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A B S T R A C T

Ensuring strict adherence to security during the phases of Android app development is essential, primarily
due to the prevalent issue of apps being released without adequate security measures in place. While a few
automated tools are employed to reduce potential vulnerabilities during development, their effectiveness in
detecting vulnerabilities may fall short. To address this, ‘‘Defendroid’’, a blockchain-based federated neural
network enhanced with Explainable Artificial Intelligence (XAI) is introduced in this work. Trained on
the LVDAndro dataset, the vanilla neural network model achieves a 96% accuracy and 0.96 F1-Score in
binary classification for vulnerability detection. Additionally, in multi-class classification, the model accurately
identifies Common Weakness Enumeration (CWE) categories with a 93% accuracy and 0.91 F1-Score. In a
move to foster collaboration and model improvement, the model has been deployed within a blockchain-based
federated environment. This environment enables community-driven collaborative training and enhancements
in partnership with other clients. The extended model demonstrates improved accuracy of 96% and F1-Score of
0.96 in both binary and multi-class classifications. The use of XAI plays a pivotal role in presenting vulnerability
detection results to developers, offering prediction probabilities for each word within the code. This model
has been integrated into an Application Programming Interface (API) as the backend and further incorporated
into Android Studio as a plugin, facilitating real-time vulnerability detection. Notably, Defendroid exhibits
high efficiency, delivering prediction probabilities for a single code line in an average processing time of
a mere 300 ms. The weight-sharing transparency in the blockchain-driven federated model enhances trust
and traceability, fostering community engagement while preserving source code privacy and contributing to
accuracy improvement.
. Introduction

Ensuring the timely detection and remediation of source code vul-
erabilities is of paramount importance in the secure development
f Android applications. Specifically, commencing this critical process
uring the early phases of application development is crucial, as it
ignificantly reduces the potential for attackers to discover and ex-
loit vulnerabilities [1]. Android, which currently commands a market
hare of 70.1% as of December 2023 and sees an average of 62,000
ew Android mobile apps introduced each month on the Google Play
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Store, stands as a highly popular platform [2]. Unlike iOS applications,
Android apps often do not undergo comprehensive security evalua-
tions [3], underscoring the need to adapt the development process to
adhere to rigorous security standards for Android apps.

While diligent requirements analysis and feasibility studies precede
development efforts, the final product may still be susceptible to failure
due to code vulnerabilities. It is worth emphasising that addressing
bugs early in the Software Development Life Cycle (SDLC) is approx-
imately 70 times more cost-effective than addressing them in later
stages of the SDLC [4]. Consequently, researchers have devised various
automated tools for identifying vulnerabilities in Android apps [5]
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to prioritise security-focused development and proactively prevent cy-
bersecurity breaches rather than addressing issues later in the app
development life cycle.

In previous research, scholars have introduced various supportive
tools, frameworks, and plugins aimed at aiding developers in automat-
ing the detection process [6]. These tools have utilised both traditional
techniques and advanced methods based on Machine Learning (ML)
and Deep Learning (DL) to identify vulnerabilities in Android applica-
tions. They employ static, dynamic, and hybrid analysis approaches to
analyse either the Android Application Package (APK) files or complete
Android project source files for vulnerability detection. However, a
significant limitation of current solutions is their inability to address
the early detection of vulnerabilities in a real-time app development
environment. These tools can only assist in identifying vulnerabilities
by scanning the code after the development process has concluded.

Leveraging AI-based techniques on a well-annotated dataset of An-
droid source code vulnerabilities can effectively address these lim-
itations. Nonetheless, it is essential to acknowledge the constraints
associated with the datasets used to train models for detecting Android
vulnerabilities. One feasible approach involves constructing a dataset
by labelling the source code after analysing released APKs, but this
method has its limitations. The dataset’s scope, including the number
of distinct vulnerable categories, is restricted, and it may lack sufficient
code examples or novel vulnerabilities.

An alternative strategy is to train a model using source code directly
obtained from app developers. However, developers might hesitate to
share their proprietary code due to privacy concerns [7,8]. To surmount
this challenge in the model training process, federated learning can
be employed [9]. This approach involves distributing the model train-
ing process among multiple entities interconnected within a federated
environment. As a result, these entities can independently train the
model and make improvements to the final model without revealing
their data, which comprises source code samples. Nonetheless, a draw-
back of the current federated learning method is its limited ability to
engage and captivate the participating clients in collaborative training
to improve model performances. Hence, a blockchain-based federated
learning approach can be implemented to tackle this, wherein model
weights are shared within blockchain, and new model updates serve as
incentives for those genuinely contributing to enhancing the model’s
detection capabilities.

Hence, the aim of this paper is to present a novel blockchain-
based federated neural network model, incorporating XAI to identify
vulnerabilities in Android code with following contributions:

• Evaluating and contrasting the presently available methods and
tools for detecting Android code vulnerabilities.

• Introducing Defendroid, a plugin for Android Studio with a neural
network-based model as its backend, that excels in accuracy and
efficiency for early detection of Android source code vulnerabili-
ties. The initial training of this model utilises the publicly acces-
sible LVDAndro dataset, as described in our previous work [10].
This dataset provides Android source code vulnerabilities, each
labelled according to the Mitre CWE [11].

• Incorporating the model with XAI methodologies and generating
an API. This API offers explanations for the predictions con-
cerning vulnerable code segments. Android app developers can
leverage this information through the plugin to identify potential
mitigation strategies.

• Extending the model training within a community-driven,
blockchain-powered federated learning setting, aiming to ex-
pand and enhance the model’s ability to detect vulnerabilities.
This approach also helps alleviate the shortage of training data
by leveraging a growing network of training nodes, all while
2

addressing concerns related to the privacy of source code.
• Open-sourcing Defendroid and providing access to the public via
a GitHub Repository.1 This repository includes Python scripts and
detailed instructions.

The paper follows this structure: In Section 2, the background and
relevant prior research are discussed. Section 3 details the vulnerability
mitigation model development using blockchain-based federated neural
network AI model. Section 4 discusses the applications and capabilities
of Defendroid. Finally, Section 5 encompasses the conclusions and
outlines future research directions.

2. Background and related work

This section establishes the foundation for the study by elucidat-
ing source code vulnerabilities and the ways in which developers
can receive support in addressing them. Additionally, it delves into
vulnerability scanning methods, AI-driven vulnerability detection, in-
terpretation of prediction outcomes, federated learning, its utility in
maintaining privacy during AI model development, and the utilisa-
tion of community-driven blockchain-based federated learning. It also
reviews pertinent literature on these topics.

2.1. Android developer assistance

According to the research in [12], it has been observed that human
errors, often stemming from lapses in focus and concentration, can
result in coding issues. Therefore, if there is no extensive testing and
validation process in place from the initial stages of the software
development lifecycle, such errors can lead to several vulnerabilities
in the code [13].

Software developers widely embrace Integrated Development Envi-
ronments (IDEs) to enhance their productivity in development tasks.
These IDEs provide valuable assistance for tasks like code writing,
application building, validation, and integration. They come equipped
with built-in features and offer the flexibility to incorporate plug-
ins that augment the development process without altering its core
functionality. Many of these IDEs also support the installation of third-
party plugins developed by external vendors. As discussed in [14],
Android app developers also rely on supplementary tools, extensions,
and plugins to aid them in their coding endeavours, thus helping to
boost their productivity while reducing potential errors.

Google’s Android Studio, the official IDE for Android app develop-
ment which is built upon JetBrain’s IntelliJ IDEA, serves as a critical
tool in this regard [15]. To assist developers during coding, Table 1
enumerates a selection of beneficial plugins that can be seamlessly
integrated into Android Studio.

Though these plugins support various coding activities, none of
them focuses on real-time code vulnerability detection. Hence, to in-
troduce such a plugin, developers must possess a strong understanding
of source code vulnerabilities.

2.2. Source code vulnerabilities

Source code vulnerabilities encompass inadvertent errors, design
flaws, or omissions within the code, all of which may be exploited
by malicious actors to compromise the security or functionality of the
software. Some of these vulnerabilities are buffer overflows, insecure
authentication and authorisation, deserialisation issues, security mis-
configurations, and injection vulnerabilities [17]. Developers seeking a
comprehensive understanding of these vulnerabilities can refer to the
Mitre CWE repository [11].

For mobile application developers also, the Mitre CWE repository
serves as a valuable resource to proactively address potential security

1 https://github.com/softwaresec-labs/Defendroid

https://github.com/softwaresec-labs/Defendroid
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Table 1
Popular Android Studio plugins for supportive coding [16].

Plugin Description Features

ADB Idea Simplify the android
development process by
facilitating to perform
various essential actions
without having to create
them from scratch.

Facilitate starting apps,
clearing app data, killing
apps, restarting apps and
uninstalling apps.

Key
Promoter
X

Provides a mouse-free
development experience by
guiding users to work with
keyboard shortcuts.

Provides a comprehensive list
of IDE shortcuts, a catalog of
suppressed tips for specific
shortcuts, and an easy-to-use
feature for creating custom
shortcuts for buttons.

Code
Glance

Facilitates viewing the
complete code block at a
glance in a mini-map
format.

Highlights code syntax with
customised colours and
provides an overview of the
entire code in a mini-map.

Android
Input

Enables easy text input
into an Android device or
emulator for testing
specific features or
functionality.

Recalls the last used device
and the previously sent text
for testing, utilising the Enter
key to send a text and the Esc
key to refrain from sending.

GitHub
Copilot

Delivers AI-assisted auto
complete suggestions to
enhance the coding
experience.

Offers suggestions from
GitHub Copilot in two ways:
by either initiating code
generation based on the
developer’s input or by
describing the desired code
functionality through natural
language comments.

Tabnine An AI assisted real-time
code completions, chat,
and code generation
method.

Offers code suggestion, code
prediction, code hinting,
content assist, unit test
generation, and
documentation generation.

Space Streamlines software
development, fosters
collaboration, and supports
team and project
management.

Offer assistance for hosting
Git repositories, conducting
code reviews, automating
integration processes, storing
and publishing packages,
handling issue tracking and
documentation, and
facilitating team
communication via chat.

gaps in their source code. This knowledge proves instrumental in the
early detection of vulnerabilities, as demonstrated in [6]. A compila-
tion of common vulnerabilities found in Android code is available in
Table 2, categorised based on their likelihood of exploitation.

2.3. Vulnerability scanning techniques

Android applications and their source code must undergo thorough
scanning to identify potential issues. The research community has
recognised two methods for scanning Android applications, as outlined
in [6]: (1) Reverse-engineering APKs to analyse the code, and (2)
Real-time analysis of the source code as it is being developed.

When scanning applications, three analysis techniques, static, dy-
namic or hybrid can be employed. Static analysis identifies code issues
without executing the application or the source code, while dynamic
analysis necessitates the execution of the application during the scan-
ning process. Hybrid analysis combines aspects of both static and
dynamic analysis.

Various tools are available for the analysis of Android applications,
such as the Mobile Security Framework (MobSF) [18], a hybrid analysis
tool capable of identifying vulnerabilities and malware. The HornDroid
3

tool [19] focuses on analysing information flow within Android apps,
Table 2
Common vulnerabilities in Android code [11].

CWE ID Likelihood
of exploit

CWE description

79 High Improper Neutralisation of Input During Web
Page Generation (‘Cross-site Scripting’)

89 High Improper Neutralisation of Special Elements
used in an SQL Command (‘SQL Injection’)

200 High Exposure of Sensitive Information to an
Unauthorised Actor

295 High Improper Certificate Validation

297 High Improper Validation of Certificate with Host
Mismatch

327 High Use of a Broken or Risky Cryptographic
Algorithm

330 High Use of Insufficiently Random Values

599 High Missing Validation of OpenSSL Certificate

649 High Reliance on Obfuscation or Encryption of
Security-Relevant Inputs without Integrity
Checking

676 High Use of Potentially Dangerous Function

926 High Improper Export of Android Application
Components

927 High Use of Implicit Intent for Sensitive
Communication

939 High Improper Authorisation in Handler for Custom
URL Scheme

250 Medium Execution with Unnecessary Privileges

276 Medium Incorrect Default Permissions

299 Medium Improper Check for Certificate Revocation

312 Medium Cleartext Storage of Sensitive Information

502 Medium Deserialisation of Untrusted Data

532 Medium Insertion of Sensitive Information into Log File

919 Medium Weaknesses in Mobile Applications

921 Medium Storage of Sensitive Data in a Mechanism
without Access Control

925 Medium Improper Verification of Intent by Broadcast
Receiver

749 Low Exposed Dangerous Method or Function

and the Quick Android Review Kit (Qark) tool [20] is a static analysis
tool designed to detect vulnerabilities in pre-built APKs and complete
source code files. However, these supportive tools cannot be seamlessly
integrated into the app development environments to assist developers
in avoiding vulnerabilities real-time [14].

2.4. AI-powered vulnerability detection

In the quest to identify vulnerabilities in Android source code, var-
ious approaches are available, encompassing ML, DL, heuristic-based
methods, formal methods, and other non-AI techniques, as discussed
in [6]. While traditional methods enjoyed prevalence within the re-
search community during the early stages, there has been a notable
surge in the application of AI techniques, as researchers increasingly
harness AI to address these challenges, as noted in [5]. The capac-
ity to deliver highly precise outcomes, effortlessly address intricate
problems, and offer scalability, coupled with growing popularity, have
collectively contributed to the feasibility and potential of developing
AI-driven tools to detect Android code vulnerabilities, as suggested in
our previous studies [21,22].

In the development of AI-powered tools, the availability of a well-
labelled dataset is essential. Numerous datasets have been proposed
for this purpose, primarily focused on application vulnerabilities. One
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such dataset is Ghera, as detailed in [23], which serves as an open-
source benchmark repository encompassing 25 documented vulnera-
bilities found in Android apps. Ghera additionally provides common
characteristics and attributes associated with vulnerability benchmarks
and repositories. The National Vulnerability Database (NVD) [24],
is another dataset commonly referenced for vulnerabilities. Further-
more, the AndroVul repository, as described in [25], contains a col-
lection of Android security vulnerabilities, including high-risk shell
commands, security code anomalies, and details related to dangerous
permission-related vulnerabilities.

However, these datasets are insufficient for constructing real-time
code vulnerability mitigation methods, as they lack labelling based
on actual Android source code. In contrast, the LVDAndro dataset,
presented in [10], offers a labelled dataset grounded in the CWE
that encompasses Android source code vulnerabilities. The LVDAndro
dataset was produced through a combined scanning approach using the
MobSF and Qark scanners. The latest LVDAndro APKs combined pro-
cessed dataset was created by scanning apps from various repositories,
including AndroZoo [26], Fossdroid [27], and well-known malware
repositories [26]. As the proof of concept for employing ML methods
with the LVDAndro dataset to detect Android vulnerabilities has shown
promising results [10], it has the potential to serve as a valuable
resource for training more advanced AI-based models.

2.5. XAI for interpreting AI prediction results

Conventional AI models typically produce prediction results that
are opaque or black boxes. When utilised for vulnerability detection,
this lack of transparency poses challenges for app developers, who
struggle to comprehend the rationale behind predicted vulnerabilities
and to identify potential mitigation strategies. Consequently, develop-
ers are compelled to invest additional effort beyond their primary app
development tasks.

To overcome this limitation, the application of XAI, as discussed
in [28], becomes a viable solution. XAI techniques enhance the trans-
parency of AI models by furnishing human-understandable explana-
tions for their outcomes. These explanations assist users of the model
in comprehending the reasoning behind specific decisions or the gen-
eration of particular predictions.

Employing XAI can play a pivotal role in pinpointing the root causes
of code vulnerabilities. In [29], the authors outline the development of
a human-in-the-loop XAI system designed for vulnerability mitigation.
This system elucidates model predictions to forensic experts through
feature attributions, equipping them with the insights required to make
essential corrections. Additionally, the research presented in [30] in-
troduces the DisCERN counterfactual explainer as a valuable tool for
rectifying code vulnerabilities. This tool leverages insights from fea-
ture attribution explainers and pattern matching to propose correction
recommendations.

In the realm of code vulnerability detection and correction, it is
essential to distinguish between factual and counterfactual explana-
tions. A factual explanation addresses the “what” or “why” questions
by presenting empirical evidence that substantiates a specific AI model
outcome based on the input provided. This explanation also serves to
pinpoint the locations of vulnerabilities within the code. In contrast,
a counterfactual explanation tackles the “Why-not” or “How-to” ques-
tions by crafting a hypothetical scenario that yields a more desirable
outcome. This approach aids in demonstrating how to rectify the
identified vulnerabilities [31].

Once an AI-powered prediction has been generated, determining the
probability of predictions in binary or multi-class classification models
can be accomplished through the utilisation of various Python frame-
works. Several commonly employed frameworks encompass Shapash,
Dalex, Explain Like I’m 5 (ELI5), Local Interpretable Model-agnostic
Explanations (LIME), Shapley Additive Explanations (SHAP), and Ex-
4

plainable Boosting Machines (EBM), among others, as detailed in [32].
The choice of framework is contingent on the specific requirements of
the prediction task at hand. Hence, it is worth considering the potential
applications of these XAI techniques in AI-driven models to detect
vulnerabilities in Android code.

2.6. Blockchain federated learning for AI models

Federated learning is grounded in a distributed machine learning
approach, which entails training numerous local models on various
devices to construct a global model. In a federated environment, clients
connecting to the server embark on training their individual local mod-
els with their respective data over multiple training rounds. Throughout
these rounds, the model weights are transmitted to the federated server,
where they are averaged and updated, ultimately culminating in the
creation of a global model using the Federated Averaging (FedAvg)
algorithm.

FedAvg, as outlined in Algorithm 1, is a widely employed feder-
ated learning averaging technique that enables local model training
on multiple clients without requiring the sharing of the client’s ac-
tual data with the server [33]. The potential for achieving model
convergence across diverse client datasets even in non-independent
and non-identically distributed settings, is essential in federated learn-
ing [34]. Importantly, since federated learning exclusively shares model
weights with the federated server, rather than divulging original data,
it effectively preserves the privacy of client data [35].

Algorithm 1: Federated Averaging (FedAvg) Algorithm
Input: 𝑁 : Total number of clients
𝐾: Number of communication rounds
𝑤0: Initial global model
𝛼: Learning rate
Result: Updated global model 𝑤𝐾

1 for 𝑘 = 1 to 𝐾 do
2 for 𝑖 = 1 to 𝑁 do
3 Train a local model 𝑤𝑖,𝑘 using client 𝑖’s local data:
4 𝑤𝑖,𝑘 = LocalTraining(𝑤𝑘, 𝛼)

5 Aggregate local model updates:
6 𝑤agg = 1

𝑁
∑𝑁

𝑖=1 𝑤𝑖,𝑘

7 Update the global model:
8 𝑤𝑘+1 = 𝑤agg

Nonetheless, traditional federated learning exhibits inherent limita-
tions, particularly in terms of architectural coordination of participants’
activities, the arbitration of their benefits, and the aggregation of
models. This is primarily because most existing solutions rely on a
centralised approach, necessitating a trustworthy central authority for
coordination. Such an approach introduces a multitude of disadvan-
tages, including susceptibility to attacks, a lack of credibility, chal-
lenges in calculating rewards, and difficulties in enticing participants
for model training. It is for these reasons that blockchain technology
has emerged as a potential solution to address the aforementioned
issues, as highlighted in [36].

A blockchain, in essence, is a distributed ledger comprised of a
sequential series of data blocks, with each block containing a collection
of verifiable transactions, as outlined in [37]. Each data block within a
blockchain, with the exception of the initial one, incorporates the hash
value of the preceding block’s header, creating a linked chain of blocks.
Blockchains implement unique consensus mechanisms, such as proof
of work (PoW) and proof of stake (PoS), overseen by a Peer-to-Peer
(P2P) network of nodes. This setup makes it challenging to generate,
yet straightforward to verify each data block. Due to the structural
nature of the chain, the complexity involved in block generation, and
the decentralised consensus achieved within P2P networks, data within
a blockchain is exceedingly resistant to modification. The immutability
and traceability of data inherent in blockchains establish them as a
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sturdy technical solution for upholding a dependable database in a
decentralised and trustworthy manner, as noted in [36].

Consequently, researchers from diverse fields have explored
blockchain-based federated learning methods from various angles, as
evidenced in [9,38]. However, none of these investigations have thus
far delved into the potential application of blockchain with federated
learning approaches for AI-based Android code vulnerability detection
models.

3. Vulnerability mitigation model development

Current approaches depend on APK files for identifying vulner-
abilities in Android code, which presents a challenge in achieving
high accuracy during the early stages of app development. Moreover,
existing models lack in properly explaining the specific reason for the
predicted vulnerability. Therefore, Defendroid seeks to bridge these
gaps by employing a blockchain-based federated neural network ar-
chitecture. This approach facilitates both early and precise detection
of Android code vulnerabilities while also delivering explanations for
prediction results via XAI. The following section provides an in-depth
exploration of the backend model’s development journey. It covers
essential aspects such as conducting a need analysis, selecting the
dataset for model development, constructing the neural network-based
model, fine-tuning and pruning model parameters, and expanding the
model within a blockchain-based federated learning environment.

3.1. Need analysis

Before embarking on the development of the proposed model, a
preliminary step involved conducting a need analysis survey. This sur-
vey involved 63 Android app developers employed in app development
firms and aimed to determine whether security considerations played
a role in their app development practices.

The findings of the survey highlighted that a considerable majority
of developers, precisely 55.9%, do not integrate secure coding practices
into their app development processes, as illustrated in Fig. 1(a). In the
same survey, participants were tasked with rating the factors influ-
encing their limited attention to secure coding, using a 5-Point Likert
scale. The outcomes related to these factors are visually represented in
Fig. 1(b).

Re 1. Functionality is more important than security.
Re 2. Need to allocate additional time to verify the written source code

is secured due to rapid development cycles.
Re 3. Manual verification requires additional resources, including do-

main experts.
Re 4. Lack of supportive tools to automate the security checking pro-

cess.

Following an analysis of the responses, it became evident that a
significant number of app developers prioritise both functionality and
security, with 33 responses falling into the “Average” rating category.
Moreover, a substantial majority of developers, amounting to 68%,
firmly advocate allocating extra time for code scrutiny from a security
perspective. Additionally, there is a consensus among developers that
involving domain experts like security testers and ethical hackers in
the development process is essential, particularly when manual security
verification is required. This is because developers may lack expertise in
identifying source code vulnerabilities and implementing secure coding
practices. Furthermore, 91% of the respondents strongly agree that
the absence of adequate tool support serves as a major reason for not
adequately considering or underestimating security aspects during app
development. Consequently, the conclusion was drawn that integrating
a highly accurate automated vulnerability detection model into the
development pipeline is imperative.

Hence, an open-source solution, Defendroid, has been created to
fulfil these requirements. The complete source code and comprehensive
5

Fig. 1. Survey results.

instructions are accessible via the Defendroid GitHub repository.2 An
overview of the Defendroid approach is illustrated in Fig. 2.

Initially, Defendroid establishes its backend model through the
training of a neural network model using the LVDAndro dataset. This
model is then trained within a blockchain federated environment.
Subsequently, the best-performing model is seamlessly integrated into
a Flask API. This API, in turn, is incorporated into Android Studio as a
plugin, enhancing the developer’s ability to detect vulnerabilities while
leveraging the capabilities of XAI. The detailed steps are elaborated in
the following sections.

3.2. Dataset selection

Although there are various vulnerability datasets available, such as
those mentioned in [23–25], the majority of them do not specifically
address Android source code vulnerabilities or lack comprehensive la-
belling. In contrast, the LVDAndro dataset, as presented in our previous
work, created a labelled dataset based on CWE IDs that specifically
focuses on Android code vulnerabilities. This dataset was meticulously
crafted through the utilisation of multiple vulnerability scanners and
encompasses a substantial dataset of 6,599,597 lines of vulnerable code
and 14,689,432 lines of non-vulnerable code, all scanned across 15,021
distinct APKs.

In Table 3, a comprehensive list of the fields encompassed by the
LVDAndro dataset can be found. While the processed code, vulner-
ability status, and CWE IDs are essential for vulnerability detection,
other fields can further enrich the dataset with valuable information
for prediction. A visual representation of the distribution of CWE-IDs
within the LVDAndro Dataset, is depicted in Fig. 3. According to that,
it becomes apparent that certain vulnerability categories, like CWE-532
and CWE-312, are frequently observed in source code, whereas exam-
ples of code for categories such as CWE-599, CWE-502, and CWE-299
are infrequent.

2 https://github.com/softwaresec-labs/Defendroid

https://github.com/softwaresec-labs/Defendroid
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Fig. 2. Overview of the Defendroid model.
Fig. 3. CWE-ID distribution in LVDAndro dataset.
3.3. Development of neural network-based Vanilla models

LVDAndro provides processed data, and for binary classification
analysis, the processed_code and vulnerability_status fields were em-
ployed. To ensure a balanced dataset and mitigate class bias, the initial
step involved balancing the dataset with a 1:1 ratio of vulnerable
samples to non-vulnerable samples using the NearMiss undersampling
technique [39]. Subsequently, the dataset was split, with 75% desig-
nated for training and 25% for testing. The construction of the feature
6

vector followed a similar approach as employed in the proof-of-concept
of LVDAndro [10], utilising the n-grams technique, with ngram_range
set to 1–3, min_df set to 40, and max_df set to 0.80.

This feature vector was then used to train a neural network model,
which included one hidden layer with 20 perceptrons and an output
layer with two nodes. The relu activation function was employed for
the input and hidden layers, while the sigmoid activation function was
used for the output layer, as it demonstrated favourable performance in
experiments. With the aid of a grid search early stopping, with test_loss



Journal of Information Security and Applications 82 (2024) 103741J. Senanayake et al.
Table 3
Fields in LVDAndro.

Field name Description

Index Auto-generated identifier
Code Original source code line
Processed_code Source code line after preprocessing
Vulnerability_status Vulnerable(1) or Non-vulnerable(0)
Category Category of the vulnerability
Severity Severity of the vulnerability
Type Type of the vulnerability
Pattern Pattern of the vulnerable code
Description Description of the vulnerability
CWE_ID CWE-ID of the vulnerability
CWE_Desc Description of the vulnerable class
CVSS Common vulnerability scoring system
OWSAP_Mobile Open web application security project for mobile apps

details
OWSAP_MASVS OWASP Mobile application security verification

standard
Reference CWE reference URL for the vulnerability

monitoring and parameters set to min_delta = 0.0001 and patience =
20 in auto mode, was implemented to reduce overfitting. The neural
network model’s training process utilised the Adam optimiser with the
default learning rate of 0.001, and the loss function applied was binary
cross-entropy.

For multi-class classification, the feature vector was constructed
using the processed_code and CWE-ID fields. Labels were encoded using
one-hot encoding. While LVDAndro encompasses code samples for 23
CWE categories, some classes have fewer samples due to their nature.
Consequently, only the top 10 classes were retained, and the remaining
classes were relabelled as Other. The dataset was subsequently balanced
through resampling, and the feature vector was created using the same
ngram_range values (1–3), min_df (40), and max_df (0.80) as in the
binary classification model. This feature vector was then used to train
a neural network model with an input layer, one hidden layer featuring
20 perceptrons, and an output layer with 11 nodes. The relu activation
function was employed for the input and hidden layers, while softmax
was used for the output layer. To reduce overfitting, early stopping,
similar to the binary classification model (monitor = test_loss, min_delta
= 0.0001, patience = 20, and mode = auto), was applied to this model. In
the training of the neural network model, the loss function utilised was
categorical cross-entropy, and the Adam optimiser was employed with
the default learning rate of 0.001.

3.3.1. Fine-tuning and pruning of Vanilla model parameters
Numerous experiments were conducted involving the adjustment of

model parameters, including variations in the number of hidden layers
and the quantity of perceptrons, to identify the optimal configuration.
Additionally, a comprehensive grid search and hyper-parameter tuning
process were executed to validate the suitability of the aforementioned
parameters. After the training phase was completed, an analysis was
conducted to assess the F1-Scores and accuracies for both binary and
multi-class classification.

Furthermore, pruning techniques were applied to the selected model
following parameter tuning. Pruning involves the removal of the least
significant weight parameters within a neural network, aiming to en-
hance throughput while maintaining model accuracy. Magnitude-based
pruning serves as a straightforward yet effective method for eliminating
weights while preserving the same level of precision. During model
training, value zeros are gradually assigned, leading to the gradual
removal of inconsequential weights. The model’s accuracy depends on
the degree of sparsity, necessitating careful selection of the sparsity
level to maintain the same level of precision. The implementation of
magnitude-based model pruning was facilitated through the utilisation
of the TensorFlow model optimisation toolbox [40]. The model was ini-
tially trained with all parameters and subsequently pruned to achieve
50% parameter sparsity, commencing from 0% sparsity.
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Table 4
Performance comparison of Vanilla models.

Model name Accuracy F1-Score Model size

Vanilla-B 96% 0.96 335 MB
Vanilla-B-P 95% 0.95 321 MB
Vanilla-M 93% 0.91 8.1 MB
Vanilla-M-P 92% 0.90 7.9 MB

Fig. 4. Accuracy and loss with epochs — Vanilla Models.

3.3.2. Performances of the Vanilla models
Table 4 presents a comparison of F1-Scores, accuracies, and model

sizes for both neural network-based binary and multi-class classifica-
tion tasks. In the context of binary classification, the standard neural
network model is denoted as Vanilla-B, while the multi-class classifi-
cation model is referred to as Vanilla-M. Pruned models, designed for
binary and multi-class classifications, are designated as Vanilla-B-P and
Vanilla-M-P, respectively.

Based on the data presented in Table 4, it was observed that the
unpruned neural network models exhibit slightly better performance
when compared to the pruned models. This marginal performance
difference can likely be attributed to the number of example codes used
and the number of hidden layers employed.

For binary classification models, the variations in training and
testing accuracies over epochs are depicted in Fig. 4(a), while Fig. 4(b)
visualises the changes in training and testing loss for the same models.
In the context of multi-class classification, Fig. 4(c) illustrates the fluc-
tuations in training and testing accuracies over epochs, and Fig. 4(d)
presents the training and testing loss profiles.

The best performance results were achieved with 25 epochs for
Vanilla-B and 24 epochs for Vanilla-M. For Vanilla-B, the training
accuracy reached 96.25%, and the inference accuracy was 95.93%.
During this period, the training loss was 0.12, while the testing loss
stood at 0.142. As for Vanilla-M, optimal training accuracy of 96.1%
and inference accuracy of 93.42% were obtained at the 24-epoch mark,
with corresponding training and testing losses of 0.088 and 0.183.
The increase in loss observed during training may suggest that the
model is becoming overly complex and is potentially fitting noise
or outliers in the training data rather than capturing the underlying
patterns that are applicable to new data. Given that the unpruned
models demonstrate superior performance and the disparities in model
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Table 5
Statistics of the client datasets.

Characteristic Alpha Bravo Charlie Delta Echo Foxtrot

Used APKs 15,021 5,007 521 622 488 506
Vulnerable Code Lines 6,599,597 1,698,073 389,127 401,196 219,721 188,231
Non-Vul. Code Lines 14,689,432 3,696,846 870,222 881,912 458,211 432,333
Vul. Code Percentage 31.0% 31.5% 30.9% 31.3% 32.4% 30.3%
Distinct CWE-IDs 23 23 22 21 19 18
Fig. 5. Federated learning simulated environment.

sizes are insignificant, the decision was made to select these models,
namely Vanilla-B and Vanilla-M, for further experiments.

3.4. Training the model in a federated environment

Federated learning enables the collection of training source code
samples from multiple clients while preserving the privacy of their
respective code [41]. Hence, a simulated federated learning environ-
ment was established in which a server and six clients were utilised, as
illustrated in Fig. 5. The server, operating on an Intel Core i5 laptop
with 16 GB of RAM and running Windows 11 OS, was responsible for
managing the distribution and aggregation of model weights. Four of
the clients were running Ubuntu Linux on Gigabyte Brix (GB-BXBT-
2807) devices, while the remaining two clients, on Intel Core i5 laptops
with 8 GB of RAM, ran Windows 10. These clients were responsible for
training models with global weights on their respective local datasets.

Python, TensorFlow, and their associated dependencies were in-
stalled on both the server and the clients. The Flower framework [42]
was employed, with the server serving as the Flower Server and being
connected to the clients. One of the clients, named Alpha, utilised
the LVDAndro dataset, while three other clients, Bravo, Charlie, and
Delta, employed the LVDAandro dataset generation mechanism to cre-
ate datasets based on their own data. The client Echo used a dataset
generated by scanning APKs using MobSF, and the client Foxtrot used
a dataset generated by scanning APKs using Qark. Echo’s and Foxtrot’s
datasets underwent a processing procedure similar to that utilised
in LVDAndro [10]. The training datasets for each client contain the
records specified in Table 5. In practical scenarios, developers have
the flexibility to enhance training by contributing diverse training data
obtained through alternative methods, such as manual analysis.

The neural network model parameters in the federated learning
model, including the number of hidden layers, neurons, and optimisers,
retained the same optimal values as in the Vanilla model. This selected
architecture facilitates effective model convergence and entails a fed-
erated communication round of 50 along with five epoch iterations, as
determined through the fine-tuning process.

After completing 50 rounds of training, the global model was up-
dated on the federated server and is now available for use in the global
8

Table 6
Comparison of federated models with Vanilla model.

(a) Binary classification

Model name Accuracy F1-Score

Vanilla-B 96.01% 0.9562
Federated-B-a 96.04% 0.9574
Federated-B-ab 96.07% 0.9596
Federated-B-abc 96.08% 0.9611
Federated-B-abcd 96.11% 0.9641
Federated-B-e 96.03% 0.9546
Federated-B-f 96.02% 0.9551
Federated-B-abcdef 96.17% 0.9649

(b) Multiclass classification

Model name Accuracy F1-Score

Vanilla-M 93.03% 0.9105
Federated-M-a 93.50% 0.9213
Federated-M-ab 94.02% 0.9311
Federated-M-abc 94.71% 0.9425
Federated-M-abcd 95.08% 0.9503
Federated-M-e 93.31% 0.9209
Federated-M-f 93.19% 0.9201
Federated-M-abcdef 96.02% 0.9624

context. Several federated models were created by varying the clients,
to examine the relationship between the number of participating clients
and the global model’s performance in terms of Accuracy and F1-Score.
In the case of binary classification models (Federated-B), these mod-
els were denoted as Federated-B-a, Federated-B-ab, Federated-B-abc,
Federated-B-abcd, Federated-B-abcde, and Federated-B-abcdef. Here,
“a” represents a model trained exclusively with data from client Alpha,
“ab” signifies a model trained using data from clients Alpha and Bravo,
“abc” involves data from clients Alpha, Bravo, and Charlie, and so forth.
For multiclass classification models (Federated-M), a similar naming
convention was used. The accuracy and F1-Score of the updated models
were compared to the Vanilla models, as detailed in Table 6a and
Table 6b.

While comparing the initial Federated binary classification model
(Federated-B-a) to the Vanilla binary classification model, it is note-
worthy that there was not any discernible improvement in accuracy
(improved by 0.03%) and F1-Score (improved by 0.0012). Interest-
ingly, the model’s performance slightly improved with 0.16% accu-
racy and 0.0087 F1-Score improvement when all clients were engaged
(Federated-B-abcdef). This lack of notable improvement in model per-
formance when compared to the Vanilla model and other Federated
models may be attributed to the fact that Vanilla-B had already been
well-trained on a substantial number of samples, while the federated
model had a lesser impact.

Conversely, the performance of the multi-class classification mod-
els saw significant enhancements in the federated setup. A gradual
improvement in performance was evident as more clients’ data was
integrated into the federated setup for multi-class classification. When
all clients were involved in the federated multi-class classification
model (Federated-M-abcdef), there was a noteworthy 3.03% increase in
accuracy compared to the initial model (Vanilla-M), reaching 96.02%.
Furthermore, the F1-Score improved by 0.0519, reaching 0.9624.

In summary, it was evident that the integration of a larger number
of clients, particularly when using datasets generated with a similar
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approach to LVDAndro, in a federated setup, led to notable perfor-
mance enhancements in overall model combining the binary and mul-
ticlass classifications. Furthermore, building on this proof of concept,
clients can practically employ a range of scanning techniques and
actively participate in the training process to contribute to model
improvements.

3.5. Extending to a blockchain based federated environment

While the federated learning setup can be made available to a
broader audience, it might struggle to gain traction due to the absence
of incentives for participating clients. Furthermore, there is a need
for a mechanism to validate the model’s performance to ensure that
new client data either improves or at least maintains the current
model’s effectiveness. To address these challenges, a blockchain-based
approach was incorporated alongside the federated model, creating a
community-driven model.

However, existing blockchain networks such as Ethereum [43] and
Hyperledger Fabric [44] have limitations that hinder their seamless in-
tegration with the proposed specialised real-time Android code vulnera-
bility detection model. These limitations include scalability issues, high
costs, limited control, lack of rewarding mechanisms, and constraints
related to consensus algorithms [45].

Consequently, a dedicated private blockchain was designed to serve
the development of the Android code vulnerability detection model.
Python and Flask were employed for its creation. In this context, the
genesis block was established using a model trained on the LVDAndro
dataset. Subsequent blocks are appended to the blockchain network
by diligent miners who genuinely contribute to improving the model’s
performance.

Miniers are still required to be connected to the Federated server for
training. However, they are allowed to mine a new block only if they
meet the requirements specified by the consensus algorithm as outlined
in Algorithm 2. When this is fulfilled, the global model weights are
updated, while concurrently maintaining the public ledger with details
in SHA-256 encrypted format. Each block is linked to its predecessor
by its hash, and it also connects to the subsequent block through hash.
The updated model weights and the global model are then shared with
the miners who successfully create and integrate a new block into the
network.

Algorithm 2: Consensus Algorithm
Input: 𝑀𝑁 : New Model
𝑀𝐶: Current Model
Result: Updates blockchain and global model

1 if 𝑀𝑁F1-Score ≥ 𝑀𝐶F1-Score and 𝑀𝑁Accuracy ≥ 𝑀𝐶Accuracy then
2 Add 𝑀𝑁Weights to the blockchain;
3 𝑀𝐶 ← 𝑀𝑁 ;

Given that the validation process relies on the employed consensus
lgorithm, there are no anticipated model performance losses. As a re-
ult, the model’s accuracy of 96% and F1-Score of 0.96 are consistently
xpected to improve or at least remain the same when compared to
he Federated-B-abcdef and Federated-M-abcdef models. This ultimate
odel is denoted as “Defendroid” and comprises both binary and
ulticlass classification models trained within the blockchain-based

ederated network.
Fig. 6(a) shows the evolution of training and testing accuracies

ver epochs for Defendroid binary models, while Fig. 6(b) provides
representation of the changes in training and testing loss. Fig. 6(c)

isplays the variations in training and testing accuracies across epochs,
nd Fig. 6(d) exhibits the training and testing loss trends for the
ulti-class model.

The most favourable performance outcomes were observed with
5 epochs for Defendroid-B and 24 epochs for Defendroid-M. For
9

Fig. 6. Accuracy and loss with epochs — Defendroid Models.

Defendroid-B, the training accuracy reached 96.25%, and the inference
accuracy was 96.02%. During this phase, the training loss was 0.1,
while the testing loss was 0.118. In the case of Vanilla-M, the best
training accuracy achieved was 96.4%, and the inference accuracy was
95.78%, both at the 24-epoch mark. The corresponding training and
testing losses were 0.068 and 0.103, respectively. These experiments
revealed that Defendroid models exhibit a relatively lower degree of
overfitting compared to vanilla models, signifying a significant im-
provement in performance. This may be due to the increased number
of code samples involved in model training in the federated learning
setup.

4. Applications and capabilities of Defendroid

This section discusses the process of early detecting Android vul-
nerabilities by employing Defendroid model as an Android Studio
plugin.

4.1. Application of Defendroid with XAI

By harnessing the Defendroid API on the backend with the support
of XAI, developers gain the capability to promptly detect potential code
vulnerabilities while actively coding. This is accomplished by trans-
mitting the code through the API using a seamlessly integrated plugin
within their development environment. Consequently, developers can
efficiently scrutinise code for vulnerabilities without the need to switch
between different applications. This enables them to swiftly pinpoint
and address issues as they emerge, facilitating a continuous workflow
without interruptions. Such an approach significantly enhances effi-
ciency, conserving both time and valuable resources. For more detailed
instructions, please refer to the Defendroid GitHub Repository.3

For the binary and multi-class classification models, two pickle files
were generated. These files contain the trained model, classifier, and
vectoriser components. They were subsequently employed as inputs
in the backend of the Flask-based web API for Defendroid, which

3 https://github.com/softwaresec-labs/Defendroid

https://github.com/softwaresec-labs/Defendroid
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is developed using Python. The Defendroid web API incorporates a
GET request parameter that receives a source code line from a user,
subjecting it to a vulnerability check. Upon initialising the web API, the
pre-trained binary and multi-class models are loaded from the pickle
files.

Upon receiving a user’s request via the plugin to the API, the
process commences by employing the binary classification vectoriser
to transform the code line. Subsequently, the resulting transformed
code undergoes assessment by the binary classification model to de-
termine its vulnerability status, classifying it as either vulnerable or
non-vulnerable. In cases where the code line is predicted as vulnerable,
it then undergoes transformation using the vectoriser associated with
the loaded multi-class model. This transformed code is then submitted
to the multi-class model for the prediction of the CWE-ID.

Following the predictions of vulnerability status and the CWE-ID,
the code line is subjected to processing techniques similar to those used
in LVDAndro. This includes procedures like comment replacement and
the substitution of user-defined strings. The resultant processed source
code is then passed through the Python Lime package, known for its
support for XAI. Lime serves the purpose of obtaining insights into the
rationales behind the predictions made by both the binary and multi-
class models. This information is conveyed in the form of prediction
probabilities.

The Lime package delivers insights into the contributions of indi-
vidual words within the processed source code line, elucidating their
significance in both the vulnerability prediction and the prediction
of the vulnerable category. Subsequently, the prediction results are
transmitted from the API in the form of a JSON response and are
subsequently relayed to the plugin.

4.1.1. Plugin integration to Android studio
The most recent version of the plugin is distributed in the form of a

JAR file, which can be obtained from GitHub.4 To seamlessly integrate
this JAR file into the latest version of Android Studio, the developers
can simply follow the standard procedure for installing a third-party
plugin in the Android Studio IDE. Additionally, for compatibility with
older versions of Android Studio, adjustments can be made by modify-
ing the version specification accordingly5 in the plugin.xml file. Once
the plugin is successfully installed, it provides vulnerability-related
suggestions as balloon notifications. The plugin offers two vulnerability
detection options which can be used while code is being written.

• Quick Check: This option involves scanning the entire source
code file to identify the presence of vulnerable source code.
To initiate the quick check option, the developer can navigate
to Tools → Check Source Vulnerability, or simply use the shortcut
CTRL+ALT+E within Android Studio. This option provides a swift
means to identify vulnerable code lines and their respective CWE
IDs in a single scan, offering a rapid vulnerability assessment.

• Detailed Check: In this option, the plugin determines whether
any vulnerabilities are linked to a specific code line.
For the detailed check option, the developer can access it through
Tools → Check Code Vulnerability, or use the shortcut CTRL+ALT+A
when the cursor is placed on a specific code line.

These options are visually represented in Fig. 7.

4 https://github.com/softwaresec-labs/Defendroid
5 https://plugins.jetbrains.com/docs/intellij/android-studio-releases-

list.html
10
Fig. 7. Defendroid integration with Android studio in Tools menu.

4.1.2. Plugin usage
The balloon notification generated by the Defendroid plugin con-

veys the outcomes derived from the API. After conducting a quick scan,
developers are presented with a balloon notification indicating the
status of vulnerable code within the source file. If no vulnerable code
is detected, a notification resembling Fig. 8(a) is displayed. Conversely,
if vulnerable code segments are found, the notification, as shown in
Fig. 8(b), highlights the presence of such code lines along with their
corresponding CWE IDs. For a closer look, Fig. 8(b) is further magnified
in Fig. 8(c).

During a detailed check, the developer will receive a notification
that provides the status of the source code’s vulnerability. If the code
is found to be non-vulnerable, the developer will receive a notification
resembling Fig. 9(a). The focus here is on the statement String name =
“MyApp”.

In the event that the code currently under the cursor is identified
as vulnerable, a balloon notification will be presented as in Fig. 9(b).
This notification includes a detailed description of the vulnerability,
accompanied by guidance on how to mitigate it. The notification also
features information regarding the probability of vulnerability status
prediction (binary classification), the associated CWE ID, and the pre-
diction probability within the CWE category (multi-class classification
prediction). Additionally, it provides insights into the contributions
of individual words to the probability in both binary and multi-class
classification approaches.

The type of notification, whether informational or a warning, is
contingent upon the severity of the vulnerability. Furthermore, to offer
more comprehensive information about the vulnerability, Defendroid
suggests methods for addressing it, often by referring to the CWE
repository [11].

For a practical example of a detailed check on a vulnerable code
line, please refer to Fig. 9(b). To examine the specific balloon notifica-
tion in more detail, see Fig. 9(c). In this example, the cursor is focused
on the statement Log.e(“Login Failure for username:”, “user123”);. This

https://github.com/softwaresec-labs/Defendroid
https://plugins.jetbrains.com/docs/intellij/android-studio-releases-list.html
https://plugins.jetbrains.com/docs/intellij/android-studio-releases-list.html
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Fig. 8. Defendroid quick check notifications.

particular code is linked to CWE-532, a classification that the model ac-
curately predicted with a high probability of 0.99. Notably, within this
prediction, the model identified “Log” as the most influential element,
attributing it with a substantial probability of 0.53. In the context of
multi-class classification, the model exhibited a prediction probability
of 0.99 for CWE-532, and it attributed a significant contribution of 0.96
to the term “Log”. This emphasises the importance of developers exer-
cising caution when incorporating log statements into production-level
applications. Such statements can potentially introduce vulnerabilities
11
Fig. 9. Defendroid detailed check notifications.

that attackers may exploit by inspecting log files. As a preventive
measure, developers can implement encryption processes to generate
log files in an encrypted format, rather than plain text, enhancing
security and mitigating potential risks.

The Android Studio Event Log is synchronised with these execu-
tions, as depicted in Fig. 10. This feature aids developers in moni-
toring the progression of source code in the context of vulnerability
mitigation.
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Fig. 10. Defendroid notifications in Event Log.
-

Table 7
Performance comparison of MobSF, Qark and Defendroid models.

Metrics MobSF Qark Defendroid

Accuracy 0.91 0.89 0.96
Precision 0.93 0.92 0.94
Recall 0.95 0.93 0.99
F1-Score 0.94 0.92 0.96

Developers are not obliged to follow a strict order when utilising
the quick or detailed check options; they can choose the sequence
that best suits their preferences. Empowered by these recommenda-
tions and the accompanying prediction probabilities, developers are
equipped to enhance the security of their apps by addressing source
code vulnerabilities. The ability to revisit the vulnerability assessment
provides developers with the advantage of monitoring the fluctuations
in prediction probabilities when specific code lines are altered. This
functionality proves beneficial in scenarios where complete mitigation
may not be feasible, such as situations where retaining log file records
for debugging purposes is essential, even in production-level apps.

4.2. Capabilities of Defendroid

Defendroid possesses the capability to identify 10 CWE categories
(11 when including the “other” category), all of which are characterised
by either a high or medium likelihood of exploitation, as elaborated
in [21]. These CWE-IDs encompass 89, 200, 276, 312, 532, 676, 749,
921, 925, and 939.

Therefore, to assess the accuracy of the Defendroid model, a com-
parative analysis was conducted against the MobSF and Qark scanners,
both of which contributed to the construction of the initial LVDAndro
dataset. The evaluation aimed to gauge the accuracy of identifying
vulnerable code within new data, involving a total of 2216 source
code lines. This compilation featured randomly selected 604 lines of
vulnerable code examples derived from the CWE repository, as well
as 1612 lines of non-vulnerable code extracted from real applications.
These code lines were seamlessly incorporated into an Android app
project, subsequently subjected to scanning using both MobSF and Qark
Scanners.

These same code lines were then presented to the Defendroid model
through its Android Studio plugin. The comparative evaluation encom-
passed metrics such as accuracy, precision, recall, and F1-Score, the
results of which are comprehensively summarised in Table 7.
12
Upon conducting the comparative analysis, it became evident that
Defendroid outperformed MobSF and Qark in its ability to predict vul-
nerabilities. Defendroid achieved a high accuracy rate of 96%, coupled
with a precision score of 0.95, a recall rate of 0.99, and an F1-Score
of 0.96. Notably, Defendroid excelled in reducing the false negative
rate, thereby mitigating potential security risks associated with its
predictions.

The Defendroid plugin can predict a single line of code in under
300 ms. Its performance was assessed by measuring the time it took
for prediction after integrating it with Android Studio on a Windows OS
system with a Core i5 processor and 16 GB RAM. However, initialising
the API in this environment took between 3 to 6 s and consumed about
100MB of memory before the plugin could execute. This initialisation
is a one-time process, meaning developers will not need to spend extra
time or effort to obtain real-time prediction results afterward.

Defendroid’s functionalities were also contrasted with various well-
known tools and techniques employed for vulnerability detection, as
illustrated in Table 8.

Furthermore, it is anticipated that the model’s performance will wit-
ness continual enhancements and reach optimal levels as this blockchain
based federated learning environment becomes accessible to a broad
spectrum of clients and miners, ranging from individual app developers
to app development companies.

4.3. Developer feedback

The Android app developers who took part in the preliminary needs
assessment survey (Section 3.1) were provided with the plugin for
integration into Android Studio, which they employed in the course
of app development. Subsequently, a survey was administered to col-
lect feedback concerning the plugin’s performance. Developers were
requested to express their satisfaction levels using a 5-Point Likert
scale. With the help of domain experts, the developers were asked to
manually analyse and verify the prediction results generated by the
plugin. The results of this survey, gathered from 63 developers, are
presented graphically in Fig. 11.

The survey findings unveiled that a significant majority, encom-
passing 87% of app developers, held a high level of satisfaction re-
garding the accuracy and efficiency of Defendroid’s predictions. More-
over, an impressive 89% of developers expressed high satisfaction
with Defendroid’s overall usefulness and the quality of its mitigation
recommendations.

Nonetheless, the survey underscored opportunities for enhancing
the plugin’s usability and integration features, as only approximately
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Table 8
Highlights of Defendroid and other popular vulnerability detection tools.

(a) Detection capabilities, computational requirements, integration capabilities, user friendliness and other features

Tool/Method Detection capabilities and computational
requirements

Integration capabilities and user friendliness Other features

Snyk [46] * Claiming to be near zero false positive
* Need to be executed parallel

* Can be integrated with IDEs
* Unable to provide reasons for detected
vulnerabilities

* Limited features are available in free
version

ImmuniWeb
MobileSuite [47]

* Claiming to be zero false-positive
* Need to be executed parallel

* Can be integrated with SDLC
* Provides actionable remediation guidelines

* Supports for mobile app and backend
testing

Drozer [48] * Interact with the Dalvik VM and other
endpoints of the app to find vulnerabilities
* Unable to detect vulnerabilities in
real-time

* Unable to integrate with Android
development environments
* Less user friendly due to the command
line based approach

* Supports penetration testing
* Search for security vulnerabilities in apps
* Free and open source

Astra Pentest
[49]

* Performs over 8000 test cases to aid in
the detection of vulnerabilities
* Can identify misconfiguration errors in
code or build settings

* Lack of ability to detect code level
vulnerabilities at early stages
* Need to run it as a separate program

* Supports for automated and manual
penetration testing
* Not available for free

ACVED [21] * Ensemble AI model with 95% accuracy
* 0.95 F1-Score in binary model and 0.93
F1-Score in multi-class model
* Model re-training time is high
* API initiation time is high

* Can be integrated with Android Studio
* Explain vulnerabilities

* Training the model in a central location
* Relies solely on the LVDAndro dataset
* Free and open source

Defendroid * Neural Network based model with 96%
accuracy
* 0.96 F1-Score in both binary and
multi-class models
* API initiation time and model retraining
time is low

* Can be integrated with Android Studio
* Community driven and easily extendable
* XAI based vulnerability mitigation
* Work in progress to improve the usability
of the plugin

* Privacy-preserved block chained federated
learning model
* Limited capability to detect complex
vulnerability patterns
* Free and open source

(b) Summary

Feature MobSF
[18]

Qark
[20]

Snyk
[46]

Immuni
Web
[47]

Drozer
[48]

Astra [49] ACVED
[21]

Defendroid

Detect Android code vulnerabilities ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Detect vulnerabilities in real-time by integrating with IDEs – – ✓ – – – ✓ ✓

Detect vulnerabilities line by line – – ✓ – – – ✓ ✓

Detect vulnerabilities in whole source code ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Provide suggestions to mitigate vulnerabilities – – ✓ – – – ✓ ✓

Explain the reasons for vulnerabilities – – – – – – – ✓

Preserve the privacy of source code – – – – – – – ✓

Free and open source ✓ ✓ – – ✓ – ✓ ✓

Able to run alongside the development platform – – ✓ – – – ✓ ✓

AI-based backend – – ✓ – – – ✓ ✓

Community driven and easily scalable – – – – – – – ✓
Fig. 11. Survey results — Defendroid satisfaction.
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22% of developers reported a high level of satisfaction in these areas.
Additionally, there is room for improvement in terms of the plugin’s
visual aesthetics, given that 57% of developers were not highly satisfied
with its look and feel. This feedback is particularly valuable as it
can serve as a basis for enhancing the plugin’s appeal. One approach
could involve integrating mitigation suggestions akin to IDEs’ syntax
error indication features, which would involve highlighting issues and
providing recommendations in a more intuitive manner, rather than
through balloon notifications.

Notwithstanding the identified areas for improvement, the overall
satisfaction rate remains remarkably high, with 79% of developers
expressing a high degree of satisfaction and an additional 21% report-
ing moderate satisfaction. With further development and refinement,
the plugin exhibits the potential to gain wider adoption within the
developer community for the purpose of mitigating Android source
code vulnerabilities.
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5. Conclusion and future work

The adoption of secure coding practices is crucial when developing
Android apps. This study introduces Defendroid, an innovative ap-
proach to detect vulnerabilities during the source code writing process.
Trained on the LVDAndro dataset, the neural network model integrates
with a blockchain-based federated learning environment, collaborating
with local models to enhance detection capabilities and overall accu-
racy. The collaborative learning process includes model performance
validation through the block mining stage governed by the consensus
algorithm. Additionally, XAI is incorporated to offer comprehensive
insights into the rationale behind vulnerability predictions, providing
valuable support for developers.

Defendroid boasts impressive results, achieving a 96% accuracy rate
and an F1-Score of 0.96 for both binary and multiclass classifications.
Developers can seamlessly employ the prototype plugin for Android
Studio to proactively detect and fix vulnerabilities using Defendroid.
The Defendroid model is accessible via its GitHub repository. A plu-
gin prototype has been created and employed, to demonstrate the
capabilities of this approach. However, exploring the incorporation
of the Defendroid model and its API as a full product, as a user-
friendly Android Studio plugin, could be a valuable avenue for future
development. By incorporating principles of XAI and harnessing the
capabilities of federated learning, Defendroid advances the field of
Android code vulnerability detection while preserving the privacy of
source code while training it. As the environment is made available
to a broader audience and transitions to a fully community-driven,
decentralised model, the model’s accuracy is expected to see further
improvements in the future. Securing the transmission and sharing
of weights within the blockchain can enhance the overall security of
the model and this aspect can be investigated in more detail while
introducing an incentive mechanism to attract more clients in future
research.
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