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Abstract: Vibrations of slender structures associated with the external flow present a design challenge
for the energy production systems placed in the marine environment. The current study explores
the accuracy of the semi-empirical wake oscillator models for vortex-induced vibrations (VIV) based
on the optimization of (a) the damping term and (b) empirical coefficients in the fluid equation.
This work investigates the effect of ten fluid damping variations, from the classic van der Pol to
more sophisticated fifth-order terms, and prediction of the simplified case of the VIV of transversally
oscillating rigid structures provides an opportunity for an extended, comprehensive comparison of
the performance of tuned models. A constrained nonlinear minimization algorithm in MATLAB is
applied to calibrate considered models using the published experimental data, and the weighted
objective function is formulated for three different mass ratios. Comparison with several sources of
published experimental data for cross-flow oscillations confirms the model accuracy in the mass ratio
range. The study indicates the advantageous performance of the models tuned with the medium
mass ratio data and highlights some advantages of the Krenk–Nielsen wake oscillator.

Keywords: vortex-induced vibrations; VIV; wake oscillator; phenomenological model; rigid structures;
transversal oscillations

1. Introduction

In the vortex shedding phenomenon, fluid forces fluctuations and the resulting vi-
bration have to be accounted for in the design of offshore structures. Specific attention to
this aspect should be assigned when slender objects are considered which may comprise
supports, suspensions, tethers, cables, umbilicals or pipelines, submerged or hanging in the
air. Their geometrical configuration, mass, damping and frequency and the velocity profile
of the fluid flow define the development of a possible lock-in condition, with vibration
of a high frequency, amplitude and speed. For complex systems, it is important to avoid
the vortex-induced vibration (VIV), in order to delay the accumulation of the associated
structural fatigue.

The periodicity of hydrodynamic forces, changes to their time history subject to lock-
in condition, as well as the self-limiting and self-exciting nature of free vibration, may
be qualitatively captured using a wake oscillator, an approach proposed in [1]. Further
improvement of wake oscillators is presented in [2,3], where the application of Rayleigh,
van der Pol and fifth-order damping terms is discussed. The study in [2] considers the use
of three empirical constants in the fluid equation: a fluid damping parameter aimed to
determine the occurrence of lock-in, the second coefficient introduced in the cubic stiffness
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term to model the size of the displacement lock-in peak and the third coefficient defined
as the relationship of the previous two and incorporated in the velocity coupling term.
This model for VIV in the air [2] was further modified for flexible structures and different
boundary conditions, and proved its applicability to predict transversal oscillations for
a range of parameters [4]. It has been suggested that the empirical coefficients used
should vary with the initial lift coefficients applied for modelling. However, the question
of alternation of the damping terms in the fluid oscillator and tuning of the empirical
constants has not been answered in detail.

Wake oscillator models have been gradually improved in the late XX century and at
the beginning of the XXI century. The nonlinear structural equation has been considered
in [5], while the model still required recalibration of empirical constants for separate cases
of published experimental data. Variations of damping terms in the fluid equation were
proposed in [6–8]. Values of empirical constants were discussed in [9,10]. Preference for
the acceleration coupling term was proved in [11], and the use of nonlinear coupling and
frequency-dependent coefficients to facilitate modelling of both free and forced vibrations
has been pursued in [12–14]. The use of a single fluid oscillator for rigid cylinders mounted
on elastic supports that allow displacements on the horizontal plane (2DOF) based on the
relationship between the drag and lift coefficients was discussed in [15], and developed
in [16,17]. Additionally, the relationship of the drag coefficient to the oscillation amplitude
and the flow velocity, and also possible patterns embedded in the damping constant of the
fluid oscillator were discussed in [18–20].

Despite substantial improvements and insight into the nature of the fascinating vortex-
induced vibration phenomenon, its remarkable sensitivity to the exact conditions of the
external environments still poses challenges to simulations, starting with the simplified
transversal oscillations. Published experimental data in [21] present the case for the ob-
served differences in the VIV lock-in development for the one degree-of-freedom (1DOF)
rigid cylinder, related to changes in the distance of the end of structure from the wall. The
formation of a minor vortex at one end of the structure has been able to alter the lock-in
displacement record and created difficulties for prediction tools. The specific challenge
indicated in this paper is in the prediction of the lock-in occurrence that moved to a different
flow velocity.

The systematic experimental study [18] reports similar changes in the position of the
initial lock-in branch for 1DOF and 2DOF rigid structures related to the value of the mass
ratio. Here, an increasing mass ratio delays the resonance occurrence in the reduced velocity
range. The theoretical study in [22], based on these data, shows that the lock-in start for a
2DOF rigid structure is similar for a few different experimental arrangements [5,18,23–25]
for approximately the same mass ratio, and can be captured by tuning the empirical
constants, including the coefficient correcting the lock-in start. A similar approach has been
taken in [8,26–28] in order to consider the impact of both empirical constants and damping
terms in the wake oscillator equations on the possible accuracy of VIV predictions.

Based on the knowledge and previous results available in the published literature
refs. [8,22,26,27], the current study attempts to eliminate the gap in understanding the ac-
curacy of transversal VIV wake oscillators by taking a systematic approach to optimization
and comparison of models of semi-empirical nature. For this purpose, the mathematical
formulation of the 1DOF case studied in [11,19,29] is improved by the introduction of the
damping terms considered in [28] and an additional four extended damping formulations,
in order to optimize the qualitative description of the lock-in behaviour. The calibration
program in this research is designed in a more comprehensive manner than the previous
attempts to optimize models for a single case, as in [22,27]. The present optimization is
performed on the basis of published data in [18] for three cases of transversal oscillations
with a different mass ratio. Three selected mass ratios can be defined as “low”, “medium”
and “high”, according to the authors of [25,30] where the mass ratio is related to features of
observed lock-in branches. Performance for these three groups of optimized models is in-
tended to provide convincing arguments towards particular suitability of certain damping
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terms and efficient optimization strategies, as well as a realistic view on the application
ranges for tuned semi-empirical models.

The paper is organized as follows. Section 1 provides a theoretical background.
Section 2 introduces the basic mathematical model of transversal VIV for a rigid elastically
mounted structure and changes related to the fluid damping optimization. Section 3 gives
details of the nonlinear optimization to find values of suitable empirical parameters for the
models with a distinct damping term. Comparison of the tuned models with published
experimental data and a comprehensive discussion on their suitability is included in
Section 4. Concluding remarks on the main findings are given in Section 5.

2. Optimization of Mathematical Model

The basic mathematical model of a one degree-of-freedom elastically supported cylin-
der experiencing VIV is selected for this research and has been previously studied in [11,29].
The system under consideration is presented in Figure 1, and the structure is subject to
free cross-flow vibration only under the influence of the uniform flow. The homogeneous
cylinder has a length L, diameter D and has a constant circular cross-section. The structure
is characterized with the mass per unit length ms, rs and k are the damping coefficient and
stiffness of elastic support, and only the motion in the cross-flow (Y) direction is allowed.

Figure 1. One degree-of-freedom elastically supported rigid structure interacting with the uniform
flow of velocity U.

The mathematical description of this system and the VIV phenomenon, in general,
involves the following non-dimensional quantities, characterizing the development of the
lock-in condition:

ωst =
ωn

ω0
; ξ =

rs

2ω0m∗
; µ =

4ms

πρ f D2 , (1)

where ωn is the natural frequency of the structure defined as ωn =
√

k
m∗ , ω0 is the reference

frequency assumed in this study equal to the natural frequency of the rigid structure, ρ f
is the fluid density, ξ is the non-dimensional damping ratio, ωst is the non-dimensional
natural frequency of the structure and µ is the mass ratio. Mass per unit length m∗ includes
the structural mass and fluid added mass, where CA is the potential fluid added mass
coefficient:

m∗ =
(

µ + CA

)πρ f D2

4
. (2)
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The current study follows the approach taken in [22] to identify the value of the fluid
added mass coefficient based on the calibration with published experimental data, instead
of the traditionally used CA = 1. The calibration approach allows tuning CA in order to
capture the lock-in peak record of the structural displacement against reduced velocity in
a more accurate manner both quantitatively and qualitatively, by changing the shape of
the upper branch. For brevity, the reference frequency ω0 is assigned equal to the natural
frequency of the structure ωn in this work, therefore, the non-dimensional frequency is
ωst =

ωn
ω0

= 1 for all results demonstrated later in Section 3.
Time t and cross-flow displacement y of the centre of the structure are nondimension-

alized as τ and Y respectively, using already introduced parameters:

τ = ω0t; Y =
y
D

. (3)

The uniform fluid flow is presented in the model as a velocity U and vortex shed-
ding frequency Ω f , or, in the non-dimensional form, the reduced velocity UR and vortex
shedding frequency ΩR as follows:

UR =
2πU
ωnD

; ΩR =
Ω f

ω0
=

2πStU
ω0D

. (4)

In this work, all calculations are performed for the reduced velocity from the published
experimental data. The Strouhal number St is assumed to be constant and equal to 0.2 for all
considered cases, following the work in [31]. The lift and drag forces acting on the cylinder
are calculated using the fluctuating lift and drag coefficients CL and C f l

D . The fluctuating

drag C f l
D is a difference of drag coefficient CD of a moving structure and drag coefficient

CD0 of a stationary structure, or C f l
D = CD − CD0, and here, the coefficients CL0 and C f l

D0
characterize the lift and fluctuating drag coefficient amplitudes of a stationary structure
respectively. In general, the fluctuating nature of the lift and drag coefficients during the
vibration with respect to their values for a stationary structure is quantified using the
non-dimensional cross-flow q wake coefficient:

q =
2CL
CL0

. (5)

The full nondimensional model involved in this research [11,29] provides the estimates
for the structural dynamics Y in the cross-flow plane only and the respective fluctuations
of the non-dimensional component of the lift force q:

Ÿ + 2ξẎ + ω2
stY = d(ΩR − KSt)2q− e(ΩR − KSt)Ẏ; (6)

q̈ + εy(ΩR − KSt)(q2 − 1)q̇ + (ΩR − KSt)2q = AyŸ, (7)

where Ay stands for the coupling constant, K represents the calibrated constant of the
lock-in occurrence, as introduced in [22], εy is the wake oscillator damping coefficient,
and non-dimensional coefficients involved in the force balance defining the structural
motion are:

d =
CL0ρ f D2

16π2St2m∗
; e =

CD0ρ f D2

4πStm∗
. (8)

Following the approach taken in [22,27,28], optimization of the wake oscillator in
Equation (7) is performed by the introduction of damping terms proposed in [3,6], including
the use of separate constants εy for the models with modified Rayleigh and modified van
der Pol oscillators. Table 1 summarizes all mathematical alternatives of the wake oscillator
equations considered in this research. The current work, first of all, expands the analysis
in [28] towards a comprehensive calibration study, where all empirical constants in the
oscillator equation from Table 1 are tuned with low, medium and high mass ratio cases
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respectively, and, hence, form three separate groups of optimized models demonstrating
the lowest of objective functions. Definitions of objective functions are discussed in more
detail in Section 3. These models are further compared in Section 4 to each other by
their predictions against the published experimental data for the cross-flow displacement
amplitudes observed during the lock-in in several cases [18,32–34].

The second important improvement of the wake oscillator damping in this study
is an attempt to introduce multiple damping terms comprising a combination of qp q̇m,
where the powers p and m vary from 0 to 5, the contribution of each term is governed
by a separately calibrated constant εy. These equations are labeled as “Oscillator-1”,
“Oscillator-2”, “Oscillator-3” and “Oscillator-4” and contain the optimized constants εy1
to εy15. The approach to optimization of constants involved in the system of equations
in Equations (6) and (7) and all wake oscillator alternatives in Table 1 is presented in the
next section.

Table 1. Wake oscillator equations.

Oscillator Cross-Flow Equation

Classic van der Pol q̈ + εyΩR q̇q2 − εyΩR q̇ + Ω2
Rq = AyŸ;

Modified van der Pol q̈ + εy1ΩR q̇q2 − εy2ΩR q̇ + Ω2
Rq = AyŸ;

Classic Rayleigh q̈− εyΩR q̇ + εy
ΩR

q̇3 + Ω2
Rq = AyŸ;

Modified Rayleigh q̈− εy1ΩR q̇ + εy2
ΩR

q̇3 + Ω2
Rq = AyŸ;

Landl q̈ + ΩR q̇(εy1 − εy2q2 + εy3q4) + Ω2
Rq = AyŸ;

Krenk–Nielsen q̈− εy1ΩR q̇ + εy2ΩR q̇q2 +
εy3
ΩR

q̇3 + Ω2
Rq = AyŸ;

Oscillator-1 q̈ + (−εy1ΩR + εy2ΩRq2 + εy3q̇ + εy4ΩRq)q̇+
(εy5 + εy6q + 1)Ω2

Rq = AyŸ;

Oscillator-2 q̈ + (−εy1ΩR + εy2ΩRq2 + εy3q̇ + εy4ΩRq + εy7q̇q+

+εy8
q̇2

ΩR
)q̇ + (εy5 + εy6q + εy9q2 + 1)Ω2

Rq = AyŸ

Oscillator-3 q̈ + (−εy1ΩR + εy2ΩRq2 + εy3q̇ + εy4ΩRq + εy7q̇q+

+εy8
q̇2

ΩR
+ εy11

q̇3

Ω2
R
+ εy12

qq̇2

ΩR
+ εy13q3ΩR + εy14q2q̇)q̇+

+(εy5 + εy6q + εy9q2 + εy10q3 + 1)Ω2
Rq = AyŸ;

Oscillator-4 q̈ + (−εy1ΩR + εy2ΩRq2 + εy3q̇ + εy4ΩRq + εy7q̇q+

+εy8
q̇2

ΩR
+ εy11

q̇3

Ω2
R
+ εy12

qq̇2

ΩR
+ εy13q3ΩR + εy14q2q̇+

+εy16
q̇4

Ω3
R
+ εy17q4ΩR + εy18

qq̇3

Ω2
R
+ εy19q3q̇ + εy20

q2 q̇2

ΩR
)q̇

+(εy5 + εy6q + εy9q2 + εy10q3 + εy15q4 + 1)Ω2
Rq = AyŸ

3. Optimization of Empirical Coefficients

Calibration of the considered models is performed using the experimental data [18]
for displacement amplitudes (half of the average of the 10 highest peak-to-peak values)
over the range of reduced velocities. In these data, 20 to 26 available points are associated
with the expected lock-in velocity range defined by the proximity of frequencies of the
oscillating structure and the vortex shedding process. The involved data are presented
in detail in Table 2, and three sets of the lock-in data for three distinct mass ratios of 2.36,
6.54 and 10.63 are used in this research for calibration of empirical coefficients. According
to [25,35], these mass ratios could be referred to as “low”, “medium” and “high”. Other
available experimental data [18] are used in this research to validate modified models
calibrated with these mass ratios.

The wake oscillator model solution is generally obtained with the MATLAB ode45
solver with the non-dimensional time step of 0.2 and initial conditions of Y = Ẏ = q̇ = 0,
q = 0.1, so that the structure is assumed to be at rest at the start of the simulation. The rigid
structure experiences temporary unstable oscillations with the further stabilization of the
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limit cycle, and the displacement is calculated from the signal with a built-in MATLAB
statistical function for the period of stable vibration.

The calibration in this work employs the general idea of the objective function pre-
sented in [22], with the preference for capturing the maximum amplitude of the lock-in
peak and the lock-in bandwidth in the reduced velocity range. This is reflected in the
distribution of the data points, used to define the objective function, across the lock-in peak
in Figure 2. Optimization of empirical parameters, outlined in Section 2, is conducted using
the constrained nonlinear minimization from the MATLAB Optimization Toolbox. The ob-
jective function is designed based on the selected N data points from the available set [18]
distributed along the initial, upper and lower branches of the lock-in peak, as displayed in
Figure 2. The procedure involves in total of N = 8 out of the 26 available experimental data
points for the mass ratio of 2.36, and N = 9 out of the 26 data points for the mass ratios of
6.54 and 10.63 [18].

The errors with experimental data are computed using a sum of absolute or relative
errors for the standard deviation std() or the maximum max() of the amplitude of the
displacement signal Y generated by each model. Four objective function definitions are
presented in Table 3. For the purpose of defining the objective function S, the modelled
displacement amplitude for the control point i is denoted in Table 3 as Ymi, and Yexpi is the
experimental value at the appropriate reduced velocity. The weighting coefficient wi in
Table 3 defines the contribution of the error registered in the point i and takes the value
of 1, 2, 3 or 4, depending on the point location on the lock-in peak, as shown in Figure 2.
Grey points in Figure 2 are not involved in the optimization procedure. Use of the standard
deviation of the displacement signal to be calibrated with the signal statistics in [18] allows
for a reasonable safety gap to be embedded in the model results, while generally capturing
the peak shape. Further optimization settings, including coefficients’ initial values and
value constraints, are given in Appendix A, and some specific settings to the new multiple-
terms oscillators are discussed in [36]. The results of the optimization are presented in
Appendix B, and these models calibrated with the transversal displacement specifically
demonstrate the advantageous accuracy, compared to the models selected in [22,27] when
they are applied for the case of the cross-flow only VIV of rigid structures. For this reason,
the Section 4 demonstrates the performance of the calibrated 1DOF rigid structure models,
listed in Section 2.

Figure 2. Illustration of the experimental points in the dataset for the mass ratios of 2.36, 6.54 and
10.63 [18] in terms of the reduced velocity and the registered displacement amplitude. Data points
selected for the optimization procedure have the weights wi equal to 4 (orange points), 3 (blue points),
2 (green points) and 1 (yellow points) in the objective function and generally hold an advantageous
position to capture the lock-in peak shape.
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Table 2. Case parameters of experimental data by Stappenbelt and Lalji (2008) [18], used for the
calibration and as the first validation instance in the present study.

Parameter, Symbol (Units) Value

Mass ratio, µ 2.36, 3.68, 5.19, 6.54, 7.91, 8.76, 10.63, 12.96
Damping ratio, ξ 0.006
Mass-damping ratio, µξ 0.014, 0.022, 0.031, 0.039, 0.047, 0.053, 0.064, 0.078
Griffin mass-damping 0.020, 0.028, 0.037, 0.045, 0.053, 0.059, 0.070, 0.084
ratio, (µ + CA)ξ
Maximum lock-in displacement 0.85, 0.80, 0.74, 0.73, 0.68, 0.64, 0.56, 0.43
amplitude, y/D
Diameter, D (m) 0.0554
Aspect ratio, L/D 8
Natural frequency, fn (Hz) 1.711, 1.502, 1.359, 1.261, 1.153, 1.151, 1.084, 1.025
Flow velocity interval, U (m/s) 0.33–1.52
Reynolds number interval, Re 18,300–83,800
Reduced velocity interval, UR 3.5–16.0

Table 3. Four objective functions based on the experimental data for N control points, highlighted in
Figure 2.

Number Objective Function

CF 1 S = ∑N
i=1 wi(max(Ymi)−Yexpi)

2

CF 2 S = ∑N
i=1 wi

|max(Ymi)−Yexp i |
Yexp i

CF 3 S = ∑N
i=1 wi(std(Ymi)−Yexpi)

2

CF 4 S = ∑N
i=1 wi

|std(Ymi)−Yexp i |
Yexp i

4. Results and Discussion

In this work, the optimization of coefficients is performed for 10 models listed in
Section 2, for 3 mass ratios studied in [18] using 4 objective functions in Section 3. The short
list of tuned models with the optimized coefficients, given in Appendix B, and their
performance against the published data from the original selected set-up [18] and other
experimental series, described in Appendix C, is discussed in three subsections below,
with respect to the mass ratio chosen for calibration.

4.1. Models Calibrated with Low Mass Ratio

The illustration of the optimization results is given in Figure 3a,b for the models in
Appendix B calibrated with the low mass ratio data [18]. These models, with no changes in
the optimized coefficients set, are further compared to the lock-in data recorded in [18] for
the mass ratios of 3.68 and 5.19, and this comparison is shown in Figure 3c–f, respectively.
Data in Figure 3 provide the evidence of the satisfactory performance of the models in
the range of the mass ratio from 2 to 5 with the coefficient K from 0.75 to 1.22, which is
consistent with the findings in [22] for the two degrees-of-freedom system. The models
tuned for the low mass ratio demonstrate an approximately equal applicability of the
van der Pol and Rayleigh damping terms for the transversally oscillating rigid structure,
with no apparent advantage of the new extended oscillators from Table 1.
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Figure 3. Cross-flow displacement amplitudes obtained by the one degree-of-freedom models in
Appendix B, calibrated with the low mass ratio: calibration results for low mass ratio 2.36 for
oscillators 1–5 (a) and 6–10 (b); validation results for mass ratio 3.68 for oscillators 1–5 (c) and 6–10
(d); validation results for mass ratio 5.19 for oscillators 1–5 (e) and oscillators 6–10 (f). Experimental
data for calibration and validation from [18]. Damping ratio ξ = 0.006, Reynolds number range
18,300–83,800.

Generally, the models 1, 3, 4, 5, 7, 9 and 10 from the low mass ratio list in Appendix B
provide a relatively safe and accurate fit for the upper branch in Figure 3a,b. Models 2,
7 and 8 allow a safer version of the initial branch, and models 2, 5, 8, 9 and 10 allow a
safer version of the lower branch and following desynchronization region. Model 6 allows
replication of the displacement amplitude at UR = 7.0 which is the highest amplitude in the
target experimental data, but it underestimates the width of the lock-in region, so, the fit is
finally less advantageous than all others. Models 3, 8, 9 and 10 demonstrate more accurate
predictions for the height and width of the lock-in peaks in Figure 3c–f when the mass ratio
is increased to 3.68 and 5.19. The result in Figure 3 suggests that Model 3 with the van
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der Pol damping and the objective function defined as CF 2 is most suitable for predicting
dynamics in the set-up [18] in the interval µ = 2.0–5.0.

The same models provide suitable estimates of the maximum displacement ampli-
tude for the cases considered in [33]. Comparison between the experimental data in [33]
and [18] shows a visible difference between these published results: (a) in the slope of the
initial branch, (b) slope of the lower branch and (c) a different location of the maximum
displacement of the lock-in peak value in the reduced velocity range. From the comparison
of the case parameters, given in Section 3 and Appendix C, these distinctions may originate
from the difference in the considered aspect ratio of structures and the Reynolds number
range. The model in Section 2 does not appear to have specific tools to account for this
difference, except for the coefficient K that contributes to the vortex shedding frequency
integrated into the fluid oscillator. For this reason, the coefficient K for the comparison with
the data [33] in Figure 4 is assigned to 0. This allows appreciating the qualitative match
of the tuned models with the lower aspect ratio data for L/D = 18, including the lock-in
bandwidth, slopes and the upper branch, with minor advantages of one model over the
others. The oscillators 1, 2, 3, 7, 9 and 10 may be seen as more advantageous in capturing
these proportions. The data published in [33] for L/D = 24 show a different geometry
of the lower branch height and width in the reduced velocity range, as well as smaller
amplitudes of the upper branch so that the tuned models do not qualitatively capture this
type of peak in general.

Figure 4. Cross-flow displacement amplitudes for the reduced velocity range generated by the models
calibrated with low mass ratio with oscillators 1–5 (a) and oscillators 6–10 (b) from Appendix B,
with K = 0. The experimental data for two aspect ratios are from the published results by the authors
of [33] for the mass ratio 2.5, damping ratio ξ = 0.005, Reynolds number range 1320–6660.

4.2. Models Calibrated with High Mass Ratio

The comprehensive experimental data [18] for the one degree-of-freedom system
demonstrate a rapid evolution of the lock-in occurrence when the mass ratio grows from
8 to 13. These evolving features include: (a) occurrence of the initial branch at a higher
reduced velocity; (b) practical similarity to the cross-flow maximum amplitudes observed
for the two degrees-of-freedom cases; (c) compression of the lower branch bandwidth in
terms of the reduced velocity; (d) general reduction of the maximum peak height.

The following attempt has been made to calibrate the wake oscillator models in this
range with the mass ratio 10.63, with the tuned coefficients provided in Appendix B, and the
result of calibration shown in Figure 5a,b. As could be expected, the calibration appears to
be successful for a number of models. The optimization result demonstrates the accuracy
of mostly non-classic, modified oscillators in this range, including two oscillators with
extended damping terms in the short list in Appendix B. Model 10 (Oscillator-2) may
be considered as most applicable in this range. The coefficient K for the mass ratio of
10.63 varies from 1.10 to 2.32 which accounts for the delay in the occurrence of the initial
branch in the reduced velocity range.
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However, as could be expected from the qualitative description of the experimental
data in [18] for the high mass ratio, the application range for these tuned models appears to
be about from µ = 8.5 to µ = 11.0. The result of comparison for the mass ratio 8.79 is shown
in Figure 5c,d and demonstrates underestimation of the amplitudes of the upper branch.
The results for the mass ratio 12.96, not shown in this paper, in turn, show a substantial
overestimation of the lock-in peak. The models calibrated with the high mass ratio also
appear to be not applicable to predict the lock-in occurring in other experimental series.

Figure 5. Cross-flow displacement amplitudes obtained by the one degree-of-freedom models in
Appendix B, calibrated with the high mass ratio: calibration results for high mass ratio 10.63 for
oscillators 1–5 (a) and 6–10 (b); validation results for mass ratio 8.76 for oscillators 1–5 (c) and 6–10
(d). Experimental data for calibration and validation from [18]. Damping ratio ξ = 0.006, Reynolds
number range 18,300–83,800.

4.3. Models Calibrated with Medium Mass Ratio

The last group of models in Appendix B have been selected based on the calibration
with the medium mass ratio of 6.54 [18]. This group contains the Krenk–Nielsen, modified
van der Pol, modified and classic Rayleigh equations and one oscillator with extended
damping terms, that appear to be more accurate than the classic van der Pol equation,
according to the minimal objective functions. This list of oscillators is clearly different
from the other mass ratios. The coefficient K varies from 0.96 to 2.12 across these models,
to indicate the initial branch position at a reduced velocity slightly higher than for the mass
ratio of 2.36 and lower than for 10.63.

The calibration results for the medium mass ratio 6.54 are presented in Figure 6 and
indicate a particular suitability of models 1, 2, 3, 4, 5, 6, 7 and 10. Model 8 and classic
Rayleigh oscillators appear not applicable for the prediction of the left slope of the lock-in
peak, while suitable for the prediction of other branches. Model 5 gives the most accurate
highest displacement amplitudes and a correct slope of the initial branch, but prediction in
the reduced velocity interval from 7.0 to 8.0 is disadvantageous. Models 7 and 10 may be
considered as quite correct both qualitatively and quantitatively in this case.
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Figure 6. Cross-flow displacement amplitudes obtained by the one degree-of-freedom models
in Appendix B, calibrated with the medium mass ratio 6.54 for oscillators 1–5 (a) and 6–10 (b).
Experimental data for calibration and validation from [18]. Damping ratio ξ = 0.006, Reynolds
number range 18,300–83,800.

The application of these optimized models for the mass ratio ranges from 2 to 5 and 7
to 11 [18] is shown in Figures 7–10, with no changes to the calibrated coefficients. Validation
with the mass ratio 2.36 in Figure 7a,b demonstrates the correctly predicted bandwidth and
some differences with the amplitudes in the upper branch. Models 4, 6, 7 and 9 may be
recommended as more accurate, with some advantages demonstrated by models 6 and 7.
The match of non-dimensional vibration frequencies indicated in the experiments [18] for
the mass ratio 2.36 and non-dimensional frequencies of displacement signals ωy generated
by the models are illustrated in Figure 8a,b. Here, models 1 to 7 demonstrate an acceptable
match with the experimental frequencies between UR = 3.0 and UR = 9.0, while the
theoretical values exhibit a steeper increasing trend at UR > 9.0. Modelling results for the
mass ratio 6.54 in Figure 8c,d show a more narrow range of the frequency lock-in, consistent
with the range of observed high displacement amplitudes.

Models 4, 6 and 7 well capture the lock-in bandwidth for the mass ratio 3.68, as shown
in Figure 7c,d, while models 2, 3 and 9 can estimate the maximum displacement amplitude
more correctly. Here, model 7 generally shows a better performance than the other models
for the reduced velocity UR = 9.0 and above.

The comparison of the tuned models with the mass ratio of 5.19 in Figure 7e,f demon-
strates a general deviation of models from the experimental lower branch. Model 5 can
be considered accurate for the predictions below UR = 8.0, and model 7 captures the peak
configuration relatively well, if the full range of UR is considered.

A similar performance is recorded in Figure 9 for the experimental series [32] for a
slightly increased damping ratio of 0.008. The minor change in the parametric set leads
to a slightly wider lock-in range in terms of the reduced velocity and a pronounced jump
in the amplitude between the lower and upper branches, especially for the mass ratio of
3.01. If the tuned models of this group are applied with no changes in the coefficients set,
the lock-in occurrence appears to be predicted with a generally suitable accuracy for the
mass ratio 3.01, with some advantages of Landl and classic Rayleigh oscillators, as shown
in Figure 9a,b. All models in this group do not capture the amplitude drop between the
upper and lower branches, and the coefficient K appears to be slightly higher than required
for this arrangement.

The accuracy of these models for the mass ratio 5.19 in Figure 9c,d has a similarity
to the results in Figure 7e,f in the way the lower branch of the lock-in is underestimated.
Figure 9c,d also indicate an overprediction of the maximum amplitude of the response
during the lock-in for a higher damping ratio in [32].
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Figure 7. Cross-flow displacement amplitudes obtained by the one degree-of-freedom models
in Appendix B, calibrated with the medium mass ratio: validation results for mass ratio 2.36 for
oscillators 1–5 (a) and 6–10 (b), for mass ratio 3.68 for oscillators 1–5 (c) and 6–10 (d), for mass ratio
5.19 for oscillators 1–5 (e) and 6–10 (f). Experimental data for validation from [18]. Damping ratio
ξ = 0.006, Reynolds number range 18,300–83,800.

Validation with high mass ratios data from the original series [18] in Figure 10 confirms
the application range of these models up to approximately the mass ratio of 9.0. Model 8
may be considered relatively more accurate for the mass ratio 7.91, models 1, 2, 3 and 10
perform well for the mass ratio 8.76, according to Figure 10c,d, with some overestimation
of the maximum observed displacements. This overprediction appears more pronounced
for the mass ratio of 10.63 that is not shown in this paper, and models 3 and 5 provide the
closest estimate for both peak slopes, capturing the overall bandwidth.
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Figure 8. Cross-flow vibration frequencies obtained by the one degree-of-freedom models in Ap-
pendix B, calibrated with the medium mass ratio: results for mass ratio 2.36 for oscillators 1–5 (a) and
6–10 (b), and for mass ratio 6.54 for oscillators 1–5 (c) and 6–10 (d). Experimental data for validation
from [18]. Damping ratio ξ = 0.006, Reynolds number range 18,300–83,800.

Figure 9. Cross-flow displacement amplitudes obtained by the one degree-of-freedom models in
Appendix B, calibrated with the medium mass ratio: validation results for the mass ratio 3.01 with
oscillators 1–5 (a) and 6–10 (b), and for the mass ratio 4.89 with oscillators 1–5 (c) and 6–10 (d).
The experimental data are from [32]. The damping ratio is 0.008, and the Reynolds number range is
10,810–52,560.
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Here, it is possible to indicate that model 7 with the Krenk–Nielsen damping and
model 3 with the modified van der Pol damping may be considered as more qualitatively
and quantitatively accurate for the original experimental set-up [18,32] for the mass ratios
2.36–10.63 and 3.68–8.76 respectively.

Considering the published experimental data in Figure 11 were obtained in two
different laboratories [33,34], it may be confirmed that the coefficient K has to be adjusted
to some parameters of the facility, possibly, boundary conditions and the aspect ratio, that
are not fully accounted for in the basic mathematical formulation of the wake oscillator
models. Hence, the coefficient K is assigned to 0, as in Section 4.1, in order to visualize
capturing of the maximum amplitude and the lock-in range in the reduced velocity domain.
Results in Figure 11a,b for the mass ratio 2.5 [33] confirm a reasonable quality of prediction
provided by model 7 for the aspect ratio of 18. The accuracy of the lock-in modelling is
generally higher for these models for the L/D = 18 then for L/D = 24, for the reasons
discussed in Section 4.1.

Figure 10. Cross-flow displacement amplitudes obtained by the one degree-of-freedom models
in Appendix B, calibrated with the medium mass ratio: validation results for mass ratio 7.91 for
oscillators 1–5 (a) and 6–10 (b), and for mass ratio 8.76 for oscillators 1–5 (c) and 6–10 (d). Experimental
data for validation from [18]. Damping ratio ξ = 0.006, Reynolds number range 18,300–83,800.

The data in Figure 11c,d for the mass ratio of 5.39 and the damping ratio of 0.1 from [34]
demonstrate: (a) a wider lock-in bandwidth, (b) a mirrored similarity in the inclination
of the initial and lower branches, (c) a scatter in the data for the lower branch, so it is not
possible to predict definitely the maximum amplitudes expected in this range and (d) the
amplitude jump following the maximum lock-in amplitude when the reduced velocity is
increased. Therefore, the models calibrated with the set-up [18] for the medium mass ratio
6.54 are able to partially capture the lock-in occurrence. Models 4, 6 and 7 in Figure 11c,d
may be considered as the closest qualitative and quantitative match to the overall peak
shape, and models 4 and 7 allow an additional safety gap for the range of the initial
branch occurrence.
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Figure 11. Cross-flow displacement amplitudes obtained by the one degree-of-freedom models in
Appendix B, calibrated with the medium mass ratio: validation results for mass ratio 2.5 for oscillators
1–5 (a) and 6–10 (b), damping ratio of 0.005 and Reynolds number range 1320–6660 [33]; and for mass
ratio 5.39 for oscillators 1–5 (c) and 6–10 (d), damping ratio of 0.1 and the Reynolds number interval
of 19,890–39,050 [34]. The coefficient K = 0.

4.4. Discussion

The results reported above are summarized in Table 4 in comparison with results
obtained in [28,36]. This summary indicates that tuned models with the largest application
range between the mass ratio of 3.0 and 10.0 all belong to the category of rigid structure
calibrated with the medium mass ratio. Here, the lock-in delay coefficient calibrated with
the published data for a 2DOF rigid structure is applicable throughout several arrange-
ments. However, the same empirical parameter has to be calibrated independently for each
experimental arrangement when a 1DOF rigid structure is considered, for any mass ratio
used for calibration. It is also worth noting a very limited application range of models
calibrated with the high mass ratio when considering the dynamics of both 1DOF and
2DOF rigid structures.

The results in Section 4 provide sufficient evidence to recommend a general calibra-
tion approach: optimization of the semi-empirical models with the medium mass ratio
while accounting for the features of the experimental arrangement, which may affect the
emergence of lock-in phenomenon in terms of the reduced velocity. The validation with the
published data of [18,32–34] points at some advantages of model 7 with the Krenk–Nielsen
damping, calibrated with the medium mass ratio around 6.0. It may be also noted that
the advantages of classic oscillators are more evident for the low mass ration cases, while
new oscillators with extended damping may be more applicable to model shorter lock-ins,
specific to the high mass ratio cases. Modified van der Pol, Krenk–Nielsen and both types
of Rayleigh oscillators dominate the group of models optimized for the medium mass ratio,
that has the most practical application range.
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Table 4. Summary of calibrated models with low, medium and high mass ratios.

Mass Ratio
Borders of Application on

the Same Set-Up in Terms of
Mass Ratio

Borders of Application on
Different Experimental

Set-Ups in Terms of
Mass Ratio

1DOF

Low From 2 to 5, including From 2 to 5, excluding
lock-in delay coefficient lock-in delay coefficient

Medium From 2-3 to 10-11, including From 2 to 5, excluding
lock-in delay coefficient lock-in delay coefficient

High From 9 to 11, including -
lock-in delay coefficient

2DOF

Low From 2 to 5, including From 2 to 4, including
lock-in delay coefficient lock-in delay coefficient

Medium From 2 to 10, including -
lock-in delay coefficient

High From 9 to 11, including -
lock-in delay coefficient

5. Conclusions

The present paper provides the summary of attempts to improve the accuracy of the
VIV wake oscillator models, demonstrated on the example of transversally oscillating rigid
cylinders mounted on elastic supports. This work is designed to fill the remaining gap
in knowledge on the damping modification and optimization-based tuning of the semi-
empirical wake oscillator models. The research constitutes a departure from the previous
consideration of fluid oscillators suitable for one and two degrees-of-freedom rigid and
flexible structures, by implementing a systematic, comprehensive calibration program for
the three distinct mass ratios, instead of optimization for a single parameter set, and by
consideration of more diverse damping terms.

The current study presents the case for the following major findings:

1. General recommendation to fine-tune the phenomenological models with the data
for a medium mass ratio around 6.0, which allows capturing features of the lock-in
response for an extended mass ratio range.

2. Advantageous use of the Krenk–Nielsen wake oscillator for cross-flow only VIV,
compared to considered alternatives, including fluid oscillators with extended damp-
ing terms.

3. Confirmed necessity to account for the lock-in occurrence sensitivity in terms of
the reduced velocity and the related Reynolds number to the specific features of
experimental arrangements (often associated with the physical boundary conditions),
that can be achieved by the introduction of the vortex shedding frequency tuning
parameter, named the lock-in delay coefficient in this work.

4. General recommendation to model transversal-only oscillations with the models
calibrated with the data for transverse VIV responses.

This study can be expanded in the future towards more advanced optimization tech-
niques, further modifications to the basic mathematical formulation and the way to capture
the dynamics for substantially different parametric ranges.
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Appendix A. Optimization Settings

Table A1. Initial set of coefficients and their optimization constraints.

Parameter Symbol Initial
Value

Lower
Bound

Upper
Bound

Initial lift coefficient CL0 0.3 0.01 3
Initial drag coefficient CD0 2 0.01 3
Cross-flow fluid damping parameter εy 0.008 0.00001 2
Coupling coefficient Ay 5 0 40
Fluid added mass coefficient CA 1 0.1 2
Lock-in delay coefficient K 0 0 4

Appendix B. Optimized Coefficients

Table A2. Calibrated empirical parameters for wake oscillator models demonstrating lowest objective
functions.

Fluid Oscillator Objective
Function CL0 CD0 εy Ay CA K

Low Mass Ratio

1. Classic Rayleigh CF 3 0.75 2.25 0.006424 4.98 0.72 0.95

2. Classic Rayleigh CF 4 0.80 2.23 0.008998 5.12 0.91 0.94

3. Classic van der Pol CF 2 0.66 2.57 0.050361 7.48 1.50 1.17

4. Modified van der Pol CF 1 0.74 1.41 0.358890, 0.547880 3.63 0.70 0.85

5. Modified Rayleigh CF 3 0.47 1.81 0.009570, 0.399190 5.02 0.93 0.75

6. Modified van der Pol CF 2 0.37 1.90 0.025168, 0.332520 5.98 0.65 1.06

7. Classic van der Pol CF 1 0.88 1.80 0.295900 4.56 0.85 0.85

8. Modified Rayleigh CF 4 0.84 2.25 0.022750, 0.223730 5.73 1.56 0.74

9. Krenk–Nielsen CF 4 0.89 2.24 0.019919, 0.033541, 0.008071 5.11 0.78 1.01

10. Oscillator-4 CF 2 0.33 1.97 0.171950, 0.009893, 0.003658, 11.10 0.69 1.22
0.006449, 0.000965, 0.000248,
0.000068, 0.001285, 0.000001,
0.000018, 0.000009, 0.000003,

0.000019, 0.000118
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Table A2. Cont.

Fluid Oscillator Objective
Function CL0 CD0 εy Ay CA K

Medium Mass Ratio

1. Krenk–Nielsen CF 4 0.61 1.75 0.081990, 0.016313, 0.012551 5.49 1.12 1.34

2. Modified Rayleigh CF 4 0.69 1.70 0.016162, 0.038019 5.14 0.95 1.22

3. Modified van der Pol CF 1 0.58 1.22 0.367820, 0.696500 3.85 0.97 1.17

4. Landl CF 2 0.67 1.90 0.008562, 0.009240, 0.008891 5.08 1.00 1.17

5. Modified van der Pol CF 2 0.48 2.22 0.026508, 0.035601 6.28 1.13 1.40

6. Classic Rayleigh CF 4 0.84 2.03 0.019019 5.28 0.87 1.04

7. Krenk–Nielsen CF 2 0.86 2.03 0.177330, 0.088756, 0.036305 5.16 1.01 1.23

8. Modified van der Pol CF 4 0.75 2.41 0.029661, 0.027102 4.65 1.12 1.70

9. Classic Rayleigh CF 1 0.82 1.55 0.080460 4.71 1.19 0.96

10. Oscillator-3 CF 3 0.79 2.71 0.048490, 0.030415, 0.011808, 9.42 1.68 2.12
0.017899, 0.381170, 0.010902,
0.000964, 0.001431, 0.000161

High Mass Ratio

1. Modified van der Pol CF 2 0.39 1.42 0.057390, 0.075106 4.68 0.78 1.43

2. Krenk–Nielsen CF 4 0.46 1.32 0.144630, 0.029808, 0.012312 5.53 1.30 1.44

3. Oscillator-3 CF 4 0.40 0.70 1.974500, 0.001903, 0.028620, 19.31 0.75 2.32
0.126120, 0.573010, 0.067134,
0.032737, 0.094681, 0.058406

4. Krenk–Nielsen CF 2 0.62 2.04 0.050086, 0.045857, 0.014756 5.21 1.92 1.46

5. Landl CF 2 0.64 1.74 0.000104, 0.000065, 0.014635 3.95 0.99 1.26

6. Modified Rayleigh CF 3 0.50 1.65 0.007572, 0.023123 4.92 0.58 1.39

7. Classic Rayleigh CF 4 0.67 2.04 0.010910 4.95 0.99 1.16

8. Modified van der Pol CF 4 0.58 2.01 0.043130, 0.071177 5.10 0.77 1.28

9. Classic van der Pol CF 3 1.12 1.45 0.654710 2.05 1.00 1.10

10. Oscillator-2 CF 3 0.37 2.51 0.009732, 0.010817, 0.000125, 10.05 1.15 1.25
0.014392, 0.013879, 0.000637

Appendix C. Experimental Case Parameters

Table A3. Parameters of experimental cases used for validation.

Parameter, Symbol (Units) Value

Experimental Set-Up Stappenbelt Franzini et al. (2009) [33] Blevins and
and O’Neill (2007) [32] Coughran (2009) [34]

Mass ratio, µ 3.01, 4.89 2.5 5.39
Damping ratio, ξ 0.008 0.005 0.1
Mass-damping ratio, µξ 0.024, 0.039 0.0125 0.539
Griffin mass-damping 0.032, 0.047 0.0175 0.639
ratio, (µ + CA)ξ
Maximum lock-in displacement 0.7, 0.62 0.82, 0.78 0.26
amplitude, y/D
Diameter, D (m) 0.055 0.032 0.0635
Aspect ratio, L/D 8 18, 24 17.8
Natural frequency of structure, fn (Hz) 1.215, 1.051 0.48 1.203
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Table A3. Cont.

Parameter, Symbol (Units) Value

Experimental Set-Up Stappenbelt Franzini et al. (2009) [33] Blevins and
and O’Neill (2007) [32] Coughran (2009) [34]

Flow velocity interval, U (m/s) 0.20–0.96 0.042–0.209 0.31–0.61
Reynolds number interval, Re 10,810–52,560 1320–6660 19,890–39,050
Reduced velocity interval, UR 3.4–14.3 2.7–13.6 4.10–8.05
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