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Abstract. Vortex-induced vibrations (VIV) need to be accounted for in the design of marine structures such as
risers and umbilicals. If a resonance state of the slender structure develops due to its interaction with the sur-
rounding fluid flow, the consequences can be severe resulting in the accelerated fatigue and structural damage.
Wake oscillator models allow to estimate the fluid force acting on the structure without complex and time
consuming CFD analysis of the fluid domain. However, contemporary models contain a number of empirical
coefficients which are required to be tuned using experimental data. This is often left for the future work with
the opened question on how to calibrate a model for a wide range of cases and find out what is working and is
not.
The current research is focused on the problem of the best choice of the fluid nonlinearities for the base wake
oscillator model [1] in order to improve the accuracy of prediction for the cases with mass ratios around 6.0.
The paper investigates six nonlinear damping types for two fluid equations of the base model. The calibration
is conducted using the data by Stappenbelt and Lalji [2] for 2 degrees-of-freedom rigid structure for mass ratio
6.54. The conducted analysis shows that predicted in-line and cross-flow displacements are more accurate if
modelled separately using different damping types than using only one version of the model. The borders of
application for each found option in terms of mass ratio are discussed in this work, and appropriate recommen-
dations are provided.

1 Introduction

Vortex-induced vibrations (VIVs) is a form of fluid - struc-
ture interaction when fluctuations of the fluid forces due
to growing vortices lead to increased fatigue and motion
of the slender structure. Flexible structures in shear flows
are in the main interest for industries, for example, subsea
production systems, but the complex VIV phenomenon is
still not explored fully for simpler cases of rigid structures
with one and two degrees-of-freedom in the uniform flow.

Increased displacement amplitudes of a structure are
observed during the so-called lock-in state (or synchro-
nization) - condition of resonance between the fluid and
the structure. Lock-in condition is achieved by matching
the natural frequency of the structure and the frequency of
vortex shedding.

The current work is performed using wake oscillator
approach to VIV phenomenon. This method implies a very
simplified representation of the fluid around the structure
as fluctuations of lift and drag forces only. This allows to
reduce computational time, but requires prior calibration
and validation work in order to take empirical parameters
correctly.

It was proved by Jauvtis and Williamson [3] in 2004
that development of the resonance state in terms of dis-
placement amplitudes varies for rigid structures with 2
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degrees-of-freedom depending on the mass ratio. The
"border" between two types of lock-in peak was identified
around mass ratio 6.0. This is why, the region of mass ra-
tios 5.0-7.0 seems particularly important and challenging
for modelling.

Previous work towards improving fluid oscillators for
VIV problem included the study of different combinations
of Van der Pol and Rayleigh equations [4]. The wider
range of oscillators and the developed optimisation proce-
dure are given in details in [5]. The focus of these previous
works was on "low" mass ratio around 2.0-4.0, which left
other cases for future exploration. In this study, the authors
consider the most suitable oscillators and corresponding
sets of coefficients for 2DOFs rigid structure with mass
ratio around 6.0 with the focus on maximum possible ac-
curacy of prediction for in-line and cross-flow displace-
ment amplitudes. The basis for modification is the model
presented in [1].

The current paper is structured as follows. Section 1
introduces the basic ideas that allow to narrow the aim
of this study. Section 2 contains details of the improved
model and the list of applied fluid nonlinearities of wake
equations. Section 3 gives the summary of calibration
procedure and presents three groups of calibration re-
sults. Section 4 observes advantages and drawbacks of the
achieved precision of displacement prediction. And Sec-
tion 5 gives concluding remarks and perspectives of the
future studies.
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Figure 1. The model of two degrees-of-freedom elastically-supported rigid structure interacting with the uniform flow of velocity U
[5]. Here, ms is structural mass, rs is structural damping, and K is stiffness of support.

2 Fluid nonlinearities

The considered case is 2 degrees-of-freedom rigid struc-
ture shown in Fig. 1, and the flow is assumed to be uni-
form. The structure can move in the direction of the flow
(or in-line direction), and the direction perpendicular to the
flow (or cross-flow direction). The base model for modifi-
cations [1] in dimensionless form is as follows:

Ẍ + 2ζẊ + ω2
stX =

a
2πS t

Ω2
R +

b
4πS t

Ω2
Rw − 2aΩRẊ+ (1)

+
c
2
ΩRqẎ + aπS tẎ2 + 2aπS tẊ2 − bΩRwẊ;

Ÿ + 2ζẎ + ω2
stY =

cΩ2
R

4πS t
q − aΩRẎ + 2aπS tẊẎ− (2)

− b
2
wẎΩR − cqẊΩR;

ẅ + fdampX + 4Ω2
Rw = AxẌ; (3)

q̈ + fdampY + Ω
2
Rq = AyŸ , (4)

where

a =
CD0ρ f D2

4πm∗S t
; b =

C f l
D0ρ f D2

4πm∗S t
; c =

CL0ρ f D2

4πm∗S t
; (5)

fdampX = 2εxΩR(w2 − 1)ẇ; (6)

fdampY = εyΩR(q2 − 1)q̇.

Here, X, Y are dimensionless structural displacements in
in-line and cross-flow directions respectively, defined as
X = x

D and Y = y
D , where x and y are dimensional struc-

tural displacements, and D is diameter of the structure;
w, q are fluctuating parts of drag and lift forces as wake
coefficients; ωst is natural frequency of the structure; ΩR

is vortex shedding frequency; S t is Strouhal number; ζ is
damping ratio; a, b, c are dimensionless complexes; CD0 is
initial drag coefficient; C f l

D0 is initial fluctuating drag co-
efficient; CL0 is initial lift coefficient; m∗ is mass per unit

length which contains mass of the structure per unit length
and the fluid added mass per unit length; ρ f is fluid den-
sity; Ax, Ay are empirical coupling coefficients connect-
ing wake oscillators with equations of structural motion;
fdampX and fdampY are nonlinear damping terms of fluid
equations; εx, εy are damping coefficients (Van der Pol pa-
rameters).

Mass ratio µ is defined in this research as suggested in
[2] as relationship of the structural mass per unit length ms

and the mass of displaced fluid per unit length mf :

µ =
ms

mf
=

4ms

πρ f D2 . (7)

In this study, the accuracy of prediction with the Van
der Pol damping terms (see Eq.(6)), applied in the model
[1] for in-line and cross-flow wake equations, is compared
with the accuracy provided by possible alternative fluid
nonlinearities, as proposed in [5]:

• Modified Van der Pol terms fdampX = 2εx1ΩRẇw
2 −

2εx2ΩRẇ and fdampY = εy1ΩRq̇q2 − εy2ΩRq̇;

• Modified Rayleigh terms fdampX = −2εx1ΩRẇ + 2 εx2
ΩR
ẇ3

and fdampY = −εy1ΩRq̇ + εy2
ΩR

q̇3;

• Krenk-Nielsen terms fdampX = −2εx1ΩRẇ +
2εx2ΩRẇw

2 + 2 εx3
ΩR
ẇ3 and fdampY = −εy1ΩRq̇ +

εy2ΩRq̇q2 +
εy3
ΩR

q̇3 suggested by Krenk and Nielsen [7];

• and Landl terms fdampX = 2ΩRẇ(εx1−εx2w
2+εx3w

4) and
fdampY = ΩRq̇(εy1 − εy2q2 + εy3q4) based on the work by
Landl [6].

The alternative models developed using these terms
are calibrated with the experimental data [2] in the next
section.
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Table 1. Versions of the model calibrated for mass ratio 6.54 [2]

Modification Set of coefficients
Prediction for both in-line and cross-flow displacement

Rayleigh - Van der Pol CL0 = 1.83,CD0 = 1.73,C f l
D0 = 0.30, εx = 1.8598, εy = 0.3614, Ax = 12.33,

Ay = 2.50,CA = 0.67,K = 1.09

Prediction for in-line displacement only
Modified Rayleigh - CL0 = 1.17,CD0 = 1.18,C f l

D0 = 0.64, εx1 = 1.8976, εx2 = 0.5211, εy1 = 1.6508,
Modified Van der Pol εy2 = 1.0386, Ax = 12.56, Ay = 3.12,CA = 0.34,K = 3.90

Modified Rayleigh - CL0 = 0.21,CD0 = 1.46,C f l
D0 = 0.87, εx1 = 1.9601, εx2 = 0.5841, εy1 = 0.6688,

Modified Rayleigh εy2 = 1.3768, Ax = 12.10, Ay = 2.09,CA = 1.04,K = 3.61

Modified Van der Pol - CL0 = 1.14,CD0 = 1.62,C f l
D0 = 0.19, εx1 = 0.0242, εx2 = 0.5452, εy1 = 1.9493,

Krenk-Nielsen εy2 = 0.0214, εy3 = 0.2491, Ax = 1.02, Ay = 3.2,CA = 1.96,K = 0.17

Landl - Modified Rayleigh CL0 = 0.26,CD0 = 0.58,C f l
D0 = 0.64, εx1 = 0.8290, εx2 = 0.8493, εx3 = 0.8411,

εy1 = 1.4904, εy2 = 0.0192, Ax = 5.05, Ay = 5.02,CA = 1.00,K = 1.09

Prediction for cross-flow displacement only
Landl - Van der Pol CL0 = 0.38,CD0 = 0.37,C f l

D0 = 0.51, εx1 = 0.8519, εx2 = 0.7962, εx3 = 0.9258,
εy = 0.3479, Ax = 6.36, Ay = 4.49,CA = 1.03,K = 1.80

Landl - Landl CL0 = 1.03,CD0 = 0.59,C f l
D0 = 0.02, εx1 = 0.3058, εx2 = 0.5479, εx3 = 0.0558,

εy1 = 0.0009, εy2 = 0.1228, εy3 = 0.3494, Ax = 4.72, Ay = 1.62,CA = 1.97,K = 1.7

Landl - Modified Van der Pol CL0 = 0.33,CD0 = 0.31,C f l
D0 = 0.47, εx1 = 0.7922, εx2 = 0.8399, εx3 = 0.8535,

εy1 = 0.5322, εy2 = 0.6653, Ax = 9.81, Ay = 5.77,CA = 1.19,K = 1.51

Landl - Krenk-Nielsen CL0 = 0.63,CD0 = 0.51,C f l
D0 = 0.34, εx1 = 1.2909, εx2 = 1.4159, εx3 = 1.0042,

εy1 = 0.2581, εy2 = 0.2273, εy3 = 0.2260, Ax = 5.39, Ay = 4.38,CA = 1.00,K = 1.59

Figure 2. Displacement amplitudes generated by the model versions in comparison with experimental data [2]: a) calibrated in-
line responses of considered models for mass ratio 6.54; b) generated cross-flow response of the Rayleigh - Van der Pol system in
comparison with calibrated cross-flow responses of other models for mass ratio 6.54.

3 Calibration results

Calibration of the dimensionless coefficients for the afor-
mentioned wake oscillator models is performed following
the algorithm in [5]. The main priority during calibra-
tion is given to the highest displacement amplitudes devel-
oped during the resonance. Experimental data [2] are for
mass ratio 6.54. The highest displacement amplitudes here
are approximately 0.082 for in-line direction and 1.02 for
cross-flow direction. The highest amplitudes correspond
to the reduced velocity 7.5 and 7.75 respectively.

The models are calibrated in respect to either in-line
or cross-flow data, and the standard deviation is applied

as the statistics of the signal. Eleven control points of ex-
perimental data [2] in either in-line or cross-flow direction
are utilized to estimate the error of the model prediction.
Calibration is conducted using the constrained nonlinear
minimization tool in Matlab as detailed in [5].

The calibrated sets for medium mass ratio are pre-
sented in Table 1 in three groups. The first part of Table
1 is the combination of Rayleigh - Van der Pol dampings
which allows relatively suitable prediction for both in-line
and cross-flow displacement amplitudes at the same time
as illustrated in Fig. 2. In this case, Fig. 2a demonstrates
the calibration result for in-line direction, and Fig. 2b, Figs
3 and 4 show the results of validation on the same exper-
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Figure 3. Displacement amplitudes generated by the model versions in comparison with experimental data [2]: a) in-line response for
mass ratio 2.36; b) cross-flow response for mass ratio 2.36; c) in-line response for mass ratio 3.68; d) cross-flow response for mass ratio
3.68; e) in-line response for mass ratio 5.19; f) cross-flow response for mass ratio 5.19.

imental set-up [2]. Hence, Figs 2a, 3a, 3c, 3e, 4a, and
4c show the comparison of fit by the models calibrated
with in-line displacement record for mass ratio 6.54; and
Figs 2b, 3b, 3d, 3f, 4b, and 4d provide the comparison
of the combination of Rayleigh - Van der Pol dampings
(calibrated with the in-line displacement record) with the

options calibrated with cross-flow displacement record for
mass ratio 6.54.

The second part of Table 1 present options of the fluid
nonlinearities which are able to predict in-line displace-
ment only when calibrated with mass ratio 6.54 [2], and
they are shown in Figs 2a, 3a, 3c, 3e, 4a, and 4c for
the range of mass ratios. Those are options of Modified
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imental set-up [2]. Hence, Figs 2a, 3a, 3c, 3e, 4a, and
4c show the comparison of fit by the models calibrated
with in-line displacement record for mass ratio 6.54; and
Figs 2b, 3b, 3d, 3f, 4b, and 4d provide the comparison
of the combination of Rayleigh - Van der Pol dampings
(calibrated with the in-line displacement record) with the

options calibrated with cross-flow displacement record for
mass ratio 6.54.

The second part of Table 1 present options of the fluid
nonlinearities which are able to predict in-line displace-
ment only when calibrated with mass ratio 6.54 [2], and
they are shown in Figs 2a, 3a, 3c, 3e, 4a, and 4c for
the range of mass ratios. Those are options of Modified

Figure 4. Displacement amplitudes generated by the model versions in comparison with experimental data [2]: a) in-line response for
mass ratio 8.76; b) cross-flow response for mass ratio 8.76; c) in-line response for mass ratio 10.63; d) cross-flow response for mass
ratio 10.63.

Rayleigh - Modified Van der Pol, Modified Rayleigh -
Modified Rayleigh, Modified Van der Pol - Krenk-Nielsen,
and Landl - Modified Rayleigh fluid nonlinearities. Fig. 2a
demonstrates the result of calibration with the in-line dis-
placement record for mass ratio 6.54, and Figs 3a, 3c, 3e,
4a, 4c are the results of validation on the same experimen-
tal set-up [2].

The third block of Table 1 contains the fluid nonlinear-
ities to forecast cross-flow displacement only when cali-
brated with mass ratio 6.54 [2]: Landl - Van der Pol, Landl
- Landl, Landl - Modified Van der Pol, and Landl - Krenk-
Nielsen fluid nonlinearities. Accuracy of their fit is illus-
trated in Figs 2b, 3b, 3d, 3f, 4b, and 4d for the range of
mass ratios. Fig. 2b is the result of calibration with mass
ratio 6.54; and Figs 3b, 3d, 3f, 4b, and 4d are the results of
validation on the same experimental set-up [2].

4 Discussion

Fig. 2a demonstrates the advantageous fit provided by
fluid nonlinearities Modified Rayleigh - Modified Van der
Pol calibrated with the in-line displacement amplitudes at

mass ratio 6.54 [2]. It manifests in the correct position of
the resonance peak, the correct highest displacement am-
plitude, and the best representation of the lower branch
among considered options. Figs 3a, 3c, 3e, 4a, and 4c,
however, illustrate that the best quality of the fit (in-line
peak height and width) throughout the range of mass ra-
tio from 2.0 to 9.0 belongs to the combination of Landl -
Modified Rayleigh dampings.

Figs 2a, 3e and 4a prove that the range of the correct
predictions by options with Modified Rayleigh - Modified
Van der Pol and Modified Rayleigh - Modified Rayleigh
dampings is very narrow - around mass ratio 6.0-7.0. The
combination of nonlinearities Modified Rayleigh - Modi-
fied Van der Pol can be seen as a more interesting due to
providing relatively safe versions of lower branch at dif-
ferent mass ratios.

At the same time, options with Rayleigh - Van der Pol
and Modified Van der Pol - Krenk-Nielsen dampings, as
appears in Figs 2a, 3e, 4a, and 4c, provide a suitable, safe
fit for in-line displacement amplitudes over the mass ratio
range approximately from 6.0 to 10.0.
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Fig. 2b shows very accurate predictions by Landl -
Van der Pol, Landl - Landl, Landl - Modified Van der Pol
dampings of the cross-flow peak at mass ratio 6.54. Varia-
tion of mass ratio in Figs 2b, 3b, 3d, 3f, 4b, and 4d reveals
the advantageous prediction by Landl - Van der Pol, Landl
- Modified Van der Pol, and also Landl - Krenk-Nielsen
dampings from approximately mass ratio 3.7 to mass ratio
9.0. Rayleigh - Van der Pol damping (from the first part
of Table 1) significantly overestimates the cross-flow dis-
placement amplitudes when mass ratio exceeds 6.0. Landl
- Landl fluid nonlinearities with identified set of coeffi-
cients tend to predict cross-flow peak to be narrower than
it appears in experiments [2].

5 Conclusions

The considered modifications of the base model [1]
show that predicted in-line and cross-flow displacements
are more accurate if modelled separately using different
damping types than using only one version of the model,
as follows from the analysis of Figs 2, 3 and 4.

Option of Landl - Modified Rayleigh damping cali-
brated with the in-line displacement amplitudes allows to
predict in-line displacement in the largest range of mass
ratio: approximately from 2.0 to 9.0, as illustrated in Figs
2a, 3a, 3c, 3e, 4a, and 4c.

Options of Landl - Van der Pol, Landl - Modified Van
der Pol, Landl - Krenk-Nielsen dampings calibrated with
cross-flow displacement amplitudes are proved reliable to
predict cross-flow displacement only in the range of mass
ratio from approximately 3.7 until 9.0. It is substantiated
by Figs 2b, 3b, 3d, 3f, 4b, and 4d.

Option of Rayleigh - Van der Pol damping calibrated
with the in-line displacement amplitudes predicts in-line
displacement safe and relatively correctly for the range of
mass ratio from approximately 6.0 to 10.0, and cross-flow
displacement - from 3.7 to 6.0, as revealed by Figs 2, 3
and 4.

Analysis of Table 1 allows to suggest that Landl damp-
ing in in-line fluid equation enables relatively accurate
prediction of cross-flow displacement amplitudes. This
makes the combination of Landl - Modified Rayleigh fluid
nonlinearities the most perspective option for the future
development. Hence, the next stages of this research
should focus on the synthetic oscillators specifically de-
signed for the models of 2 degrees-of-freedom structures,

and definitely involve more experimental data for calibra-
tion and validation.
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