieved SOH estimation by analyzing the variation of Li-ion concentration 

difference with degradation between fully charged state and fully discharged state [32]. It is worth noting that physical 

models are useless in some practical cases because of its high complexity and low computational efficiency. 

Common data-driven SOH estimation methods involve artificial neural network-based (ANN-based) method, support 

vector machine-based (SVM-based) method, fuzzy logic-based (FL-based) method, incremental capacity-based (IC-based) 

method, and differential voltage-based (DV-based) method [33-36]. ANN-based estimation methods include forward 

feedback neural network-based (FFNN-based) methods, recursive neural network-based (RNN-based) methods, deep 

neural network-based (DNN-based) methods and convolution neural network-based (CNN-based) methods. In RNN-based 

methods, the long short-term memory (LSTM) has become popular. An active state tracking-LSTM model for multi-cell 

sharing information was developed by Li et al. to obtain battery states [37]. Recently, CNN-based methods, SVM-based 

methods and IC-based methods were used for SOH estimation. For on-board SOH estimation, based on a temporal CNN, 
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Bockrath et al. developed an end-to-end method [38]. Gu et al. put forward a SOH estimation approach based on data pre-

processing and a CNN-transformer framework [39]. Liu et al. estimated SOH using an indirect enhanced HI and the SVM 

[40]. He et.al performed a study on the filtering-based and the voltage-capacity model-based IC analysis methods [41].  

The model-based methods are difficult to balance efficiency and accuracy. The data-driven methods strongly depend on 

the data quality and HIs, while some hybrid methods can complement above methods. The core idea of hybrid methods is 

to combine different estimation methods. Son et al. extracted multi-physics features as HIs from mechanical and 

electrochemical evolutionary responses [42]. A hybrid physical model was established based on the electrochemical 

mechanism and the traditional ECM [43]. Liu et al. combined SVM and LSTM to construct multi-feature fusion models to 

estimate SOH [44]. Based on the feature extraction by extremely randomized trees, Duan et al. presented an improved 

extreme learning machine to construct a new SOH estimation framework [45]. In the work of Jiang et al., building upon the 

self-attention mechanism and the automatic feature extraction method with convolutional autoencoder, a SOH estimation 

approach was developed [46]. Combining transfer learning and LSTM, Deng et al. formed a SOH estimation model [47]. 

Chen et al. proposed a SOH estimation framework with a gated recurrent unit neural network (GRUNN) [48]. However, 

the above hybrid methods share a common research gap by not adequately considering the applicability of the network 

after changes in working conditions, particularly in the case of end-to-end networks that directly incorporate voltage, 

current, and temperature as HIs. Changes in voltage, current, and temperature can significantly impact the relationship 

between these inputs and the SOH estimation, rendering the network less reliable and accurate. Therefore, within a fixed 

network, establishing a SOH estimation model suitable for multiple working conditions is the focus of this paper. In the 

future, the trend of direct measurement methods aims to achieve more accurate measurement results. The trend of model-

based methods focuses on optimizing physical models and filtering algorithms. Data-driven methods and related hybrid 

methods are trending towards establishing estimation models with higher universality and computational efficiency. 

In this research, a hybrid SOH estimation algorithm for energy storage battery packs is proposed. On the one hand, based 

on the ESP model, the CCPSO algorithm is used to identify the maximum solid-phase Li-ion concentrations of positive 
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and negative electrodes in the process of degradation. On the other hand, two degradation modes are quantified through 

incremental capacity-differential voltage (IC-DV) curves. The identification results and the quantitative results are regarded 

as HIs. Then, the strong correlation between SOH sequences and HIs is proved by grey relational analysis (GRA) and 

Pearson correlation analysis (PCA) methods. Finally, taking the above HIs as the input of the NSA-BP model and the SOH 

sequences as the output of the model, the long-term SOH estimation results can be obtained after training and testing. 

The main innovation includes the following parts. Firstly, in identification, cooperation and competition strategies are 

introduced to optimize identification results. Secondly, the NSA algorithm is adopted to optimize the initial BP parameters. 

Thirdly, a quantification method for degradation modes is developed. Lastly, in the proposed method, retraining network is 

avoided when the working condition changes. This approach significantly enhances the universality and applicability.  

The rest of this paper is arranged as follows: Section 2 makes the mathematical analysis, including ESP modeling, ESP-

MCM pack modeling, CCPSO identification, IC-DV quantification, Pearson correction analysis, grey correlation analysis 

and NSA-BP estimation modeling. The experimental platform setup, model verification and estimation result analysis are 

described in detail in Section 3. Finally, Section 4 introduces the important conclusions and prospects of the full text.

2. Mathematical analysis 

2.1. The establishment of ESP model and ESP-MCM 

In this research, the ESP model considers the liquid-phase potential caused by concentration and ohmic 

polarization in liquid-phase on the SP model. The structure diagram of the ESP model is shown in Figure 1. 

 

Figure 1 Structure diagram of the ESP model for energy storage Li-ion battery 
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In Figure 1, x, r, Ln, Lsep, Lp and L represent the thickness coordinate of electrodes, the radius direction of the 

active particles, the thickness of the negative electrode, the thickness of the separator, the thickness of the 

positive electrode and the thickness of the total cell. The expression of ESP model is shown in Equation (1). 
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Among them, Ut and E are the terminal voltage and the open-circuit potential, φs,i and Ei signify the solid-

phase potential and the open-circuit potential of electrode i, ηact,i and ηSEI,i are the reaction polarization potential 

and ohmic polarization potential of electrode i, ηact and ηSEI denote the reaction polarization overpotential and 

ohmic polarization overpotential, and θi means the utilization rate of electrode i. E is expressed in Equation (2). 

   

, , , ,

,max, ,max,

,

p p n n

s surf p s surf n

p n

s p s n

E E E

c c

c c

 

 

  



 


 (2) 

Among them, cs,surf,i and cs,max,i denote the surface solid-phase Li-ion concentration and the maximum solid-

phase Li-ion concentration of electrode i, respectively. Based on the construction principle of ESP model, the 

expression of ji at the boundary of electrode collector is shown in Equation (3). 
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Among them, I is the working current, as is the surface area of spherical active particles per unit volume, F is 

Faraday constant, Ai is the effective area of electrode i, Rs,i is the radius of the particle, and εs,i is the solid-phase 

volume fraction. Based on the previous research [14], The expressions of ηact and ηSEI are shown in Equation (4). 
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 (4) 

Among them, R, T, ki and ce denote the universal gas constant, the average temperature, the average electrode 

reaction rate constant and the liquid-phase Li-ion concentration. The expression of ηliq is shown in Equation (5). 
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, , , , , ,liq liq n liq p con pol n con pol p liq ohm n liq ohm p con pol liq ohm                      (5) 

Among them, all overpotentials are described in liquid-phase, and i represents the electrode i. ηcon-pol is the 

concentration polarization overpotential, and ηliq-ohm is the ohmic polarization overpotential. The reactions of 

liquid-phase potential distribution are shown in Equation (6). 
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Among them, φe,i is the liquid-phase potential, ie,i is the liquid-phase current density, κi and κeff,i are the normal 

and effective liquid-phase Li-ion conductivity, εe,i is the liquid-phase volume fraction, and t+ is the liquid-phase 

Li-ion transfer coefficient. When ηliq-ohm is ignored, ηcon-pol is obtained by Equation (6) and the Li-ion distribution 

difference, as shown in Equation (7). 
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To obtain ηcon-pol, it is necessary to calculate the boundary ce. The expressions of ce,i are described in the 

previous research [49]. When ηcon-pol is ignored, ηliq-ohm,i is obtained by Equation (6) and the principle of charge 

conservation the Li-ion battery [49], as shown in Equation (8). 
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As ηliq-ohm is the difference between ηliq-ohm,p and ηliq-ohm,n, the expression of ηliq-ohm is expressed in Equation (9). 
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Therefore, combined with the definition of terminal voltage, open-circuit voltage expression and various 

overpotential expressions, the terminal voltage of the proposed ESP model is demonstrated in Equation (10). 
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 (10) 

Equation (10) is the fitting terminal voltage output expression of the ESP model. Its structure block diagram is 

illustrated in Figure 2. 
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 Figure 2 The structure block diagram of the ESP model 

It can be known from Figure 2 that the structure block diagram involves two modules. Two graphs included in 

modules show the curve changes of positive and negative open-circuit voltages. Based on the ESP model, a pack 

model named ESP-MCM is proposed. It can meet the separate identification of electrochemical parameters in 

each cell. Its structure diagram is shown in Figure 3. 
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Figure 3 The structure diagram of the ESP-MCM 

In Figure 3, Em is the open-circuit voltage of the m-th cell, ηm is the sum of all the overpotentials of the m-th 

cell, I is the current through the series battery pack, and Ut is the whole terminal voltage. According to Equation 

(1), the terminal voltage expression of the m-th cell in the ESP-MCM is shown in Equation (11). 
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Among them, m represents the m-th cell. The terminal voltage of the pack model is shown in Equation (12). 
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Among them, n denotes the cell number in a pack. Because the proposed ESP-MCM proposed is based on 

series structure, the pack terminal voltage is the accumulation of the individual terminal voltages. 

2.2. CCPSO parameter identification algorithm 

The end-to-end model with fixed network parameters is usually only suitable for one working condition, 

which is hard to efficiently demonstrate the relationship between HIs and SOH when the working condition 

changes [14, 50, 51]. In the EM, cs,max,p and cs,max,n are directly related to the SOH. Therefore, in this research, 

they are used as HIs. In standard PSO algorithm, the updating process of the speed and position in this algorithm 

is explained in Equation (13). 
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 (13) 

Among them, d denotes the d-dimension, i denotes the i-th particle, v denotes the speed, x denotes the position, 

pbest denotes the current individual optimal solution, gbest denotes the current population optimal solution, and V 

denotes the speed set. In addition, wmax is the maximum value of weight factor, wmin is the minimum value of 

weight factor, k is the current number of iterations, kiter is the maximum number of iterations, X is the position 

set, r1 and r2 are random numbers in 0 to 1, c1 and c2 are learning factors, and D is the search space dimension. 

The standard PSO algorithm cannot provide the evolutionary diversity of particle swarm. Hence, the CCPSO 

algorithm is proposed by introducing cooperation and competition strategies. They increase the evolutionary 

diversity by expanding population categories and search methods, respectively. 

The cooperation strategy divides the evolutionary regions of particle swarm, so that each subpopulation can 

evolve towards different methods. During each evolution of the population, each subpopulation exchanges 

information with a designed communication frequency function, which is expressed in Equation (14). 
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Among them, f(t) is a random function within 0 and 1, F(t) is the communication frequency function, and k 

and kiter are the current and maximum iterations. The linearly increasing communication frequency function is 

adopted in this paper. Particles evolve at two speeds under the competition strategy. The sub-particle with 

smaller fitness is retained. After introducing the competition strategy, the expressions of speed and position in 

Equation (13) are optimized, as shown in Equation (15). 
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Among them, d is the d-dimension, i is the i-th particle, t is the sub-particle, v is the speed, w is the weight 

factor, x is the position, k is the iteration number, and J is the objective function. To ensure the evolutionary 

diversity, two speeds of each particle should be significantly different. In this research, the basic idea of 

parameter identification is to minimize the variance between the measured and simulation terminal voltage of 

the ESP model. Therefore, the objective function of parameter identification is expressed in Equation (16). 
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      (16) 

Among them, k is the sampling time, Vk is the measured terminal voltage, Ik is the input current, f(Ik, θ) is the 

estimated terminal voltage of the ESP model, θ is the set of electrochemical parameters to be identified, and n is 

the maximum sampling time. It is worth noting that f(Ik, θ) is calculated by Equation (10). The flowchart of 

using the CCPSO algorithm to identify cs,max,i in the ESP model is shown in Figure 4. 

Initialize known P2D model 

parameters
Initialize CCPSO parameters

Module1: Initialization module

Initialize the objective function 

of parameter identification

Initialize the position of each 

particle

Calculate the fitness of sub-particles, and retain the sub-particle with 

smaller fitness

Module2: Competition module

Obtain Jp,present,i(k+1) and 

Jp,best,i(k)

If Jp,present,i(k+1) > Jp,best,i(k),   

pbest,i is not changed

If Jp,present,i(k+1) < Jp,best,i(k), ppresent,i(k+1) is assigned to pbest,i(k+1)

min(Jp,best,i(k+1)) is assigned to Jg,best,l(k+1), and its pbest,i(k+1) is 

assigned gbest,l(k+1)

Module3: Cooperation module

Obtain F(t) and f(t)
If f(t) > F(t), gbest,l is obtained without 

communication

If f(t) < F(t), gbest,m(k+1) is assigned to gbest,l(k+1) of all subpopulations 

with communication

Update speed, position, 

pbest,i(k+1) and gbest,l(k+1)

If the maximum iteration is not reached, 

return to the competition module

Module4: Parameter output module

Calculate 

iterations

If the maximum iteration is reached, take gbest,l(kiter) 

corresponding to min(Jg,best,l(kiter)) as the optimal result

 

Figure 4 The flowchart of using the CCPSO algorithm for identification 

In Figure 4, i denotes the i-th particle, l denotes the l-th subpopulation, m denotes the optimal subpopulation, 

Jp,present and ppresent denote the fitness value and the position for a particle, and pbest and gbest denote the optimal 

identification results for a particle and a subpopulation. Additionally, Jp,best and Jg,best are the fitness of the 
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optimal identification results for a particle and a subpopulation. 

2.3. Quantification of degradation modes based on IC-DV method 

Degradation modes mainly include loss of lithium inventory (LLI), loss of active material (LAM) and 

conductivity loss (CL). Obvious LLI and LAM appear in degradation of Li-ion batteries. LLI and LAM can 

only be quantified under low-rate conditions in this paper [52]. In this research, the quantized values of LLI and 

LAM are adopted. The IC-DV method converts the approximately constant voltage in the open-circuit voltage 

curve into ΔQ/ΔU of the IC curve and ΔU/ΔQ of the DV curve. By observing the changes of IC-DV curves, the 

relationship between the external and internal characteristics is established. The expressions of the IC-DV 

method are shown in Equation (17). 

,
Q U

IC DV
U Q

 
 
 

 (17) 

For obtaining the IC-DV curves, it is necessary to carry out a low-rate test. Based on the explanation of the 

relationship between degradation modes and IC-DV curves by relevant researchers [52-54], a quantification 

method of LAM and LLI is developed, as shown in Equation (18). 
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 (18) 

Among them, ΔQIC/ΔUIC and ΔQIC/ΔUIC|1 are the present peak and initial peak of the most obvious left IC 

curve peak. QDV and QDV,1 are the present capacity and initial capacity of the most obvious DV curve peak. 

Figure 5 shows the quantification schematic diagrams of Cell2. The specific description of Cell2 is elaborated in 

Section 3.1. 
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(A) LAM quantification diagram based on IC curves 

 
(B) LLI quantification diagram based on DV curves 

Figure 5 The quantification schematic diagrams of LAM and LLI 

Peak 1 marked in Figure 5(A) is the most obvious peak in the left side of the IC curve. As can be seen from 

Figure 5, as the battery degrades, IC and LAM of Peak 1 show an upward trend, while DV and LLI of the most 

obvious peak in the DV curve show a downward trend and a left-shift trend, respectively. 

2.4. Pearson correlation analysis and grey relation analysis methods 

PCA and GRA methods are introduced to analyze the correlation. PCA method analyzes the linear correlation 

between the two variables by calculating the Pearson correlation coefficient, which is shown in Equation (19). 
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(19) 

Among them, X and Y are SOH and HI, and ρ is the Pearson correlation coefficient, which is not sensitive to 

nonlinear relationship [14]. Therefore, the GRA method is adopted to complement the nonlinear relationship. It 

quantifies the relational degree by comparing curve similarity. Its calculation framework is shown in Figure 6. 

Expressions for reference and comparison sequences:

Step 1: Search and determine reference and comparison sequences

Adopting the mean processing method:

Step 2: Perform dimensionless processing of sequences

Calculation equation of relational coefficient:

Step 3: Calculate the grey relational coefficient

Calculation equation of relational degree:

Step 4: Calculate the grey relational degree
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Figure 6 The calculation framework of the GRA method 
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In Figure 6, i is the sequence of one type of HI, k is the sequence number of this HI, n is the sequence length of 

k, x is a value in the sequence, xtrans is the sequence value of x after mean processing, ξ is the relational 

coefficient at each point between the sequences, ρ is the resolution coefficient, and r is the relational degree. 

2.5. NSA-BP estimation modeling 

The simulated annealing (SA) algorithm takes the lowest temperature of the system as the optimal solution of 

the objective function. In the process of optimization, this algorithm can avoid the local optimization as much as 

possible by introducing the escape probability. The basic framework of the SA algorithm is shown in Figure 7. 

The initial temperature T0, initial solution S0, Markov 

chain length L and total iteration number Kmax are 

randomly assigned.

The initial solution S0 is considered as the initial optimal 

solution.

Module 1: Initialization module

Lead the present temperature T dip. In the classical SA 

algorithm, the temperature is generally set to exponential 

decline, and the specific expression is:

Module 3: Temperature decline module

Set the objective function C, which aims to minimize the 

optimization error. 

Module 2: Optimal solution calculation module

Randomly select a new solution Snew in the nearest subset of 

the current optimal solution S, and calculate the objective 

function C(Snew) of the new solution.

After calculating the objective function increment ΔC, 

according to the Metropolis criterion, in a probability of P, 

Snew is regarded as the optimal solution at the present 

temperature. Otherwise, the optimal solution remains 

unchanged. The expressions of ΔC and P are:
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,0 1newT T   
Perform L iterations at the current temperature T to 

complete the internal cycle of Module 2

The external cycle is performed with Module 2 and Module 

3 until the finial temperature Tfinal, and the current solution is 

output as the optimal solution

(Metropolis 

criterion)

 

Figure 7 The basic framework of the SA algorithm 

In Figure 7, λ is the temperature drop rate, Tnew is the temperature after updating. The exponential annealing 

strategy is commonly used in classical SA algorithms. Its schematic diagram is shown in Figure 8(A). 

 
(A) The schematic diagram of the exponential annealing process 

 
(B) The schematic diagram of the proposed annealing process 

Figure 8 Schematic diagrams of two annealing processes 
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As shown in Figure 8(A), the change rate of the exponential annealing strategy at the initial stage is too large, 

which is difficult to obtain the optimal solution at this stage. To address this issue, the exponential annealing 

strategy is replaced by a nonlinear coefficient temperature decreasing annealing strategy in the proposed NSA 

algorithm. Its expression is shown in Equation (20). 

0 0
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2 2

final final

new

T T T T
T K

K

 
   (20) 

Among them, K and Kmax are the current and maximum iterations. The schematic diagram of nonlinear 

coefficient temperature decreasing annealing is shown in Figure 8(B). As can be seen from Figure 8(B), the 

proposed annealing curve is beneficial to explore the optimal solution at a higher temperature as well as to find 

the global optimal solution. For improving the computational efficiency, the BP network with a simple structure 

is adopted. The structure schematic diagram of a three-layer BP model is shown in Figure 9. 

Input layer

...

Hidden layer Output layer

x1
w12

x3
w34

net2 y2

net4 y4

neuron1
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neuron3
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j ij ii
net w x 


   j jy f net

 

Figure 9 The structure schematic diagram of a three-layer BP neural network 

In Figure 9, xi and wij denote the signal and the weight factor. Besides, n denotes the neuron number, θ denotes 

the threshold, netj denotes the input, f() denotes the activation function, and yj denotes the output. After each 

forward propagation process, there are errors between the model output yBP, k and the actual output yt, k. The 

square error function is adopted as the objective function, which is elaborated in Equation (21). 
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Among them, E is the network error, k is the number of neurons in the output layer, and N is the total number 

of neurons in the output layer. The main function of the NSA algorithm is to optimize the initial parameters of 

BP neural network and take optimized parameters as the new start for BP network training. The flowchart of the 

NSA-BP algorithm is shown in Figure 10. 
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Initialize the BP parameters

Obtain the optimal BP parameters

Calculate the objective function of 
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Figure 10 The flowchart of the NSA-BP algorithm 

In order to study the SOH estimation model, it is necessary to determine the definition method of battery SOH. 

In this paper, the capacity definition method of SOH estimation is selected, as shown in Equation (22). 

rate

Q
SOH

Q
  (22) 

Among them, Q and Qrate represent the current capacity and the rated capacity, respectively. The network 

parameters are obtained by taking the SOH as the NSA-BP model output and the HIs as the model input. 

According to literature [55, 56], this paper defines the SOH of the Li-ion battery pack as Equation (23). 

 1 2min , , ,p nSOH SOH SOH SOH    (23) 

Among them, n, SOHn and SOHp represent the cell number, the SOH of the n-th cell and the pack SOH, 
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respectively. The flowchart of pack SOH estimation based on the proposed model is shown in Figure 11. 

Start

Extract energy storage Li-ion 

battery SOH data

Extract energy storage Li-ion 

battery Data about health indicators

Update the BP parameters 

According to NSA strategy

Divide the dataset into training set and 
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Record the BP parameters after 

completely training the NSA-BP 

model
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under this network on the test set

End

Regard HIs as input and SOH as 

output
Estimate the battery pack SOH 

building upon the proposed battery 

pack SOH definition

Create a dataset about input and 

output

 

Figure 11 The flowchart of pack SOH estimation based on the improved NSA-BP network 

Combined with cell model, pack model, CCPSO parameter identification algorithm, quantification method of 

degradation modes based on IC-DV curves, two correlation analysis methods, NSA-BP neural network model 

and SOH definition, the proposed SOH estimation framework of battery packs is shown in Figure 12. 
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Figure 12 The proposed SOH estimation framework of energy storage battery packs 

From Figure 12, it can be observed that the developed SOH estimation method considers both 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



electrochemistry and degradation. Specifically, the establishment of ESP model lays the foundation for the 

CCPSO algorithm to accurately identify cs,max,i. In the CCPSO algorithm, the input is the battery current and 

known parameters in the ESP model, and the output is the values of cs,max,i. In the IC-DV method, the input is the 

open-circuit voltage and discharge capacity, and the output is the quantified values of LAM and LLI. Regarding 

cs,max,p, cs,max,n, LAM and LLI as HIs, PCA and GRA methods are used to analyze the correlation between HIs 

and SOH. Then, HIs are adopted as the input of the NSA-BP model for network training and testing to output 

the estimated SOH. 

3. Experimental analysis 

3.1. Experimental platform and setup 

In this experiment, each cell is a brand-new 26650 LiFePO4 battery with rated capacity of about 2.3 Ah, upper 

cutoff voltage of 3.6 V and lower cutoff voltage of 2.5 V. All experiments are performed in a battery charge-

discharge tester and a thermostat. The temperature of thermostat is set to 25 °C, and the output of experimental 

instrument is stored in computer. The computer is configured with Intel (R) Core (TM) i5-9500 and NVIDIA 

GeForce GT 710. The structure of test platform is shown in Figure 13. 
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Figure 13 The structure of test platform 

The experiments involve the 0.1 C full charge-discharge experiment of a cell, the 0.4 C degradation 
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experiment of a cell, the 0.5 C degradation experiment of a battery pack and the variable-rate degradation 

experiment of a battery pack. In this research, C is used to represent the charge-discharge rate of the battery. 

Among them, each pack is series-connected by four cells. Actually, the studied SOH estimation strategy is 

general for more types of lithium batteries. However, because of limitations in the current laboratory facilities, 

this research only used LiFePO4 26650 cells as the experimental subjects for analysis. Future work will extend 

to conduct comparative analysis for batteries of diverse types. 

The cell at 0.1 C is called Cell1, the cell at 0.4 C is called Cell2, the battery pack at 0.5 C is called Pack1, and 

the battery pack at variable rate is called Pack2. Among them, Cell1 is used for obtaining the positive open-

circuit potential expression, and Cell2 is used for training the SOH estimation model. In addition, Pack1 and 

Pack2 are used for testing the SOH estimation model. In one cycle, the current curves of Cell2, Pack1 and 

Pack2 are shown in Figure 14. 

 

Figure 14 The current curves in each degradation cycle 

In Figure 14, during the discharge process, C1, C2 and C3 are 0.4 C condition, 0.5 C condition and variable-

rate condition, respectively. In the existing data set, the degradation conditions are both low-rate full charge-

discharge conditions. In these conditions, the maximum available capacity of each cycle is calculated by current 

and time. However, Cell2, Pack1 and Pack 2 are not operating under these conditions, so the maximum 

available capacity in each cycle cannot be calculated. Thus, Cell2, Pack1 and Pack 2 need to carry out the 
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capacity test every about five days to obtain the maximum available capacity. 

3.2. Extraction results and correlation analysis results of health indicators 

The specific expressions of positive and negative open-circuit potentials are the premise of establishing ESP 

model. The negative open-circuit potential is expressed by empirical expression [57], and the positive open-

circuit voltage expression is obtained by fitting the difference between the simulated voltage and the measured 

voltage of Cell1. The open-circuit potential of electrodes is expressed in Equation (24). 
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(24) 

According to Equation (24), the relationships between the open-circuit potentials of two electrodes and the 

utilization rate of two electrodes for energy storage Li-ion battery can be obtained, as shown in Figure 15. 

 

Figure 15 Positive and negative open-circuit potentials curves 

In addition to the open-circuit potential expressions of electrodes, some constants and parameters need to be 

obtained to construct the ESP model. The known constants and parameters of ESP model are shown in Table 1. 

Table 1 The known related constants and parameters of ESP model 

Parameter Notation Value at 25℃ (unit) 

Faraday constant F 96487 (C/mol) 

Universal gas constant R 8.314 (J/mol/K) 

Liquid-phase Li-ion migration coefficient t+ 0.363 (/) 

Battery temperature T 298.15 (K) 

Liquid-phase Li-ion conductivity κp/κn/κsep 0.265/0.183/0.168 (/) 

Plate thickness Lp/Ln/Lsep 70×10-6/34×10-6/16×10-6 (m) 

Effective area of pole piece Ap/An 0.17/0.17 (m2) 

The radius of the active particle Rs,p/Rs,n 3.65×10-8/3.5×10-6 (m) 
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Solid-phase diffusion coefficient Ds,p/Ds,n 1.18×10-18/2×10-14 (m2/s) 

Liquid-phase diffusion coefficient De,p/De,n 4.97×10-9/4.97×10-9 (m2/s) 

Ohmic resistance induced by SEI film RSEI,p/RSEI,n 0.001/0.001 (Ω·m2) 

Solid-phase volume fraction εs,p/εs,n 0.56/0.5 (/) 

Liquid-phase volume fraction εe,p/εe,n/εe,sep 0.3/0.3/1 (/) 

Average electrode reaction rate constant kp/kn 3×10-11/8.19×10-12 (m2.5mol-0.5s-1) 

Initial liquid-phase Li-ion concentration ce,0,p/ce,0,n 1000/1000 (mol/m3) 

Initial surface solid-phase Li-ion concentration cs,surf,0,p/cs,surf,0,n 3900/14870 (mol/m3) 

In this research, two different identification algorithms are introduced to analyze the identification results of 

csmax,p and csmax,n. The related parameter settings in above algorithms are shown in Table 2. 

Table 2 Related parameters of identification algorithms 

Parameter type Notation Value (unit) 

Positive maximum solid-phase Li-ion concentration cs,max,p [16000,27000] (mol/m3) 

Negative maximum solid-phase Li-ion concentration cs,max,n [25000,36000] (mol/m3) 

Parameter dimension/ maximum iterations d/ kiter 2 /100 (/) 

Initial particle speed vi,0 1000±100 (/) 

Maximum weight factor in standard PSO wmax/wmin 0.9/0.4 (/) 

Maximum weight factor of the first sub-particle in CCPSO wmax,1/wmin,1 0.9/0.7 (/) 

Maximum weight factor of the second sub-particle in CCPSO wmax,2/wmin,2 0.6/0.4 (/) 

Learning factor c1/c2 2/2 (/) 

Category number of cooperative subpopulation M 4 (/) 

Particle swarm size in standard PSO N1 20 (/) 

Particle swarm size in CCPSO N2 10 (/) 

One the one hand, Cell1 is to help achieve the expression of positive open-circuit potential, so there is no need 

for follow-up analysis of Cell1. On the other hand, the HIs of Cell2, Pack1 and Pack2 are used to train and test 

the estimation model, so the relevant analysis results should be illustrated in detail. 

In order to verify the improvement effect of the CCPSO algorithm, the standard PSO algorithm and the 

CCPSO algorithm are adopted to analyze the change curves of corresponding fitness values. The first cells in 

Pack1 and Pack2 are used for fitness analysis, and these two cells are named Pack 1-1 and Pack 2-1. In Cell2, 

Pack1-1 and Pack2-1. The fitness value curves during the first and the last degradation cycles are shown in 

Figure 16. 
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(A) Fitness analysis of Cell2 during the first cycle 

 
(B) Fitness analysis of Cell2 during the last cycle 

 
(C) Fitness analysis of Pack1-1 during the first cycle 

 
(D) Fitness analysis of Pack1-1 during the last cycle 

 
(E) Fitness analysis of Pack2-1 during the first cycle 

 
(F) Fitness analysis of Pack2-1 during the last cycle 

Figure 16 Comparison curves of fitness value 

In Figure 16, S1 and S2 denote the CCPSO and the standard PSO, respectively. It can be observed that the 

CCPSO algorithm converges to the optimal solution faster, and the corresponding optimal fitness value is 

smaller. Taking Figure 16(C) as an example, in the CCPSO algorithm and the standard PSO algorithm, the 

fitness value curves converge after 54 and 38 iterations, respectively, with the fitness values of 0.025301 and 

0.020652, respectively, which indicates that the developed CCPSO algorithm can get rid of the local 
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optimization as much as possible. The above discussions verify the superiority of the CCPSO algorithm in 

identification accuracy and efficiency. During the SOH degradation process of the Cell2, Pack1 and Pack2, the 

parameter identification results obtained by using CCPSO algorithm are shown in Figure 17. 

 
(A) Results of cs,max,p in Cell2 

 
(B) Results of cs,max,n in Cell2 

 
(C) Results of cs,max,p in Pack1 

 
(D) Results of cs,max,n in Pack1 

 
(E) Results of cs,max,p in Pack2 

 
(F) Results of cs,max,n in Pack2 

Figure 17 Results of electrochemical parameter identification 

As can be seen from Figure 17, cs,max,p and cs,max,n in each cell both demonstrate a dipping trend with the 

degradation. Because there is a small inconsistency among cells in one battery pack, a small diversity in the 
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degradation of each cell is inevitable. And the difference in the later degradation stage is significantly greater 

than that of in the early degradation stage. 

Quantification of degradation modes require the analysis of IC-DV curves. In this research, ΔU in IC curves is 

adopted as 0.001 V, and ΔQ in DV curves is adopted as 0.002 Ah. It is worth noting that the IC-DV 

quantification method can only be used under low-rate conditions. In Cell2 and Pack1, the quantification results 

are shown in Figure 18. 

 
(A) LAM quantized values in Cell2 

 
(B) LLI quantized values in Cell2 

 
(C) LAM quantized values in Pack1 

 
(D) LLI quantized values in Pack1 

Figure 18 Quantification curves in Cell2 and Pack1 

As can be observed from Figure 18, the quantification results of LAM and LLI increase with degradation. 

Sudden dips in LAM and LLI may reflect battery capacity recovery. Because the change trend of the 

quantification curves is opposite to the SOH degradation trend, the negative values of the quantification results 

are adopted for following analysis. The curves of capacity and SOH during the degradation for Cell2, Pack1 and 

Pack2 are illustrated in Figure 19. 
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(A) The capacity of Cell2 

 
(B) The SOH of Cell2 

 
(C) The capacity of each cell in Pack1 

 
(D) The SOH of each cell in Pack1 

 
(E) The capacity of each cell in Pack2 

 
(F) The SOH of each cell in Pack2 

Figure 19 Actual capacity curves and actual SOH curves 

In this research, PCA method and GRA method are employed to analyze and evaluate the correlations between 

each HI and cell SOH, respectively. In Cell2, Pack1 and Pack2, the Pearson correlation coefficients between 

HIs and cell SOH are elaborated in Table 3. 

Table 3 The Pearson correlation coefficients between HIs and cell SOH 

Parameter Cell2 Pack1-1 Pack1-2 Pack1-3 Pack1-4 Pack2-1 Pack2-2 Pack2-3 Pack2-4 

cs,max,p 0.916 0.990 0.995 0.994 0.992 0.933 0.973 0.936 0.933 

cs,max,n 0.996 0.922 0.988 0.981 0.976 0.999 0.988 0.992 0.982 

LLI 0.996 0.983 0.992 0.995 0.991 / / / / 
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LAM 0.974 0.984 0.987 0.990 0.996 / / / / 

In the experimental calculation and analysis, the resolution coefficient of GRA method is selected as 0.5. In 

Cell2, Pack1 and Pack2, the grey relational degrees between HIs and cell SOH are shown in Table 4. 

Table 4 The grey relational degrees between HIs and cell SOH 

Parameter Cell2 Pack1-1 Pack1-2 Pack1-3 Pack1-4 Pack2-1 Pack2-2 Pack2-3 Pack2-4 

cs,max,p 0.502 0.775 0.600 0.738 0.681 0.532 0.587 0.516 0.553 

cs,max,n 0.849 0.553 0.622 0.466 0.526 0.876 0.634 0.813 0.828 

LLI 0.767 0.711 0.705 0.790 0.720 / / / / 

LAM 0.821 0.771 0.679 0.792 0.824 / / / / 

In Table 3 and Table 4, Packn-m represents the m-th cell in the n-th pack. From Table 3 and Table 4, it can be 

seen that the correlations between four HIs and SOH sequences show different results under different working 

conditions, but the overall correlations are high, so the above-mentioned HIs are suitable to be used as the input 

of neural network for SOH estimation. 

3.3. Verification of cell model under complex conditions 

In this research, the cell model is verified under two low-rate conditions and a variable-rate condition, and the 

pack model is verified under a low-rate condition and a variable-rate condition. The cells under two low-rate 

conditions are modeled. Because Cell2 and Pack1 are in these working conditions, Cell2 and Pack1-1 are 

selected to compare and analyze the voltage fitting performance of SP model and ESP model. During the first 

cycle of Cell2 and Pack1-1, the actual terminal voltage and above-mentioned fitting terminal voltages are shown 

in Figure 20. 

 
(A) The terminal voltages of Cell2 during the first cycle 

 
(B) The terminal voltages of Pack1-1 during the first cycle 

Figure 20 The actual and fitting terminal voltages of Cell2 and Pack1-1 during the first cycle 

Specifically, in Figure 20, the MAEs of two fitting terminal voltages are elaborated in Table 5. 
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Table 5 The MAEs of model fitting terminal voltages 

Cell and model Cell2 in SP model Cell2 in ESP model Pack1-1 in SP model Pack1-1 in ESP model 

MAE 0.00642 V 0.00359 V 0.00318 V 0.00303 V 

Table 5 demonstrates the fitting performance of ESP model is better under the low-rate cyclic conditions. In 

addition, Cell2 and Pack1-1 are selected to verify the ESP model under low-rate cyclic conditions. The actual 

and fitting terminal voltages during the first cycle and the last cycle are adopted for model verification. The 

terminal voltages and their errors are shown in Figure 21. In the model verification in Figure 21, the maximum 

solid-phase Li-ion concentration of positive and negative electrodes are identified by the CCPSO algorithm, 

while in the model verification in Figure 20, the reference values are adopted for above parameters. 

 
(A) Model verification of Cell2 during the first cycle 

 
(B) Model verification of Cell2 during the last cycle 

 
(C) Model verification of Pack1-1 during the first cycle 

 
(D) Model verification of Pack1-1 during the last cycle 

Figure 21 Model verification curves of Cell2 and Pack1-1 

In Figure 21, U1 and U2 represent the actual and ESP model fitting terminal voltages. The comparison of (A), 

(B) or (C), (D) in Figure 21 shows that compared with the brand-new cell and battery pack, the voltage of the 

degraded cell and pack decreases significantly after the same time of discharge. It indicates that the capacity 
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performance is reduced after battery degradation. The MAEs of ESP model in Cell2 and Pack1-1 are shown in 

Table 6 . 

Table 6 The MAEs of ESP model in Cell2 and Pack1-1 

Cell MAE of the first cycle MAE of the last cycle 

Cell2 0.00339 V 0.00431 V 

Pack1-1 0.00257 V 0.0112 V 

As can be analyzed from Figure 21 and Table 6, the errors of ESP model are very small under two low-rate 

cyclic conditions. In addition, in Table 6, by comparing the voltage MAEs during the first cycle and the last 

cycle, it can be known that under these conditions, with degradation, the accuracy of ESP model dips slightly 

within an acceptable range. In terms of model simulation accuracy, the above analysis results verify the 

effectiveness of the studied ESP model under low-rate cyclic conditions. 

The cells under the variable-rate cyclic condition are modeled for verifying the proposed ESP model. In this 

research, Pack2 is in the variable-rate condition. During the first degradation cycle of Pack2-1, the curves of 

actual and fitting terminal voltages are shown in Figure 22. 

 

Figure 22 The actual and fitting terminal voltages of Pack2-1 during the first cycle 

Specifically, in Figure 22, the MAEs of two fitting terminal voltages are elaborated in Table 7. 

Table 7 The MAEs of model fitting terminal voltages 

Cell and model Pack2-1 in SP model Pack2-1 in ESP model 

MAE 0.01128 V 0.00838 V 

Table 7 demonstrates that the fitting performance of ESP model is better under the variable-rate condition. In 

addition, Pack2-1 is adopted to verify the ESP model under this condition. The terminal voltages and 
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corresponding errors are demonstrated in Figure 23. 

 
(A) Model verification of Pack2-1 during the first cycle 

 
(B) Model verification of Pack2-1 during the last cycle 

Figure 23 Model verification curves of Pack2-1 

In Figure 23, U1 and U2 represent the actual and ESP model fitting terminal voltages. The comparison of (A) 

and (B) in Figure 23 indicates that the capacity performance is reduced after battery degradation. The MAEs of 

ESP model in Pack2-1 are shown in Table 8. 

Table 8 The MAEs of ESP model in Pack2-1 

Cell MAE of the first cycle MAE of the last cycle 

Pack2-1 0.00822 V 0.00847 V 

Through the analysis of Table 6 and Table 8, it can be observed that although the fitting effect of terminal 

voltage under the variable-rate condition is not as good as that under low-rate conditions, the corresponding 

fitting errors are still small. Besides, in Table 8, by comparing the voltage MAEs during the first cycle and the 

last cycle, it can be known that under this condition, with degradation, the accuracy of ESP model dips slightly 

within an acceptable range as well. In terms of model simulation accuracy, the above analysis results verify the 

effectiveness of the proposed ESP model under the self-designed variable-rate cyclic condition. 

Table 6 and Table 8 show that during degradation, the decrease in ESP model accuracy reflects an increase in 

the identification errors of cs,max,p and cs,max,n. Due to the above-mentioned electrochemical parameters are 

regarded as the input to the SOH estimation model, the increase in their errors have a negative impact on the 

estimation of SOH. In addition, Table 6 and Table 8 illustrate the accuracy of the ESP model, which confirms 

the effectiveness of the electrochemical parameter identification results based on the CCPSO algorithm in 
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Section 3.2. 

3.4. Analysis of SOH estimation results under complex conditions 

In this research, the SOH estimation results are analyzed under two low-rate conditions and one variable-rate 

condition. Firstly, under the low-rate conditions, cs,max,p, cs,max,n, LAM and LLI are taken as the input of neural 

network, and the SOH is taken as the output of neural network. Secondly, based on the four extracted HIs, the 

BP model, the simulated annealing-back propagation (SA-BP) model and the NSA-BP model are used to train 

and test the SOH estimation model. The settings of network structural parameters in above models are shown in 

Table 9. 

Table 9 The settings of network structural parameters 

Parameter Notation Value (unit) /Type 

Initial temperature T0 8 (℃) 

Final temperature Tf 3 (℃) 

Temperature drop rate in SA method λ 0.85 (/) 

Iteration cycles in NSA method Kmax 42 (/) 

Step factor c 0.2 (/) 

Markov length L 10 (/) 

Node number of input layer / 2 (/) 

Node number of hidden layer / 5 (/) 

Node number of output layer / 1 (/) 

Learning rate/ rule / 0.01 (/)/ L-M 

termination target of training / 1×10-3 (/)/ mean squared error 

Activation function in hidden layer / Sigmoid 

Activation function in output layer / Purelin 

The relevant data of Cell2 is used as the training set, and in the low-rate cyclic conditions, the relevant data of 

Pack1 are used as the test set. For this test set, the SOH curves and the corresponding error curves are shown in 

Figure 24. 

 
(A) Estimated and actual SOH values of Pack1-1 

 
(B) Estimated and actual SOH errors of Pack1-1 
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(C) Estimated and actual SOH values of Pack1-2 

 
(D) Estimated and actual SOH errors of Pack1-2 

 
(E) Estimated and actual SOH values of Pack1-3 

 
(F) Estimated and actual SOH errors of Pack1-3 

 
(G) Estimated and actual SOH values of Pack1-4 

 
(H) Estimated and actual SOH errors of Pack1-4 

 
(I) Estimated and actual SOH values of Pack1 

 
(J) Estimated and actual SOH errors of Pack1 

Figure 24 The SOH values and corresponding errors of Pack1 and its cells 
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In Figure 24, S1, S2, S3, S4 and S5 denote the actual SOH, the SOH estimated on BP and cs,max,i, the SOH 

estimated on BP and all proposed HIs, the SOH estimated on SA-BP and all proposed HIs, and the SOH 

estimated on NSA-BP and all proposed HIs, respectively. Err1, Err2, Err3 and Err4 denote the SOH errors of 

S2, the SOH errors of S3, the SOH errors of S4, and the SOH errors of S5, respectively. The evaluation 

indicators of above-mentioned approaches in Pack1 are shown in Table 10. 

Table 10 Evaluation indicators of above-mentioned approaches in Pack1 

Approach Pack1-1 Pack1-2 Pack1-3 Pack1-4 Pack1 

S2 
RMSE: 0.01812 

MAE: 0.01489 

RMSE: 0.02065 

MAE: 0.01763 

RMSE: 0.01807 

MAE: 0.01481 

RMSE: 0.02679 

MAE: 0.02152 

RMSE: 0.01991 

MAE: 0.01671 

S3 
RMSE: 0.01297 

MAE: 0.01221 

RMSE: 0.01312 

MAE: 0.01151 

RMSE: 0.01370 

MAE: 0.01203 

RMSE: 0.01464 

MAE: 0.01353 

RMSE: 0.01254 

MAE: 0.01078 

S4 
RMSE: 0.01287 

MAE: 0.00976 

RMSE: 0.00927 

MAE: 0.00778 

RMSE: 0.01473 

MAE: 0.01261 

RMSE: 0.01217 

MAE: 0.00970 

RMSE: 0.00969 

MAE: 0.00861 

S5 
RMSE: 0.00442 

MAE: 0.00339 

RMSE: 0.00764 

MAE: 0.00622 

RMSE: 0.00935 

MAE: 0.00767 

RMSE: 0.00802 

MAE: 0.00659 

RMSE: 0.00588 

MAE: 0.00481 

In Table 10, S2, S3, S4 and S5 have the same meaning as in Figure 24. As can be seen from Table 10, for 

Pack1 and each cell in Pack1, the SOH estimation approach based on all proposed HIs and NSA-BP model is 

significantly better in terms of RMSE and MAE indicators. 

Because the developed quantification method can only be employed under low-rate conditions, under the self-

designed variable-rate condition, only cs,max,p and cs,max,n are regarded as the input to train and test the SOH 

estimation model. In this case, the settings of network structural parameters are the same as those in Table 9. In 

the variable-rate cyclic condition, the relevant data of Pack2 are used as the test set. For this test set, the SOH 

curves and the corresponding error curves are shown in Figure 25. 

 
(A) Estimated and actual SOH values of Pack2-1 

 
(B) Estimated and actual SOH errors of Pack2-1 
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(C) Estimated and actual SOH values of Pack2-2 

 
(D) Estimated and actual SOH errors of Pack2-2 

 
(E) Estimated and actual SOH values of Pack2-3 

 
(F) Estimated and actual SOH errors of Pack2-3 

 
(G) Estimated and actual SOH values of Pack2-4 

 
(H) Estimated and actual SOH errors of Pack2-4 

 
(I) Estimated and actual SOH values of Pack2 

 
(J) Estimated and actual SOH errors of Pack2 

Figure 25 The SOH values and corresponding errors of Pack2 and its cells 
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In Figure 25, S1, S2, S3 and S4 stand for the actual SOH, the SOH estimated on BP and cs,max,i, the SOH 

estimated on SA-BP and cs,max,i, and the SOH estimated on NSA-BP and cs,max,i, respectively. In addition, Err1, 

Err2, and Err3 denote the SOH errors of S2, the SOH errors of S3, and the SOH errors of S4, respectively. From 

Figure 25, it can be intuitively observed that as degradation, in Pack2, the estimation accuracy of SOH for all 

cells and the pack shows a decreasing trend. This trend is particularly evident in the later stages of degradation. 

The evaluation indicators of above-mentioned approaches in Pack2 are shown in Table 11. 

Table 11 Evaluation indicators of above-mentioned approaches in Pack2 

Approach Pack2-1 Pack2-2 Pack2-3 Pack2-4 Pack2 

S2 
RMSE: 0.01591 

MAE: 0.01268 

RMSE: 0.01671 

MAE: 0.01362 

RMSE: 0.01764 

MAE: 0.01501 

RMSE: 0.01703 

MAE: 0.01440 

RMSE: 0.01566 

MAE: 0.01269 

S3 
RMSE: 0.01177 

MAE: 0.01109 

RMSE: 0.01037 

MAE: 0.00866 

RMSE: 0.01156 

MAE: 0.01033 

RMSE: 0.01191 

MAE: 0.01030 

RMSE: 0.01188 

MAE: 0.01084 

S4 
RMSE: 0.00728 

MAE: 0.00642 

RMSE: 0.00845 

MAE: 0.00673 

RMSE: 0.00761 

MAE: 0.00659 

RMSE: 0.00953 

MAE: 0.00776 

RMSE: 0.00732 

MAE: 0.00639 

In Table 11, S2, S3 and S4 have the same meaning as in Figure 25. As can be seen from Table 11, for Pack2 

and each cell in Pack2, the SOH estimation approach based on cs,max,i and NSA-BP model is also significantly 

better in terms of RMSE and MAE indicators. Combined with Table 10 and Table 11, the proposed algorithm 

can effectively and accurately estimate the long-term SOH of energy storage batteries of the fixed model under 

different working conditions. Besides, to prove the superiority of the developed method, it is compared with 

several recent advanced SOH estimation methods, as shown in Table 12. The comparison aspects cover RMSE, 

MAE, multi-condition estimation and pack estimation. Among them, the methods used for comparison are IC, 

DV, SVM, LSTM, deep convolutional neural network (DCNN), deep transfer convolutional neural network 

(DTCNN) and GRUNN. Under the experimental variable-rate cyclic condition, the aforementioned diverse 

methods are reproduced to compare their estimation performance with the proposed method. The comparison of 

various SOH estimation methods is demonstrated in Table 12. 

Table 12 The comparison of various SOH estimation methods 

SOH estimation methods Refs. RMSE MAE Multi-condition estimation Pack estimation 

IC-based [58] 2.371% 3.039% Not mentioned Not mentioned 

DV-based [56] 1.968% 2.834% Not mentioned Available in series pack 

SVM-based [40] 1.542% 1.491% Not mentioned Not mentioned 

LSTM-based [59] 0.977% 0.713% Not mentioned Not mentioned 

DCNN-based [60] 1.306% 1.124% Not mentioned Not mentioned 
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DTCNN-based [61] 0.521% 0.663% Not mentioned Not mentioned 

GRUNN-based [48] 0.737% 0.590% Not mentioned Not mentioned 

Proposed method - 0.728% 0.642% Available in various condition Available in series pack 

Most advanced methods used for comparison are currently only applicable to individual cells, so the RMSE 

and MAE in Table 12 are calculated based on experimental data from Pack2-1. From Table 12, it is evident that, 

in terms of above-mentioned four aspects, the method proposed in this research outperforms other recent 

advanced methods in most cases. Although the developed method is inferior to the DTCNN-based method in 

RMSE and GRUNN-based method in MAE, the corresponding gaps are small, and the method raised in this 

study has the advantages of multi-condition estimation ability and pack state estimation ability. Data from 

laboratory tests throughout the degradation cycle is conveniently accessible at the following URLs: 

https://www.researchgate.net/publication/376028814_energy_storage_experimental_data. 

4. Conclusions 

The efficient estimation of battery SOH is important and urgent for the new energy storage system. Based on 

this requirement, this research constructs a SOH estimation method based on CCPSO algorithm and NSA-BP 

method. Firstly, the improvement effect and the contribution of CCPSO algorithm are highlighted. Secondly, 

multi-dimensional HIs are extracted by CCPSO algorithm, ESP model and IC-DV curves. Lastly, the above HIs 

are used to train and test the NSA-BP model to estimate the SOH degradation sequences. In the designed energy 

storage experiments, it shows that in most cases, the RMSE and the MAE of the developed SOH estimation 

method are better compared with algorithms before improvement and some advanced methods. The limitations 

of this work include the inability to meet high real-time estimation, the failure to consider the actual complex 

energy storage system structure, and the failure to consider more actual energy storage conditions and batteries. 

Future work can focus on the following parts: 

1) Research on SOH estimation of series-parallel battery systems and the internal coupling mechanism. 

2) Research on SOH estimation to meet higher real-time requirements. 

3) Research on SOH estimation under more energy storage conditions and more types of batteries. 
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