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Abstract 

Identification of damage and selection of a restoration strategy in concrete structures is contingent upon automatic inspection 
for crack detection and assessment. Most research on deep learning models for autonomous inspection has focused solely on 
measuring crack dimensions, omitting the generalization power of a model. This research utilizes a novel step transfer 
learning aided extreme learning machine (STELM) approach to develop an automatic assessment strategy for surface cracks 
in concrete structures. Step transfer learning (STL) is helpful in mining generalized abstract features from different sets of 
source images, and extreme learning machine (ELM) helps the proposed model overcome the optimization limitations of 
traditional artificial neural networks. The proposed model achieved at least 2.5%, 4.8%, and 0.8% improvement in accuracy, 
recall, and precision, respectively, in comparison to the other studies, indicating that the proposed model could aid in the 
automated inspection of concrete structures, ensuring high generalization ability. 

Keywords: concrete cracks detection, Concrete structures, Extreme learning machine, Infrastructure step transfer learning, 
Structural health monitoring, Structural integrity 

1. Introduction

When constructing structures like bridges, buildings,
highways, and payments, concrete is a common material 
utilized in the process. The structures made of concrete 
deteriorate over time as a result of adverse environmental 
conditions, overloading, and material degradation [1], [2], [3]. 
Microcracks to larger cracks are the initial symptom of 

deterioration in concrete structures. The propagation of the 
cracks has the potential to reduce the durability of a concrete 
structure and jeopardize its skeletal support [4], [5]. These 
gaps allow the entry of water and toxic chemicals into the 
structure. Rebar corrosion may be triggered if the cracks 
extend to the level of the rebars. The safety and use of the 
concrete structure can be compromised by disintegration and 
spalling of the concrete that might result from the 
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development of corrosion or fire [6], [7], [8]. Concrete 
structure inspection for crack detection is essential for 
detecting damage and assessing conditions [9], [10], [11]. In 
order to avoid significant damage and maintain public 
safety, it is essential to detect cracks before choosing the 
best repair strategy.  

A manual visual inspection is performed to detect cracks in 
the surface of a concrete structure. However, it takes a lot 
of time, requires a lot of work, and puts the safety of 
the inspectors at risk [12], [13]. This approach is also 
dependent on the qualifications, experience, and abilities of 
the in charge of the inspection. Consequently, researchers 
have explored and developed various non-invasive techniques 
to evaluate the condition of concrete structures and 
analyze the outputs to asses the behavior of the reinforcing 
elements under different dynamic loading scenarios [14], 
[15]. The structures may experience long-term loading, such 
as their own weight, or dynamic loading, including 
environmantal deterioration and earthquackes [16]. To 
develop automated and non-invasive techniques of 
inspection machine learning algorithms have been 
investigated using multimodal data to get around these 
constraints. These non-invasive techniques are becoming 
more and more crucial in the maintenance of intelligent 
facilities due their affordability and user friendly 
attributes. Moreover, automated inspection for cracks 
has the benefit of being efficient as it is less labor 
intensive as well as lowers the risk of workplace accidents 
[17], [18]. Moreover, since this assessment is determined by a 
computerized algorithm, it may be more impartial and 
trustworthy. Numerous studies have looked into the viability 
of automated inspection for crack detection using deep 
learning and digital image processing techniques (DIPT) in 
concrete structures. In this regard, a vision-based approach is 
suggested for crack and density assessment in concrete 
structures using a fully connected network (FCN) [19]. A 
VGG16 network was used as the foundation of the FCN 
encoder because it outperformed InceptionV3 and ResNet in 
the detection of cracks in images. The entire encoder-decoder 
FCN architecture was trained, validated, and tested end-to-
end, and on the training, validation, and test sets, which 
yielded 90% of both the F1 and average precision scores. 
However, the proposed method lacked in estimating the 
crack sizes, especially when the test image contains numerous 
noisy crack-like characteristics. Similarly, Abdel-Qader et 
al., [20] presented a DIPT-based edge recognition 
approach for concrete crack detection. Algorithms for 
edge recognition were examined for crack identification in 
concrete structures that provided a maximum accuracy of 
86%. The sharp shift in brightness brought on by texture 
in the image, however, makes edge recognition systems 
vulnerable to noise, shadows, defects, and illumination. A 
convolution neural network (CNN) model was proposed 
to solve a binary classification problem, i.e., to detect 
cracks in concrete structures [21]. An 

integrated CNN model incorporating regression models, i.e., 
RF and XGBoost, was presented for predicting the depth of 
cracks in concrete structures based on the features extracted 
through a CNN model. The suggested model achieved an 
accuracy of 99.9% when tested on a public dataset containing 
images of cracks in concrete structures. Additionally, when 
the model was tested with data from a damaged RC slab 
present in the laboratory it demonstrated 93.7% accuracy. 
Moreover, the performance also deteriorated when tested with 
unseen data as it could provide only 93.7 % of accuracy. For 
crack detection, a percolation-based image processing method 
was proposed [22]. Macro cracks could be recognized by the 
approach since it is dependent on the size and brightness of 
the cracks, while small, undefined cracks were mistaken for 
noise. Furthermore, the implementation of an image 
binarization technique allowed the detection of cracks as well 
as the estimation of their widths on a concrete surface. 
Although crack widths were predicted with an error of less 
than 11%, the approach was unable to identify minor cracks 
that were present in the blurred images. To find microscopic 
cracks and determine their breadth and length, Kim et al. [23] 
used a hybrid image binarization technique. However, the 
absence of a defined approach to establish a threshold and pick 
the appropriate parameters for feature extraction makes it a 
time-consuming, ineffective, and expensive operation. 

Deep learning has been explored to overcome the 
limitations of DIPTs used for automated crack detection in 
concrete structures [24], [25], [26], [27]. Due to its 
hierarchical architecture and non-linear transformations used 
in the layers, it can automatically extract features from 
images. Therefore, deep learning techniques are more 
beneficial than traditional DIPTs as these techniques are 
robust and can accurately detect defects [28], [29]. A deep 
CNN has a promising performance in image classification 
tasks as it can distinguish and classify images with high 
accuracy and precision [30], [31]. Assessing the state of a 
concrete building requires automatic crack detection as it is 
crucial to evaluate its structural integrity. To prevent 
substantial damage to the concrete structure, it is also helpful 
to choose and use the proper repair procedure such as surface 
coatings or sealers, grouting or epoxy injection, or a 
comprehensive repair using replacement concrete. Concrete 
crack inspection and quantification have been performed 
using CNN and integrated CNN to overcome the 
shortcomings of the conventional DIPTs [32], [33], [34]. 
These algorithms, however, have only been concerned with 
identifying cracks and figuring out their size, shape, location, 
orientation, and depth. To the best of my knowledge, there are 
no automated inspection methods that can address the 
generalization issue normally encountered by the automated 
inspection model. To address this issue, a step transfer 
learning added extreme learning machine (STELM) is 
proposed in this work to boost the generalization power of the 
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crack detection model. This study first seeks to close this gap 
by investigating the potential of utilizing a double-step 
transfer in combination with a conventional transfer learning 
process to create a more informative and generalized pool of 
abstract features suitable for crack detection in concrete 
structures. Next,  an extreme learning machine (ELM) is 
applied to the pool of abstract features to classify the data with 
high generalization power. The contributions of this study are 
described as follows. 

1- Improving the learning capability of the concrete
crack detection model by combining a double-step transfer 
learning concept into a basic transfer. In this, abstract features 
are explored from different image sources by transferring 
knowledge in two steps utilizing separate pre-trained models, 
hence, mitigating the overfitting problem. 

2- Creation of a hybrid feature pool of abstract features
containing diverse information that is useful for the 
underlying classifier to accurately classify the data. 

3- Formation of a powerful classifier with enhanced
generalization power by the application of extreme learning 
method for the data classification to overcome the basic 
limitations of traditional neural networks.  

The rest of the paper is organized as follows: Section 2 is 
related to the technical background of the algorithms used in 
this work. Section 3 defines the methodology adopted to 
develop an automated crack detection model with better 
generalization power. Section 4 is about the explanation of the 
dataset description and experimental setup. Section 5 presents 
the results and analysis of the proposed model. In section 6 the 
whole work has been concluded. 

2. Technical Background

To prevent a concrete structure from further damage and to
ensure public safety automatic assessment of cracks is a vital 
process. This research aims to provide an automatic crack 
detection mechanism with better generalization power while 
ensuring efficiency, rationality, and accuracy of the process 
and results. To establish a complete framework with high 
generalization power for crack detection and depth prediction, 
we investigate the use of deep learning techniques including, 
double-step transfer learning and extreme learning. The 
technical details about these techniques are provided in the 
following subsections. 

2.1 Double Step Transfer learning 

Double step transfer learning (DTL) goal is to complete a 
learning task 𝑇𝑇𝑡𝑡𝑡𝑡  on the target domain 𝐷𝐷𝑡𝑡  with a few labeled 
samples by recycling information learned in a previous task 
𝑇𝑇𝑠𝑠𝑡𝑡  on the source domain 𝐷𝐷𝑠𝑠𝑡𝑡 . In the conventional transfer 
learning (TL) approach, 𝑇𝑇𝑠𝑠𝑡𝑡  is a generic task, for instance, 
target identification on ImageNet. The instance-based transfer 

learns about the distribution of samples in 𝐷𝐷𝑠𝑠𝑡𝑡 through the 
following mapping function. 

𝐷𝐷𝑇𝑇 = 𝑓𝑓�(𝐷𝐷𝑠𝑠𝑡𝑡 →  𝑇𝑇𝑠𝑠𝑡𝑡) × (𝐷𝐷𝑡𝑡𝑡𝑡 →  𝑇𝑇𝑡𝑡𝑡𝑡)� → 𝑓𝑓�(𝐷𝐷𝑠𝑠𝑡𝑡 →  𝐷𝐷𝑡𝑡𝑡𝑡) → 𝑇𝑇𝑡𝑡𝑡𝑡�. 

Contrary to that, network-based transfer learning updates 
model weights and learnable parameters in 𝑇𝑇𝑠𝑠𝑡𝑡  through the 
following mapping function.  

𝐷𝐷𝑇𝑇 = 𝑓𝑓�(𝐷𝐷𝑠𝑠𝑡𝑡 →  𝑇𝑇𝑠𝑠𝑡𝑡) × (𝐷𝐷𝑡𝑡𝑡𝑡 →  𝑇𝑇𝑡𝑡𝑡𝑡)� → 𝑓𝑓�𝐷𝐷𝑡𝑡𝑡𝑡 → (𝑇𝑇𝑠𝑠𝑡𝑡 →  𝑇𝑇𝑡𝑡𝑡𝑡)�. 

However, it is challenging to obtain a good D_sr dataset for 
the surface cracks task due to the specific morphological 
properties of the cracks present in the structures, which make 
it very different from the domains frequently used in target 
detection. This means that conventional TL approaches based 
on features extracted from generic images are not adequate for 
crack identification in concrete structures. The double-step 
deep transfer strategy suggested in this research aims to 
combine the benefits of the aforementioned methods. 

Images that share the same morphological features as 
cracks on concrete structures are easier to find than actual 
cracks. To facilitate more efficient information transfer, a 
subset domain 𝐷𝐷𝑠𝑠𝑡𝑡′  from 𝐷𝐷𝑠𝑠𝑡𝑡  can be conceptualized using 
images that can make the domain portray similar properties to 
cracks in concrete structures, i.e., the target domain 𝐷𝐷𝑡𝑡𝑡𝑡 .The 
𝐷𝐷𝑠𝑠𝑡𝑡′ , which is an updated domain of origin, can then be 
leveraged to complete the two-stage transfer as follow: the 
instance-based transfer can be adopted to vigorously extract 
features in the incipient step, whereas, in the second transfer 
stage network-based transfer can be used to update the 
learnable parameters and weights from the original network to 
𝐷𝐷𝑡𝑡𝑡𝑡 . Next, a different real-world concrete crack dataset is used 
to fine-tune the network, resulting in a deep network with a 
superior abstract feature pool. This process can be 
mathematically represented as follows. 

𝑓𝑓�(𝐷𝐷𝑠𝑠𝑡𝑡 → 𝑇𝑇𝑠𝑠𝑡𝑡) × (𝐷𝐷𝑡𝑡𝑡𝑡 → 𝑇𝑇𝑡𝑡𝑡𝑡)�𝑓𝑓 ��(𝐷𝐷𝑠𝑠𝑡𝑡 → 𝐷𝐷𝑠𝑠𝑡𝑡′ ) → 𝑇𝑇𝑠𝑠𝑡𝑡′ � →  (𝐷𝐷𝑡𝑡𝑡𝑡 → 𝑇𝑇𝑡𝑡𝑡𝑡)� 

The two-stage transfer method across domains can be 
applied to many tasks with insufficient training samples if the 
appropriate 𝐷𝐷𝑠𝑠′  are selected in the first stage. Good 
explainability is a feature of both the training samples and the 
model's weights/parameters, which undergo separate transfer 
phases. 

2.2 Residual Neural Network 

It is generally assumed that the performance of a network 
is directly proportional to its depth in the presence of a big 
data [35], therefore, in the field of computer vision, ever-
deeper neural networks are used. However, due to the known 
gradient vanishing problem, training a deeper network is 
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challenging [36]. Kaiming et al., presented a straightforward 
approach to this issue and named it a residual neural network 
(ResNet) [37]. ResNet is a training framework that makes it 
simpler to train networks that are far more complex than 
earlier methods. The unexpected results of experiments 
showing that adding additional layers increases training error 
provided the impetus for this. Theoretically, the modeling 
skills of Neural Networks should improve with an increase in 
the number of layers, and the deeper networks should result in 
no greater training error. The authors hypothesize that this is 
due to the fact that gradients disappear after being transmitted 
via a large number of layers. The authors advocated adding 
shortcut connections using identity functions rather than 
directly fitting the stacked layer to the underlying mappings 
as shown in Fig.1 through the basic building block of a 
ResNet. Let's suppose, the original underlying mapping is 
denoted as 𝐿𝐿(𝑥𝑥) , whereas, in ResNet fitting of nonlinear 
layers is done to an alternative mapping given as follows. 

𝐹𝐹(𝑥𝑥) ≔ 𝐿𝐿(𝑥𝑥) − 𝑥𝑥 
This arrangement allows some of the information 

from prior layers to flow unfettered to later layers through the 
main connections. ResNet drastically increases training 
efficiency, as demonstrated by experiments in [reference], 
because gradients can propagate through multiple layers via 
the shortcut connection. In addition, ResNet enables the 
training of deeper networks, which typically results in better-
performing models. In our trials, ResNets will serve as the 
foundation for our models. 

Fig.1 A basic building block of ResNet. 

2.3 Extreme Learning Machine 
Huang et al., presented a mathematical model for a 

single-hidden-layer feedforward ELM that contains N 
neurons in the hidden layer and provides an output through 
function 𝑁𝑁 (∙) which is represented by the following 
mathematical expression [reference]. 

𝑓𝑓𝑁𝑁(𝑥𝑥) = �𝑊𝑊𝑖𝑖𝐺𝐺𝑖𝑖(𝑥𝑥,𝑤𝑤𝑖𝑖 ,𝑏𝑏𝑖𝑖),    𝑥𝑥,𝑤𝑤𝑖𝑖 ∈ ℝ𝑑𝑑,𝑊𝑊𝑖𝑖 ∈ ℝ𝑚𝑚,𝑏𝑏𝑖𝑖 ∈ ℝ
𝑁𝑁

𝑖𝑖=1

 

where 𝐺𝐺𝑖𝑖(∙) is  th e ac tivation fu nction of  th e 𝑖𝑖 -th  hid den 
neuron, represents the weights and biases of the hidden layer 
which are generated randomly, and 𝑊𝑊𝑖𝑖 ∈ ℝ𝑚𝑚 ind icates the  
output layer weights. The following equation denotes the 
relationship between the function 𝐺𝐺𝑖𝑖(∙) , an d th e ac tivation 
function  g(∙) . The operation is performed on a data 
representation for additive neurons through a radial basis 
function (RBF), respectively [38]. 

𝑮𝑮 𝒊𝒊 (𝒙𝒙 , 𝒘𝒘 𝒊𝒊 , 𝒃𝒃 𝒊𝒊 ) = 𝒈𝒈 (𝒘𝒘 𝒊𝒊 ⋅𝒙𝒙  + 𝒃𝒃 𝒊𝒊 ) & 𝑮𝑮 𝒊𝒊 (𝒙𝒙 , 𝒘𝒘 𝒊𝒊 , 𝒃𝒃 𝒊𝒊 ) = 𝒈𝒈 (𝒃𝒃 𝒊𝒊 ‖𝒙𝒙  − 𝒘𝒘 𝒊𝒊 ‖). 

The results presented by Huang et al., and Huang and Chen 
confirm that the ELM algorithm can effectively approximate 
the original data if it satisfies the following: (i) the output of 
the network is optimized by the least squares technique, (ii) 
the activation function used in neurons is not piecewise 
constant, and (iii) the spanning set, i.e.,  {𝐺𝐺 (𝑥𝑥 . 𝑤𝑤 , 𝑏𝑏 ): 
(𝑤𝑤 , 𝑏𝑏 ) ∈  ℝ𝑑𝑑  × ℝ} is dense in 𝑁𝑁 2(ℝ𝑛𝑛  × ℝ). 

Fig.2 An illustration of a typical extreme learning machine 
(ELM). 

3. Methodology

This study applies deep learning techniques, including 
double-step transfer learning and extreme learning, to create a 
robust framework (STELM) for crack detection and depth 
prediction. The proposed work plan is divided into two parts, 
as shown in Fig 3. In the first step, two pre-trained ResNet on 
an image dataset are used for sharing their parameters, to fine-
tune according to the surface crack detection task. The pre-
trained networks are fine-tuned using two different datasets 
containing images of concrete structures with and without 
cracks to create a pool of high-level abstract features suitable 
for the completion of the classification task. In the transfer 
learning step, one network is fine-tuned twice on the samples 
from two different datasets so that it may learn vibrant 
information regarding the target task. Similarly, the second 
pre-trained model is fine-tuned once on a single dataset of 
concrete crack images using the concept of traditional transfer 
learning. In the second step, the extracted pool of high-level 
abstract features is provided to the ELM algorithm to detect 
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cracks in unseen data samples. The advantage of introducing 
double-step transfer learning is to enhance the generalization 
capability of the designed approach for concrete surface crack 
detection.  

1 Transfer Learning Features 
In machine learning, transfer learning denotes the practice of 
using a pre-trained model as the basis for a new assignment. 
In other words, a model which is trained on one task can be 
used to optimize the modelling of a second, similar activity, 
allowing for rapid development of an algorithm. This practice 
is common in deep learning because through this deep neural 
networks can be trained in comparatively less time and with a 
little amount of data [39].This is useful practice since it is 
difficult to accumulate millions of labeled data samples for 
most of the real-world problems to train complex deep 
networks [40]. When starting something from scratch, it can 
be difficult to collect a huge amount of data. It is also 
challenging to train an adequate model with less data and yet 
achieve desirable results. Compared to training with a small 
amount of data, the results of applying transfer learning to 
a new task are dramatically better. Training a model from 
the scratch in an image or natural language processing task is 
uncommon due to the prevalence of transfer learning. The 
task under experimentation in this work is also 
image processing and machine learning related. So, for this 
reason, instead of developing an artificial neural network 
model from scratch, a pre-trained network is fine-tuned 
using double-step transfer learning. It helps to avoid 
the development complexity, avail the rapid 
convergence of the network 

according to the new task and mitigate the problems like 
overfitting while there is limited data available.  

3.2 Double-step Transfer Learning Features 
Generally, in transfer learning a pre-trained network is 

fine-tuned on a single dataset just once related to a new task. 
The aim is to adjust the parameters of the pre-trained network 
according to the new task. As a result, the parameters of the 
fine-tuned network are adjusted according to the new dataset, 
therefore, it is able to classify the new data with better 
precision and accuracy. In the single-step transfer learning 
process, a limited amount of dataset from a single source is 
considered to fine-tune the layer of the pre-trained network. It 
has shown considerable progress in overcoming the subpar 
performance brought on by a scarcity of training data. 
However, during transfer learning, it simply uses data from a 
single source to fine-tune the pre-train network, forgoing the 
benefit of mixing data from several sources. In order to fully 
exploit the capability of TL, an STL approach known as the 
double-step transfer learning (DSTL) in addition to 
conventional TL is adopted in this study. Through DSTL 
transition of knowledge from the source domain to the target 
domain can be significantly improvised. In this work, the 
source data in TL and DSTL are the ImageNet and the 
Concrete crack Image datasets, respectively. The target data 
in TL and DSTL are the images representing carks in concrete 
structures. First, two pre-trained ResNets models on ImageNet 
are retrieved and fine-tuned on two separate sets of images 
containing cracks in concrete structures using the instance-
based TL approach. Next, on one of the fine-tuned models, a 
DSTL approach is applied in which the model is further fine-
tuned using a set of images representing cracks in concrete 
structures retrieved from a different source. So, first, the 

Fig.3 An illustration of the proposed step transfer learning added extreme learning machine (STELM) for the automatic 
detection of surface cracks in concrete structures. 
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conventional TL step is applied in which ImageNet is set as 
the source data and concrete crack images are set as the 
transition source data. Later, the high-level abstract features 
extracted from two different datasets through conventional TL 
and DSTL are concatenated to create a pool of abstract 
features more useful for the target task.  

The primary focus of the first stage of instance-based TL 
is to initiate the weights of the network so that the primary 
information can be inherited from a pre-existing bank of data 
such as the ImageNet dataset. In order to train a deep neural 
network (DNN) for concrete surface crack identification the 
raw ImageNet is not very helpful due to differences in 
morphological characteristics, the proposed mechanism for 
transferring knowledge takes into account the degree to which 
the original source domain and the new source domain are 
similar. Images of anomalous surface defect manifestations 
like cracks and spalls have evident morphological 
characteristics that are distinct among concrete structures. The 
use of data that have similar visual features can enhance the 
learning capability of the network and can help mine and 
transfer more usable knowledge.  It is not effective to detect 
cracks in concrete structures just by using common features 
explored in the raw ImageNet dataset. When compared to 
standard transfer learning, which merely recycles simple 
visual elements like edges, the combined high-dimensional 
features are more amenable to knowledge transfer because of 
the greater similarity between them. 

In DNNs, it is common knowledge that the first layers 
learn to extract simple generic characteristics that can be used 
with any image, while the last levels represent extremely 
abstract and data-specific features. Fine-tuning a pre-trained 
DNN using relevant data to the target task, i.e., crack detection 
through transfer learning will take comparatively less time 
than developing a deep network from scratch. Moreover, the 
DNN is expected to have an improved ability in crack 
detection after the 1st-stage transfer stage as the updated 
weights and learnable parameters will aid in constructing a 
powerful feature extractor to explore distinct features. 

In fine-tuning, most of the layers inherited from the pre-
trained network are frozen to preserve  knowledge, only 
the fully connected layer and a few prior hidden layers are 
retrained forming a pyramid encoder network to perform 
feature fusion in a real-world crack detection scenario as 
shown in Fig. 4. Before fine-tuning for crack detection in 
images taken from concrete structures, these pre-trained 
ResNets and their hyper-parameters will be employed directly 
as part of the new DNNs. In fine-tuning, the model converges 
to a network that reliably detects cracks in input images 
as shown in the figure. It indicates performing a double-
step transfer method on powerful pre-trained networks 
with a relatively small amount of training data can 
significantly enhance accuracy, reduce training time, 
and cut off the need to optimize hyper-parameters. 

3.3 Extreme Learning Machine 
The term "artificial neural network" (ANN) is used 

to describe computational models that are intended to 
simulate biological nerve systems like the human brain. 
Among the most effective ANNs, feedforward neural 
networks (FNNs) are distinguished by the absence of a 
cycle in the links between their nodes. Since data is 
exclusively transmitted forwards through the network, this 
topology is known as a feedforward topology. In FNN, a 
neuron serves as the fundamental functional unit. 
Backpropagation (BP), the conjugate gradient method, and 
many more learning algorithms used to train feedforward 
neural networks (FNNs) are all variations of the classic 
gradient approach. Slow convergence, sensitivity to noisy 
data, the local minimum problem, etc. are only some of the 
issues that plague these kinds of algorithms. Extreme 
Learning Machine (ELM) is one solution to these problems 
because it has fewer requirements in terms of training time, 
guarantees a global optimum, and improves generalization in 
neural networks while still retaining these benefits. Extreme 
Learning Machine (ELM) algorithm is designed to solve the 
output weight problem of a single task with only one 
prediction error matrix. It is a fast and efficient neural network 
model in pattern recognition and machine learning. Therefore, 
to improve the overall generalization capability of the 
proposed surface crack detection strategy, an extreme learning 
machine is used to classify the abstract representation learned 
during the DSTL process with high precision and accuracy. 

3.4 Performance Evaluation Matrices 
To evaluate the effectiveness of the proposed STELM for 

identifying cracks in the surface of concrete structures 
multiple performance evaluation matrices, such as percentage 
of average classification accuracy (PACA) and a loss function 
graph, have been used in this study. Furthermore, the k-fold 
cross-validation technique is used during the development of 

Fig.4 An illustration of the pyramid feature fusion. 
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the end-to-end crack detection model with setting 𝑘𝑘 =  10. 
The k-fold cross-validation method helped in reducing the 
variance of the end results of the proposed model as well as 
avoiding the overfitting problem normally encountered during 
the training phase of a model. The PACA in classification can 
be determined by using the formula: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝐷𝐷
�

1
𝑘𝑘

𝐷𝐷

𝑝𝑝=1

�
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇𝑝𝑝𝑖𝑖

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖
,𝑤𝑤ℎ𝑇𝑇𝑇𝑇𝑇𝑇 𝐷𝐷 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

𝑘𝑘

𝑖𝑖=1

4. Dataset Description and Configuration

In this study, three different datasets constituting surface
cracks in concrete structures are used to develop and validate 
the generalization ability of the proposed model. A few 
samples from two datasets are used during the transfer 
learning process to fine-tune two separate pre-trained ResNet 
according to the target task. The fine-tuning process helped in 
the exploration of abstract features with distinct distribution 
patterns that were very useful to complete the classification 
task with high efficacy and precision. For the details of these 
datasets, see the following subsections and Fig. 5. 

4.1 Structural Defects Network 2018 Dataset 
The Structural defects network 2018 also known as 

the SDNET2018 dataset is used in the first step of the 
transfer learning process which is provided by Utah 
State University and publicly available at [41]. It is a 
labeled image dataset for the training, validation, and 
benchmarking of crack detection algorithms in concrete 
structures using artificial intelligence algorithms 
including machine learning and deep learning. The 
dataset is composed of over 56,000 images presenting 
cracked and without crack states of concrete bridge 
decks, walls, and pavements. The dataset features 
surface cracks ranging in size from 0.06 mm to 25 mm. 
Shadows, surface roughness, scaling, edges, holes, and 
background debris are just some of the obstructive 
elements that can be found in the dataset's photos. The 
image data is split into two subsets, i.e., without crack 
and with crack subsets. Each category has 28000 images 
with 256 * 256 pixels with RGB channels. 

4.2 Middle East Technical University 
In this work, a concept of double-step transfer learning is 

used to explore the advantage of transfer learning to the full 
extent. For this reason, once again the process of transfer 
learning is carried out on the finetuned network for abstract 
feature extraction in the concrete crack image. For this 
purpose, a concrete cracks image dataset is used which is 
provided by Middle East Technical University and retrieved 
from Kaggle [42]. In total, there are 40,000 images each with 
an RGB color channel at a resolution of 227x227 pixels in this 
dataset. Images with cracks have been labeled "Positive," 
whereas those without cracks have been labeled "Negative", 
with each class containing 20,000 images.  

4.3 Crack-Detection-and-Segmentation Dataset for UAV 
Inspection 

A detailed crack detection and segmentation database 
was created in [43] using images of cracks with a resolution 
of 450 × 450. Cracks in a variety of constructions, including 
roads, bridges, and buildings, are recorded in the database. In 
the whole dataset, crack detection dataset was used in this 
study which contained 28309 with and without caracks 
images. This database is used as one of the test datasets to 
evaluate the effectiveness of the developed double-step 
transfer network for crack detection in concrete structures. 
The purpose is to use this dataset to validate the generalization 
power of the network in the presence of totally unseen data 
samples.  

4.4 The Datasets Configuration for the Experiment 
The samples with and without cracks from each 

dataset used in the experiment are presented in Fig. 5. 
Furthermore, the details about the configuration of the 
datasets used during the training, validation and test 
phases are presented in Table 1. It can be seen that 
Dataset-1 is formed by considering 80% of the data, i.e., 
44800 data samples from the SDNET2018 dataset. 
Similarly, Dataset-2 is constituted using 80% of the samples, 
i.e., 32000 data samples from the middle east technical 
university dataset. In this work, Dataset-1 and Dataset-2 are 
used during the training and validation phases of the model 
development. In addition, Dataset-3, Dataset-4, Dataset-5, 
and Dataset-6 are configured to evaluate the final 
end-to-end performance of the proposed network. The 
details about these datasets are mentioned in Table 2. The 
Daataset-3 and Dataset-4 are created using the remaining 
samples of  

Fig.5 A few Samples from the Three Datasets with Crack and without Crack Categories, (a) Structural Defects Network 
2018 Dataset, (b) Middle East Technical University, and (c) Crack-Detection-and-Segmentation Dataset for UAV 
Inspection. 
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SDNET2018 and the middle east technical university 
datasets, respectively, which are not used during the TL 
and DSSTL phases, whereas Dataset-5 contains all the 
samples from the crack-detection-and-segmentation 
dataset. Dataset-6 contains all the samples from the crack-
detection-and-segmentation dataset in addition to the 
remaining samples from the other datasets. Multiple sub-
datasets are considered to validate the efficacy of the 
proposed model and to check its generalization ability 
under different configurations. 

5. Result Analysis and Discussion

To build a robust framework, i.e., STELM with high
generalization power for crack detection, this study 
investigates the application of deep learning techniques such 
as DSTL and ELM. As illustrated in Fig.3, this work consists 
of two stages. The first stage is related to exploring a pool of 
abstract features through conventional TL and DSTL that can 
be effectively utilized to identify cracks in the surface of 
concrete structures. In the first stage, we employ the 
parameters of two ResNets that have already been trained on 
raw images so that they may be tuned specifically for the 
surface crack detection task. In the second stage, the extracted 
pool of distinct abstract features is classified into the 
respective classes by using an extreme learning machine. To 
fine-tune the pre-trained networks samples from two 
different datasets depicting concrete structures with and 
without cracks are used in this work. Later, the 
developed model is evaluated with unseen data samples 
taken from three different datasets to check its accuracy, 
precision, and generalization capability. The evaluation 
results indicate that the generalization power of the STELM 
for detecting cracks in concrete structures is enhanced by the 
incorporation of DSTL and ELM. 

5.1 Abstract features Extraction through Double-Step 
In the first step, the ResNet, because of its hierarchical 

structure and by using nonlinear transformation in the hidden 
layers, could conveniently explore information from the 
dataset containing images of cracked structures, hence, 
updating the parameters of the pre-trained network. As the 

parameters are updated using images containing cracks in 
concrete structures, therefore, these updated parameters can 
be used as approximations of the original dataset, hence, can 
be used in the completion of the target task. This observation 
is validated by Fig. 6(a), which contains the distribution of the 
first two t-SNE feature vectors extracted from the 
approximations learned by the layers of one of the ResNest 
models using the conventional TL procedure. It is worth 
noticing that after fine-tuning through the single-step 
conventional TL technique, the model was able to explore 
some non-overlapping distinct features. A non-overlapping 
distribution of features related to different classes in a 
classification task is highly desirable as it can significantly 
improve the classification performance of the end classifier.  

In this process, the same network is fine-tuned again on 
a different dataset containing images of cracks in concrete 
structures. The idea behind the fine-tuning of the same 
network for the second time is to provide the network with 
different information as input, so that it may learn diverse 
salient information about the target task effectively. This 
assumption is evident in Fig 6(c), as the distribution of the 
feature belonging to the two classes is distinct with non-
overlapping nature. The non-overlapping distribution of the 
features significantly enhances the classification performance 
of the underlying classifier as the overlapping features make 
it harder for the classifier to distinguish between the samples 
of different classes if the distribution of the features between 
the classes is non-distinctive.  

In data-driven tasks, it is common that two different 
datasets collected using different equipment can provide 
different trends in information, for instance, feature 
distributions, even if these datasets belong to the same task. 
Therefore, to complement the information learned during the 
double-step transfer learning process and to make the 
proposed method learn as diverse information as possible, in 
parallel to the double-step transfer network, another pre-
trained ResNet model is fine-tuned separately on samples 
from a different dataset. It will be helpful to would be helpful 
to gather as much information about the target task as 
possible, which can later be used to form a hybrid pool of 
abstract features. The clusters of the abstract features 
extracted through the second model can be observed in Fig. 
6(b). It is evident in the figure that the feature distribution 

Table 1.  The Details of the Datasets Used for Transfer Learning Phases. 

Dataset Total no. of samples for 
training and validation 

Samples with Cracks Samples without Cracks 

Dataset-1 44800 6787 38013 

Dataset-2 32000 16000 16000 
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learned through the second model from just using 
dataset-2 is different from that of Fig. 6(a).  So, it can be 
assumed that combining features learned through the second 
ResNet model and double-step transfer network forms a 
diverse pool of abstract features which will provide more 
vibrant information to the classifier to complete the 
classification task with high efficacy. 

5.2 Result Analysis 

After the exploration of distinct abstract features, the next step 
in STELM is to classify the explored features into their 
respective classes. For this reason, the concatenated feature 
pool was provided to an ELM to complete the crack 
identification process. In traditional ANNs which are 
generally optimized using gradient descent technique, the 
generalization power of the network is limited due to the 
factors like finding the global optima, sensitivity to noisy data, 
and slow convergence. Therefore, in this study, an ELM is 
used as a classifier to identify cracks in concrete structures 
with high generalization ability. The proposed experiment 

was repeated 20 times with a random selection of samples in 
train, and test sets using the k-folds cross-validation method 
to generate stable results. In Fig. 7(a) loss curves for the 
training and validation phases of the ELM are given. It can be 
observed from the graph that the error of the network during 
both the training and validation phases reduced sharply 
without much oscillation in it. The error of the network was 
reduced to a minimum of 0.043 percent during the 60thepoch 
and afterward remained steady. Moreover, Fig. 6(b) shows the 
training and validation classification accuracy curves of the 
ELM. It is evident in the graph that the training accuracy of 
the model initiated above 80% with constant increase and 
reached the maximum of 99.8 % in the 90th epoch. 
Furthermore, in Fig. 7(a) the trend of the validation accuracy 
also shows a similar trend. The validation accuracy of the 
model started at 0.8407 % with a constant increment with each 
epoch. In the initial 10 epochs, the validation accuracy has a 
steep increment reaching 0.9712 % in the 10th epoch, however, 
after the 10th epoch a steady increase can be seen indicating 
that the network has learned almost maximum parameters. In 
the 80th epoch, the model achieved its highest validation 
accuracy of 99. 3 %, afterward there is no significant change 

Table 2.  The Details of the Datasets Used to Evaluate the End-to-End Performance of the Proposed Model. 

Dataset Total No of samples used 
for evaluation 

Samples with Cracks Samples without Cracks 

Dataset-3 11200 1697 9503 

Dataset-4 8000 4000 4000 

Dataset-5 11298 12632 15677 

Dataset-6 30489 18329 29180 

Fig.6 The t-SNE features learned during different stages (a) after the completion of the first step of the transfer learning 
process, (b) after the completion of the double-step transfer learning process, and (c) Model-2 using dataset-2 
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in it. The convergence of these error and accuracy curves 
indicated that the classifier is ready to be tested on unseen data 
samples. After the completion of the training and validation 
phases, the performance of the model was evaluated on the  

test datasets containing samples that were not used during the 
training and validation phases. 

The average test classification accuracy of the end-to-
end model on the four test datasets as described in section 4 
is shown in Table 3 along with F1, recall and precision 
scores. The proposed model achieved PACA of 99.57 %, 
F1-score, recall, and precision scores of 98.9%, 98.5%, 
and 99.3%, respectively, when tested on the samples from 
Dataset-3. Similarly, when evaluated using samples from 
Dataset-4 it has 99.70 %, 99.6%, 99.3%, and 99.7% of 
PACA, F1 score, recall and precision values, respectively. 
Moreover, when tested with samples from Dataset-5 it 
yielded 99.4% of PACA, 99.1% of F1 score, as well as, 
98.9% and 99.4% of recall and precision values, 
respectively. Furthermore, for Dataset-6 the PACA, F1 
score, recall and precession values of the proposed model 
are 98%, 98%, 97.02%, and 99%, respectively. Out of all 
the configurations, the proposed model for concrete crack 
detection has the least performance when tested with 
Dataset-6. It is due to the fact that Dataset-6 is the most 
complex dataset as it contained the greatest number of test 
samples and diverse information because it was 
constituted by combining samples from three different 
datasets taken under different configurations. 
Nevertheless, instead of this much complexity still the 
proposed model was able to identify the correct category 
of the samples more than 90% of the time.  Based on 
this performance it is safe to assume that the proposed 
model can segregate the samples containing cracks from 
those without cracks with high precision and accuracy 
even if it is tested 

with unseen real-time data. It is noteworthy that the test 
dataset was composed of images randomly selected in 
Dataset-3, Dataset-4, Dataset-5 and the whole Dataset-6 
which were not used during the training phase. This 
arrangement is helpful in removing data-level biases in the 
presented experimental results. Moreover, the use of an 
extreme learning machine as a classifier further ensures the 
generalization of classification results. 

Table 3.  The Results for the Test Phase of the Proposed 
Model (STELM). 

Datasets Performance indicators (%) 

PACA F1-
Score 

Recall Precision 

Dataset-3 99.57 98.9 98.5 99.3 

Dataset-4 99.7 99.6 99.3 99.7 

Dataset-5 99.4 99.1 98.9 99.4 

Dataset-6 98 98 97.02 99 

To further evaluate the performance of the proposed 
crack identification model, its performance is compared with 
that of the state-of-the-art studies available on the topic. The 
comparison results are presented in Fig. 8 where it is evident 
that the classification performance in terms of average 
accuracy of the proposed model is greater than the rest of the 
models. The average classification accuracy of the proposed 
model is 99.5, followed by ResNet used in [19]for crack 
detection. The least accurate model is the integrated CNN 
proposed in [21] for crack detection in concrete structures. 
Moreover, the precision of the proposed model to detect 
cracks is at least 0.8% higher than the rest of the models 
considered for the comparison. The recall value of the 
proposed model is at least 4.8% higher than other algorithms 

Fig.7(a) Loss curves for training and validation phases, (b)Accuracy curves for training and validation phases. 
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in this comparison. It is noteworthy that the performance to 
identify images with crack in the case of the proposed model 
and ResNet model used in [24] is higher than 99 % but it is 
94.3 % in the case of the integrated CNN model proposed in 
[21]. The performance of the models is mainly affected by the 

misclassification of images without cracks as images with 
cracks. The reasons behind this misclassification can be, (1) 
the misbalance of samples between two classes, (2) unclear 
appearances of the pixels in the images due to which the 
classifier could not segregate the images appropriately.   

Fig.8 The Results of the Comparison of the STELM with Other State-of-the-Art Algorithms. 

6. Conclusion

In this paper, a step transfer learning added extreme
learning machine, i.e., STELM is proposed to detect cracks in 
concrete structures. The first step in STELM consisted of the 
exploration of abstract features suitable for the target task by 
fine-tuning two different pre-trained ResNets simultaneously 
using a transfer learning process. A double-step knowledge 
transfer process was performed on one of the pre-trained 
ResNet models to extract an abstract feature pool suitable for 
the target task using two different datasets containing images 
of cracks in concrete structures. Similarly, another abstract 
features pool was explored simultaneously through the 
knowledge transfer process via a different pre-trained Resnet 
using a different dataset containing images of structures with 
cracks. The aim was to create a diverse pool of abstract 
features by concatenating the two feature sets explored from 
two different datasets through two different models which can 
provide vibrant information to the classifier to complete the 
classification task. In the next step of STELM, the pool of 
concatenated abstract features enriched with salient 
information was provided to an extreme learning machine to 

identify cracks with high precision and accuracy. The extreme 
learning machine is used in this study contrary to most of the 
approaches present in the literature available for concrete 
crack detection due to its high generalization power. The 
efficacy of the proposed crack detection model is validated in 
the result section through matrixes like accuracy, precision, 
and recall values. The proposed model was able to acquire 
99.5 % accuracy as well as 99.8 % of precision and recall 
scores which is at least 0.8 % in terms of accuracy and 4.8 % 
higher in terms of precision and recall than the rest of the 
models considered for the comparison. It is important to 
mention that the proposed model misclassified a few of the 
samples that belonged to that class representing no cracks as 
images with cracks. This can be due to the unequal number of 
samples in both the classes and image characteristics, for 
instance, pixel illumination, and resolution. Nevertheless, the 
overall crack detection performance of the proposed model is 
satisfactory and can be relied upon for this purpose.      
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