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Abstract

Identity theft has had a detrimental impact on the reliability of face recognition, which
has been extensively employed in security applications. The most prevalent are pre-
sentation attacks. By using a photo, video, or mask of an authorized user, attackers
can bypass face recognition systems. Fake presentation attacks are detected by the
camera sensors of face recognition systems using face presentation attack detection.
Presentation attacks can be detected using convolutional neural networks, commonly
used in computer vision applications.

An in-depth analysis of current deep learning methods is used in this research to
examine various aspects of detecting face presentation attacks. A number of new
techniques are implemented and evaluated in this study, including pre-trained models,
manual feature extraction, and data aggregation. The thesis explores the effectiveness
of various machine learning and deep learning models in improving detection perfor-
mance by using publicly available datasets with different dataset partitions than those
specified in the official dataset protocol. Furthermore, the research investigates how
deep models and data aggregation can be used to detect face presentation attacks, as
well as a novel approach that combines manual features with deep features in order to
improve detection accuracy. Moreover, task-specific features are also extracted using
pre-trained deep models to enhance the performance of detection and generalisation
further.

This problem is motivated by the need to achieve generalization against new and
rapidly evolving attack variants. It is possible to extract identifiable features from pre-
sentation attack variants in order to detect them. However, new methods are needed
to deal with emerging attacks and improve the generalization capability. This thesis ex-
amines the necessary measures to detect face presentation attacks in a more robust
and generalised manner.

Keywords: Presentation attacks, Face presentation attack detection, deep learning,
fusion, generation.
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Chapter 1

Introduction

The need to safeguard against identity theft poses a significant challenge for auto-
mated personal authentication that relies on Face Recognition (FR). The FR system,
despite its highly accurate recognition results, is still susceptible to vulnerabilities. Im-
posters circumvent the FR system by presenting a photo, video, or mask that rep-
resents the identity of the real user. The term "Presentation Attack (PA)" refers to
these types of attacks [1]. The Internet and surveillance video footprints serve as the
source of facial images of individuals [2]. Thus, facial images are readily available
and can be used to create PAs. As a consequence, FR systems have increasingly
become targets of identity theft using PAs [3]. There is a profound negative impact
of PAs on the reliability of FR systems, which are known for their non-intrusive, user-
friendly, and cost-effective nature. Therefore, through the application of deep learning,
this research strives to create novel techniques for Face Presentation Attack Detec-
tion (FPAD) that can effectively identify and prevent identity theft, while also enhancing
their capacity to generalise to new and diverse contexts.

1.1 Background

In recent years, there has been remarkable progress in face recognition. There are,
however, increasing attempts by individuals to deceive or manipulate security applica-
tions based on this widely used biometric modality. However, it is worth mentioning
that even FR is vulnerable to a wide variety of attacks, which reduce its reliability [4].
Presentation Attacks (PA) are a common form of attack against FR systems. PAs are
direct attacks on FR systems among direct and indirect attacks. A PA is carried out
at the sensor level [5]. Imposters use pictures, videos, and masks to mimic the facial
features of genuine users in order to circumvent the security of the face recognition
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system. Imposters do not require any knowledge of the system since these attacks
are conducted in front of a camera. The ease of executing the attack, coupled with
the availability of facial images and videos on the internet and through social media,
makes presentation attacks the most common attack against the face recognition sys-
tem [6].

PAs are the replica of authorised user faces in the form of photos, videos or masks.
The photos can be printed on different materials or displayed on digital screens. Sim-
ilarly, video can be displayed on screens of different resolutions. Masks, which are
the most sophisticated form of PAs, are made from different materials [7]. Thus vary-
ing and emerging spoofing medium makes it harder to identify between real and fake
facial images. Since PAs include images and videos of users, they have distortions
caused due to the recapturing of which they have undergone. These distortions act as
the cues to identify PAs from real images and carry out FPAD [8].

Real Face

Presentation
Attack

Users

Camera 

Reject

Authenticate

 Database

FPAD

Fake face

Real Face

Face Recognition

Matching

Not matching

Figure 1.1: An FR system with face presentation attack detection (FPAD).

A face recognition system identifies the person matching the captured image with the
user database. In the absence of an FPAD module, the FR system does not verify the
genuineness of the captured image [9]. This trend reduces the secure authentication
provided by FR. Hence, it is vital in the FR system to check the authenticity of the
captured image before matching it with the user database. The FPAD module checks
whether the captured image is genuine or not in FR systems. Fig. 1.1 illustrated the
authentication procedure using an FR system with FPAD. The FPAD module verifies
the captured images for genuineness. Only real images are then sent to the FR match-
ing and authentication procedure. If the image is detected as PA, access is denied.
Mismatched real images are rejected as well.
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As presentation attacks are the common way of fooling face recognition, FPAD has
gained serious attention among the biometric community. A plethora of state-of-the-art
(SOTA) methods have been implemented using machine learning and deep learning
[1]. However, these SOTA have deteriorated performance while using them in real-life
scenarios. The primary reason is that earlier methods used available public datasets.
These datasets were recorded in limited and often controlled settings with a very less
number of subjects while including any one type of attack variant [10]. Hence the
resulting methods have limited detection capacity while tested with different datasets
or in real-life applications. Not only that, the detection performance even varies if
the spoofing materials are different. Along with dataset variation [11], the method also
should be capable of extracting suitable features before classification [12] to generalise
against different variants of attacks.

1.2 Motivation

Presentation attacks can undermine the security of FR systems and negatively im-
pact the authentication process. Manufacturing and technological advancements have
made it possible to create novel PA variants [7]. The new PA variants are unseen at-
tacks against the existing FPAD methods. The current FPAD methods, however, have
already been trained on public Face Anti-Spoofing (FAS) datasets with limited vari-
ance in terms of size, attack type, resolution, and settings. It is essential that an FPAD
method possess generalisation against various PA variants in order to have the best
chance of detecting new and emerging PA variants [13]. Because of the limited gener-
alisation capability of the current methods, new variants cannot be detected. In order
to improve the generalisation of current data-driven methods, a training dataset with
possible attack variants can be useful. Nevertheless, FPAD does not currently pos-
sess such comprehensive datasets. But, in some cases, data aggregation within the
source domain can increase variance and thus enhance generalisation [14].

An FPAD verifies the authenticity of a facial image captured by an FR sensor. In light
of this, it is highly relevant to extract and process corresponding features in order to
improve PA detection and generalization [15]. The FPAD scenario also requires a
tailored method, in addition to variance in the training dataset. There has been a re-
cent emergence of hybrid methods in classification which combine different types of
extracted features [16]. In addition, feature fusion from different pre-trained models
can provide a potential solution for generalised FPAD. By extracting appropriate fea-
tures using deep learning models, it may be possible to improve generalisation while
detecting presentation attacks [17].
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1.3 Research Objectives

This thesis has the following objectives:

• Critically review the current state-of-the-art methods in face presentation attack
detection. Analyse publicly available datasets, attack types, and the associated
challenges.

• Create an experimental framework to detect presentation attacks using a public
dataset. Alter the training set variance by using different custom dataset par-
titions which were used by the state-of-the-art methods, including the official
dataset partition. Carry out an impact analysis of custom dataset partitioning on
presentation attack detection performance.

• Using data aggregation and deep transfer learning, devise a face presentation
attack detection method using various pre-trained models. Assess the cross-
dataset performance of the transfer learning models trained on the aggregated
dataset empirically in the FPAD context.

• Utilise a hybrid fusion approach that combines both deep features and colour
texture features to detect face presentation attacks effectively. Analyse the de-
tection performance of the hybrid fusion methods using three different public FAS
datasets with the corresponding deep transfer learning models.

• Implement a method for detecting face presentation attacks that utilises task-
specific learning. Conduct a cross-dataset assessment of the proposed method
to evaluate its generalisation ability across different datasets.

1.4 Contributions

This thesis makes the following contributions in the area of face presentation attack
detection (FPAD):

• A comprehensive overview of the state-of-the-art methods for detecting face pre-
sentation attacks, a review of available publicly available datasets, evaluation
metrics and a discussion of the challenges and possible future directions includ-
ing data aggregation [11], hybrid fusion [12] and task-specific feature learning.

• A research that demonstrates the integration between data aggregation and
deep transfer learning for PA detection. It demonstrates that to improve face pre-
sentation attack detection performance, it is essential not only to employ source
domain aggregation but also tailored methods [11].

4



• A study that concludes, face presentation attack detection becomes more effec-
tive when features from different extraction methods are combined, thus reducing
false positives [12].

• A novel method to learn task-specific features for face presentation attack detec-
tion in order to improve generalisation.

1.5 Thesis Structure

Chapter 2 presents a review of the necessary background for this research. This chap-
ter discusses attacks on FR systems and the general taxonomy of detection methods.
Additionally, existing Face Anti-Spoofing (FAS) datasets are reviewed in terms of their
variance. A discussion of the latest trends in the detection of PAs is presented in this
chapter. The chapter also discusses challenges and future directions pertaining to
better generalisation against unseen attacks.

The impact of custom dataset partitions on the detection of face presentation attacks
has been discussed in chapter 3. With the NUAA dataset [10], this chapter investigates
how train-test partitions and variance in training data affect model performance.

Chapter 4 presents an experimental framework to detect face presentation attacks us-
ing data aggregation and deep transfer learning. Using popular public FAS datasets,
an aggregated dataset was formed. pre-trained deep models trained on the aggre-
gated dataset were assessed for generalisation capability.

In chapter 5, a hybrid fusion method combining deep and colour texture features is
presented. The performance improvement in FPAD, using this fusion method, is eval-
uated using three FAS public datasets and pre-trained deep models. The chapter also
includes a comparison of computational speed between the baseline method and the
fusion method.

A task-specific feature learning procedure using deep pre-trained models is presented
in chapter 6. Three pre-trained deep models were trained and evaluated using three
public FAS datasets. In addition, a cross-dataset evaluation is conducted in order to
assess the generalisation capability. To form fusion models, deep features are com-
bined with various features such as texture, image quality, and frequency. A compari-
son of the performance of these fusion models is made with that of deep models that
have been fine-tuned for task-specific learning for FPAD and its generalisation.

This thesis concludes with chapter 7 which offers a summary of the work and acknowl-
edges its limitations. It also outlines potential future directions for further exploration.
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Chapter 2

Research Background

Analysis of the current state of the art is critical prior to the development of novel,
generalist FPAD methods. In this chapter, a background in the field of face presenta-
tion attack detection is presented. Presentation attacks (PA) are classified into several
types and this chapter discusses their characteristics. With the advent of deep learning
methods, effective feature learning was achieved in a variety of applications, including
Face Presentation Attack Detection (FPAD). Moreover, deep learning methods out-
perform traditional methods for detecting presentation attacks. Furthermore, PAs have
been detected by hybrid methods too. The purpose of this chapter is to provide an
overview of current FPAD methods. A review of existing research is also conducted
in order to identify the challenges and potential directions to be pursued in the field of
FPAD. The main findings of this chapter have been published in "Information Fusion"
in November 2021, [1].

2.1 Introduction

The primary objective of Face Presentation Attack Detection (FPAD) is to distinguish
between a genuine and forged face in an image or video. As a result of analyzing the
features extracted from the detected faces, the FPAD module identifies whether the
PA is present or not. The authentication process is based on the output of the FPAD
module and face matching. While traditional methods used machine Learning for PA
detection, deep learning has been employed for this purpose in the last few years
extensively.

Machine learning is a form of artificial intelligence that mimics the human brain’s ca-
pacity to gain knowledge and comprehension through experience and enhancement
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without explicit programming. It encompasses algorithms or techniques that extract
patterns from data and draw inferences based on those patterns. The fundamental
goal of machine learning is to enable computers to learn independently, without hu-
man intervention or guidance, and adapt their actions accordingly.

Figure. 2.1 shows an example of a generic machine learning algorithm. A PA image
is provided as input. Features are extracted from the image data and passed to the
machine learning model to identify whether it is a real face or a fake face in the input
image. ML models are used to detect the presence of PAs in images by analyzing
the extracted feature patterns. The process of learning from data is referred to as
training in machine learning. It is possible to train an ML model in three different ways;
supervised learning, unsupervised learning, and semi-supervised learning.

Fake

Input Feature Extraction ML model Output

Figure 2.1: Working of a ML system.

Machine 
 Learning

Supervised 
 Learning

Unsupervised  
LearningSemi-supervised  

Learning

Figure 2.2: Learning and classification approaches used in ML.

Training is conducted using the labelled dataset in supervised learning. A prediction
function is inferred by analyzing the training dataset. A sufficient amount of training
will enable the system to provide targets for any new input. The model can also be
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modified accordingly if errors are found by comparing its output with the intended, cor-
rect output. An unsupervised machine learning approach involves algorithms that are
trained on data that has not been labelled. Analyzing data sets in search of mean-
ingful connections is the goal of the algorithm. In semi-supervised machine learning,
supervised and unsupervised learning are combined to achieve the desired results.
Data scientists feed this algorithm largely labelled training data, but it is left up to the
algorithm to explore and analyze the data on its own. A supervised learning approach
is the most commonly used training method in machine learning [18]. In the areas
of classification, regression modelling, and ensemble learning, supervised machine
learning models are useful.

Supervised machine learning generally uses two types of classifiers: probabilistic and
linear. Mixture models are used in probabilistic classifiers. Each class is considered
to be an element of the mixture. Mixture elements, which are generic models, provide
the possibility of sampling a specific term. These classifiers are also referred to as
generative classifiers. The Naive Bayes (NB), Bayesian network (BN) and maximum
entropy classifiers are examples of probabilistic classifiers. There is also a type of su-
pervised machine learning classifier known as a linear classifier. In linear classifiers,
items with similar features are grouped together. It is the linear combination of these
features that drives the classification decision in linear classifiers. Support Vector Ma-
chine (SVM), Multi-Layer Perceptron (MLP), Logistic Regression (LR), Decision Tree
(DT), Random Forest (RFs), and Neural Networks (NNs) are examples of supervised
linear machine learning classifiers. Figure. 2.2 shows the learning methods and clas-
sifiers used in ML. For image classification, SVM and RF are widely used. In essence,
FPAD involves the classification of images. The use of SVM and RF in FPAD using
hand-crafted features has been extensively demonstrated.

Deep Learning (DL) is a sub-field of machine learning that uses Artificial Neural Net-
works (ANN) as its basic building blocks. ANNs have a structure similar to that of
human neurons and process information in the same way as human neurons. In this
manner, a deep learning model is able to carry out a variety of tasks in the same man-
ner as a human brain and even more accurately. In recent years, deep learning models
have been enhanced by improvements in computing performance and the availability
of datasets. In contrast to traditional machine learning models, deep learning models
operate on raw data.

The deep learning model is a neural network model with several layers and parameters
between output and input. Figure. 2.3 illustrates a simple neural network model. As a
general rule, neural networks are composed of three layers: the input layer, the hidden
layer, and the output layer. As deep learning models use neural networks with more
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hidden layers, they are commonly referred to as deep neural networks. Deep refers
to the fact that there are more hidden layers between the input and output layers. An
ordinary neural network model may contain two or three hidden layers, whereas a
deep neural network model or a deep learning model may contain 100 or more hidden
layers.

Input Layer

Hidden layers

Output layers

Figure 2.3: A neural network model.

Input Image Convolutional layers Pooling

Video Attack

Print Attack

Warped Photo

Eye-cut Photo

Fully Connected Layers

Output 

Feature Extraction

Classification

Figure 2.4: Generic representation of PA detection using Deep Learning.

The DL process provides automatic feature learning through the use of different layers.
In DL, representations are learned hierarchically at different levels from the input data.
As a result of the inherent feature learning capability of DL models, these models are
more robust than traditional machine learning models. The architecture of a DL model
consists of modules for extracting features as well as modules for classifying them.
Figure. 2.4 illustrates how a deep learning model is used to perform PA detection.

Deep learning has different techniques including Convolutional Neural Networks
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(CNN), Recurrent Neural Networks (RNN), Restricted Boltzmann Machines (RBM),
Auto encoders and Extreme Learning [19]. CNN are the most commonly used model
for various tasks. A CNN model normally consists of three types of layers, convolu-
tional layers, pooling layers and fully connected layers as in Figure. 2.4. The con-
volutional layers, use different kernels or filters to generate feature maps at different
levels from the input images. Pooling layers facilitate dimensionality reduction (width ×
height) of the input for the upcoming convolutional layers. The pooling strategies that
are commonly employed include average pooling and max pooling. The 2D feature
maps obtained from convolutional and pooling layers are transformed into a 1D fea-
ture vector through fully connected layers. The resultant feature vector can be directed
towards either a classifier layer or for subsequent processing.

Transfer learning, a technique used in deep learning, allows models trained for a spe-
cific task to be applied to different datasets or tasks. There are two common ap-
proaches to transfer learning. Firstly, a pre-trained model can be utilized as a pre-built
feature extractor for a similar task. Secondly, the pre-trained models can be partially or
entirely fine-tuned by training them on a specific dataset to perform the desired task.
Transfer learning is frequently employed in scenarios where data sizes are limited to
avoid overfitting. One of the key benefits of transfer learning is the significant reduction
in training time and computational resources. Notably, some widely used pre-trained
image classification models are ResNet-50 [20], VGG-16 [21], and Inception V3 [22],
which were trained on the ImageNet dataset [23].

While earlier methods for face presentation attack detection relied on machine learn-
ing with extracted features (section. 2.5), recent studies have leveraged the benefits of
deep learning, particularly transfer learning, to detect presentation attacks (PAs) (sec-
tion. 2.6). In more recent approaches, a combination of both handcrafted and deep
features has been employed using hybrid fusion methods (section. 2.7).

2.2 Attacks on Face Recognition Systems

Attacks on Face Recognition (FR) systems are generally classified into direct and
indirect attacks. Direct attacks occur at the sensor stage by presenting forged facial
artefacts. Direct attacks are easier for the attacker since they require less knowledge
about the attacked FR system. In the absence of appropriate protection, the system
is highly susceptible to direct attacks. Indirect attacks affect pre-processing, feature
extraction, database, matching, and decision modules. The attacker should be aware
of the system to successfully execute these attacks [5]. By improving FR infrastructure,
communication channels, and perimeter security, cyber security plays a direct role in
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preventing indirect attacks. Direct and indirect attacks influence the FR system as
shown in Figure. 2.5. Duplicating and introducing facial artefacts to the FR system
has become easier with technological improvements [6, 5]. Common direct attacks
are:

• Presentation Attacks

• Disguise/makeup

• Modifications done through plastic surgery

Feature
Extraction Matching Decision

Facial Image
Database

User

Presentation Attacks

VideoPhoto Mask

Direct Attacks Indirect Attacks

Preprocessing

Camera

Figure 2.5: Attacks on Face Recognition system

Disguised faces are one type of direct attack. Disguise accessories can intentionally or
unintentionally impersonate or obfuscate. Unintentional disguises include sunglasses,
hats, or scarves. FR is vulnerable to various types of intentional and unintentional
disguise accessories. The authors of [24] observed that the facial portions under
disguise accessories provide false data and FR cannot use these for identifying a user.
Hence disguise accessories facilitated the hiding or imitating of identity. These types
of disguise attacks are prominent in border crossing and airport security applications
[25].

Makeup is another direct attack similar to disguised faces. It is harder to identify
makeup attacks as they have a close resemblance to the real face [26]. While keep-
ing the genuine appearance of the human face, makeup can easily obfuscate the true
identity of the user. Among the direct attacks, it is easily available, cheaper and vari-
able in nature.

Plastic surgery is a direct attack, too. Face regions including nose, eyes, lips, ear
or bone structure are reformed to obtain desired appearances. These cause long-
lasting changes in features in specific facial regions. The reference database may
contain the pre-surgery sample for face recognition. In this case post-surgery bio-
metric recognition becomes challenging due to the alterations [27]. Some disease
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treatment surgeries can also unintentionally increase variations in facial appearance
[28].

Attackers make use of eyeglasses, facial hair and caps either to impersonate or obfus-
cate. Such effects are generated using adversarial methods too. These adversarial-
generated attacks are able to mislead the classifier in deep learning-based FR sys-
tems [29]. Slight perturbations added to the image can also lead to misclassification in
FR systems. These perturbations are physically imperceptible or even ignored by hu-
man eyes, yet capable of causing misclassification in FR systems [30]. Thus, synthetic
images generated through adversarial methods and modified images with adversarial
perturbation act as PAs [31]. Attackers add perturbations in two ways: ‘no target’ and
‘dodging’. In ‘no target’, the aim is to hide the identity of the user, whereas in ‘dodging’,
perturbation is added to access the identity of a target user. The authors of [32] in-
troduced an eyeglass printing method to generate physically realisable attacks. Sharif
et al. [33], using 3D-printed eyeglasses, generated attacks to execute impersonation.
Using an infrared lighting cap [34] was able to create adversarial physical attacks.
Adjusting the positions, size and intensity of the infrared dots generated by this cap,
the attacker could pass through the security system. Nguyen et al. [35] proposed a
more convenient method to create adversarial attacks using light projections. Real-
time physical attacks were created by changing the camera-projector setting suitable
to the attacking environment.

2.3 Presentation Attacks (PA)

Presentation attacks (PA) [36] are used either to impersonate or to obfuscate a user
while passing through an FR system. Impersonation is carried out by copying a gen-
uine user’s facial attributes to gain access through FR systems. Obfuscation is used
to hide the user’s identity using various methods such as glasses, makeup, disguised
face and facial hair [37]. A generic FR system detects faces from the image or the
video input and recognises authorised users with respect to the reference database.
PAs have duplicate facial features in the form of photos, videos or masks. This will
assist the attacker to invade the security system if the FR does not have a detec-
tion module to differentiate between genuine and fake faces. Hence, PAs affect the
proficiency of FR systems in security applications [9].

PAs are broadly classified into 2D and 3D attacks as can be seen in Fig. 2.6. Photo
attacks and replay attacks are 2D attacks [38], whereas mask attacks are included in
3D attacks [7]. 2D attacks are very common and are carried out by presenting facial
artefacts using photo or video to the sensor [5].
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Figure 2.6: Types of Presentation Attacks

2.3.1 Photo Attacks

Photo attacks are executed by displaying a photograph of the genuine user to the FR
system camera. Flat printed photos, digital display of photos, eye-cut photos, and
warped photos are all variants [39]. It is possible to print colour images of genuine
users with great ease and at a low cost. Photos can be displayed on digital devices
with high-resolution screens. Furthermore, social media gives easy access to au-
thentic facial images. As a result of technological advancements in digital cameras,
high-quality photos can be obtained by using hidden cameras. Consequently, print
attacks are more common because they are easier to execute.

In cut-photo attacks, there will be holes in the position of the eyes and mouth. These
holes help the imposter to imitate live features like eye blinking and mouth movements
[39]. Spoofing an FR system which works based on the liveness of the user, can
be carried out with these types of photos. Cut-photo attacks are harder to detect
compared to flat printed photo attacks [40]. Figure. 2.7 gives an example of authentic
and photo attack images from CASIA FAS dataset[41].

(a) Bona-fide (b) Print Attack (c) Eye-cut photo (d) Warped photo

Figure 2.7: Figure showing bonafide and photo attack variants [41]
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2.3.2 Video Attacks

Video attacks, also known as replay attacks in face presentation attack detection liter-
ature, are more sophisticated forms of attacks. Videos of genuine users are presented
to the FR system [39, 5], using a mobile, tablet or any other digital devices [6, 42].
Since the video consists of both movement and background information, distinguish-
ing fake users from bona fide users in these cases is a challenge[43].

(a) Bona-fide (b) Video Attack

Figure 2.8: Figure showing bonafide and video attack [41]

Video attacks can emulate liveness, unlike photo attacks. Thus, FR systems that are
susceptible to photo attacks will be even more vulnerable to video attacks. Video
samples of genuine users can also be found on social media.

2.3.3 Masks

While FR sensors capture images for authentication, the imposter can wear a mask
with the features of a genuine user. 3D masks possess face-like depth and this is
a unique challenge in detecting the 3D mask PA. Ramachandra et al. [44] experi-
mented to find vulnerabilities in two commercial FR systems and observed that, due
to the False Acceptance Rate (FAR) threshold, these systems were vulnerable to cus-
tomised silicon masks. In a similar study, Bhattacharjee et al. [45] investigated cus-
tomised silicon masks and found that FR systems were highly vulnerable to flexible
mask attacks.

There are various types of masks made of distinct materials. Much of the literature cov-
ers 2D-type attacks as, historically, it was difficult and costlier to produce 3D masks.
Lately, there have been developments in 3D printing technologies which have provided
cheaper and easier ways to produce 3D masks [7]. 3D masks are made of different
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materials [27]. Hard or rigid masks can be made from paper, resin or plastic. These
masks are used as an improved variant of photo attacks. These cheaper types of
masks appear visually similar to real faces due to the enhanced printing options avail-
able nowadays. Masks which are produced using silicon or latex are soft, and flexible
and adapt to different facial shapes and sizes. They have close similarities with gen-
uine facial texture and colour. It makes these soft masks more challenging to detect
than rigid masks.

2.4 Face Presentation Attack Detection (FPAD)

Face recognition systems detect faces from images or videos captured by cameras.
Following the feature extraction, the captured face is compared with the enrolled faces
in the reference facial database. Authentication is provided if the face matches one of
the faces enrolled in the database, as shown in Figure. 2.9. The FR system examines
the authenticity of the user rather than the authenticity of the captured image or video.

Face
Detection

Feature
Extraction

Face
Matching

Face
Database

Authentication

CameraUser

Figure 2.9: A generic Face Recognition (FR) system

The primary objective of Face Presentation Attack Detection (FPAD) is to distinguish
between a genuine and forged face in an image or video. As a result of analyzing the
features extracted from the detected faces, the FPAD module identifies whether the
PA is present or not. The authentication process is based on the output of the FPAD
module and face matching, as shown in Figure. 2.10.
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Figure 2.10: FR system with face presentation attack detection

Face recognition systems process static and dynamic cues using different techniques
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for spoof detection. Earlier feature-based methods mainly utilised hand-crafted fea-
ture extraction, using machine learning to detect presentation attacks. Local Binary
Patterns (LBP) [46, 47], Histogram of Oriented Gradient descriptors (HOG) [48, 49],
Speeded-Up Robust Features (SURF) [50], Difference of Gaussian (DoG) [51, 10]
were the techniques adopted in hand-crafted feature methods. The emergence of
deep learning methods provided effective feature learning in many applications. More-
over, deep learning methods provided better detection performance compared to
hand-crafted methods.

2.5 Hand-crafted feature methods

Handcrafted feature methods extracted various features from the face images to dis-
tinguish between real and fake faces [5]. FPAD involves processing features extracted
from the captured face images followed by classification [52, 53, 36]. Texture, tem-
poral data, image quality and life signs are typical features processed to identify PA.
Feature-based methods are classified into two types: static and dynamic [5]. Texture
and image quality-based PAD methods are examples of static approaches, whereas
temporal (or motion-based) and vital signals based methods are dynamic approaches.

Static approaches include texture and image quality-based techniques. They do not
rely on temporal information and a single image is processed at a time to detect spoof-
ing [42, 28]. By processing each frame independently, static approaches can perform
anti-spoofing tasks using video. The processed outcome of the majority of frames
is taken into account to form the final decision. Due to their performance, low com-
putation and low cost, static approaches are popular. In comparison with dynamic
approaches, static approaches are faster [5].

Through micro-textural analysis of the facial image, textural PAD methods distinguish
real images from fake ones [42]. These methods identify the photo and replay attacks
[5]. Local Binary Pattern (LBP) descriptors are the most widely used technique in
texture-based-PAD methods. Authors of [47] proposed a PAD method using LBP for
textural analysis for photo attacks. Replay attack detection was explored in [46] using
the same technique tuned for video attacks. The advantages of these methods were
easy deployment and no user interaction. However, these methods required feature
vectors and exhibited poor performance with low-resolution images [54].

Presentation attacks affect the quality of the image [42]. Spoofing images are prone
to distortions like surface reflection, Moiré-effect, colour distortion, and shape defor-
mation [55]. In [43], the authors detailed the various distortions an image may be
subject to due to spoofing medium, camera and printing. Spoofing medium (LCD or
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paper) causes specular reflection. Blur is introduced if the camera is out of focus
while capturing the spoofing image. Reduced resolution of printed paper or LCD can
also create colour distortion. Spoofing mediums add noise to the image [56]. The
frequency histogram of a spoof image would be different to that of a genuine image.
Face PAD systems use these quality variations in the image as cues while performing
spoof detection.

Featured used in
FPADDynamic Static

Temporal Life Signs Texture Image Quality

Eye Blinking
Nodding
Lip Movements
Facial Movements

Local Binary Pattern
Colour Texture Analysis
Speeded-Up Robust Features  
Histogram of Oriented Gradients

Specular Reflection
Colour Diversity
Colour Moment
Blur

Heart Rate
Blood FLow Analysis

Figure 2.11: Features, which are used to detect PAs

Dynamic approaches depend upon temporal information to identify the presence of
spoofing in FR systems [57]. They process life signs or motions to verify the liveness
of the input presented to the facial sensor in the FR system. In dynamic approaches,
performing temporal feature analysis, based on relative motion in the video provides
information for spoof detection. Hence, dynamic approaches require more computa-
tional time compared to static approaches [5]. Some dynamic approaches rely on life
signs too. Pulse, eye blinking, lip movement, and head rotation can be used to confirm
the liveness in the FR system [42].

A temporal information-based algorithm Dynamic Mode Decomposition (DMD) was
used in [58] to identify liveness. The authors used eye blinking and lip movements
as motion cues. Motion-based PAD techniques demand user cooperation during the
identifying process. This affects the processing time in FR system [42]. Some motion-
based methods exploit impulsive movements of the facial parts in the input videos
[59]. In [60], the authors followed a multiple-motion-cue-based method, considering
eye-blinking, chin and lip movement. The authors of [61] presented liveness detection
methods based on pupil tracking. Remote Photo Plethysmography (rPPG) is used
for the acquisition of vital signals such as pulse or heart rate without contact with the
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human body. Since these vital signals are extracted from live faces, they act as the
perfect cues for liveness. Face liveness detection methods presented by authors of
[62] utilized pulse cues from videos. Pulse detection using rPPG was effective in 3D
mask attack detection [63]. In [64], the authors presented a face liveness detection
approach based on blood flow analysis. rPPG and patch CNN-based method was
adopted in [65] to detect face liveness too.

2.6 Recent trends in detecting face presentation attacks

Deep learning-based methods have been successfully applied to various domains in-
cluding speech enhancement and recognition [66], lip reading from visual content [67],
analysing intractable and complex biological datasets [68], security and intrusion de-
tection [69], and others. Convolutional neural networks in particular, have introduced
remarkable developments in computer vision applications, especially in biometrics
[70]. Deep learning, along with its inherent feature learning capability, constructed
a novel path to solve the anti-spoofing challenge. Existing methods based on deep
neural networks, show excellent intra-dataset performance. However, these meth-
ods have also exhibited poor cross-dataset performance and unseen attack detection
[71, 72].

Multi-modal  
Methods

Few-shot 
learning

Deep Learning  
based FPAD

Anomaly  
Detection Auxiliary  

Supervision

Transfer  
Learning

Figure 2.12: Recent trends in deep learning based FPAD
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In the last few years, there has been a trend towards improving generalisation in PAD.
In particular, unseen attack detection methods involve trying to accurately classify gen-
uine samples and consider any sample except genuine ones as attacks. Some existing
approaches have used only genuine samples for training so that the proper clustering
and classification of genuine face would lead to desired detection of unseen attacks.
These methods followed one class classification, as opposed to earlier models which
followed binary classification for face PAD. A typology of recent trends in deep learning
based FPAD is shown in Figure. 2.12.

2.6.1 Transfer Learning

Transfer learning is the process of re-utilising the learned features from a base net-
work using base dataset to a target network to be trained with target dataset and task.
Transfer learning helps to avoid overfitting when the training data is limited [73]. As
training is not started from scratch, it also saves on computational resources. Nagpal
et al. [74] analysed different CNN models for face anti-spoofing and their performance
in detecting presentation attacks. Based on their research the authors recommended
transfer learning with a deeper model utilizing lower learning rates for restricted com-
putational resources. Lucena et al. implemented transfer learning for spoof detection
in their work [75]. Among the deep learning methods deployed in FPAD, transfer learn-
ing is the most common one.

Domain adaptation and domain generalisation utilised a transfer learning approach
to improve generalisation in FPAD. In domain adaptation, information from a source
domain is transferred to a target domain using different techniques [76, 77]. Yu et al.
[78] developed a neural architecture search-based face anti-spoofing (NAS-FAS) sys-
tem. This method used central difference convolution and pooling. Transfer learning
approach was applied on NAS for the spoof detection task. However, a cross-dataset
evaluation for 3D mask attacks with NAS-FAS showed that challenges still remain in
the generalisation capacity of even transfer learning approaches.

Domain adaptation

Domain adaptation mitigates the disparity between source and target domains. It facil-
itates feature learning in scenarios with limited training data. Hence, the generalisation
capacity of face PAD can be improved using this method. In domain adaptation the
model learns from the source domain on related distinct target domain [79]. Hence,
recent research has utilised this technique to mitigate domain shift. Yang et al. [76]
introduced domain adaptation in their research on personal specific face anti-spoofing
approach. This approach transferred source domain subject-specific information on
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real and fake samples. This information facilitated the synthesis of virtual fake samples
for subjects without fake samples in the target domain. Spoof detection was performed
using a trained classifier for each person in this method. In real-life scenarios, there
would be genuine samples without corresponding fake samples. However, personal-
specific models required samples from all attack variants in the target domain to attain
desired performance. This method also demanded more source domain fake samples
for generalisation enhancement.

Inspired by the applications of Generative Adversarial Networks (GANs) [80] in various
compute vision applications, Wang et al. [79] presented a domain adaptation method
using them to address FPAD problem. Adversarial domain adaptation combined with
deep metric learning assisted this model to outperform other state-of-the-art methods
in both cross-dataset and intra-dataset evaluation. The authors extended this method
using an unsupervised adversarial domain adaptation technique (UDA-Net) in [81].
UDA-Net carried out unsupervised adversarial domain adaptation. This facilitated ex-
traction of common features associated with both target and source domains. As
DR-Net assisted to transfer domain-independent information, it enabled better spoof
detection in an unlabeled target domain. The authors carried out an extensive evalua-
tion on more publicly available datasets.

Zhou et al. [82] adopted a multi-layer domain adaptation technique for spoof detection
in face recognition systems. In order to reduce the disparity between source and
target domains, the authors used a Multi-Layer Maximum Mean Discrepancy (ML-
MMD). Similarly, Nikisins et al. [77] used domain adaptation by transferring facial
features from RGB domain to multi-spectral domain. Domain adaptation was carried
out using autoencoders. In this model, a set of multi-channel encoders were used
for feature extraction. Classification of these features was performed by Multi-Layer
Perceptron (MLP). The authors of [83] evaluated domain adaptation through domain-
guided pruning of CNN. Recent domain adaptation research in face PAD is presented
in Table. 2.1.

Table 2.1: Face PAD using domain adaptation method

Author Method year Datasets
Yang et al. [76] Person Specific Anti-spoofing 2015 CASIA, REPLAY ATTACK
Wang et al. [79] Adversarial Domain Adaptation 2019 CASIA, MSU-MFSD, REPLAY ATTACK
Zhou et al. [82] Multi-Layer Maximum Mean Discrepancy 2019 CASIA, REPLAY ATTACK
Nikisins et al. [77] Multi-Channel Encoder 2019 WMCA
Mohammadi et al. [83] Domain guided pruning of CNN 2020 REPLAY Mobile, SWAN, WMCA
Wang et al. [81] Unsupervised Adversarial

Domain Adaptation 2020 Idiap, MSU, CASIA,
ROSE-YOUTU, CASIA-SURF, OULU

In domain adaptation, trained features are aligned to the target features to achieve
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better generalisation capacity through adapting the features of the target or test do-
main. However, for unseen attack cases, the target domain may be unknown and this
would impact domain adaption.

Domain Generalisation

Domain generalisation is one of the techniques adopted by the biometric community
to acquire generalisation in unseen attack scenarios. In existing face PAD methods,
there is a bias towards the cues learned from training data. This impedes generalisa-
tion against unseen attacks with different environments, devices, lighting conditions or
materials.

Costa-Pazo et al. [14] adopted domain generalisation for PAD. The authors designed
a framework Generalised PAD (GPAD) to address the generalisation problem and
suggested an aggregate dataset with variance in attacks, lighting, capture devices,
and resolution. The GRAD-GPAD (Generalisation Representation over Aggregated
Datasets for Generalised Presentation Attack Detection) provided a common evalua-
tion method for face anti-spoofing techniques.

Saha et al. [84] addressed domain shift in face PAD using a domain-agnostic
model. A class-conditional domain discriminator and gradient reversal layer were
utilised to learn domain-independent features. Source domain features were learned
through training using multiple datasets. The model showed improved generalised
feature learning across multiple domains for print and video attacks. The multiple
domains were formed due to the variations in illumination, background, printers, dis-
play screens, and the quality of recording devices. Wang et al. [85] utilised GANs to
address unseen attack detection. The adversarial domain adaptation facilitated trans-
ferring source domain features to the target domain. This technique included Disen-
tangled Representation learning (DR-net) and Multi Domain learning (MD-net). DR-
net learned disentangled features. MD-net learned the generalised features across
multiple domains using these disentangled features from these domains. Evaluation
with CASIA, REPLAY -ATTACK, MSU and OULU-NPU datasets provided an improved
cross-domain performance compared to existing state-of-the-art methods. However,
the experiments also confirmed the fact that a larger dataset with more attack variants
would be required for effective unseen attack detection.

Shao et al. [86] proposed another domain generalisation method without using the
target domain data. Adaptive and automatic learning of generalised features was
facilitated by a multi-adversarial deep domain generalisation module. Integrating a
dual-force triplet-mining constraint enhanced the disparity in the generalised feature
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space. The model used auxiliary depth supervision to further improve generalisation.
Unlike the aforementioned models, Jia et al. [87] followed a single domain generali-
sation. Retaining the boundary of feature domains of real and fake faces has become
increasingly difficult due to novel attacks. In order to avoid grouping and extracting
generalised features from multiple domains, the authors used a single domain. Use of
Asymmetric Triplet Mining ensured the effective clustering of real face features while
spreading away the fake ones. Zhang et al. [88] introduced an FPAD model disentan-
gling features into live and content features. Depth supervision and translated images
were utilised in this model.

The existing domain generalisation approach transferred generalised features from
the source domain to a pre-defined distribution. However, this distribution might not
be an optimal feature space [86]. Learning discriminant features requires multiple
components in these models. Elimination of any of these feature discriminators might
deteriorate the generalisation capability of the model [87].

2.6.2 Anomaly Detection

Unseen attack detection was addressed using an anomaly detection approach in re-
cent research. Anomaly detection followed a one-class classification. From Table.
2.2, it is evident that this approach had gained more popularity in the last few years
for unseen attack detection. In face PAD problem genuine or live face images are
considered normal samples, whereas all possible attacks form the anomalous sample
space. It has been found that the genuine class has lower variance within the feature
distribution and forms a close cluster. They had more generalised features than the at-
tacks. Attacks, on the other hand, can vary substantially from one another. The higher
variance in attacks results in anomalies in the feature space. Using this close clus-
ter behaviour of genuine samples in the feature space, anomaly detection techniques
have classified authentic faces more accurately. Any samples outside the margin of
the genuine sample cluster would be considered attacks. Since the real face sample
has a defined class, unseen attacks can be detected.

Arashloo et al. [89] introduced anomaly detection for face PAD. This technique used
only genuine face samples for training. The authors set up a new evaluation protocol to
gauge the effects of unseen attacks. In terms of generalisation, these fake or negative
samples represented all the spoofing samples. This method produced comparable re-
sults with the models using binary classification. In [90], Arashloo and Kittler proposed
a similar technique to address unseen attack scenarios. The authors incorporated
multiple kernel fusion, client-specific modelling, sparse regularisation and probabilistic
modelling of score distributions to enhance the performance of the system. Through
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extensive evaluation using different datasets, it was shown that the method performed
better than the existing state-of-the-art models in unseen attack detection.

Anomaly detection was explored by Nikisins et al. [91] too. Similar to [89], the au-
thors used only genuine samples for training. Feature space was created using Image
Quality Measures (IMQ) in this model. A Gaussian Mixture Model (GMM) to find out
the probability distribution of genuine samples. Combining REPLAY-ATTACK, Replay-
Mobile and MSU-MFSD public datasets, an aggregate dataset was formed. Compared
to the binary classification methods, the designed model exhibited better generalisa-
tion when tested with the aggregate dataset. In a similar research, Fatemifar et al [92]
used a client-specific model. In one class classification, each biometric trait has scores
which would be distinct for genuine and attack samples. In this way, a threshold can be
defined to distinguish between real and fake images. A client-specific threshold was
set which provided a better distinctive capability to categorise genuine and attacks.
This method exploited only real face information to implement a perfect anomaly de-
tection approach. However, more mechanisms might be needed to refine single-class
learners if the training data included fake samples. Fatemifar et al. [93] presented
another subject-specific model. They fused the individual one-class classifier using a
new normalisation technique in this ensemble learning method. A weighted average
fusion strategy was used in the model.

Table 2.2: Anomaly detection approaches in recent face PAD research

Author Year Remarks

Arashloo et al. [89] 2017 A new evaluation protocol to detect the affects of unseen attacks
Arashloo and Kittler [90] 2018 Multiple kernel fusion, client-specific modelling, sparse regularisation,

probabilistic modelling of score distributions
Nikisins et al. [91] 2018 Image Quality Measures (IQM), Gaussian Mixture Model (GMM)
Fatemifar et al. [92] 2019 Subject specific models
Perez-Cabo et al. [94] 2019 Deep Metric Learning
Fatemifar et al. [93] 2019 Client Specific Modeling
Abduh & Ivrissimtzis [95] 2020 Convolutional Autoencoder, in-the-wild training images
Li et al. [96] 2020 Hypersphere loss function
Feng et al. [97] 2020 A spoof cue generator and an auxiliary classifier.
Baweja et al. [98] 2020 Pseudo-negative class samples

Deep metric learning was used in anomaly detection to address generalisation. Perez-
Cabo et al. [94] proposed this method and evaluation was carried out using GRAD-
GPAD [14]. Metric learning-based loss provided lower intra-class variance and higher
inter-class separability. Better classification of fake and genuine samples resulted us-
ing metric learning-based approach. Feng et al. [97], presented another anomaly
detection-based face PAD. In this method, the framework had a spoof cue generator
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and an auxiliary classifier. The model used a residual learning network to extract the
spoof cues. The method achieved good state-of-the-art performance in unseen attack
detection. In [96], Li et al. addressed face PAD in an open setting with an anomaly
detection method. They introduced a new hypersphere loss function for end-to-end
learning. Real faces formed a close cluster near to the origin of the hypersphere
sustaining intra-class compactness. The attack samples are scattered at a specific
distance from the genuine face cluster in the feature space to maintain the predefined
margin between real and fake features. Hypersphere loss identified these attacks di-
rectly without using a separate classifier. Baweja et al. [98] introduced a novel training
approach for anomaly detection. The absence of negative samples made end-to-
end learning in one class classification non-viable. Hence, the authors proposed a
"Pseudo-negative class" sample feature space, which helped the model in learning
better decision boundaries between genuine and fake samples. The pseudo-negative
class was modelled using a Gaussian distribution. Unlike other existing OCC mod-
els, end-to-end learning was carried out for both classifier and feature representation.
The authors of [95] included in-the-wild images in the training dataset of a one-class
classifier. These images were recorded in an uncontrolled environment. Hence, fea-
tures learned during training facilitated model operation in an uncontrolled environ-
ment. This enhanced unseen attack detection.

2.6.3 Few-shot and zero-shot learning

Few-shot learning (FSL) [99] is the process of learning from few samples with the
supervised data. FSL is suitable to applications which require large scale data from
supervision. FSL has only a small number of labelled target samples. When the
number of these samples for target class is zero, FSL is called zero-shot learning.
Since the requirement of target samples are very few or zero (in zero-shot scenario),
FSL is suitable for detecting unseen or novel attacks. Recent research made use of
this advantage of FSL to detect unseen attacks in face PAD.

Qin et al. [100] proposed face PAD using zero-shot and few-shot approaches. The au-
thors designed Adaptive Inner-update Meta Face Anti-Spoofing (AIM-FAS) with meta-
learning. Using pre-defined live and fake samples along with a few samples of un-
known attacks, the model carried out spoof detection. The meta-learner provided
better discrimination between live faces and attacks. With the adaptive inner update,
the discriminative capacity is enhanced, improving generalisation. Liu et al. [101] used
a zero-shot approach to address the unseen attack detection in face PAD. The authors
used a deep tree network to learn the semantic attributes of pre-defined attacks in
unsupervised methods. Even though live samples clustered well in the feature space,
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they positioned very close to a specific group of attacks like transparent masks, funny
faces, obfuscation makeup and paper glasses. This made detection more challenging
in such scenarios and implies that these attacks might be more challenging to detect.

2.6.4 Auxiliary Methods

Anti-spoofing is considered a binary classification problem. Hence, the majority of the
anti-spoofing models follow binary supervision. Nevertheless, binary supervision has
demerits too. Even though it provides arbitrary cues to detect spoofing, some of the
spoof patterns may disappear over the feature duplication process. This results in poor
generalisation [102]. To overcome poor generalisation, auxiliary supervision has been
used in a number of recent researches. It has been shown that auxiliary supervision
with end-to-end learning can provide better anti-spoofing [103]. The methods which
use auxiliary data are presented in the Table. 2.3. As in the table, depth was used as
an auxiliary feature in the majority of the existing models.

Table 2.3: PAD with auxiliary supervision

Method Auxiliary Cues Attacks

Patch CNN [103] Depth Print, Replay
CNN-RNN [102] Depth, rPPG Print, Replay
Frame-level CNN [104] Pixel wise binary Print, Replay
CNN with OFFB and ConvGR [105] Depth Print, Replay
Central Difference CNN [106] Depth Print, Replay
Multi-Spectral Central Difference CNN [107] Pixel wise Print
Bilateral Convolutional Network(BCN) [108] Human material Print,Replay
Bipartite Auxiliary Supervised Network (BASN) [109] Bipartite (Depth, Reflection) Print, Replay
Contextual Patch-Based CNN [65] rPPG 2D, 3D
Patch CNN [110] Depth Print, Video
SLNet [111] Disparity Print, Video
Image Decomposition [56] Noise Photo

Atoum et al. [103] introduced the depth supervision for anti-spoofing by proposing
a depth supervised patch-based CNN. From the random patches, local features are
extracted. These features were fused with a depth map to identify spoofing. A sim-
ilar auxiliary supervised approach using depth and Remote Photoplethysmography
(rPPG) supervision was proposed by Liu et al. [102]. The authors used a CNN and
Recurrent Neural Network (RNN) combination for spoof detection. rPPG facilitated
temporal information extraction using the difference in live signals for live face and
spoof images. Distinct from the above-mentioned single-frame PAD methods with aux-
iliary supervision [103, 102], a multi-frame approach was followed by Wang et al. in
[105]. This approach exploited temporal information along with depth supervision. The

25



authors followed the distinguishing patterns of temporal depth and motion between live
and spoof images in the temporal domain. This approach facilitated efficient spoof de-
tection under depth supervision by examining complex facial variations and motions.

Auxiliary methods used depth and temporal features for supervision. The acquisition
and processing of these features might take a longer time. Nevertheless, in a real-
time scenario, especially in mobile devices this delay would not be acceptable. As the
depth calculation consumed more computational resources and time, George et al.
[104] followed a pixel-wise supervision PAD method. This method was claimed as a
suitable approach for mobile devices as it avoided the pixel-wise depth calculation. In
order to extract more generalisable features in auxiliary supervised PAD, Kim et al. in-
troduced a novel Bipartite Auxiliary Supervised Network (BASN) [109]. This approach
used auxiliary cues from both live face and spoof images, distinct from existing PAD
methods with auxiliary supervision.

Following the aforementioned auxiliary supervised methods and leveraging the Central
Difference Convolution (CDC), Yu et al. [106] introduced a spoof detection approach
using Central Difference Convolutional Network (CDCN). By utilising Neural Archi-
tecture Search (NAS) architecture, low, mid and high level features were extracted.
These features were fused using a Multi-scale Attention Fusion Module (MAFM). CDC
provided better results by combining intensity and gradient information. Apart from
achieving generalisation in face pose, expression, spoof medium, cross or unknown
attack variants, this approach showed considerable performance in terms of domain
shift. The authors extended the methods incorporating multi-spectral mode in [107] us-
ing two fusion strategies for the modalities. The fusion was done either by input-level
fusion via concatenating three-modal inputs to 256x256x9 directly or score-level fusion
via weighting the predicted score from each modality. Yu et al. [108] also proposed a
human material recognition model for face spoof detection. The authors included a Bi-
lateral Convolutional Network (BCN) for capturing human material patterns. The BCN
was able to learn macro-micro features associated with the material. A multi-level fea-
ture refinement module along with multi-headed supervision facilitated enhanced BCN
performance by refining multi-scale features and learning shared features.

Authors of [65] proposed a method incorporating rPPG and textural information to
attain generalisation in terms of 2D and 3D mask attacks. Multi-scale long-term sta-
tistical spectral features for rPPG information was incorporated with contextual patch
CNN. Remote Photoplethysmography (rPPG) provided 3D mask and photo attack de-
tection while textural cues identified the replay attacks. Liu et al. [110] developed a
face PAD combining Patch CNN and Depth-based CNN. This approach was designed
as a PAD for mobile devices. Depth-based CNN showed degraded performance for
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low-resolution images, whereas Patch based CNN showed low performance for high-
resolution images. The combination of these two improved the overall PAD perfor-
mance in mobile devices. Unseen attack detection was addressed by learning dis-
parity maps and training end-to-end classifiers simultaneously. Rehman et al. [111]
proposed an approach similar to the depth-supervised auxiliary method. The learned
disparity maps facilitated better detection of unseen attacks. Auxiliary supervision
was investigated by Jourabloo et al. [56], too. They set up the auxiliary supervi-
sion of CNN to obtain the noise pattern and showed how different spoof mediums
exhibited different noise patterns. In particular, the noise patterns of the live and fake
images were different. End-to-end training of a CNN distinguished accurately between
live and spoof accurately. Authors of [112] proposed a novel model, Spatio-Temporal
Anti-Spoofing Network (STASN) to differentiate between live and spoofed faces. For
anti-spoofing both temporal and spatial cues were used. The model used a new data
synthesis method which provided a huge amount of training data. STASN combined
with extensive training data provided improved performance when compared with the
state-of-the-art methods.

2.6.5 Multi-modal methods

In an FR system, PAs occur in the visible light range. However, more cues on attacks
are available from an other spectral image [113]. Multi-spectral face PAD approaches
in recent literature are listed in Table. 2.4.

Jiang et al. [114] proposed a multi-spectral presentation attack detection approach to
detect 3D mask and print attacks based on Visible Spectrum (VIS) and Near Infra-Red
(NIR) images. Similarly, George et al. [115] used multi-channels (VIS, NIR and Ther-
mal) and transfer learning to enhance performance. The method failed in identifying
scenarios like prescribed glasses and facial hair attacks. The enhanced performance
provided by extended-range imaging was utilized to detect PAIs in [116].

Table 2.4: Multi spectral anti-spoofing methods

Method Modality Attacks Databases

Multi Level Image Fusing [114] RGB, NIR Print, 3D CGIT PMT
Multi Channel CNN [115] RGB, NIR, Thermal, Depth 2D, 3D WMCA

Attention based Two Stream CNN[117] RGB, MSR Print, Replay
CASIA FASD, REPAY ATTACK,
OULU

Multi Spectral Disguise Detection [24] RGB, Thermal Disguise BVSD, IHTD
Multi Spectral Deep Embedding[116] RGB, NIR, Thermal Silicon Mask XCSMAD
NIR Silent Liveness Detection Network Architecture [118] NIR Photo Proprietary Dataset
Multi-modal FPAD with Spatial and Channel Attention [119] RGB,IR,Depth Photo CASIA-SURF

Multiple Categories Image Translation GAN [120] RGB, NIR Photo, Video
CASIA-MFSD, REPLAY-ATTACK,
Proprietary Dataset

Multi-Task cascaded CNN [121] RGB, IR Photo, Video
CASIA-MFSD, REPLAY-ATTACK,
NenuLD
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Kotwal et al. [116] addressed custom silicone mask-based impersonation PAD by de-
ploying multi-channel inputs and CNN. Extracted feature vectors from CNN were clas-
sified using a logistic regression classifier. A two-stream convolutional neural network
approach was set up in [117]. Two imaging spaces, RGB and Multi-Scale Retinex
(MSR) were used in this approach to extract textural features and high-frequency
information. The model was found to be insusceptible to illumination changes. A
multi-spectral method to identify disguise was described by Dhamecha et al [24]. This
method classified facial portions into patches of biometric and non-biometric based on
the presence of disguise tools and then performed a recognition task.

Fan et al. proposed and evaluated NIR and VIS methods with NIR and VIS datasets
respectively [118]. Through the experiments conducted, the authors verified the ca-
pability of NIR methods compared to VIS method. As per their observation, NIR pro-
vided more distinct features and NIR camera itself has some resistance to spoofing as
it could not take images of replay attack using mobile and high-colour photos. Jiang
et al. [120] utilised the cues from visible spectrum (VIS) and Near Infra Red (NIR)
images. In this work, NIR images were synthesised using GANs [122] through im-
age translation technique. The VIS and NIR pair gave cues for better spoof detection.
Image translation using GAN provided required NIR image.

Liu et al. [121] proposed a PAD approach using IR and RGB images. The authors used
a Multi-Task cascaded CNN (MTCNN). This approach exhibited lower responding time,
making it suitable for real-world applications. Wang et al. [119] presented another
multi-modal technique to detect spoofed faces. Using RGB, IR and depth modalities,
the authors used an attention mechanism to capture information to detect spoofing.
These three modalities and their combination trained a ResNet-18 model and were
classified using the combination of softmax loss and center loss.

Authors of [77] used domain adaptation to transfer source domain information from
VIS domain to the multi-spectral target domain. These multi-spectral methods were
able to enhance spoof detection using reflection invariant cues obtained through ex-
tended imagery. However, these methods required an additional sensor along with VIS
camera. Similar to existing other CNN based PAD methods, multi-spectral methods
also required larger datasets with more attack variants in all modalities.

2.7 Hybrid methods

Local binary pattern (LBP) and its variants have been extensively used in handcrafted
feature methods for FPAD. The authors of [123] proposed a novel fusion model to re-
duce training parameters by using the similarities between CNNs and LBP extraction.
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This fusion network reduced the number of network parameters by using a statistical
histogram. Nevertheless, the model failed to detect some specific types of attacks.
Chen et al. [72] fused colour texture features with deep features from the images.
Colour texture features were extracted by using rotation rotation-invariant local bi-
nary pattern (RI-LBP). These location features were fused with the global features
extracted by using a ResNet model for classification. An SVM, with RBF kernel, clas-
sified these fused features to detect whether the face was authentic or spoofed. The
experiments considered YCbCr and HSV colour spaces. In a comparison of grayscale,
RGB, YCbCr, and HSV, the texture features, combined with the YCbCr and HSV colour
spaces provided better detection results. The authors also presented a cross-dataset
evaluation to show the generalisation capability of the method. The authors of [124]
combined different handcrafted features including LBP, GDP, GLTP, LDIP, LGBPHS,
and LPQ. These extracted features were classified by using the K-NN classifier. How-
ever, the model exhibited very low real-face detection accuracy regardless of the high
(98.39%) fake-face detection accuracy. Moreover, this method only combined hand-
crafted features. Deep global features were not considered in this model.

Liu et al. [125] adopted a multi-modal data fusion strategy to identify fake faces. The
model combined both low-level and high-level features from RGB and IR images for
FPAD. This model exhibited generalisation against different conditions such as dim
light, realistic face camouflage, static or motion pattern, etc. Because a nonlinear
fusion method was used with multi-modal data, the generalisation was enhanced to
some extent. The authors of [126] followed a dual cue fusion method to mitigate the
error in FPAD. The framework had two streams. The first stream used facial images
with background and the second stream used face images after facial area only. Fast
Fourier Transform (FFT) was extracted from the facial images with background and
these images were used to train the CNN model for FPAD. Simultaneously, the second
stream carried out a colour space (HSV) transformation on facial area RGB images.
Texture features were extracted from these images as input to SVM classifiers for
FPAD. The decisions from both streams were combined to identify the PAs.

Younis and Abuhammad [127] proposed a hybrid fusion framework to address PAs
by using multiple biometric modalities. The authors combined transfer learning and
hand-crafted feature methods by using discriminant correlation analysis (DCA) and
canonical correlation analysis (CCA). On the images, contrast adjustment was car-
ried out to control intensity distribution. Histogram of gradient (HoG) features were
extracted from these images. A multi-level fusion strategy was followed to incorporate
multiple biometric modalities. In a dual stream fusion model, Fang et al. [128] used
frequency domain features and complementary RGB features. This model included
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a hierarchical attention module as well as a multi-stage fusion strategy. A special at-
tention module at the lower layers of CNN enabled the extraction of texture features.
Similarly, a channel attention module at the higher layers extracted deep semantic
features. Because both of these features are essential for better detection of attacks,
this fusion model addressed generalisation through the decomposition of multi-level
frequency.

Unlike other fusion models existing in the literature, the authors of [129] combined
deep learning with serial fusion, as parallel fusion models have a longer response time.
These multiple biometric modalities-based methods used Siamese neural networks.
Deep networks were used for deep feature extraction and match score generation.
Daniel and Anitha [130] proposed a new FPAD method, combining texture and image
quality features. The image colour space was changed to HSV. Entropy-based colour
texture features and image quality features were extracted from these HSV images.
Later, these extracted features were concatenated and then classified. Even though
this model combined different handcrafted features, it did not consider deep feature
extraction to address PAs.

Xu et al. [131] used two lightweight networks to learn motion and texture cues in order
to improve PAD. An element-wise weighing fusion strategy was followed in this model.
In [132], the authors used camera-invariant feature learning while focusing on gen-
eralisation in FPAD. This framework learned both high-frequency and low-frequency
information. A module in the framework carried out high-frequency domain camera-
invariant feature decomposition. Another module in the framework performed image
re-composition of both high- and low-level information. Classification results of both
modules were fused together by using a weighting strategy to perform the final clas-
sification. Sharifi [15] proposed a decision-level fusion strategy to address FPAD. The
author carried out feature extraction with a Log-Gabor filter. By using a nearest neigh-
bours classifier, the scores were classified. Simultaneously, feature extraction and
classification were performed by using a CNN model too. By using the OR rule, the
decisions from the two modules were fused to get a final decision on the genuineness
of the facial image.

Cai et al. [133] used meta-pattern learning, instead of hand-crafted feature extraction,
to create a hybrid model to address FPAD. By using the hierarchical fusion module
(HFM), RGB image and meta patterns were combined and passed to a CNN for fur-
ther classification. Song et al. [134] proposed FPAD by using least squares weight
fusion (LSWF) of channel-based feature classifiers. The authors utilised colour, tex-
ture, spatial domain, and frequency domain features extracted from different channel
spaces along with convolutional features in this fusion method. To assign the optimal
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weights of classification score fusion, a least square weight fusion strategy was used.

Anand and Viswakarma [135] proposed a fusion method combining deep features and
colour texture features. Extracted features were classified by using SVM separately.
The probabilities from each model were fused to get the final probability. The authors
of [136] utilised dynamic texture features and shape cues in a fusion method, to ad-
dress 3D attacks. Geometric information used in this method was either extracted by
the depth sensors or reconstructed from the RGB images. It also made use of a multi-
modal dynamic fusion network and 3D model-guided data augmentation. This data
augmentation facilitated data in different poses, which in turn assisted in training the
network fully.

2.8 The Latest Methodological Breakthroughs in FPAD

It is essential to remain at the forefront of methodological advancements in the field of
FPAD, which is constantly evolving. In the realm of FPAD, there have recently been
groundbreaking developments that have the potential to revolutionize how generaliza-
tion can be handled while addressing issues such as computational cost, privacy and
legal issues, feature extraction, and fusion. With an aim to reduce computational cost
while improving generalisation, the authors of [137], used a subset of frames from the
dataset, with uniform sampling. It did not have to estimate the motion between ad-
jacent frames as all frames are not necessary to detect facial movements for FPAD.
Authors of [138] carried out a computational analysis of different CNN-based mod-
els. Fast RCNN was found to be effective with the best accuracy and efficiency in
the PA detection task in this evaluation. However, the analysis was conducted using
only two public datasets NUAA and CASIA which were limited in size and variations.
Using datasets with a larger size and more variations can impact the analysis results
differently.

Synthetic data generation [139] has been explored to address FPAD in recent re-
search. In order to achieve domain generalisation, synthetic data was used to train
deep ensemble models [140]. In this video-based data augmentation method, the au-
thors considered both spatial and temporal features. As the model was able to learn
spatiotemporal features from video, it can also overcome the inability of images to pro-
vide more cues for PA detection. Authors of [141] created a new T-shirt Face Presen-
tation Attack (TFPA) dataset, using 8 subjects and 100 synthetically generated facial
images. This multi-modal dataset with RGB and depth images has 1608 samples.
Among the SOTA methods evaluated, the anomaly detection method showed better
performance. It also showed that T-shirt attacks could be used against FR if the actual
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face was covered. However, the cross-dataset generalisability was not evaluated with
this dataset.

Another recent trend in addressing FPAD generalisation is collaborated learning meth-
ods including federated learning. Such methods can overcome legal and privacy is-
sues related to sharing multiple source domains among different entities in practical
scenarios. FedSIS [142] used ViT architecture. It used a feature augmentation strat-
egy by utilising intermediate features of ViT. A well-generalised cross-domain perfor-
mance was achieved using its method while preserving data privacy. FASS [143] used
image quality features and deep features to form a late fusion model. No-reference
image quality features were classified with SVM and RF, and the classification results
were combined with ResNet-50 classifier results. This score-level fusion exhibited PA
detection with generalisation comparable to existing SOTA methods.

Authors of [144] addressed the FPAD problem using Multi-Scale Colour Inversion
(MSCI) of images and early fusion of features. In this two-stream method, one stream
was used to extract features from RGB images, while the other stream extracted fea-
tures from MSCI images and then these features were combined to detect the PAs.
Multi-scale colour Inversion provided face reflection features. A Paralleled convolu-
tional block attention module (PCBAM) was used to make the network give more at-
tention to regions which were relevant to the PA detection task. The model exhibited
generalisation across different datasets showing the potential to detect unseen at-
tacks. Geometric facial dynamics from dense landmark predictions were explored in
[145] using Geometry-Aware Interaction Network (GAIN), to detect PAs. The authors
also designed a cross-attention strategy in order to integrate the extracted geomet-
ric features with editing SOTA methods which in turn improved detection performance
both in intra-dataset and cross-dataset evaluations showing improved generalisation.

Multi-modality in FPAD generally utilised extended imagery. In contrast to this, authors
of [146], used sensors including a speaker and microphone other than the camera.
Thus a method combining visual and auditory modalities was used to address PA
detected. To facilitate better feature learning, a hierarchical cross-attention mecha-
nism also was incorporated in this method. One breakthrough in multi-modal FPAD is
the flexible-modal framework, which followed "train one for all" [147]. The model was
trained using a combination of RGB, Depth and IR data. The trained FPAD model is
tested using four modality combinations including RGB, RGB+Depth, RGB+IR, and
RGB+Depth+IR. The model was proposed to mitigate the redundancy and inefficiency
associated with multi-modal training scenarios. However, through evaluations, it was

32



found that for flexible modal FPAD, the training set should have all the modalities si-
multaneously. Then only, the model can be evaluated using any of the modality com-
binations. In [148], the authors leveraged visual saliency to improve the performance
of the PA detection. In each frame, saliency information is extracted based on the
difference between the Laplacian and Wiener filter outputs. This approach highlighted
the significance of enhancing the representativeness and diversity of a training dataset
by prioritizing the inclusion of the most salient images or regions within the images.
This strategy holds the potential to yield more efficacious models in the context of PA
detection. Nonetheless, a limitation identified was that it might not be able to capture
all fine details in longer videos.

Authors of [149] explored the possibility of vision-language pre-trained models in im-
proving FPAD generalisation. As part of their research, the authors also investigated
whether self-supervision techniques could be incorporated into the adaptation of VLP
models for FAS in order to overcome the large domain gap and limited availability
of training data in FAS. Using this method, Generalisation was further enhanced by
aligning image representations with text representations produced by the text encoder.
Advanced Multi-Perspective Feature Learning network (AMPFL) [150] utilised discrim-
inative features from multiple perspectives to improve PA detection task. This ap-
proach used a Multi-Perspective Feature Learning module to capture cues specific to
various perspectives, whereas a Multi-Perspective Feature Fusion module combined
perspective-specific cues with universal cues, which facilitated FAS with a more com-
prehensive set of information.

2.9 Datasets

Datasets have a pivotal role in the performance of any presentation attack detection
method. The generalisation of PAD relies on variance in samples of a dataset. Ac-
cess to a wider variety of PAs facilitates the learning of more attack features during the
training process. This eventually leads the system to detect the PAs of a wide range.
Samples of print attack images with different illumination conditions from NUAA im-
poster are shown in Figure. 2.13. For each dataset, the upper row shows the real
facial images and the corresponding presentation attack images are in the lower row.
(a) NUAA imposter dataset [10], (b) CASIA-FASD [41], (c) Replay Attack [46], and
(d) SiW[102]. Other attack variants include replay attacks, 3D mask attacks and their
variants. Both print and replay attacks from CASIA, Replay Attack and SiW are also
shown in Figure. 2.13.

It is evident from Table. 2.5 that existing datasets consist of more 2D attacks than
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3D attacks [151, 5]. However, diverse novel attacks are increasing with progressive
technology. Dataset diversity is decided by PAs and their variants. Factors such as
environment, recording set up, illumination, pose, expression and spoofing medium
also affect the dataset content.

The deep learning model is a neural network model with several layers and parameters
between output and input. Figure. 2.3 illustrates a simple neural network model. As a
general rule, neural networks are composed of three layers: the input layer, the hidden
layer, and the output layer. As deep learning models use neural networks with more
hidden layers, they are commonly referred to as deep neural networks. Deep refers
to the fact that there are more hidden layers between the input and output layers. An
ordinary neural network model may contain two or three hidden layers, whereas a
deep neural network model or a deep learning model may contain 100 or more hidden
layers.

(a) NUAA (b) CASIA

(c) Replay Attack (d) SiW

Figure 2.13: Real and fake facial images from four public datasets.

Dhamecha et al. [24] developed a multi-spectral dataset for disguise attacks called
IIITD: In and Beyond Visible Spectrum Disguise (I2BVSD). This dataset consists of
75 subjects with various disguise accessories. Both visible and thermal spectra were
considered for data acquisition. The authors introduced distinct disguise variants for
the dataset as:

• Without disguise

34



• Variations in hairstyles

• Variations due to beard and moustache

• Variations due to glasses

• Variations due to cap and hat

• Variations due to mask

• Multiple variations

Table 2.5: Face Anti-Spoof (FAS) datasets

Dataset Year Subjects Samples Modality Attacks

NUAA [10] 2010 15 12,641 RGB Print
CASIA-MFSD [41] 2012 50 600 RGB Print, Replay
Replay-Attack [46] 2012 50 1,200 RGB Print, Replay
YMU [152] 2012 151 604 RGB Makeup
ERPA [153] 2013 5 86 RGB, Depth, IR, Thermal 3D Silicon/resin Mask
MIW [154] 2013 125 154 RGB Makeup
MLFP [155] 2013 10 1,350 RGB, Thermal 3D Latex, Paper Mask
GUC-LiFFAD [156] 2015 80 4,826 RGB Print, Replay
MSU-MFSD [43] 2015 35 440 RGB Print, Replay
3DFS-DB [157] 2016 26 520 RGB, IR 2D/3D Mask
3DMAD [158] 2016 17 255 RGB, Depth 3D Mask
HKBU MARs [159] 2016 12 1,008 RGB 3D Rigid Mask
MSSPOOF [160] 2016 21 4,704 RGB, IR Print
Replay-Mobile [161] 2016 40 1,030 RGB Print, Replay
BRSU [162] 2017 50 141 RGB, IR 3D Masks, Facial disguise
CIGIT-PPM [114] 2017 72 93,358 RGB, IR Print, 3D Mask
EMSPAD [163] 2017 50 14,000 7-band multi-spectral data Print
MIFS [164] 2017 107 416 RGB Makeup
Oulu-NPU [165] 2017 55 5940 RGB Print, Replay
SMAD [166] 2017 From internet 130 RGB 3D Silicon Mask
CS- MAD [45] 2018 14 308 RGB, IR, Depth, LWIR 3D Silicon Mask
DFW [167] 2018 1000 11,155 RGB Disguise
Rose-Youtu [168] 2018 20 3350 RGB 2D, 3D
SiW [102] 2018 165 4620 RGB Print, Replay
WMCA [38] 2018 72 6716 RGB, Dept, IR, Thermal Print, Replay, 2D/3D Mask
3DMA [169] 2019 115 920 RGB, IR 3D Mask
AIM [170] 2019 72 456 RGB Makeup
CASIA-SURF [171] 2019 1000 21000 RGB, Depth, IR Print, Cut
I2BVSD [24] 2019 75 681 RGB, Thermal 3D Facial Disguise
LCC FASD [172] 2019 243 18827 RGB Photo
PR-FSAD [173] 2019 30 127440 RGB Print, Replay
SiW-M [101] 2019 493 1,630 RGB Print, Replay, 3D Mask, Makeup
WFFD [174] 2019 745 2300 RGB Wax figures
CASIA SURF CeFA [175] 2020 1,607 23538 RGB, Depth, IR 2D, 3D
CelebA-Spoof [176] 2020 10177 625537 RGB Print, Replay, 3D, Paper cut
TFPA [141] 2023 108 1608 RGB, Depth 2D

Disguised Faces in the Wild (DFW) dataset [177] is a similar dataset with disguised
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face attacks. It has images of 1000 subjects. A total of 11,155 face images of real-
world disguise variants obtained from internet sources, formed this dataset. Bhat-
tacharjee et al. [45] created a new Customised Silicon Mask Attack Dataset (CS-
MAD) and verified the vulnerability of face biometric system using the dataset. The
boost in technology made the manufacturing process of mask easier and cheaper and
a number of recent datasets incorporate 3D attacks. Different mask attack datasets
are described in Table. 2.7.

Zhang et al. [171] developed a new dataset, CASIA-SURF which was larger than
existing datasets in size. The dataset consists of three modalities which are VIS, IR
and depth. It has 21,000 sample videos from 1000 subjects. The authors of [170]
formed a novel Age Induced Makeup (AIM) dataset. 456 samples using age progres-
sive makeup type from 75 subjects were considered while forming the dataset. Liu et
al. [178] formed a Spoof in the Wild (SiW) dataset introducing more spoofing medium
and recording settings with photos of 165 subjects. The authors of [169] developed a
dataset for 3D Mask Attacks (3DMA) based on VIS and NIR. Xiao et al. developed this
dataset in order to apply more variance in lighting distance and illumination deploying
various methods. 920 videos of 67 subjects were included in the dataset. There were
48 3D mask variants used to create this dataset.

Table 2.6: Multi-spectral datasets

Database Year Modality Samples Attacks

ERPA [153] 2013 RGB, Depth, IR, Thermal 86 3D Silicon/ resin Mask
MLFP [155] 2013 RGB, Thermal 1350 3D Latex/ Paper Mask
I2BVSD [179] 2014 RGB, Thermal 681 3D Facial Disguise
3DMAD [158] 2016 RGB, Depth 255 3D Mask
MSSPOOF [160] 2016 RGB, NIR 4704 Print
EMSPAD [163] 2017 7-band multi-spectral data 14,000 Print
BRSU [162] 2017 RGB, 4 SWIR bands - 3D Masks, Facial disguise
CIGIT-PPM [114] 2017 RGB, NIR 93358 Print, 3D Mask
WMCA [38] 2018 RGB, Depth, IR, Thermal 6716 Print, Replay, 2D/ 3D Mask
3DMA [169] 2019 RGB, NIR 920 3D Mask
CASIA-SURF [171] 2019 RGB, Depth, IR 21000 Print, Eye-Cut photo
CASIA-SURF CeFA [175] 2020 RGB, Depth, IR 23538 2D, 3D
HQ-WMCA [180] 2020 RGB,Depth,NIR,SWIR,Thermal 58080 Print, Replay, Partial, Mask
PADISI-Face [181] 2021 RGB, Depth, NIR, SWIR, Thermal 121740 Print,Rreplay, Mask, makeup/tatoo, partial
LDFAS [182] 2022 RGB, LiDAR 2880 Print, Replay, Mask
UVLD [183] 2023 RGB, Ultrasound 36258 Replay
Echoface-Spoof [146] 2023 RGB, Acoustic 249352 Print, Replay
TFPA [141] 2023 RGB, Depth 1608 2D
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Table 2.7: 3D mask datasets

Database Year Subject Sample Material

3DMAD [158] 2013 17 255 Paper, hard resin
3DFS-DB [157] 2016 26 520 Plastic
HKBU-MARs [159] 2016 12 1008 Rigid (Two different manufactures)
BRSU [162] 2016 137 141 Silicon, plastic, resin, latex
SMAD [166] 2017 From internet 130 Silicon
MLFP [155] 2017 10 1350 Latex, paper
ERPA [153] 2017 5 86 Resin, silicone
WMCA [38] 2019 72 1679 Rigid, silicone, paper
WFFD [174] 2019 745 2300 Wax figure
CIGIT-PPM [114] 2019 72 93358 Leather, rubber, plastic
3DMA [169] 2019 115 920 48 Variations of masks
SuHiFiMask [184] 2023 101 10,195 resin, silicone, plaster, headgear, head moulds

Emphasizing on video replay attack, Timoshenko et al. created a larger dataset. The
Large Crowd Collected Facial Anti-Spoofing Database (LCC FASD) in [172] has more
variance in devices deployed for recording and replay. The dataset has 1942 real
faces and 16885 attack samples. In [173], the authors introduced a novel dataset Pat-
tern Recognition Face Spoofing Advancement Dataset (PR-FSAD) for spoof detection
which emphasizes on variations in angle and distance. 42,480 real and 84,960 fake
samples from 30 subjects used to construct the dataset. A new dataset, Digital Foren-
sic - Face Presentation Attack Detection (DF-FPAD) was created for the evaluation
process of a presentation attack detection framework using this textural noise in [185].
The dataset was made using higher-quality images of fake and genuine faces under
controlled conditions.

2.10 Evaluation Metrics

Face PAD is commonly considered as a binary classification problem. Various
performance-associated metrics are used to evaluate the performance. Chingovska et
al. detailed about measuring face PAD as a binary classification problem [186]. Since
these binary classification systems are provided with two classes of input, they are
normally termed positive and negative classes. Their performance is evaluated by the
types of errors committed and the method to measure them. False Positive and False
Negatives are the errors exhibited by binary classification systems. Normally recorded
error rates are False Positive Rate (FPR) and False Negative Rate (FNR). FPR is the
ratio of FP to the total number of negative samples and FNR is the ratio of FN to the
total number of positive samples.
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In biometric verification systems, the performance relies upon the acceptance or rejec-
tion of the sample. So the terms False Positive Rate (FPR) and False Negative Rate
(FNR) are replaced by False Acceptance Rate (FAR) and False Rejection Rate (FRR),
respectively [187]. As there is the matching process involved in the verification task,
FAR and FRR are often described as False Match Rate (FMR) and False Non-Match
Rate (FNMR) [188]. Anti-spoofing systems function on the concept of acceptance and
rejection. So usually PAD systems use FRR and FAR. The ratio of incorrectly accepted
spoofing attacks defines FAR, whereas FRR stands for the ratio of incorrectly rejected
real accesses [186].

Presentation Attack Detection (PAD) follows ISO/IEC DIS 30107-3:2017 [189] to eval-
uate the performance of the PAD systems [190]. Authors of [5] described evaluation
metrics used for testing different scenarios in a PAD system. The most commonly
used metric in anti-spoofing scenarios is Half Total Error Rate (HTER) [186]. HTER
is found out by calculating the average of FRR (ratio of incorrectly rejected genuine
score) and FAR (ratio of incorrectly accepted zero-effort impostor). FAR is associated
with SFAR (ratio of incorrectly accepted spoof attacks). PAD methods used Equal Er-
ror Rate (EER) to test reliability [5]. EER is a specific value of HTER at which FAR and
FRR have equal values.

Table 2.8: Commonly used evaluation metrics in face PAD

Metrics Equation

False Acceptance Rate FAR FP
Fake samples

False Rejection Rate FRR FN
Genuine samples

Equal Error Rate EER (FRR = FAR)

Half Total Error Rate HTER FAR+FRR
2

Attack Presentation Classification Error Rate APCER FP
FP+TN

Bona fide Presentation Classification Error Rate BPCER FN
FN+TP

Average Classification Error Rate ACER APCER+BPCER
2

While evaluating some methods, metrics mentioned as per ISO standard in [189] were
used. They were Attack Presentation Classification Error Rate (APCER), Normal Pre-
sentation Classification Error Rate (NPCER) and Average Classification Error Rate
(ACER). NPCER is identical to the Bona fide Presentation Classification Error Rate
(BPCER). A Face PAD is evaluated in terms of classification of attacks and real face,
intra-dataset performance and cross-dataset performance [56]. BPCER and APCER
measure bona fide and attack classification error rates respectively. ACER evalu-
ates the intra-dataset performance, whereas HTER scales cross-dataset performance
[189]. Commonly used metrics [191, 39, 5] in face anti-spoofing are listed in Table.
2.8. Computational latency stands as another significant parameter [192] that can be
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employed for comparing the state-of-the-art method. Latency holds a crucial role in
the real-time deployment of models.

2.11 Challenges and future directions

Despite the recent progress in presentation attack detection methods, unseen attack
detection is still considered a challenging problem. Existing methods showed promis-
ing results when evaluated using a specific type of attack under a controlled environ-
ment or using public datasets. PAD models trained used predefined attacks also show
promising results, however, such models tend to be biased toward these types of at-
tacks [193]. While machine learning models perform well on samples taken from within
the same distribution as the training set, that performance is not maintained across dif-
ferent datasets or in new conditions. In other words, generalising performance across
a wide range of attacks and across different datasets is still considered an inherently
challenging problem. This can be partly attributed to common computer vision chal-
lenges such as the distance of the subject to the camera, image resolution, light [83],
pose variations and others. This suggests strongly that, PAD in an uncontrolled envi-
ronment requires further research efforts [194, 195].

One of the key challenges to progress research and development of PAD methods is
the large number of ways that such attacks can be performed. It remains impractical
to compile a dataset that captures all current attack variations regardless of their type
(e.g. 2D, 3D attacks). It is impossible to predict the varieties of attacks that new
technological advances will bring in the future. The literature shows that compared to
existing 2D attack datasets, 3D attack datasets and multi-spectral datasets are scarce
with fewer subjects to compare to image classification and face recognition datasets.
More datasets in the public domain are required to progress research in this area. In
particular, datasets that capture novel attacks using recording devices, and other new
emerging technologies [171].

The inclusion of temporal features, such as motion or rPPG, for auxiliary supervision
is another challenging task in face PAD. The majority of auxiliary methods in face PAD
used spatial features, especially depth as an auxiliary feature. These have considered
a single frame for detection. Limited research has been conducted to utilise temporal
features for auxiliary supervision. This may be partly attributed to computer processing
requirements and the need for rapid processing in face recognition systems. Multiple
frames with longer duration have to be processed to deploy temporal features for auxil-
iary supervision. Hence, multiple frame-based models increase processing time within
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the face recognition systems [106]. As technology advances, however, temporal fea-
tures might increase accuracy in PAD, and this research area should not be neglected.

Remodelling face presentation attack detection as one class classification approach
has provided impressive results in unseen attack detection. Hence, this approach is a
promising future research direction. Delving further into anomaly detection, few-shot
learning, zero-shot learning, and domain generalisation is recommended for enhanc-
ing unseen attack detection. Combining this with further investigation into auxiliary
supervision with more spatial and temporal features would provide a powerful, new
research direction. Recent research has investigated multi-spectral data augmenta-
tion using image translation and GANs. This has provided new methods which utilize
multi-spectral cues without the need for physical auxiliary sensors. GANs have also
been used for learning generalised features over multiple domains in feature space.
Hence, further study with GANs in anti-spoofing might provide some way of generalis-
ing presentation attack detection over unseen attacks.

2.12 Conclusion

Presentation attacks continue to pose a challenge for the research community despite
recent and significant progress in the development of detection methods. Methods
such as anomaly detection, domain generalisation, few-shot learning, zero-shot learn-
ing and others have shown some promising results. In this chapter, a comprehensive
review of existing presentation attack methods is presented, along with an assess-
ment of challenges and possible research directions. FPAD presents a number of
challenges, including the absence of a common dataset protocol, the need to include
a wide range of datasets, and the need to extract specific features relevant to FPAD.
Based on these findings, FPAD needs to be explored using various public datasets
in order to determine the impact of different dataset protocols, increase the variance
of the training dataset, and extract FPAD-specific features on generalisation. Rather
than official dataset partitions, custom data partitions have been used as a way to in-
crease the variance of training sets. The upcoming chapter discusses the impact of
this practice on the FPAD.
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Chapter 3

Custom Dataset Partitions: An
Impact Analysis on FPAD

In the previous chapter, we saw how deep learning FPAD methods usually outperform
traditional machine learning methods. There is a discrepancy, however, in terms of
how the datasets are partitioned. This chapter presents an experimental framework
to investigate how different train-test partitions and variance in training data affect
model performance with the NUAA dataset [10] for PA detection. The results show
that using different partitions of this dataset results in different models with different
performances. The main findings in this chapter appeared in the proceedings of the
22nd International Conference on Engineering Applications of Neural Networks (EANN
2021) [196].

3.1 Overview

Face presentation attack detection (FPAD) uses either manual feature extraction or
deep learning [5]. These features include texture, image quality, temporal cues, and
life signs [197]. For the detection of PAs, the manually extracted features have been
classified using machine learning classifiers such as Support Vector Machines (SVMs)
and Random Forests (RFs) [198]. The inherent feature learning capacity of deep neu-
ral networks has recently been utilised in several different approaches for the detec-
tion of PAs. [1]. Hence, manual feature extraction methods have been replaced with
deep learning techniques, providing better performance in PA detection. During the
intra-dataset evaluation, the majority of these methods were found to be effective. In
cross-dataset evaluations, however, the performance of these models has been shown
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to deteriorate substantially, indicating a low degree of generalisation capability. Con-
sequently, some models may not perform as expected in real-life situations.

Like any other image classification problem, the dataset plays a critical role in FPAD
generalisation. In order to achieve better generalisation a dataset should contain more
data samples and exhibit high variance [14]. Different illumination, setting, record-
ing devices, ethnicity, spoofing medium, and materials all contribute to PAD dataset
variance. Nevertheless, some existing Face Anti-Spoof (FAS) datasets have limited
variance and size. These limitations also create a biasing of the model towards the
training set features, which affects the model’s generalisation capability.

NUAA imposter dataset [10] is a publicly available, FAS dataset of manageable size.
This dataset has a larger test set than the training set, unlike usual datasets. The
train and test sets were recorded on different days. Hence, there is no overlapping be-
tween test and train images from different sessions, and the original dataset test/train
partitions were appropriately disjoint. Also, the images in this dataset have various
illumination conditions. This session-wise recording with varying light conditions may
have made this dataset suitable for evaluating the generalisation capability of a model.
Recent practice, however, does not use the original disjoint test/train partition, instead
using customised partitions to give a larger training set with smaller test and validation
sets. Hence, based on the above factors, an experimental framework was created to
detect photo attacks using deep learning and extracted features. Two different dataset
partitions were tested with each model.

3.2 Customising NUAA dataset partitions for FPAD

In attaining generalisation in FPAD, the dataset plays a crucial part. Dataset variance
in terms of spoofing medium, illumination, ethnicity, settings, recording devices and
materials along with a number of samples contribute to this improved generalisation.
NUAA Imposter dataset [10] is one such dataset which has varying illumination condi-
tions. This dataset had been extensively used in FPAD model evaluation. The NUAA
dataset has a proper disjoint train-test partition in terms of recording sessions as they
were captured on three different days. Hence, NUAA is capable of testing the unseen
attack detection performance of a model. Nevertheless, in recent research, instead
of using train-test partition with disjoint distribution (3491 train and 9123 test images)
as in [10], the majority of models use varying train-test partitions to train and eval-
uate models. While the actual partition has a smaller train set than the test set, the
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majority of the customised partitions have larger training sets with images from all ses-
sions. But in real partition, the train set images are only from session 1 and session 2,
whereas test images are from session 3.

Many of earlier FPAD models using manual feature extraction, used NUAA with the
actual partition as in [10]. The models such as Multi-scale LBP [47], a combination of
Karhunen-Loeve Transform (KLT), 2D Fourier Transform, DoG with LBPV and MLBP
combined with image quality features such as colour moment, R-G deviated texture
utilised this train-test partition. In intra-dataset evaluation, these models even per-
formed well in spoof detection. However, lately, FPAD models were evaluated using
different partitions on NUAA (Table. 3.1).

Table 3.1: Customised NUAA train-test partitions used in recent research

Author Method Accuracy Train-Test Ratio
Matta et al. [47] Multi-scale LBP+SVM 98 3491:9123
Li et al. [65] KLT+CLBP+2D FT+SVM 95.21 3491:9123
Hasn et al. [9] DoG+LBPV+SVM 99.22 3491:9123
Song and Ma [134] LTP + LBP + R-G extractor+ COLOR MMT 98.49 3491:9123
Fahn et al. [197] IDA+LBP+RF 99.04 90:10
Satapathy & Livingston [199] Xceptio-Inception/Reduction CNN 100 80:10:10 & 60,20,20
Parveen et al [200] DLTP 94.5 1745:1746:9123
Luan et al. [201] Recaptutred Feature Extraction 98.8 50:50
Alotaibi et al. [57] Non-linear Diffusion+CNN 99 3491:9123

Parveen et al. [200] proposed a manual feature extraction method, Dynamic Local
Ternary Pattern (DLTP) to identify fake faces. The authors proved that their model per-
formance was comparable with state of the art method. However, the NUAA dataset
partition used in their model evaluation and compared models were different. The au-
thors partition NUAA actual train set to train and validation set with 1745 and 1746
images but retained the test set as it was in the actual test set. Yilmaz et al. [54], com-
pared various dimension reduction methods in the FPAD context. In their experiments,
the authors used 5-fold cross-validation on the NUAA dataset. Simulated Annealing
(SA) was found to be better in performance, through their experiments.

Fahn et al. [197] evaluated both handcrafted feature methods and CNN-based meth-
ods using the NUAA dataset. The authors implemented LBP, image distortion analy-
sis and CNN. For image distortion analysis, specular reflection, chromatic moments,
colour diversity, and sharpness were considered. For classification, random forest
classifiers and deep neural networks (DNN) were used. Experiments were carried out
using 10-fold cross-validation on the NUAA dataset. Even though the model showed
excellent intra-dataset performance with NUAA, their cross-dataset performance, with
respect to NUAA was not at the desired level.

The authors of [202] combined texture analysis and CNN to address FPAD. Based on
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the additive operator partitioning (AOS) scheme and triagonal matrix block solver al-
gorithm, non-linear diffusion was applied to the NUAA dataset images. These images
were used to evaluate the proposed five-layer CNN (CNN-5), ResNet50, and Incep-
tion V4. Among the tested models, Inception V4 performed better than other models.
In their experiments, the authors used actual NUAA partition unlike other CNN-based
methods evaluated on NUAA.

The majority of the manual feature extraction methods used the NUAA dataset with
the train-test partition as per dataset protocol [10]. However, in recent research,
both handcrafted feature methods and CNN-based methods had different partitions
on NUAA. The authors of [203] partitioned the NUAA train set into train and validation
sets of equal size, while retaining the test set as per the actual partition. Luan et al.
[201] combined the train test and test from the actual partition and divided the whole
dataset in a 1:1 ratio to get the train and test set. These models proved comparable to
those feature extraction models, which used actual NUAA train-test partition.

Authors of [199] presented a CNN FPAD model and compared the model performance
using two different partitions on the NUAA dataset. The authors used 80:10:10, and
60:20:20 random combinations of the NUAA dataset for the train:test:validation parti-
tions, which were different from dataset specifications. In the existing research, differ-
ent models trained on different partitions of NUAA were compared to demonstrate their
superiority among the state-of-the-art methods. Since the dataset variance substan-
tially changes with different partitions, it is very crucial to match the dataset partition
along with performance measurement in this case.

Authors of [57] presented a model using the diffusion technique. This technique re-
duced the processing time in the experiment, which used the AOS scheme for dif-
fusion. The NUAA dataset showed the highest accuracy (99% with HTER=.098%).
However, as the number of iterations and time step values were increased, the model
performance of this dataset degraded. As the time step increases, features such as
edges, location, fade-out, and iterations blur the image. These factors would influence
the model performance. Beham and Roomi [204] adopted a depth map-based method
to detect spoofed faces. The authors extracted Aggregated Local Weighted Gradient
Orientation (ALWGO) features from the depth map. NUAA, CASIA, and Replay-Attack
datasets were used for evaluation. The authors evaluated this model by changing the
number of training images from 1 to 3148. Luan et al. [201] addressed the FPAD prob-
lem by analysing specular reflection ratio, hue channel distribution and blurriness. The
model used an equal number of images for training and testing and had an accuracy
of 98.80%, which was better than the other feature extraction methods considered for
comparison.
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In [198], the authors presented a multi-texture analysis method. The proposed
method, Completed Local Binary Pattern (CLBP) and Completed Local Binary Pattern
Normalized Histogram Fourier (CLBP_NHF), performed better than LBP and MLBP.
A colour chromatic moment feature extraction method was adopted in [205] to distin-
guish between real and fake images in FR. RGB images were converted to HSV and
YCrCb colour spaces. The mean and standard deviation of pixels of images for each
channel in these colour spaces were calculated. These statistical features of the im-
age were also considered as colour chromatic moment features. For this model, the
authors used actual NUAA train-test partition as in [10].

Sengur et al. [206] also proposed an FPAD method using pre-trained CNN models
and trained the model with the actual NUAA train-test partition. AlexNet and VGG16
models were used for feature extraction. The SVM classifier was used to classify the
features extracted using fully connected layers (‘fc6’ and ‘fc7’) of the pre-trained mod-
els. These layers provided a feature vector with a dimension of 4096. Concatenating
features from fully connected layers from both models provided better accuracy than
individual feature vectors from each model’s fully connected layers. However, the re-
sults were comparable with the performance of the state-of-the-art methods.

3.3 NUAA Imposter Dataset

NUAA Imposter Database [10] has client and corresponding photo attack samples.
Fifteen subjects were involved in constructing the dataset in three different sessions.
The sessions differed in terms of lighting conditions, and time. The subjects were
of different gender and age. Unusually the official test set is much bigger than the
training set. The training set has 3491 images, and the testing set has 9123 images.
The training set includes real and fake images of 9 subjects, whereas the test has
images from 15 subjects. Fig. 3.1 shows real and fake image samples from the
NUAA dataset. The dataset has raw images with a size of 640X480, face-detected
images, and normalised face-detected images of 64X64 pixels. The raw images have
the background information with face images. NUAA dataset images were recorded in
three sessions. Session 1 and session 2 images were included in the training set, and
test set images were taken in session 3. Fig.3.2 shows the official dataset partition,
class distribution, class distribution for the train set and class distribution for the test
set for the NUAA dataset.
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(a) Client 1 (b) Client 2 (c) Client 3 (d) Client 4

(e) Imposter 1 (f) Imposter 2 (g) Imposter 3 (h) Imposter 4

Figure 3.1: Client and corresponding imposter image samples from NUAA dataset
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Figure 3.2: Official dataset partition and class distribution in NUAA dataset.

Prior research split the NUAA dataset into train and test partitions according to the
dataset protocol and utilised manual feature extraction methods to detect PAs. In
subsequent research, however, both CNN-based and manual feature extraction-based
methods used different partitions on NUAA. In [203], the authors divided the training
set into two equal sets and used them as training and validation sets. They used a test
set as per the dataset specification. The authors of [201] used a 1:1 train-test images
ratio. Behma et al. [207, 204] carried out experiments with 5-fold cross-validation on
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the entire dataset.

The authors of [54] also carried out 5-cross validation on NUAA. Authors of [199]
carried out extensive experimentation and evaluation on various models, which ex-
hibited excellent performance with NUAA. However, the authors used 80:10:10, and
60:20:20 random combinations of the NUAA dataset for the train:test: validation parti-
tions, which were different from dataset specifications. In the existing research, differ-
ent models trained on different partitions of NUAA were compared to demonstrate their
superiority among the state-of-the-art methods. Since the dataset variance substan-
tially changes with different partitions, it is very crucial to match the dataset partition
along with performance measurement in this case.

Since train and test sets in the NUAA dataset were recorded in different sessions, there
is no session-wise overlap. However, the train-test partition used in [199, 207, 204]
will introduce this overlapping. Illumination, devices, and recording settings of the
dataset images affect the generalisation capability of the model. Even though models
acquired high intra-dataset accuracy in such cases, the cross-dataset performance
may deteriorate as in [197].

3.4 FPAD using different dataset partitions

An experimental framework was constructed to investigate the impact of dataset parti-
tion on pre-deep learning models and manual feature extraction methods in detecting
PAs. Extracted features were then classified using SVM and RF classifiers as shown
in Fig. 3.3. Two different train-test partitions on the NUAA dataset were considered in
these experiments. They are actual NUAA partition with 3491 train images and 9123
test images [10] and customised partition with 80% images as a train set. In deep
learning models, the customised test-train partition uses 10% validation and 10% test
data, whereas, in manual feature extraction methods, test data was 20%. However,
both scenarios had 80% train data, which was managed by combining actual train and
test sets from NUAA and then partitioning it. The actual NUAA partition has disjointed
train and test sets in terms of recording sessions. However, combining the entire
dataset and customising the train and test partition caused the loss of non-overlapping
characteristics of train and test sets.

Extracted features include Local Binary Pattern (LBP), colour texture analysis, colour
moment, colour diversity, and variance. These features and their combinations were
classified using SVM with linear kernel, SVM with radial basis function kernel (SVM-
rbf), and RF. Among the manual feature extraction methods in existing literature, LBP
and its variants have been used extensively in FPAD [5, 208]. Hence, this classical
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feature-engineering method was considered. However, LBP converted the image into
gray-scale and did not utilise colour texture variations. In order to incorporate colour
texture variations in fake and genuine images, colour texture analysis using colour LBP
[8] was extracted and classified in here.

Input Images Feature extraction Classifier

Real

Fake

Decision

Figure 3.3: FPAD using handcrafted feature method

Apart from texture analysis, image quality factors also provide cues to detect spoofed
faces. Hence, image quality factors such as colour moment, colour diversity and vari-
ance [197] were extracted in the experiment. The combination of these features with
LBP was classified with SVM-linear, SVM-rbf and RF. Also, pixel values from images
were extracted manually and classified using above mentioned three classifiers.

The aforementioned classical feature-engineering methods were compared with both
shallow and deep CNN models for spoof detection. These models used two different
train-test partitions to compare their performance in FPAD. The first partition has 3491
train images which were captured in session 1 and session 2, whereas in the other
partition, the training set consists of 80% of the whole dataset. These images were
randomly selected from the dataset. Hence, in the latter case, there is a session-wise
overlapping between test and train sets unlike in the former partition.

3.4.1 Local Binary Patterns (LBP)

LBP is a commonly used image descriptor method used in computer vision. It trans-
forms an image with more detail. Ojala et al [209] introduced this texture descriptor.
Pixels in each 3X3 block in an image are compared with the central pixel. After thresh-
olding, these pixel values are multiplied by powers of two and then added to get the
value for the central pixel. Each pixel in the block has eight neighbourhood pixels.
Hence, 28 = 256 values are calculated based on the relative pixel value of the central
pixel and the pixels nearby. Fig. 3.4 shows the different stages involved in LBP his-
togram extraction from an RGB image and how the extracted features differ for real
and fake faces.

Include figure
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(a) Real face (b) Gray-scale image (c) LBP (d) LBP histogram

(e) Fake face (f) Gray-scale image (g) LBP (h) LBP histogram

Figure 3.4: LBP histogram for real and fake facial images

Support Vector Machine with linear kernel (‘SVM-linear’) and radial basis function ker-
nel (‘SVM-rbf’) were used to classify client and imposter faces. Hyper-parameter tun-
ing was done for each using Grid search. Predictions were made using the test set to
determine model accuracy. Hyper-parameter tuning was carried out while testing with
both partitions. In both test cases, SVM linear had the regularisation parameter, C=50
and gamma=.0001 as the best parameters. For SVM-rbf, C=50 and gamma=0.005
were the hyper-parameters.

3.4.2 Colour Texture Analysis

Spoofed images include local colour variations which are introduced during the re-
capturing process. In LBP extraction, the face images were converted to gray-scale
images and ignored the colour texture variations associated with these images. To
address this drawback, colour texture analysis was proposed [8] for face presentation
attack detection. The real and fake facial images in three colour spaces, RGB, HSV
and YCbCr are shown in Fig. 3.5.

(a) Real face (b) HSV (c) YCbCr (d) Fake face (e) HSV (f) YCbCr

Figure 3.5: Real and fake facial images in different colour spaces
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Despite being the most commonly used colour space, luminance and chrominance
information cannot be extracted properly from RGB. Hence, in order to utilise lumi-
nance and chrominance information to detect PAs, RGB image was converted to HSV
and YCrCb colour spaces. After separating channel-wise components in each colour
space, LBP histogram was calculated for each component. Once LBP histogram was
calculated for all 6 channels (H,S, and V in HSV colour space and Y, Cr, Cb in YCrCb
colour space), they were combined to form the resultant histogram. This histogram
was then fed to a classifier to identify the deceived face image. Non-rotational invari-
ant uniform LBP was used in the experiments. Images from each channel in the three
colour spaces are shown in Fig. 3.6 for real and fake facial images.

(a) Real face (b) Fake face

Figure 3.6: Channel-wise images from three colour spaces

3.4.3 Image distortion Analysis (IDA)

In this method, LBP was combined with image distortion analysis [197]. Three features
were considered for analysing image distortion. They are colour moment, sharpness
and colour diversity. Since fake face images have poor sharpness features, Lapla-
cian filtering was applied to the image after converting it to gray-scale image. The
Laplacian-filtered real image will have a high variance compared to the spoofed im-
age. Hence, calculated variance from the face image would provide a cue to identify
fake faces. Images after gray-scale and Laplacian convolution corresponding to real
and fake facial images are illustrated in Fig. 3.8.

Similarly, real and fake images differ in colour distribution. This difference can be mea-
sured using colour moment. For these experiments, lower moments are calculated for
each channel, after converting RGB image to HSV colour space. Since colour details
loss happens in recapturing, colour diversity was also considered as a feature to de-
tect PAs. The degree of colour diversity was calculated using choosing 10 pixel values
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which repeat the most in each channel of an RGB image. Thus 256 feature values
from LBP, 1 from sharpness, 9 from the colour moment and 30 from colour diversity
combined together to create a feature vector of 296 values as shown in Table. 3.2.
However, Principal Component Analysis (PCA) was carried out to reduce the dimen-
sion of the feature vector to 150 and then the classifier was applied to this feature
vector.

(a) Real face (b) Gray-scale (c) Laplacian (d) Fake face (e) Gray-scale (f) Laplacian

Figure 3.7: Real and fake images after Laplacian convolution

(a) Real face (b) RGB histogram (c) Red (d) Green (e) Blue

(f) Fake face (g) RGB histogram (h) Red (i) Green (j) Blue

Figure 3.8: Colour diversity in RGB histograms for real and fake facial images

Face images and videos are displayed using varying printing materials and screens.
Different spoofing mediums have different colour reproduction capabilities, and thus
the colour distribution of the images displayed on them will also differ. As a result,
these disparities in colour distribution can be used to detect PAS. Chromatic moments
can therefore be used to analyze colour distributions. According to [210], three lower-
order moments are calculated for each channel. To accomplish this, the RGB image
is converted into HSV colourspace. A change in light does not affect the hue of an
image. Furthermore, it is not affected by brightness, contrast, or white light reflection.
Accordingly, chromatic moment features can be calculated by taking into account the
average intensity, deviation, and skewness of each HSV channel.
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Table 3.2: Dimensions of each feature vector in LBP and IDA

Extracted Feature
from face images

Dimension of
feature vector

LBP 256
Sharpness 1
Chromatic moment 9
Colour Diversity 30

3.4.4 CNN models

FPAD was carried out using both shallow and deep neural network models. The mod-
els were trained and tested for two different dataset partitions. The first partition had
3491 train images and 9123 test images, whereas, in the second partition, the entire
dataset was divided into 80% train set and 10% each in validation and test set. Face
images of size 64X64 from the NUAA dataset were resized to 150X150 pixel size.
These two portions were utilised to evaluate five CNN models. The first model has
three convolutional layers and one fully-connected layer. The second CNN model had
four convolutional layers and three dense layers as in [197]. These two models were
trained from scratch and results were reported.

(a)

Figure 3.9: CNN method for FPAD

In order to evaluate deeper model performance in FPAD VGG-16 [21] and ResNet-50
[20] were also considered. These pre-trained models were tested with both partitions.
To achieve optimal performance, a suitable optimizer and learning rate were used
while compiling the model. However, extensive hyperparameter tuning was not exe-
cuted. Except for ResNet50, all the other CNN models used RMSprop optimizer with
a learning rate=0.0001. ResNet50 used Adam optimizer with a learning rate=0.0001
for the 3491:9123 dataset partition, whereas for the other partition, ResNet50 used
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Stochastic Gradient Descent (SGD), with a learning rate=0.001. Even though hyper-
parameter tuning was not carried out extensively, suitable optimisers were found out
through experiments only. Models were compared based on their test accuracy.

3.5 Impact of customising dataset partitions in FPAD

The evaluation results of extracted features for two different dataset partitions, with
SVM and RF are presented in Table.3.3 demonstrate the evaluation results of CNN
models with both dataset partitions considered in the experiments. While comparing
results of both manual feature extraction and CNN models, it is evident that when
trained with 80% of dataset, both feature extraction and CNN showed the best results.
LBP results are comparable with existing handcrafted feature methods for FPAD [200].
However, LBP performance is lower than all the CNN models considered in the exper-
iments with this dataset partition. On the other hand, with 3491 training images, LBP
showed almost equal or better results than CNN models.

Apart from LBP, all the other features showed reduced accuracy, when trained with
the actual NUAA dataset partition. However, their performance had improved when
trained with 80% data. These features showed best performance with RF classifier
when trained with 80% data, but SVM-rbf gave best results with the actual partition.
This implies that by properly managing training and testing images in a dataset, the
performance of a model can be improved to achieve desirable generalisation.

Table 3.3: Performance of feature and CNN methods on different dataset partitions

FPAD Accuracy (%)
Model 80:20 3491:9123
LBP+SVM-Linear 96.00 90.92
LBP+SVM-rbf 91.35 95.79
LBP+RF 98.45 69.30
CLBP+SVM-Linear 97.07 87.49
CLBP+SVM-rbf 98.18 87.94
CLBP+RF 99.18 68.98
LBP+IDA+SVM-Linear 97.83 63.41
LBP+IDA+SVM-rbf 97.97 75.52
LBP+IDA+RF 99.33 59.48
3 Conv+1 Dense 99.87 86.69
4 Conv+3 Dense 99.87 90.06
VGG-16 99.98 76.62
ResNet-50 99.64 80.03

53



LBP+SVM-Linear
LBP+SVM-rbf

LBP+RF
CLBP+SVM-Linear

CLBP+SVM-rbf
CLBP+RF

LBP+IDA+SVM-Linear

LBP+IDA+SVM-rbf

LBP+IDA+RF
3 Conv+1 Dense

4 Conv+3 Dense
VGG-16

ResNet-50

Models

0

20

40

60

80

100

A
cc

u
ra

cy
-%

80:20
3491:9123

Figure 3.10: Performance comparison of models with two data partitions

The CNN models were trained with two different train-test ratios. It is evident from the
Table. 3.3that with a training set having 3491 images, from the first two sessions had
lesser accuracy than the training set having 80% dataset with random images from
the dataset. The major reason for this result was in the dataset partition as in [10], the
training set consisted of images from the first two recording sessions only. There are
no images from the third session in the training set. On the other hand, the test set was
formed using images captured in the third session. Hence there was no overlapping
between the training and testing set. So, in the train and test ratio mentioned in [10]
there would be less generalisable features common to both sets of images. Hence, it
would reduce the accuracy of detecting a spoofed face.

In the second test scenario, the dataset is randomly divided in the ratio 80:10:10 as
train, validation, and test sets. Since the whole dataset was considered for random
selection, images from all three sessions would have been included in the training,
validation, and test sets. Also, there were more training images in this dataset par-
tition than in the earlier one. These two factors entirely altered the features, which
were learned from training. The size and variance of the training set provided more
generalisable features, which would facilitate better accuracy in identifying fake faces.

It can be seen in Table. 3.3 that VGG-16 and ResNet50 performance is lower com-
pared to the other two shallow networks with 3491 images in the training set. The
pre-trained network weights were derived from a model that was primarily used for
image classification. Even though spoof detection is an image classification problem,
some of the initial layer features in these pre-trained deeper networks may not be suit-
able for this specific task. This would result in some parameters which are not useful
for the spoof detection problem. Hence, these deeper pre-trained models degrade
in performance. However, with the 80:10:10 dataset partition, all the models detect
spoofed faces almost perfectly, comparable to the existing state-of-the-art accuracy in
intra-dataset evaluation [197, 199].
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The performance is presented in Table. 3.3 was achieved in the intra-dataset evalua-
tion of models with the NUAA dataset. However, in order to assess the generalisation
capability of the model, cross-dataset performance should be evaluated. But existing
models such as [199, 202] reported only intra-dataset performance unlike [197]. It
would also be important to confirm the number of images used to train the model and
their distribution, especially when the NUAA dataset was involved. Even though [10]
provided a non-overlapping train and test sets for the NUAA dataset, recent research
implemented models which did not follow that specific dataset protocol.

The NUAA dataset has features which facilitate training a generalised model. Even
though images were captured in controlled settings, the session-wise capturing of
images provided illumination variance similar to a real-life scenario. Hence, following
the dataset partition in [10], aspects of the challenge of generalisation in FPAD can
be addressed. However, in the existing literature, instead of developing the models to
meet generalisation requirements with the NUAA dataset protocol, various train-test
set ratios were used to increase model accuracy. The performance variations with two
different partitions are presented in Table. 3.3 demonstrate this fact. Based on the
exploratory experiments on the NUAA Imposter dataset and related research showed
that the generalisation problem in FPAD was addressed by customising the dataset
train-test ratio.

3.6 Conclusion

This chapter presents an experimental framework for detecting PAs that uses extracted
features and deep learning. Based on the results of these experiments, CNNs trained
on the original NUAA dataset partition achieve performance that is comparable to
conventional feature extraction methods trained on the same partition. Using cus-
tom dataset partitions, even simple CNNs can achieve near-perfect accuracy, but this
is likely not due to the CNN architecture, but rather to a more uniform distribution of
data between training and test sets. This indicates that when proprietary dataset parti-
tions are defined, data-hungry machine learning models can be supplied with sufficient
samples. However, it also minimises challenges inherent within the NUAA dataset re-
lated to generalisation. In accordance with this analysis, a training dataset containing
more attack variants will be compiled based on existing FAS datasets. Deep models
will be trained using this aggregated dataset and the impact of data aggregation will
be analyzed.
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Chapter 4

Leveraging Data Aggregation for
FPAD: An Empirical Approach

In this chapter, an experimental framework is presented to assess the impact of data
aggregation on FPAD. As part of the experimental framework, it is examined how pub-
licly available face anti-spoofing datasets may be aggregated to enhance the perfor-
mance of cross-dataset evaluation. The generalisation ability of pre-trained deep mod-
els trained on the aggregated dataset was assessed using four popular and commonly
used public datasets. The main findings of this chapter were published in the journal
"Cognitive Computation" as "Deep transfer learning on the aggregated dataset for face
presentation attack detection" [11].

4.1 Overview

Presentation Attacks (PA) are extremely diverse due to the wide variety of existing
attacks and the unlimited potential for new ones to emerge in the future. Photo attacks
have different variants, such as warped, printed, eye-cut and displayed photos [41].
Even within each variant of the attack, there will be differences based on domain-
dependent features. These domain-dependent features include: capturing device, the
material used for printing, illumination, resolution, display device, and the physical
environment also causes variance. Video attacks have variants based on resolution
and display devices. Manufacturers use distinct materials to make masks. Paper
masks and wax masks are rigid masks, whereas silicon masks and rubber masks
are non-rigid masks [7]. Flexible masks like silicon masks are much harder to detect
because of their close similarity to human skin texture and appearance. Photo and
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video attacks are effortless to reproduce. The seamless access to personal images
and videos through social media also helps in replicating 2D attacks with ease. So
much diversity among PA techniques presents a significant challenge to PA detection
methods. Successful Face Presentation Attack Detection (FPAD) needs to generalise
across as many existing PA techniques as possible. In addition, these models should
generalise across various domain-dependent features.

Although existing FPAD methods demonstrated impressive intra-dataset perfor-
mances, they were not able to generalise against unseen attacks. These methods
might have used available public FAS datasets for training [14]. These datasets have
limited variance in terms of attacks and domain-dependent features. In contrast, at-
tacks are more diversified in real-life scenarios. They differ in attack types and domain
features. Hence, models trained on existing datasets may not generalise against such
unseen attacks or even known attack formats in new physical environments. As a re-
sult, the reliability of the FR system deteriorates in practical applications. Moreover,
emerging novel attacks have become a major threat to the generalisation capability of
the existing FPAD methods. This has led to further investigation of the generalisation
problem in FPAD [1]. One way to tackle the challenge of generalisation in FPAD is to
produce a large and comprehensive dataset with many diverse attack variants, simply
by aggregating existing datasets. Hence, the impact of data aggregation is investi-
gated in this chapter, to address the generalisation of deep transfer learning models
in the FPAD context.

4.2 FPAD using Aggregated Datasets

Presentation attack detection has attained significant improvement over the years, es-
pecially with CNN-based models. these models showed reduced generalisation ca-
pability against unseen attacks in real-life scenarios when compared with their bench-
mark statistics. The major cause for this deteriorated performance is the limited vari-
ance in training datasets. Hence, unseen attack detection across a wide range of at-
tacks and across different datasets is still considered a challenging problem [1]. Public
FAS datasets include only a few attack variants and domain-dependent features, such
as illumination, settings, spoofing medium, and recording devices. Many of the exist-
ing FPAD models used one of these datasets for training. Hence, the models showed
biasing towards the training dataset, exhibiting reduced generalisation against novel
attacks.

There have been several studies exploring the concept of data aggregation to ad-
dress the generalisation problem in FPAD. Costa et al. [14] proposed an aggregated
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dataset to provide more variance in terms of attack types, lighting, recording devices,
and resolution. The authors combined ten public datasets to build the GRAD-GPAD
(Generalisation Representation over Aggregated Datasets for Generalised Presenta-
tion Attack Detection). They also used a uniform protocol to evaluate the colour-based
[208] and quality-based [91] models. This framework was further extended in [211]
including demographic bias analysis and finer categorisation of PAs based on different
factors such as resolution, spoofing medium and materials. This enhanced aggregated
dataset mimicked more realistic scenarios. Thus the GRAD-GPAD and protocols fa-
cilitated the evaluation of the generalisation capability of the state-of-the-art methods.
However, this grand dataset did not include multi-spectral datasets because of data
incompatibility.

Saha et al. [84] also addressed domain generalisation using multiple datasets. The
authors used four public datasets: Replay Attack [46], CASIA [41], OULU-NPU [165]
and MSU-MFSD [43]. Three datasets were included in the training set, whereas the
fourth was used for evaluation. The model learned the features from the three training
datasets as single domain features. Thus, the model could use more domain de-
pendent features, leading to better detection performance. Following the concept of
dataset aggregation to improve domain generalisation, Nikisins et al. [91] combined
three public datasets to illustrate the drawback of binary classification methods in de-
tecting unseen PAs and evaluate their one-class classification model. The authors
also established a specific evaluation protocol for the aggregated dataset, combining
Replay Attack [46], Replay-Mobile [161] and MSU-MFSD [43]. The train, development,
and testing sets were disjoint sets in terms of attacks. The aggregated dataset showed
lower HTER (Half Total Error Rate) with Image Quality Measure (IMQ) methods when
all the PA samples were part of the training set. However, binary classification ex-
hibited poor performance on unseen attack detection. Authors of [193] used CASIA
instead of Replay-Mobile to form an aggregated dataset. The authors of [212] and
[213] used data aggregation in FPAD. Both of these works combined the real faces
from the datasets, keeping the attack faces from each dataset with different domain
features dispersed. They adapted this procedure to attain a generalised feature space.

Transfer learning utilises learned knowledge from one task for other similar ones. It
assists in mitigating overfitting due to data limitations. Not only that, transfer learning
saves computational resources as it avoids training deeper networks from randomised
initial parameters. FPAD is a binary classification problem as it identifies if spoofing is
present or not, and FPAD datasets are typically visible light spectrum, RGB images.
Hence, a deep network that was trained for image classification with datasets like
ImageNet [23] can be used to formulate a model to detect PAs. These pre-trained
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networks were used with fine-tuning either only top layers or a few convolutional layers
with top layers.

In [75], Lucena et al. used transfer learning to address the FPAD problem. The au-
thors fine-tuned a VGG-16 model that was pre-trained on ImageNet. Evaluation with
a face spoof detection dataset demonstrated improved results over the existing the-
state-of-the-art methods. Nagpal and Dubey [74] carried out extensive experiments
using different pre-trained models to detect spoofed faces. The authors observed that
transfer learning with deep models provided better results than using these networks
with random weights or training from the beginning. Yu et al. [78] proposed a face
anti-spoofing model using neural architecture search and transfer learning. In [214],
the authors used transfer learning and Short Wave Infra-Red (SWIR) images for FPAD.
A pre-trained face recognition network was used for transfer learning. Authors of [215]
adopted a novel method to detect spoofed faces using extracted intrinsic image fea-
tures and transfer learning. ResNet-50 [20] was used for implementing transfer learn-
ing which enhanced spoof detection using the extracted features from the datasets
NUAA, CASIA and Replay Attack. Tu and Fang [216] utilised transfer learning using
ResNet-50 and the Long Short-Term Memory (LSTM) to address FPAD. Compared
to the state-of-the-art methods using feature extraction and shallow networks, these
transfer learning-based methods exhibited better detection performance.

George et al. [38] used Light CNN, which is a pre-trained FR model and the concept
of Domain Specific Unit (DSU) to address FPAD. This method utilized a multi-modal
dataset with four modality. The low-level layers were re-trained using the new dataset
and re-used the higher level weights. The extracted features from each modality data
were concatenated together to form a final feature vector which was then passed to a
fully connected layer of size 10 followed by sigmoid layer for classification. In this way
a pre-trained FR model was fine tuned to adapt to the FPAD task using multi-modal
data. Authors of [17] fine tuned the face recognition CNN model pre-trained on LWF
[217] dataset, similar to aforementioned [38], to address domain adaptation of PAs
in NIR. The initial two convolutional layers and first fully connected layers were made
trainable in the fine-tuning. This facilitated the pre-trained model adaptation to the
PAD task with NIR images. Even though the models were pre-trained on RGB data,
the authors recorded a new NIR dataset with variance in illumination, environmental
settings, subject pose, appearance and attack types. The model was able to detect
photo and video attacks better than mask attacks.

The authors used the pre-trained FR model, Light CNN as a backbone/feature extrac-
tor to set up patch pooling concept to address FPAD, in [218]. Li et al. [219] proposed
another dual mode method using NIR and RGB data to detect spoof. The authors
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used a light-weight network MobileNet-V3 as the backbone of the model. Each branch
of the model was used to extract features from NIR and RGB data separately using
this pre-trained model. The selected features were then passed to a softmax layer for
classification.

Even though existing literature has explored the concept of combining multiple
datasets for training the FPAD model, they rarely included the NUAA imposter dataset.
Various handcrafted feature methods and deep learning methods were evaluated us-
ing NUAA. Either official or customised partitions were used to evaluate these meth-
ods [196]. Transfer learning and the concept of data aggregation were used to address
the generalisation in FPAD. The experiments used a combined training set of official
training partitions from NUAA, CASIA and Replay Attack. These three datasets have
distinct 2D attack variants and domain-dependent features.

4.3 Deep Transfer Learning on the Aggregated Dataset

The experimental framework used transfer learning with binary classification to per-
form FPAD. Pre-trained deep networks, VGG-16 [21], ResNet-50 [20], Inception V3
[22] and DenseNet-121 [220] were used for transfer learning.

Three widely known, public datasets, NUAA [10], Replay Attack [46] and CASIA [41]
were considered for these experiments and forming aggregated datasets. These three
datasets and their combinations were used for training. All three datasets followed their
official train/test split. Real face images from the three datasets combined to form a
real face class in an aggregated dataset. Similarly, an attack class also was formed
using attack images from these datasets. The combined train set provided different
attack variants. For cross-dataset evaluation on this aggregated training set, SiW [102]
test set was also used.

4.3.1 Datasets

The experiments used three FAS datasets. They were NUAA, CASIA-FASD and Re-
play Attack. In the existing literature, both traditional hand-crafted feature extraction
methods and recent deep learning methods in FPAD have used these three datasets
for evaluation. The different attack variants, test protocols and lighting conditions also
assist in creating more variance within the aggregated dataset. CASIA and Replay
Attack datasets, as distributed, consist of videos. Frames were extracted with a rate
of 2 fps and face detection was carried out on these frames. NUAA was accessed
as face-detected images, which are provided as part of the official dataset. These
face-detected images were resized to 224 X 224 pixels. Official test/train partitions
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were used for each dataset. The experiments also used a SiW test set to perform the
cross-dataset evaluation on a combined train set consisting of NUAA, Replay Attack
and CASIA train sets. The facial images were extracted at a frame rate of 1 fps from
each video to form this dataset. The SiW train set was unused. Table. 4.1 shows the
number of train and test images in each dataset, which were used in the experiments.

Table 4.1: Number of train and test images in each dataset

Dataset Train Test
NUAA 3491 9123
Replay Attack 6950 7573
CASIA 5788 6469
SiW 40790 34779

The NUAA Imposter Database contains authentic images as well as photo attack and
covers samples of 15 individual subjects. In contrast to the training set, the official test
set is considerably larger. The training set contains 3491 images, while the test set
contains 9123 images. These images were extracted from videos recorded at three
different sessions under different lighting conditions. However, the already extracted
images after face detection are available to the public. In NUAA’s train partition, both
classes have nearly the same number of images, whereas in the test set the attack im-
ages are much more numerous than the real face images. In terms of attack variants,
it consists only of photo attacks. Despite these facts, NUAA remains popular among
FPAD researchers [221, 222, 223].

CASIA-FASD has print attacks, warped photo attacks, cut photo attacks, and video
attacks. 50 subjects were represented with fake and real faces. There are three real
face videos and nine fake face videos for each subject. The train set features 20 peo-
ple. There are genuine and fake videos of 30 individuals in the test set. The train and
test sets are disjoint in terms of subjects. There are three real face videos and 9 attack
videos corresponding to each subject. Thus, the train set has 60 real face and 180
attack videos in total. The test set includes 90 real face and 270 attack videos. Like
NUAA, CASIA lacks ethnically diverse subjects. In addition, CASIA includes seven test
cases, including three attack types, three image quality levels, and the entire dataset.
In this experiment, the entire dataset is used with the given partition based on the
dataset protocol. As this dataset has more attack variants, including video attacks, it
is widely used for evaluating FPAD models [224, 225, 226].

Replay Attack was created by using 50 identities. There were respectively 15 subjects
for training, 15 subjects for development, and 20 subjects for testing. While recording
the Replay Attack dataset, printed images, mobile displays, and tablets were utilised.
The three mediums were either fixed to a support or held by the operator during the
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recording process. Two types of recording environments were used to capture the
videos, controlled and adverse. The controlled setting had a uniform background and
illumination using incandescent lamps, whereas the adverse setting had a non-uniform
background and day-light illumination. There are various PA types in this dataset.
Hence it is popular among the FPAD researchers [227, 228]. Both train and develop-
ment sets have 60 real face videos and 300 attack videos. The test set consists of 80
real face videos and 400 attack videos.

Spoof in the Wild (SiW) [102] dataset consists of 165 subjects from a more diversified
ethnicity than the other datasets. There are 8 real face and 20 attack videos corre-
sponding to each subject. Thus the dataset has 4,620 videos. The dataset was made
using 6 spoofing mediums. Four different sessions were used varying factors such
as poses, illuminations, expressions (PIE), and distance-to-camera. Videos were pre-
processed by first using the frame rate to extract one image per second. Then the face
area was extracted using the annotations provided. To increase diversity of facial im-
ages, the face area was cropped to accommodate some background information. This
was achieved by multiplying each bounding box with a random scaling factor between
1.1 and 1.4. As with the other datasets, the images were resized to 224 X 224.

4.3.2 Aggregated Dataset

This experimental framework focuses on examining the impact of data aggregation
on the generalisation of FPAD. To accomplish this task, an aggregate train set was
constructed with NUAA, CASIA, and Replay Attack datasets’ train partitions. NUAA
consists of print attacks. Replay Attack has video attacks. CASIA includes both photo
and video attacks. CASIA has warped, print, eye-cut photo attack variants. Thus the
resulting aggregated train set has both video and photo attacks with variance in attack
types and domain-dependent features.

Table 4.2: Number of real and fake images in three datasets and aggregated dataset.

Dataset Train Test
Real Fake Real Fake

NUAA 1743 1748 3362 5761
Replay Attack 1689 5261 1928 5645
CASIA 527 1760 824 2471
Aggregated Dataset 3959 8769 6114 13877

The number of images in each class corresponding to three datasets and the com-
bined dataset is shown in Table. 4.2. In Figure. 4.1, the distributions of real and fake
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classes in the individual and aggregated datasets are presented. NUAA has an al-
most equal number of real and fake class images in the train set. However, CASIA
and Replay Attack have more fake face images than real ones in the train set. The
aggregated train set includes 3959 real and 8769 fake face images.
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Figure 4.1: Class distribution in aggregated dataset

Given the unique characteristics of each dataset, such as lighting, the spoofing
medium, the environment, and the recording device, the combination of these datasets
produces greater variance in both real and fake classes. As a result, the model can
learn a wider range of features to distinguish between real and attack classes. Further-
more, it avoids overfitting due to subtle biases within a single dataset. The individual
training sets from each dataset were combined to form a training set, as indicated
in Figure. 4.1. The aggregated test set was also constructed in this manner. Each
dataset was divided following the official train/test protocol. Consequently, no mixing
up of train and test set distributions occurred in the aggregated dataset. By keeping
the distributions consistent with the official protocol, even in the aggregated dataset,
we maintain the challenges of domain generalisation inherent to individual datasets
[196].
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4.3.3 CNN Models

An FPAD determines the authenticity of detected faces. In essence, it involves binary
image classification. With deep CNN models, FPAD has also significantly improved,
similar to any other computer vision task [75, 74, 221]. It must be noted, however,
that deep neural networks require a substantial quantity of data to achieve desired
performance. In order to solve such problems, transfer learning has become increas-
ingly popular. By freezing some layers of the network and retraining others on a new
dataset from the new domain, transfer learning re-purposes an already learned net-
work to perform a similar task. In this manner, a task may be accomplished with less
training data, less time, and higher accuracy. The majority of the FAS datasets are
restricted in size. As a result, transfer learning was used to overcome this limitation.

The experimental framework utilises transfer learning to evaluate the aggregated
dataset performance. For this purpose, we used pre-trained deep neural networks with
architecture VGG-16 [75], ResNet-50 [216, 215], Inception V3 [74] and DenseNet-121
[108]. These models were popularly used and experimentally verified for FPAD in ex-
isting literature [221]. The networks used in the experiments were all pre-trained using
ImageNet [23]. Pre-trained models were loaded without output layers, freezing the top
layers. The models used "ImageNet" weights. The top layers were fine-tuned using
FAS datasets to perform PA detection.

4.3.4 Experimental settings

The experiments included intra-dataset and cross-dataset evaluations using individual
datasets and their different combinations. To carry out a cross-dataset evaluation on
the aggregated train set, the SiW test set was used. Thus each model was evaluated
using the dataset combinations as in Table. 4.3. Models were trained for 10 epochs
with a batch size of 32. These parameters were the same for all classification models.
A validation split of 20% of the train set was used while training the model. To com-
pare the performance in binary classification ROC curve, accuracy, Half Total Error
Rate (HTER), precision, recall, F1 score, False Positive (FP) and False Negative (FN)
are used. The HTER is the average of the False Acceptance Rate (FAR) and False
Rejection Rate (FRR).

As presented in Table. 4.2 and Figure. 4.1, two classes from three datasets were
combined, and this aggregated train set was used to train the four models. For binary
classification, there were real and fake classes irrespective of the actual dataset. The
output layers in the base pre-trained model were replaced with one dense layer with a
size of 1000 and a sigmoid layer. Binary cross-entropy was used as a loss function.
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Adam optimizer [229] was used with all four models. The learning rate for VGG-16,
ResNet-50 and DenseNet-121 was 10−5. For Inception V3, the learning rate was 10−6.

Table 4.3: Test set VS Train set combinations used in the evaluation

No. Train Set Test Set
1 NUAA NUAA
2 Replay Attack
3 CASIA
4 Replay Attack NUAA
5 Replay Attack
6 CASIA
7 CASIA NUAA
8 Replay Attack
9 CASIA

10 NUAA+CASIA Replay Attack
11 NUAA+Replay Attack CASIA
12 CASIA+Replay Attack NUAA
13 NUAA+CASIA+Replay Attack Replay Attack
14 NUAA+CASIA+Replay Attack CASIA
15 NUAA+CASIA+Replay Attack NUAA
16 NUAA+CASIA+Replay Attack SiW

4.4 Impact of Data aggregation on FPAD

Extensive experiments and analyses were performed to investigate the influence of
dataset aggregation in face presentation attack detection. Considered pre-trained
models in the experiments were trained with three public FAS datasets and their com-
binations as in Table. 4.3. Both intra-dataset and cross-dataset evaluations were car-
ried out to compare the model performance in FPAD. Intra-dataset evaluation results
using individual and aggregated datasets are presented in Table. 4.4.

The Receiver Operating Characteristic curve (ROC) comparison of each model with all
three datasets in the intra-dataset and cross-dataset evaluation scenarios is presented
in Figure. 4.2 and Figure. 4.3. CASIA (93.35%) and Replay Attack (95.89%) showed
the best intra-dataset performance with DenseNet-121 in intra-dataset evaluation. In
contrast, NUAA had the highest performance (82.61%) with ResNet-50 in the intra-
dataset evaluation.
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Table 4.4: Comparison of intra-dataset and the aggregated dataset evaluations

Train Test VGG-16 ResNet-50 Inception V3 DenseNet-121
ACC(%) HTER(%) ACC(%) HTER(%) ACC(%) HTER(%) ACC(%) HTER(%)

NUAA NUAA 73.19 28.41 82.61 19.08 67.48 37.00 80.79 17.40
Replay Attack Replay Attack 86.61 20.36 95.34 8.61 81.44 29.43 95.89 6.76
CASIA CASIA 86.97 22.14 92.92 13.61 81.98 27.16 93.35 12.85
Aggregated Data NUAA 72.83 31.74 71.18 38.72 67.97 40.40 64.61 42.71
Aggregated Data Replay Attack 86.84 18.69 93.72 10.30 79.50 27.64 97.32 4.37
Aggregated Data CASIA 86.45 20.16 92.02 11.66 81.69 28.83 93.42 12.21
Aggregated Data Aggregated Data 79.981 25.770 83.177 26.574 74.584 34.100 81.447 25.528
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Figure 4.2: ROC of Intra-dataset evaluation

The experimental framework also trained models with aggregated datasets. These
models were then tested with individual test sets from CASIA, Replay Attack, and
NUAA and with an aggregated test. In the aggregated dataset evaluations, NUAA
datasets exhibited the lowest accuracy with more than 40% HTER (Table. 4.4. False
Positive Rate (FPR) increased in the aggregated dataset evaluation on NUAA test
sets. This increase in FPR caused lower accuracy and higher HTER for NUAA with
all four model architectures. On the other hand, CASIA and Replay Attack showed
a decrease in FPR in the aggregated dataset evaluation. ResNet-50 with Replay At-
tack was an exception, where FPR increased from 16.65% to 18.52%. As the FPR
increased, it lowered the accuracy slightly. With DenseNet-121, both FPR and False
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Negative Rate (FNR) decreased for Replay Attack in the aggregated dataset evalu-
ation. These decreased FPR and FNR facilitated performance improvement in this
specific evaluation. On the other hand, for CASIA, despite the decreased FPR, FNR
doubled in the same evaluation scenario, resulting in only a slight improvement in
accuracy (93.35% to 93.42%).

Cross-dataset evaluation results are shown in Table. 4.5. The evaluation was carried
out using individual datasets and their combinations for training (Table. 4.3). To eval-
uate the performance of the aggregated dataset, the SiW test set was also used. The
corresponding ROC is shown in Figure. 4.3 (d). It is evident from the plot that the
cross-dataset performance of the aggregated dataset is significantly low compared
to both intra-dataset performance and testing with other individual test sets. It would
seem that SiW is different enough from NUAA, CASIA and Replay Attack that even an
aggregate training set will not enhance generalisation to any great extent. The FPR in
detection is more than 50% in most of the testing scenarios regardless of the datasets
used, which caused higher HTER.

Table 4.5: Cross-dataset evaluation results

Train Test VGG-16 ResNet-50 Inception V3 DenseNet-121
ACC(%) HTER(%) ACC(%) HTER(%) ACC(%) HTER(%) ACC(%) HTER(%)

NUAA Replay Attack 49.95 50.46 56.68 49.81 32.13 45.54 54.38 41.10
CASIA 53.78 41.45 54.48 44.35 54.78 33.43 71.08 30.12

CASIA NUAA 68.39 34.07 59.05 52.94 69.30 37.53 59.37 50.38
Replay Attack 69.51 48.66 67.42 52.14 50.44 47.47 73.17 50.32

Replay Attack NUAA 57.71 52.24 59.26 53.08 63.38 49.68 61.93 50.96
CASIA 30.05 49.03 58.03 57.67 74.48 50.14 68.47 53.18

NUAA+CASIA Replay Attack 65.81 51.62 68.44 49.07 46.36 41.29 68.16 50.37
NUAA+Replay Attack CASIA 66.04 40.64 46.56 51.57 60.36 43.82 68.13 45.23
CASIA+Replay Attack NUAA 61.94 49.30 61.76 51.07 64.69 46.37 53.44 55.76
Aggregated Data SiW 50.49 46.06 64.50 48.78 57.96 46.17 62.87 38.79

When trained with aggregated train set and tested with aggregated test set, the mod-
els had FPR more than 40%. This FPR value was much greater than the FPR value of
testing scenarios with Replay Attack and CASIA test sets. Adding NUAA dataset while
forming the aggregated dataset adversely effected the detection performance. This
intra-dataset performance using aggregated datasets can be clearly demonstrated
using the corresponding ROC, as in Figure. 4.2 (d). Unlike the intra-dataset evalu-
ation on individual datasets, aggregated dataset performance diminished, even with
DenseNet-121 (Table.4.4. For ResNet-50 and VGG-16, this aggregated data intra-
dataset performance is near to NUAA intra-dataset performance. However, compared
to the other two datasets, the overall intra-dataset performance using the aggregated
dataset is low.

It is evident from Figure. 4.3 and Figure. 4.2 that, DenseNet-121 was the best model
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Figure 4.3: ROC of models trained on aggregated train set against individual test sets

in both intra- and the aggregated dataset evaluations for CASIA and Replay Attack.
However, it was ResNet-50 for NUAA rather than DenseNet-121. NUAA performed
the best in the aggregated dataset evaluation with the VGG-16 model. It is evident
from the plots that the performance on NUAA is not as good as the other two datasets
in both evaluation scenarios. The cross-dataset performance evaluation using SiW
dataset on the aggregated train set was even worse compared to testing the same
model with other individual test sets as illustrated in Fig.4.4. All the models exhibited
very low detection performance in this specific evaluation. This indicates that data
aggregation alone does not help generalisation against various attacks.
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Figure 4.4: Graphical comparison of FPAD using data aggregation
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4.4.1 Discussion

The aggregated dataset and cross-dataset evaluation results show that detection rates
were reduced when tested with CASIA, Replay Attack, NUAA and SiW test sets when
compared with models trained and tested on a single dataset. It clearly indicates that
even though dataset attack variance and size improve with the aggregated dataset, it
generally does not improve the detection performance on any component dataset. In
fact, combining these datasets led to an increased FPR. Training with these combined
datasets restricts the models from identifying real faces correctly. FPAD relies more
on spoofing patterns and image quality features. As NUAA was recorded in 2010
[10], using a webcam, the image quality is lower compared to other datasets in the
experiments. Similarly, CASIA also has images of three different qualities, including
lower-quality images. This quality variation in images influences the high-frequency
feature extraction while training the model. Regarding transfer learning, the deep net-
works used in the experiment were pre-trained for image classification tasks. They
extract deep, global features. However, FPAD may require shallow, local features to
detect spoofing. These pre-trained image classification models might have failed to
learn spoof-specific features to achieve better detection performance, instead relying
on some dataset-specific features.

In all the evaluation scenarios, false positives were more significant than false nega-
tives. This shows that even though attacks were detected, the models failed in iden-
tifying the genuine images, particularly those in NUAA. This influences the overall
performance of these models. CASIA and Replay Attack facial images were extracted
from raw videos using the same pre-processing methods. NUAA is available to the
public as pre-processed face-detected images. These images were resized for exper-
iments. This disparity between the NUAA dataset and the other two dataset images
may have influenced the classification performance.

The classification was carried out using four deep networks with different architec-
tures. However, except for DenseNet-121, the other three models exhibited the same
performance trend in the aggregated dataset evaluation scenario: the models trained
and tested on the same datasets performed better than models trained on an aggre-
gate dataset. Even DenseNet-121 followed the same trend with the NUAA dataset.
This implies that combining source domains solely cannot improve the detection per-
formance. The cross-dataset evaluation results are presented in Table. 4.5 support
this.

With the combination of more datasets, handcrafted features were evaluated for gen-
eralisation capabilities [14] within the context of FPAD. Based on the results of this

69



research, it was found that state-of-the-art methods with impressive intra-dataset per-
formance are less generalisable in cross-dataset evaluation when used with a com-
bination of heterogeneous sources. A variety of factors influence their performance,
including their capture devices, display conditions, and image quality. In contrast to
this evaluation, the experiments used binary classification using four pre-trained deep
neural networks to detect PAs. It was evident from the analysis of experimental re-
sults that even deep learning frameworks were not capable of generalising to different
distributions.

4.5 Conclusion

Data aggregation was used in this chapter to detect PAs using deep transfer learning
models. When the models were trained with the aggregated training set and tested
with test partitions from individual datasets, detection performance was lower than
intra-dataset evaluation. In view of this, it can be concluded that combining multi-
ple source domains alone is not sufficient to guarantee domain generalization against
unseen attacks. To generalise FPAD, a method must be crafted in such a way that gen-
eralisable features can be extracted. Hybrid fusion methods have been used recently
to extract and classify such features in the FPAD context. In the following chapter,
a hybrid approach will be presented where deep features and colour texture will be
combined to enrich the feature space.
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Chapter 5

Enhancing FPAD: Fusion of Color
Texture and Deep Features

Based on the findings in the preceding chapter, it becomes apparent that achieving
generalisation in FPAD necessitates specialised techniques that extract features ca-
pable of generalisation. Therefore, this chapter introduces an approach that combines
deep and colour texture features. Thorough experiments unmistakably demonstrate
the advantages of expanding the feature space to enhance detection rates. Addition-
ally, this chapter includes a comparative analysis of the computational speed between
the baseline method and the fusion method. This research paves the way for future
investigations into enhancing Face Presentation Attack Detection (FPAD) by exploring
novel features and fusion strategies. The main findings of this chapter were published
in the journal "Sensors" as "Fusion Methods for Face Presentation Attack Detection"
[12].

5.1 Overview

Traditional FPAD methods utilized manually extracted features such as texture, image
quality, and motion, combined with standard classifiers, such as SVM and Random
Forest, to determine whether the detected facial image is real or not [10]. Convo-
lutional neural networks (CNN) took the place of these classical feature engineering
models. Hand-crafted feature-based FPAD methods are shown in Figure 5.1 a. Figure
5.1 b shows deep learning-based FPAD methods. CNN-based FPAD models bene-
fited from their exceptional inherent feature-extraction capability to some extent. Yet
these deep learning-based models failed to reach adequate generalisation against
emerging, unseen attacks [230].
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Figure 5.1: Face presentation attack detection (FPAD) methods

There are multiple reasons for the low generalisation capability of FPAD models. The
majority of FPAD models were either designed for the detection of specific types of
attacks or were trained by using the existing face anti-spoofing (FAS) datasets. How-
ever, these FAS datasets have limited variance in size, attack types, and subjects.
Moreover, datasets were recorded in a controlled environment that lacked sufficient
variation in illumination, recording devices, settings, and the environment [14]. As a
result, even if these models detect some specific attack types, they are not reliable in
detecting unseen attacks in real-life scenarios. This necessitates the development of
more generalised FPAD models to detect PAs [1].

Some recent efforts to improve FPAD have leveraged features from models pre-trained
on large datasets designed for object recognition [75, 74]. These datasets have high
variance across multiple factors. This led to the models performing well in object de-
tection, recognition, and captioning tasks that incorporated deep features from the
images. The spoof detection problem does not have large, labelled datasets, unlike
these computer vision tasks. Detecting presentation attacks involves detecting spoof-
specific features, such as specular reflection, deformations, glare, spoof patterns, and
Moire effects [226]. These features are not always present in high quantities in the
common datasets designed for image-classification tasks. Hence, relying on deep
models, which were pre-trained on image classification datasets, when the data does
not exhibit the necessary features, may not be optimal for improving FPAD perfor-
mance. Meanwhile, traditional feature extraction methods make use of shallow fea-
tures. In this approach, the challenge is to select a suitable descriptor that is invariant
to factors such as illumination, light, skin type, recording device, and environment.
These descriptors should also effectively represent the spoof-specific patterns [230].

PAs, especially 2D attacks, are either printed on different materials or displayed on
digital devices [5]. Mask attacks also can be created by printing the genuine face on
suitable materials [7]. Such recapturing processes introduce distortions in PAs. The
distortions are the cues to distinguish between real and fake faces [43, 231]. Texture
methods (LBP, HOG, and DOG) were used to extract these cues for PA detection.
A good number of texture-based methods used grayscale images, discarding colour
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feature-related cues. However, colour distortion cues provide significant information
for identifying PAs [208, 8]. Hence, colour texture analysis was considered in this work
to combine with deep features to perform PA detection.

FPAD performance has been significantly improved by hybrid methods in recent years.
Section. 2.7 provides an overview of current hybrid methods. Thus, considering the
advantages of hybrid methods, a hybrid fusion method has been proposed for address-
ing FPAD. This fusion method takes advantage of both handcrafted and deep features.
Colour texture features, which provide spoof-specific cues, were combined with deep
features extracted by using pre-trained image classification models. As a result, both
the local features and the deep global features were used together as the input to the
classifier to determine the authenticity of the facial images. Even though deep fea-
ture extraction through transfer learning, colour texture analysis, and their fusion for
FPAD are already established methods in the related literature, those methods used
traditional machine learning classifiers such as SVM. The fusion method presented in
this chapter takes advantage of neural network-based classifiers. Instead of using any
of the commonly used pre-trained models, this study compares the fusion method by
using three commonly used pre-trained models and a custom CNN model trained from
random initialisation.

5.2 Hybrid Fusion Method for FPAD

An experimental framework is used to detect PAs by fusing deep and hand-crafted
features. For the evaluation, three publicly available datasets, CASIA [46], Replay
Attack [41] and SiW [102] were used. For this fusion method, texture was extracted
from the images by using colour texture analysis (CLBP) [8]. By using pre-trained deep
learning models, VGG-16 [21], ResNet-50 [20], and Inception V3 [22], deep features
were extracted. These high-level features from deep models and low-level features
from colour texture analysis were then concatenated and passed to the classifier. The
classifier consisted of a dense layer with 512 units and a sigmoid layer.

Additionally, a custom CNN model was trained only on each dataset individually in
order to compare with the pre-trained networks. The resultant features were com-
bined with the colour texture features and passed to a classifier as before. The fusion
method used deep features from pre-trained and custom CNN models in different eval-
uation scenarios to compare the impact of fine-tuning and fully training models on FAS
datasets. The experiments also consisted of baseline methods. The pre-trained and
custom CNN models were trained for binary classification. As in the fusion methods,
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the baseline classifier also consisted of a dense layer with 512 units size and a sig-
moid layer. All the evaluation scenarios used binary cross entropy as the loss function
and Adam as the optimiser.

5.2.1 Pre-Trained Models

FPAD is conventionally treated as a binary image classification problem. Hence, FPAD
also takes advantage of transfer learning to address dataset limitations. VGG-16 [75]
and ResNet-50 [215] have been used previously to address FPAD by using transfer
learning. Lucena et al. [75] fine-tuned the VGG-16 model by changing the top layers
for detecting PAs by using binary classification. Nagpal and Dubey [74] used Inception-
V3 and ResNet-50 models for the PA detection. According to the authors, transfer
learning with these pre-trained models facilitated better detection performance than
training from a random weight initialisation. The authors of [215] also used ResNet-50
for the FPAD task.

Pre-trained models, VGG-16, ResNet-50, and Inception V3 were used for binary clas-
sification as well as feature extraction in the presented experimental framework in this
work. These deep network models were pre-trained for image classification [23]. The
features were extracted by removing the output layer from the models. VGG-16 feature
vector size was 4096. Feature vectors of size 2098 were extracted from ResNet-50
and Inception V3. For binary classification, the top layers were replaced with a fully
connected layer of size 512 and a sigmoid layer in these pre-trained models. Thus,
transfer learning was applied in the baseline methods.

5.2.2 Convolutional Neural Network (CNN) Model

Evaluation was also performed by using a custom CNN model. The model has five
convolution layers, each followed by a max-pooling layer. The classification block in
this model is formed by using a dense layer of size 512 and a sigmoid layer (Figure
5.2). From block 1 to block 5, the number of filters varied from 32 to 512. A kernel size
of 3 × 3 was used in each convolutional layer. The models were trained by using a
corresponding FAS dataset used in the experiments. The weights from these models
were also used for feature extraction in the fusion method.

Similar to pre-trained models, the custom CNN model was also used to extract deep
features by removing the output layer. This provided a feature vector of size 512.
Compared to the deep models, VGG-16, ResNet-50, and Inception-V3, this CNN ar-
chitecture was shallow, with only 8 layers. The CNN model used for feature extraction
was shallower compared to the pre-trained models.
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Figure 5.2: Custom CNN Model

5.2.3 Colour Texture Analysis

Presentation attacks include photos printed on different mediums, video or photo dis-
played on digital devices, and masks. The spoofing medium varies in resolution and
display quality. Grayscale image-based texture analysis facilitates identification of
high-quality PA. The grayscale-based methods (e.g., LBP) cannot provide sufficient
difference in textural cues when the quality of the PAs diminishes [208]. A PA image or
video passes through at least two cameras and a printing or display medium. Hence,
many PAs have a recapturing effect. Compared to an authentic capture, the colour
reproduction of these spoofing mediums would be limited. Hence, PA will have the
colour features corresponding to the printing or displaying medium gamut. Moreover,
the recapturing camera and the entire recapturing process to perform PA can cause
colour disparities and imperfections.

Human eyes are more sensitive to luminance than chrominance. Hence, the colour
reproduction mapping in printing or display process preserve luminance variation in
the source image rather than chrominance. Thus, the PAs may contain chrominance
variations which are largely invisible to human vision. These chrominance variation
cues can be utilised to distinguish between real and fake facial images. The major-
ity of the available FAS datasets provide RGB images or videos. On the other hand,
RGB colour space has high correlation between the colour components. The RGB
colour space does not adequately separate luminance and chrominance information.
Recapturing introduces chrominance variation in PAs, while sustaining luminance vari-
ation. It is unlikely that RGB colour space would be able to determine spoof-specific
chrominance cues. Thus, alternative colour spaces should be used to extract such
discriminatory cues [8].

By analyzing the chroma channel colour texture, the local colour disparities discussed
above can be identified. Luminance and chrominance are represented in YCbCr
colour space. The chrominance component of YCbCr reveals disparities which are
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presented in PAs. HSV colour space represents hue, saturation, and brightness. HSV
colour space contains a chrominance component, which is complementary to that in
YCbCr colour space. Both of these color spaces provide chrominance components
that can be used to identify PA. Hence, colour texture analysis was used to extract the
hand-crafted feature in this proposed fusion method. Although deep networks provide
global features, extracted features include the local (chroma) cues. Colour texture
analysis [8] addresses these variations, extracting LBP from individual channels from
the images. Hence, RGB images were converted to HSV and YCbCr colour spaces
to extract related features to identify PAs. Figure 6.4 presents the process of colour
texture analysis. To extract the colour texture features, the channel-wise components
were separated after conversion to each colour space. An LBP histogram for each
channel was calculated. The histograms from these 6 channels (H, S, and V in HSV
colour space and Y,Cb,Cr in YCrCb colour space) were then combined to form the
final feature vector of size 354.
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Figure 5.3: Colour texture analysis

5.2.4 Fusion Method

The experimental framework extracted and combined high-level deep features and
lo- level local color texture features. Deep features were extracted by using transfer
learning and custom CNN models. VGG-16, ResNet-50, and Inception V3 were used
to get features’ vectors of size 4096, 2048, and 2048 respectively. As mentioned
in Section 5.2.1, these models were pre-trained on ImageNet. On the other hand,
custom CNNs were trained on three FAS datasets and used to extract feature vectors
of size 512. Because the RGB image was converted into HSV and YCbCr colour

76



spaces, there were six channels in total. As the texture feature extraction using LBP
was carried out on each channel, these channels provide a feature vector of length 59.
Thus feature vectors from these six channels forms a low-level feature vector of size
354.

Concatenation is an effective way to combine different features for use in machine
learning. Extracted CLBP features were concatenated with features either from pre-
trained models or a custom CNN model. Thus, by concatenating sets of deep and
handcrafted features, a final feature vector was created. Let FDeep be the deep feature
vector with size m and FCLBP be the colour texture feature vector with size n. Then
the final feature vector FFusion can be represented [16] as

FFusion = FDeep ∪ FCLBP .

Thus FFusion will have the size (m + n). Here FCLBP had size 354. m, the size of
FDeep feature vector, held different values according to the pre-trained or custom CNN
models, which was used for feature extraction. Hence the size of FFusion, m was
determined based on the deep model used for feature extraction.

Figure 5.4 illustrates the structure of the proposed framework. It consisted of a deep
feature extraction module and a hand-crafted feature extraction module. The resul-
tant feature vectors from these modules were the input of the fusion module. Fusion
simply involved concatenation. This combined feature vector was then passed to the
classifier. The classifier consisted of a dense layer of size 512 followed by a sigmoid.
However, the input size of the classifier was different according of the different feature
vector size.
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Figure 5.4: Fusion Method

The final fused-feature classifier present in all models consisted of a dense layer of
size 512 followed by a sigmoid.
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5.3 Experiment

This experimental framework evaluated baseline models and proposed a fusion
method using three FAS datasets, namely CASIA, Replay Attack, and SiW. The pre-
trained models were fine-tuned to carry out PA detection. The customised model was
trained by using the aforementioned three FAS datasets. The datasets and experi-
mental settings including hyper-parameter tuning are explained below.

5.3.1 Datasets

By using three widely used public FAS datasets, CASIA, Replay Attack, and SiW, the
proposed fusion method was evaluated. These FAS datasets mainly include print and
replay attack PA types. The datasets differ from each other in terms of size, gender
ratio, ethnicity, recording devices, spoofing medium, illumination, and settings. Figure
5.5 shows both real- and fake-face samples from three datasets. The top row in Figure
5.5a–c has genuine facial images. The lower row shows the corresponding fake facial
images.

(a) CASIA (b) Replay Attack (c) SiW

Figure 5.5: Real and fake samples from the datasets

CASIA has fake- and real-face videos from 50 subjects. The dataset contains photo
attack variants including print, warped photo, and cut photo. Video attacks are also
part of this public dataset. Corresponding to each subject, there are 3 real-face and
9 fake-face videos. Thus a total of 600 videos are included in the CASIA dataset.
The training set is made of videos of 20 subjects. The remaining videos from 30
subjects are included in the test set. The train and test sets are disjointed in terms of
subjects. CASIA has videos of three qualities; low, normal, and high. This dataset was
recorded in natural scenes. This process did not use any kind of artificial unification
while recording the dataset. Because cut photo attacks were included in CASIA, eye
blinking was also incorporated in the videos. Print attacks with better quality were
reproduced by using copper papers. However, CASIA includes only subjects from a
single ethnicity, i.e Asian. Even though 10% of the subjects were females, the training
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partition is devoid of female subjects. Hence there is no gender variance in the training
partition.

In the Replay Attack dataset, videos from 50 subjects are distributed among training,
development, and test sets. The training and development sets have 15 subjects each,
whereas the test set has 20 subjects. Fake faces were displayed as printed photos,
on mobile and tablet displays. During the recording process, these three mediums
were either fixed or held by the operator. Both controlled and uncontrolled settings
were used. Uniform background with illumination using incandescent lamps was used
in controlled settings. An uncontrolled setting made use of non-uniform background
and natural light for illumination. The Replay Attack dataset also had a female-to-male
subject ratio 1:9. However, unlike CASIA, this dataset has both gender in all the data
partitions. This dataset also has variance in terms of ethnicity.

SiW is the third dataset used for the evaluation of fusion method. Compared to the
other two public datasets used for experiments, the SiW dataset includes variance in
terms of ethnicity, poses, illuminations, expressions, and distance-to-camera. A total
of 4620 videos from 165 subjects include 8 real face and 20 attack videos correspond-
ing to each subject. A total of 27% of the subjects in SiW datasets are females. It
has subjects belonging to different ethnicity: 35% Asian, 35% Caucasian, 7% African
American, and 23% Indian people are included in the dataset, giving much more vari-
ance in ethnicity. Among the subjects, 44% have glasses and 20% have beards. Unlike
the CASIA and Replay Attack datasets, which have only a frontal pose range, SiW has
pose ranges of [−90, 90]. Moreover, SiW used artificial illumination. Table 6.1 shows a
comparison of the three datasets in different aspects.

Table 5.1: Comparison of FAS datasets used in the evaluation of the fusion method.

Dataset subjects Live videos Attack videos Attack types Display devices
CASIA 50 150 450 2 Print, Replay iPad

Replay Attack 50 200 1000 Print, 2 Replay
iPhone 3GS,

iPad

SiW 165 1320 3300 2 print, 4 Replay
iPad Pro, iPhone 7,

Galaxy S8,
Asus MB168B

5.3.2 Experimental Settings

Three FAS datasets, CASIA, Replay Attack, and SiW were used to evaluate the fusion
method. These datasets are available in video format. Frames from CASIA and Replay
Attack were extracted at a rate of 2 fps and faces from these frames were detected.
For the SiW dataset, frames were extracted at 1 fps and, by using given annotations,
face detection was carried out. In addition, some random scaling of the bounding box
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for SiW was performed in order to provide some background information and improve
facial image diversity. Facial images from three datasets were resized to 224 × 224
pixels. Rather than using customised data partitions to address generalisation [196],
the official train-test split was maintained. Table 5.2 shows the number of training and
test images in each dataset. Figure 5.6 shows the data distribution corresponding to
each dataset.

Table 5.2: Sample size of each dataset in train and test partitions

Dataset CASIA Replay Attack SiW
Class Train Test Train Test Train Test
Real 527 824 1689 1928 14733 12390
Fake 1760 2471 5261 5645 26057 22389
Total 2287 4118 6950 7573 40790 34779
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Figure 5.6: class distribution of the datasets after image extraction

Intra-dataset evaluation was conducted for the baseline and fusion methods. Images
of 224×224 size were used in the evaluation. In the baseline method, the training used
10 epochs and 32 batch size with CASIA and Replay Attack. Training with SiW was
carried out with a batch size of 512. The Adam optimiser [229] with different learning
rates were used in the experiments. VGG-16 as well as ResNet-50 used a learning
rate 10−5 whereas Inception V3 used 10−6. A customised CNN model used different
learning rates while training with different datasets. Learning rates of 10−6, 10−5, and
10−4 were used while training with CASIA, Replay Attack, and SiW respectively. The
Python programming language was used for implementing experiments by using Keras
with TensorFlow on the backend. Experiments were conducted on NVIDIA DGX-1
machine, using a single GPU system. The results are reported in terms of accuracy,
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half total error rate (HTER), precision, recall, F1 score, false positive rate (FPR) and
false negative rate (FNR). HTER is the average of FPR and FNR (Section. 2.10).

5.4 The Impact of Hybrid Feature Fusion on FPAD: An Anal-
ysis

Fusion and corresponding baseline methods were evaluated by using CASIA, Replay
Attack, and SiW datasets. For deep feature extraction, pre-trained models, VGG-
16, ResNet-50, and Inception V3 were used. Custom CNN models trained on the
three FAS datasets were also used for deep feature extraction. The fusion method
combined deep features from each model with CLBP features and then classified by
using a neural network-based classifier. This classifier had an input layer, one dense
layer of size 512 units, and a sigmoid layer. Evaluations were carried out to compare
PA detection accuracy, HTER, and computational speed for both baseline and fusion
methods.

PA detection performance of baseline models are presented in Table 5.3. Binary clas-
sification using pre-trained and custom CNN models were considered as the baseline
methods. Table 5.4 represents the results of fusion methods. A graphic representation
of accuracy comparison is also presented in Figure 5.7. Figure 5.8 shows the ROC
curve corresponding to baseline and fusion models.

Transfer learning using ResNet-50 had the highest accuracy among the baseline mod-
els for CASIA (93.36%), Replay Attack (95.57%), and SiW (98.78%). A custom CNN
model performed better than VGG-16 and Inception V3 with Replay Attack, and SiW.
However, with CASIA, all three pre-trained models had better detection rate than the
custom CNN model in baseline evaluation (Table 5.3). However, ResNet-50 (98.78%)
and custom CNN (98.16%) models exhibited very close detection accuracy in baseline
evaluation with SiW.
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Table 5.3: FPAD results using deep CNN models

Dataset Model ACC (%) HTER(%) Precision Recall F1score FNR(%) FPR (%)

CASIA VGG-16 85.85 24.01 0.87 0.96 0.91 4.29 43.69
ResNet-50 93.36 12.60 0.92 0.99 0.96 0.69 24.51
Inception V3 86.74 24.39 0.86 0.98 0.92 2.10 46.60
Custom CNN 86.42 14.84 0.94 0.88 0.90 12.34 17.35

Replay Attack VGG-16 84.25 23.05 0.88 0.92 0.90 8.18 37.91
ResNet-50 95.57 8.07 0.95 0.99 0.97 0.66 15.51
Inception V3 88.78 19.94 0.88 0.98 0.93 2.18 37.71
Custom CNN 94.39 6.75 0.97 0.96 0.96 4.43 9.23

SiW VGG-16 93.02 7.92 0.94 0.95 0.95 4.33 11.04
ResNet-50 98.78 1.57 0.98 1 0.99 0.38 2.75
Inception V3 94.35 6.53 0.95 0.97 0.96 3.48 9.57
Custom CNN 98.16 2.24 0.98 0.99 0.99 0.85 3.63

From the fusion method results in Table 5.4, it is evident that the detection improved
for almost all the datasets, regardless of the models used for deep feature extraction.
Thus fusing colour texture features with deep features improved PA detection in intra-
dataset evaluation. Among the models used, the combination of colour LBP (CLBP)
with ResNet-50 features showed the best performance (Table 5.4).

Table 5.4: Fusion methods results.

Dataset Model ACC (%) HTER(%) Precision Recall F1score FNR(%) FPR(%)

CASIA VGG-16+CLBP 92.33 13.26 0.92 0.98 0.97 2.06 24.39
ResNet-50+CLBP 94.65 8.68 0.95 0.98 0.96 1.74 15.29
Inception V3+CLBP 88.31 18.54 0.90 0.95 0.92 4.82 32.28
Custom CNN+CLBP 89.34 15.47 0.92 0.94 0.93 5.87 25.12

Replay Attack VGG-16 + CLBP 90.18 15.14 0.92 0.96 0.94 4.30 25.99
ResNet-50 + CLBP 98.56 2.64 0.98 1.00 0.99 0.19 5.08
Inception V3 + CLBP 90.38 16.19 0.91 0.97 0.94 2.82 29.56
Custom CNN + CLBP 93.64 8.51 0.96 0.96 0.96 4.13 12.91

SiW VGG-16 + CLBP 92.65 8.47 0.93 0.95 0.94 4.59 12.34
ResNet-50 + CLBP 99.60 0.48 1.00 1.00 1.00 0.20 0.76
Inception V3 + CLBP 98.61 1.57 0.99 0.99 0.99 0.95 2.20
Custom CNN + CLBP 97.96 2.42 0.98 0.99 0.98 1.13 3.70
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(a) CASIA (b) Replay Attack (c) SiW

Figure 5.7: Accuracy comparison for CASIA, Replay Attack, and SiW

A graphic comparison of detection performance of pre-trained and custom models is
shown in Figure 5.7. It shows that fusing CBLP features with CNN-extracted features
largely improves detection performance across the board. The main exception is the
model using a custom CNN to extract the features. For Replay Attack, the detec-
tion performance was slightly reduced when the deep feature extraction was carried
out by using the customised CNN model. However, with pre-trained models, the Re-
play Attack dataset also improved PAD performance. In the evaluation with SiW, both
VGG-16 + CLBP and customised CNN + CLBP exhibited hardly any improvement.
Nevertheless, ResNet-50 + CLBP and Inception V3 + CLBP improved compared to
networks without CBLP. Comparing both Tables 5.3 and 5.4, it can be seen that FPR
and FNR were reduced in the proposed method compared to the baseline method.
The decreased FPR and FNR resulted in a lower HTER than the baseline in fusion
methods, which in turn improved PA detection.

Figure 5.8 shows the ROC curve analysis corresponding to three datasets for baseline
and fusion models. In the baseline method (Figure. 5.8 a-c), which uses binary classi-
fication using CNN, the best performance was exhibited by the ResNet-50 pre-trained
model. The customised CNN model also showed a very close performance to ResNet-
50 in the baseline method. However, this CNN model performed better than VGG-16
and Inception-V3 with all three datasets despite having far fewer layers. Among the
fusion models, the combination of colour LBP with ResNet-50 features provided the
highest detection performance. With CASIA, the customised CNN model features led
to performance very close to Inception-V3, but lower than ResNet-50 and VGG-16.
However, with Replay Attack and SiW, this model features performed even better than
VGG-16 and close to ResNet-50 in combination with CLBP.
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(a) CASIA Baseline (b) Replay Attack Baseline (c) SiW Baseline

(d) CASIA Fusion (e) Replay Attack Fusion (f) SiW Fusion

Figure 5.8: ROC curve analysis for CASIA, Replay Attack, and SiW.

Table 5.5 presents a comparison between the computational speed of the baseline and
fusion methods for each dataset in training time. Computational speed decreased sub-
stantially with VGG-16 and custom CNN model features in the fusion method. Training
times of the fusion models reduced to a value of less than 50% of the baseline training
time for these two models, with three datasets. At the same time, the PA detection
accuracy increased by a value of 6% for CASIA and Replay Attack when VGG-16 fea-
tures were combined with CLBP features. SiW showed slightly lower accuracy in fu-
sion method with VGG-16 deep features. Even though the custom CNN model-based
evaluation scenario had improved computational speed in the fusion method, it did not
facilitate improvement in PA detection compared to the corresponding baseline model
for Replay Attack and SiW. Only CASIA showed better accuracy when combining the
shallow features with the custom CNN. For ResNet-50 and Inception V3, computation
speed deteriorated in fusion methods, regardless of the improved accuracy. The times
taken for training ResNet-50 and Inception V3-based fusion models were much higher
than the corresponding baseline values. However, in ResNet-50-based evaluation
scenarios, the largest dataset, SiW, exhibited slightly better accuracy and computa-
tional speed in the fusion method than the baseline. The SiW/ResNet-50 combination
shows that the fusion method has a slightly faster training time and this implies that,
with even larger datasets, the fusion method might have some advantages over the
baseline method in both speed and accuracy. However, it should be noted that the fu-
sion feature extraction method has not been fully optimised in these experiments, and
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it might be possible to improve fusion method training times with some simple software
optimisation.

Table 5.5: Computation speed v/s accuracy of baseline and fusion methods

Dataset Model Baseline Fusion Method

Computational
Speed (s)

Accuracy
(%)

Computational
Speed (s)

Accuracy
(%)

CASIA VGG-16 785.86 85.85 339.76 92.33
ResNet-50 545.66 93.36 746.637 94.65
Inception V3 229.47 86.74 457.27 88.31
Custom CNN 2166.59 86.42 408.91 89.34

Replay
Attack

VGG-16 2388.57 84.25 945.32 90.18

ResNet-50 1611.92 95.57 2261.05 98.56
Inception V3 663.67 88.78 1366.84 90.38
Custom CNN 6643.48 94.39 1228.12 93.64

SiW VGG-16 16,045.91 93.02 5468.71 92.65
ResNet-50 14,703.66 98.78 13,382.73 99.60
Inception V3 5711.11 94.35 7979.04 98.61
Custom CNN 34,430.00 98.16 7185.88 97.96

5.4.1 Discussion

Presentation attack detection performance exhibited an overall improvement by using
the proposed fusion method. Combining local texture features, extracted from different
channels with deep features was largely effective in reducing the error in identifying
real faces from fake faces. This caused an increment in accuracy and reduction in
FPR and FNR.

For CASIA, the fusion method with pre-trained models, reduced FPR, and increased
FNR. However, customised CNN, which was trained by using the FAS dataset shows
the opposite behaviour with CASIA. FNR deceased and FPR increased. Conse-
quently, features extracted by using pre-trained models as well as the customised
CNN model in combination with hand-crafted features provided improvement in PA
detection when evaluated with CASIA. A similar performance was given by the Replay
Attack dataset. SiW showed a different performance to that of CASIA and Replay At-
tack because the SiW dataset is “in the wild". Hence, it might not exhibit dataset biases
that can be easily exploited by networks trained only on that dataset (i.e., the custom
CNN). The other two datasets were recorded under more controlled settings. That is
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why the results indicated a higher level of capture bias in CASIA and Replay Attack
datasets. ResNet-50 and Inception V3 models with colour texture analysis substan-
tially decreased FPR and FNR when evaluated with this dataset. However, for VGG-16
and customised CNN, the FPR and FNR increased slightly, reducing the performance
in fusion method.

The custom CNN models used in the experiment were trained and tested by using
corresponding FAS datasets. In fact, the features extracted by using this model, when
concatenated with CLBP features, in general increased either or both of FPR and FNR.
This clearly shows that the model needs further tuning to improve the PA detection
performance. The performance analysis also shows that feature extraction by using
ResNet-50 is most effective for FPAD among the considered pre-trained models. The
fusion models also illustrate the suitability of colour texture analysis in this strategy.

From the ROC analysis curves, it is evident that CNN model trained with the corre-
sponding dataset performed very close to or better than the deep networks considered
in the experiments. ResNet-50, Inception-V3, and VGG-16 have 50, 48, and 16 layers,
respectively. The customised CNN model has 13 layers, making it shallower than the
other models. However, these deep models were trained on the ImageNet dataset,
whereas each custom CNN model was trained on the respective FAS dataset training
set. This implies that a small dataset and shallower network can achieve comparable
or better performance than deep, pre-trained networks.

The computational speed presented in Table 5.5 included the time required to extract
deep features and hand-crafted features, and train the classifier model. For each
dataset, the hand-crafted feature extraction time is the same. Moreover, the classifier
training period is significantly less than the time taken for feature extraction. The vari-
ation in the recorded computational speeds relies upon deep feature extraction speed.
Hence, a pre-trained model with depth equal to or less than VGG-16 could be used to
extract deep features to improve the performance of this fusion method by using CLBP.
From the results, it is also evident that the performance of shallow models trained on
FAS datasets was not improved by fusion. This implies that the features that emerge
in these shallow models may already encompass the shallow, engineered features.
Other suitable hand-crafted features could also be combined with the custom CNN
models trained on FAS datasets to investigate the impact of custom CNN model deep
features. A challenge is extracting suitable handcrafted features which can provide
spoof-specific patterns and further increase FPAD performance, specifically in unseen
attack detection.

The comparative analysis using accuracy, HTER, and computational speed which are
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presented in Tables 5.3–5.5 points to the advantages, drawbacks, and challenges
of the proposed fusion method. The fusion method performed better in PA detec-
tion when deep features were extracted by using pre-trained models than the models
which were trained with FAS datasets. Among the pre-trained models considered for
evaluation, the model with the fewest layers (VGG-16) showed improvement in com-
putational speed and detection performance. One possible hypothesis for this is that
FPAD relies on low-level, spoof-specific features, rather than complex deep features.
Deeper pre-trained models were able to improve detection performance at the cost of
computational speed. However, for application in real-life scenarios, the best model
would exhibit optimal performance both in accuracy and computational speed.

5.5 Conclusion

An experimental framework combining colour texture and deep features is presented in
this chapter. Colour texture features when combined with deep features, substantially
reduce the number of false positives in most cases. This suggests that rather than
global features, task-specific features are more likely to facilitate the detection of PAs.
Moreover, a fusion method using pre-trained deep models also improves computation
speed on some models and shows promise for experiments with larger datasets. By
incorporating additional features corresponding to texture, frequency, and image qual-
ity, this experimental framework could be extended to detect PAs. A cross-dataset
analysis will confirm whether these relatively shallow features are generalisable.
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Chapter 6

Unmasking the Imposters:
Task-specific feature learning

The previous chapter provides evidence that the utilisation of task-specific features,
rather than global features extracted from pre-trained models, is essential for improv-
ing the detection of presentation attacks (PA). Building upon this insight, the current
chapter introduces an innovative approach to learning task-specific features by lever-
aging deep pre-trained models. The primary objective of this approach is to enhance
the generalisation capabilities in FPAD. Specifically, the method involves fine-tuning
the higher convolutional layers of pre-trained models for task-specific feature learn-
ing. Through extensive experiments, in comparison to transfer learning and hybrid
models, this technique demonstrates improved performance across different datasets,
highlighting enhanced cross-dataset performance and greater generalisability.

The main findings of this chapter are accepted to be presented at the 2023 Interna-
tional Joint Conference on Neural Networks (IJCNN) as part of the paper "Unmasking
the Imposters: Task-specific feature learning for face presentation attack detection
[232]".

6.1 Overview

The FPAD detects PA based on differences in features between fake and genuine facial
images. In order to accomplish this, earlier FPAD models used handcrafted features
[197] related to texture, image quality, motion, and frequency. The extracted features
were classified with SVM, RF or K-NN classifiers. These hand-crafted features are
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domain-specific features [233]. Hence, hand-crafted feature methods had limited gen-
eralisation as they use only domain-specific features rather than task-specific features,
especially in the RGB domain.

The automatic feature extraction capability of deep learning models further enhanced
FPAD performance. In a deep model, lower layers provide domain-specific features
such as edges, and corners. However, the higher layers learn task-specific features.
The FPAD task is to differentiate between real and fake facial images of the same
user. But image classification categorises different objects in the given images. Thus,
task-specific features of FPAD are different from that of image classification. Hence,
learning task-specific features is more important in improving generalisation in FPAD.

As a deep learning technique, transfer learning has been exploited in a number of
ways to address FPAD by learning either domain-specific features or task-specific
features. For transfer learning, existing FPAD models have used pre-trained image
classification or face recognition models. Since task-specific features are provided
by higher layers, image classification models were used after modifying the top fully
connected layers and fine-tuning them to detect PA [75]. Domain-specific features
were learned [17] by fine-tuning a few lower convolutional layers in a pre-trained face
recognition model using multi-spectral data. Nonetheless, the majority of Face Anti-
Spoofing (FAS) datasets are in the RGB domain. So, it may be more effective to
use a model that can extract task-specific features from RGB datasets rather than us-
ing multi-modal data. The research in chapter 5 [12] has shown that fusion models
using deep pre-trained models and hand-crafted methods improved PA detection in
intra-dataset evaluations. Thus transfer learning has been explored extensively in face
anti-spoofing.

This chapter presents a transfer learning model, to learn task-specific features to im-
prove generalisation. The higher convolutional layers of deep pre-trained models were
fine-tuned along with the fully connected layers using a public FAS dataset SiW. This
fine-tuned model was used to extract features, which were used to form fusion mod-
els. Fusion models were formed using the deep features from fine-tuned models and
combining the deep features with hand-crafted features. The experiments used the
public FAS datasets, CASIA, and Replay Attack, for cross-dataset validation.

6.2 Task-specific learning and fusion for FPAD

Figure 6.3 provides a schematic diagram of the fusion model using task-specific fea-
ture learning. Typically, this includes utilising fine-tuning pre-trained models, hand-
crafted features extraction and features fusion to form models to detect presentation
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attacks. To improve generalisability, deep pre-trained models were fine-tuned in or-
der to learn task-specific features. Fusion models were also formed using features
extracted from fine-tuned models and handcrafted features. Accordingly, fine-tuned
and fusion models were evaluated for intra-dataset and cross-dataset performance as
shown in Figure. 6.3. By using the SiW train set, the models were fine-tuned. The
SiW, CASIA, and Replay Attack test sets were used to evaluate the performance.

The models were evaluated using public FAS datasets, CASIA [41], Replay Attack
[46], and SiW [102]. These datasets consist of 2D PA variants including print, photo
and video attacks. Figure 5.5 shows samples of real and fake faces derived from three
datasets. Figure 6.1 shows genuine facial images in the top row. In the lower row,
corresponding fake facial images are displayed. A comparison of the three datasets is
presented in Table.6.1. The upper row in each figure contains the real-face samples,
whereas the lower row has the PA samples.

Figure 6.1: Real and PA image samples from SiW, CASIA and Replay Attack

Table 6.1: Comparison of FAS datasets used in the evaluation

Dataset CASIA Replay Attack SiW
Subject 50 50 165
Live videos 150 200 1320
Attack videos 450 1000 3300
Attack types 2 Print, Replay Print, 2 Replay 2 print, 4 Replay

Display devices iPad iPhone 3GS, iPad
iPad Pro, iPhone 7,

Galaxy S8, Asus MB168B

6.2.1 Fine-tuning

Existing FPAD methods used either domain-specific or task-specific features through
fine-tuning deep pre-trained models in different ways. Since lower layers provide
domain-specific features, some recent research followed the concept of domain-
specific adaptation using multi-spectral data and a pre-trained face recognition model.
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On the other hand, task-specific features from RGB data were extracted by modifying
and fine-tuning the classifier layers of deep pre-trained classification models. These
methods showed reduced cross-dataset performance, while domain-specific adapta-
tion required multi-spectral data. To circumvent both limitations, higher convolutional
layers of the deep pre-trained classification model were fine-tuned using the SiW train
set. VGG-16 and Inception V3 were fine-tuned in a similar way.

More specifically, the fine-tuned VGG-16 and ResNet-50 models had six higher convo-
lutional layers re-trained. The fine-tuned Inception V3 model had eight higher convolu-
tional layers which were retrained using the SiW dataset. The top layers included lay-
ers as follows: a fully connected layer of size 4096, batch normalization layer, dropout
layer, another fully connected layer of size 4096, batch normalization layer, dropout
layer, a fully connected layer of size 512, another fully connected layer of size 256 and
a sigmoid layer.
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Figure 6.2: Fine-tuning

6.2.2 Fusion

Fine-tuned ResNet-50 model performance was compared with fusion model (Fig. 6.3)
performance. Fusion models were formed in three ways;

• Fusion of fine-tuned ResNet-50 feature and hand-crafted features.

• Fusion of fine-tuned ResNet-50 and VGG-16 features.

• Fusion of fine-tuned ResNet-50, VGG-16 and Inception V3 features.

The features were combined using concatenation. Hand-crafted features included
colour texture (CLBP), Difference of Gaussian (DoG), Histogram of Oriented Gradi-
ents (HOG) and Fast Fourier Transform (FFT). PAs introduce chrominance disparities
while preserving luminance variations. Hence, the chrominance disparities cannot be
identified in RGB colour space. FAS needs alternative colour spaces such as HSV
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and YCbCr to utilize chrominance disparities invisible in RGB colour space. HSV and
YCbCr have chrominance components. As HSV and YCbCr colour spaces contain
spoof-specific chrominance disparities, the images can be converted into these colour
spaces and texture analysis can be performed to detect PAs [8]. The HOG provides
information about the structure of the objects in the image. HOG provides edge fea-
tures as well as edge direction. By extracting the edge orientation and gradients, this
edge direction is provided. Thus, HOG features derived from an image represent lo-
cal disparities in gradient and orientation, which can be applied to detect PAs [48].
Recapturing eradicates high-frequency features from the images, creating a disparity
between real and fake facial images. These disparities can be used to identify PAs
[51]. Edge detection has been used to identify differences in local features to de-
tect PAs. DoG is applied to an image to mitigate noise and preserve high-frequency
features, especially edges. Being an edge detection filter, DoG enhances the edges
in the final image. The deformities in the PAs introduce differences in local features
compared to the real facial image. Hence, edge detection has been used to detect re-
captured images and PAs. Frequency disparities between real and fake facial images
can also be extracted using FFT [234].
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Let Fm be a feature vector with size m and Fn be another texture feature vector with
size n. Thus FFusion will have the size (m + n). Then the final feature vector FFusion

can be represented [16] as in Equation. 6.1.

FFusion = Fm ∪ Fn (6.1)
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Following the above equation, the fusion vectors in three experimental scenarios,
F 1, F 2 and F 3 can be represented as in Equation. 6.2,Equation. 6.3, and Equation.
6.4.

F 1 = FResNet−50 ∪ F hand−crafted (6.2)

F 2 = FResNet−50 ∪ F V GG−16 (6.3)

F 3 = FResNet−50 ∪ F V GG−16 ∪ F InceptionV 3 (6.4)

F 1 represents the feature vector corresponding to the fusion models combining fine-
tuned ResNet-50 features and hand-crafted features. F 2 is the combined feature vec-
tor of fine-tuned ResNet-50 features and fine-tuned VGG-16 features. Fine-tuned
ResNet-50, VGG-16 and Inception V3 feature vectors were combined to form F 3.
Deep feature vectors from ResNet-50, VGG-16 and Inception V3 had a size of 512.
hand-crafted feature vectors had varying feature sizes. The resultant feature vector
size will be the sum of the feature vectors used in the experiments.

The classifier module for all models included 9 layers including four fully connected
layers two batch normalization, two dropout layers and an output sigmoid layer as in
Figure. 6.2. A detailed structure of the classifier is as follows: a fully connected layer of
size 4096 followed by batch normalization and dropout, another fully connected layer
of size 4096 followed by batch normalization and dropout, a fully connected layer with
size 512, another fully connected layer with size 256 and an output sigmoid layer.

Colour Texture Analysis (CLBP)

Colour texture analysis [8] was one of the hand-crafted features used in the fusion
models. The human eye is more sensitive to luminance than chrominance. Hence,
luminance variation in the source image is preserved in PAs that are printed or dis-
played in RGB. However, PAs include chrominance disparities, which can be used to
identify fake from authentic facial images. On the other hand, chrominance variations
are invisible to the human eye. In the RGB colour space, there exists a high correla-
tion between colour components. The recapturing process involved in PAs introduces
chrominance disparities. At the same time, luminance variations will be preserved.
Hence, chrominance disparities cannot be identified in the RGB colour space. It might
be possible for a deep CNN to learn them eventually, but it will be easier in an ap-
propriate data representation. FAS needs alternative colour spaces such as HSV and
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YCbCr to utilize the chrominance disparities invisible in the RGB colour space. Both
HSV and YCbCr have chrominance components. The chrominance component in
HSV is complementary to the chrominance component in YCbCr. As HSV and YCbCr
colour spaces provide spoof-specific chrominance disparities, the images can be con-
verted into these colour spaces and carry out texture analysis to identify PAs.

To conduct colour texture analysis (CLBP) (Fig. 6.4), RGB images were converted into
HSV and YCbCr colour spaces and then the LBP of each channel in these images
were extracted. LBP histograms from these six channels were combined to form a
final feature vector of size 354.
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histograms 
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Input  
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Figure 6.4: Colour Texture Analysis

Difference of Gaussian (DoG)

Difference of Gaussian (DoG) is a technique used to detect the edges in images. In
DoG, a blurred version of the source image is created by performing Gaussian blur
with two different standard deviation values. The difference between these blurred
images is taken as the final image. Being an edge detection filter, DoG enhances the
edges in the final image. PAs mainly include recaptured images. The deformities in the
PAs introduce differences in local features compared to the real facial image. Hence,
edge detection has been used in detecting both recaptured images and PAs. DoG is
applied to an image to mitigate the noise component and preserve the high-frequency
features, especially edges. Recapturing eradicates high-frequency features from the
images, creating a disparity between real and fake facial images. These disparities
can be used to identify PAs [51].
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(a) Real image (b) DoG representation of
real image

(c) Fake image (d) DoG representation of
fake image

Figure 6.5: DoG images of real and fake facial images

DoG acts as a band pass filter. This band-pass filter incorporates two Gaussian filters
with standard deviations as limits. For, the inner Gaussian filter, standard deviation,
σi was set as .6 and for the outer Gaussian filter standard deviation, σj was set as
1. The Gaussian standard deviation values were selected in such a way that, the
filtering reduces low spatial frequency information and preserves high-mid frequency
information. This facilitates identifying PAs using these high-frequency cues. For an
image i(x,y), DoG image with standard deviations σi and σj can be defined as in
Equation. 6.5 [9];

I(x, y, σi, σj) = (G(x, y, σi)−G(x, y, σj)) ∗ I(x, y) (6.5)

G(x, y, σi) is the Gaussian filter with standard deviation, σi and G(x, y, σj) is the Gaus-
sian filter with standard deviation, σj . In these experiments, DOG resultant images
were converted to grey-scale images. Then, the histogram was extracted to get the
feature vector from the images.

Histogram of Oriented Gradients (HOG)

Histogram of Oriented Gradients (HOG) provides the structure of the objects in the
image. In addition to edge features, HOG gives the edge direction. This edge direction
is provided by extracting the orientation and gradients of the edges. The images are
divided into smaller regions. Orientation and gradients are calculated locally for each
of these regions. A histogram for each region is generated. Hence, HOG features
extracted from an image represent local disparities in terms of gradient and orientation.
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(a) Real image (b) HOG of real image (c) Fake image (d) HOG of fake image

Figure 6.6: HOG images of real and fake facial images

Local features show disparities in PAs compared to genuine facial images. So, HOG
has been used in the existing literature to detect PAs [48]. Therefore, HOG was con-
sidered one of the hand-crafted features used in fusion models. The experiments used
a region cell size of 16 × 16. Histograms from these cells together form a final feature
vector of size 1568.

Fast Fourier Transform (FFT)

Fourier Transform produces the frequency domain representation of an image, which
is in the spatial domain. In the Fourier domain image, each point represents a partic-
ular frequency contained in the spatial domain image. The frequency domain trans-
formation of a digital image is carried out through a 2-dimensional Discrete Fourier
Transform (2D DFT) using Fast Fourier Transform (FFT) Algorithm. The spatial do-
main image of a transformed image provides the frequencies present in the image.
Since DFT is a complex image, such images were analysed using real and complex
parts or phase and magnitude responses. The magnitude response is mostly used for
analysis as it preserves the majority of the spatial information in the spatial domain.
Thus it provides information, which is not visible in the spatial domain.

For an image i(x,y) of size (N,N) in the spatial domain, the Fourier Transform, I(u,v)
can be represented as,

I(u, v) =
N−1∑
x=0

N−1∑
y=0

i(x, y)e−i2π(ux
N

+ cy
N

) (6.6)

I(u,V) has real and imaginary part. The magnitude is usually used to represent I(u,v),
where |I(u,v)| is,
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|I(u, v)| =
√

Real(I(u, v))2 + Imaginary(I(u, v))2 (6.7)

For these experiments, the RGB image was converted into a gray scale and the cal-
culated magnitude of the transform function. Since the spatial domain image of the
magnitude spectrum represents the frequency features, the LBP histogram of this im-
age was used to extract the feature vector.

(a) Real image (b) FFT magnitude spec-
trum representation of
real image

(c) Fake image (d) FFT magnitude spec-
trum representation of
fake image

Figure 6.7: Frequency domain representation of real and fake facial images

6.3 Experimental settings

Experiments included fine-tuning different numbers of layers in the pre-trained ResNet-
50 model, fine-tuning higher convolutional layers and top fully connected layers of the
pre-trained VGG-16 and Inception V3 model, a fusion of hand-crafted features, HOG,
CLBP, DoG and FFT with fine-tuned ResNet-50 features, and fusion of fine-tuned
VGG-16 and fine-tuned Inception V3 features with fine-tuned ResNet-50 features. FAS
dataset SiW was used for training. For, testing, SiW, CASIA and Replay Attack were
used. CASIA, Replay Attack and SiW are widely used public FAS datasets which have
photo and video attacks in them. The pre-trained models were fine-tuned keeping
ImageNet weights as initial weights.

From the dataset videos, faces were detected from CASIA and Replay Attack frames
were extracted at a rate of 2 frames per second. Using the SiW dataset, frames
were extracted at 1 frame per second and face detection was performed based on
the annotations provided. A random scaling of the bounding box for SiW was also
performed to provide some background information and improve the diversity of facial
images. The facial images from three datasets were resized to 224 × 224 pixels. The

97



official train-test split was maintained for all three datasets. Table 6.2 summarizes the
number of training and test images in each dataset.

Table 6.2: Dataset sample size in train and test partitions .

Dataset Train Test
Real Fake Total Real Fake Total

CASIA 527 1760 2287 824 2471 3295
Replay Attack 1689 5261 6950 1928 5645 7573
SiW 14733 26057 40790 12390 22389 34779

The experiments included fine-tuning different of layers the pre-trained ResNet-50
model. All the models in the experiments used the SiW train set for training. For
intra-dataset evaluation, the models were tested using the SiW test set. CASIA and
Replay Attack test sets were used for cross-dataset evaluation. Fine-tuning was car-
ried out as explained in Section. 6.2. The fine-tuned models were utilized later for
deep feature extraction for the fusion method. Binary cross entropy loss and Adam
optimizer were used for model compilation. For fine-tuning and fusion models, the
learning rate used was 5× 10−6 for all datasets. The batch size and epochs were 512
and 10 respectively. The results are reported using accuracy, Average Classification
Error Rate (ACER) (Section. 2.10) and ROC curve analysis.

6.4 Task-specific learning: A generalisation analysis

Intra-dataset and cross-dataset comparisons of the fine-tuned and fusion models are
presented in Table. 6.3 and Table. 6.4 respectively. The results were reported in
terms of accuracy, AUC and ACER. In the table, ResNet-50 (FC)indicates, the transfer
learning model using the pre-trained ResNet-50 model and ResNet-50 (ALL) is the
model which had all the layers fine-tuned using SiW train set. ResNet-50, VGG-16
and Inception V3 represent the models with fine-tuned higher convolutional as well as
modified fully connected layers.
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Table 6.3: Intra-dataset performance using SiW dataset

Models ACC (%) ACER(%) AUC
ResNet-50 (FC) 97.53 2.33 0.99
ResNet-50 99.14 1.06 1.00
ResNet-50(ALL) 99.57 0.51 1.00
ResNet-50+CLBP 99.28 0.86 1.00
ResNet-50+HOG 99.27 0.90 0.99
ResNet-50+DoG 99.28 0.87 1.00
ResNet-50+FFT 99.28 0.89 0.99
ResNet-50+VGG-16 99.51 0.64 1.00
ResNet-50+Inception V3 99.23 1.01 0.99
ResNet-50 +VGG-16+ Inception V3 99.53 0.60 1.00

From the Table. 6.3, it is evident that the intra-dataset accuracy (99.57%) and ACER
(.51%) showed as the best detection performance when all the layers of the pre-trained
ResNet-50 model were fine-tuned using SiW train set. However, ResNet-50 (ALL) ex-
hibited lower cross-dataset performance when tested with CASIA and Replay Attack,
compared to fine-tuned models (ResNet-50 (FC) and ResNet-50) and fusion models
(Table. 6.4). In the cross-dataset evaluation of CASIA, ResNet-50 showed the best
performance. The model accuracy when tested with CASIA was 88.80%. The ResNet-
50 model exhibited ACER of 13.98%. Nevertheless, the ResNet-50 model showed an
accuracy of 85.05% and ACER of 24.61% when tested with Replay Attack.

The fusion model combining ResNet-50 and VGG-16 deep features exhibited the best
cross-dataset performance (accuracy:87.43% and ACER:20.11%) with Replay Attack.
Except with (ResNet-50 (FC) and ResNet-50 (ALL), cross-dataset evaluation with CA-
SIA and Replay Attack provided accuracy greater than 80% which shows better gener-
alisation. Fusion models slightly reduced cross-dataset performance when tested with
CASIA. However, compared to ResNet-50 models, fusion models using only deep
features showed an increase in performance when tested with Replay Attack. Cross-
dataset performance with Replay Attack also decreased slightly with fusion models
using hand-crafted features and ResNet-50 features.
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Table 6.4: Cross-dataset performance with CASIA and Replay Attack.

Models CASIA Replay Attack
ACC (%) ACER(%) AUC ACC (%) ACER(%) AUC

ResNet-50 (FC) 75.45 48.89 0.43 74.86 48.78 0.65
ResNet-50 88.80 13.98 0.93 85.05 24.61 0.82
ResNet-50(ALL) 76.21 43.35 0.62 73.52 50.58 0.57
ResNet-50+CLBP 86.94 16.26 0.93 82.32 30.25 0.79
ResNet-50+HOG 86.65 15.47 0.91 84.19 26.62 0.77
ResNet-50+DoG 87.73 15.05 0.93 82.99 28.82 0.69
ResNet-50+FFT 87.34 16.68 0.88 82.83 29.14 0.77
ResNet-50+VGG-16 85.54 15.71 0.92 87.43 20.11 0.82
ResNet-50+Inception V3 87.39 14.20 0.94 85.92 23.05 0.75
ResNet-50 +VGG-16+ Inception V3 87.00 14.21 0.92 85.60 22.80 0.85

ROC comparison of fine-tuned ResNet-50 models is shown in Fig. 6.9. The ROC
analysis indicates that in intra-dataset evaluation with SiW, the models correctly detect
PAs. Among the models evaluated cross-dataset, ResNet-50 with fine-tuned higher
convolutional layers and fully connected layers (ResNet-50 ) demonstrated the high-
est performance. The fusion models were compared with the ResNet-50 model (Fig.
6.10). Compared to the ResNet-50 model, the fusion models have very similar per-
formance, both in intra-dataset and cross-dataset evaluations. A fusion model based
on the deep features of ResNet-50 and VGG-16 performed better. Fusion models,
however, when formed using ResNet-50 features and hand-crafted features, showed
reduced performance for cross-dataset performance in comparison to ResNet-50.
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Figure 6.8: Performance comparison of fine-tuned and fusion models
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Figure 6.9: ROC comparison of fine-tuned ResNet-50 models
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Figure 6.10: ROC comparison of Task-specific feature learning and fusion models

6.5 Discussion

PA detection evaluates the genuineness of the facial image captured by the sensor.
Therefore, the PA detection task examines the disparities between fake and real facial
images in terms of features such as texture, image quality and frequency in hand-
crafted feature methods. In a deep learning model, lower convolutional layers learn
domain-specific features and higher layers learn task-specific features. However, pre-
trained image classification models cannot fully provide the features required to detect
spoofing in RGB domain. The major cause is that those models were trained to detect
the object in the images using the overall image features rather than checking the
genuineness of the images. Hence, various pre-trained models were used after fine-
tuning using FAS datasets for the PA detection task.

The experiments used the pre-trained ResNet-50 model, which was fine-tuned using
the FAS dataset, SiW. Fine-tuning was carried out with three different methods to
analyse the performance (Section. 6.2). Among the three methods used to fine-tune
the pre-trained ResNet-50 model, the best was fine-tuning the higher convolutional
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layers and fully connected layers, which provided impressive performance in intra-
dataset and cross-dataset evaluations as in Table. 6.3 and Table. 6.4.

Table 6.5: Comparison of task-specific learning with SOTA methods

Model ACER(%)
FAS-TD-SF [105] 39.4
LGON [235] 20.56
Fusion model 14.20
ResNet-50 (Ours) 13.98

Domain-Specific Units (DSU) [17] have been used to achieve domain adaptation in PA
detention fine-tuning FR models using multi-modal data. Nonetheless, higher convolu-
tional layers provide task-specific features. Therefore a pre-trained ResNet-50 model
was used, after fine-tuning its higher convolutional layers, and fully connected layers
using only the RGB FAS dataset to extract task-specific generalisable features. This
fine-tuned model exhibited performance comparable to the SOTA methods in cross-
dataset evaluation with CASIA as shown in Table. 6.5. The fine-tuned model was
also compared with fusion models, where extracted deep features from this fine-tuned
model were combined with either hand-crafted features or deep features, extracted
from fine-tuned VGG-16 and Inception V3 models.

Task-specific features should be learned for better-unseen attack detection in FAS. It
is a known fact that higher convolutional layers provide task-specific features. Hence,
fine-tuning higher convolutional layers can enable the extraction of task-specific fea-
tures which are essential for spoof detection tasks to attain generalisation. In Table.
6.5, two SOTA methods are compared with the proposed fine-tuned and fusion mod-
els. The considered methods used similar train-test dataset combinations in cross-
dataset evaluation. It is evident from the cross-dataset performance ACER values that
fine-tuned ResNet-50 performs better compared to FAS-TD-SF [105] and LGON [235].
However, both fine-tuned and fusion models perform slightly lower than LGON model
in cross-dataset evaluation with Replay Attack.

Both CASIA and Replay Attack datasets performed better with models using deep fine-
tuned features and their fusion rather than fusion models with hand-crafted features,
showing that models using deep fine-tuned features are more effective in PA detection
and generalisation. It also helps to avoid the disadvantages of using hand-crafted fea-
tures and their extraction. Fine-tuning higher convolutional and fully connected layers
of the deep pre-trained models using FAS data for FAS increases the generalisation
using the inherent feature extraction capability of the deep CNN model.
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6.6 Conclusion

The experiment framework presented in this chapter compares the intra-dataset and
cross-dataset performance of fine-tuned ResNet-50 model, and fusion models. The
pre-trained models were used for PA detection and feature extraction after fine-tuning
the higher convolutional layers and fully connected layers using the FAS dataset, SiW.
The results illustrate that fine-tuning higher convolutional layers provide task-specific
features, which in turn improves generalisation in FPAD compared to fusion with hand-
crafted features and fine-tuning only fully connected layers.
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Chapter 7

Conclusion

This chapter summarises the findings of the preceding chapters and discusses the
limitations and future works evident within the work.

The thesis focuses on the detection of face presentation attacks (FPAD) using deep
learning. Specifically, data aggregation, hybrid fusion, and task-specific learning meth-
ods were developed to improve cross-dataset performance for detecting presentation
attacks. A major objective of these methods is to improve the feature space so that
generalization can be improved by increasing variation in the training data, combin-
ing hybrid features, and fine-tuning pre-trained models to learn task-specific features.
Furthermore, this chapter provides a brief overview of the limitations of the proposed
methods and some potential future research in this area.

7.1 Summary

In line with the objectives of Chapter 1, the following section provides a summary of
contributions and key findings:

This thesis reviews existing state-of-the-art methods for face presentation attacks in
chapter 2. These methods include hand-crafted feature methods, transfer learning,
multi-modal methods, anomaly detection, and hybrid methods. Additionally, this chap-
ter discusses the existing public datasets as well as their modalities, attack variants,
and other domain-dependent factors such as devices, settings, and spoof mediums.
In addition, the evaluation metrics used in FPAD were explained. Besides address-
ing the challenges associated with face presentation attack detection, future research
directions were also discussed.
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Chapter 3 demonstrates that using custom dataset partitions to train face presenta-
tion attack detection models impacts results significantly. Custom dataset partitions
on the NUAA dataset increase the variance of the training set, providing adequate
samples to data-hungry models. NUAA training and testing sets, on the other hand,
present challenges to generalization due to their disjointed distributions. Combining
the two distributions results in custom partitions, minimizing generalisation challenges.
Moreover, increasing the training set variance improves detection performance.

To detect presentation attacks effectively, data aggregation and deep transfer learn-
ing were applied in chapter 4. Three widely used face anti-spoofing public datasets –
NUAA, CASIA, and Replay Attack – were combined to form a new aggregated dataset.
Using four public datasets, both intra-dataset and cross-dataset evaluations were con-
ducted. Official partitions of each dataset were taken into account when forming aggre-
gated train and test sets. Multiple source domains alone are not sufficient to guarantee
domain generalisation against unknown attacks, as demonstrated by the experiments.
As FPAD is intended to be generalised, a method must be designed so that generalis-
able features can be extracted.

Chapter 5 presents a hybrid fusion of colour texture features and deep features to de-
tect presentation attacks. The experiments showed that Colour texture features when
combined with deep features, substantially reduce the number of false positives in
most cases. This suggests that rather than deep features, features specific to spoof-
ing tasks are more likely to facilitate the detection of PAs.

Detection of PAs is based on the learning of spoof-specific features from attacks and
utilizing these features to identify them. Chapter. 6 illustrates a method of learning
task-specific features through transfer learning for enhancing PA detection and thereby
generalization. A pre-trained model is shown to be capable of learning task-specific
features when fine-tuned by using higher convolutional layers.

7.2 Limitations and Future Work

The techniques established within this thesis make a valuable contribution towards en-
hancing presentation attack detection and generalization. The models’ effectiveness
was assessed by employing three publicly available datasets. Nevertheless, there are
areas that require further improvement, and here are some potential avenues for future
research.
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7.2.1 Limitations

This thesis used public FAS datasets based on 2D attacks to develop the research, but
not datasets based on 3D attacks. As a consequence, it has yet to be investigated how
FPAD performs under 3D attacks as well. A current trend in evaluation is to combine
multiple datasets for training and test the model with entirely different datasets in order
to assess the generalisation of the model to different domains. Although a similar data
aggregation strategy is examined in this thesis using transfer learning in Chapter 4,
most of the other methods presented in this thesis have not been evaluated in the
same way. The NUAA and CASIA datasets, both of which were used in this study, do
not have variances in ethnicity within them. The rest of the datasets used in this study
have a limited degree of variance, with the exception of SiW. In addition, only a limited
number of pre-trained models as well as handcrafted features were used in this study.
The concept of fusion was explored only from the perspective of feature fusion.

Latency serves as an additional metric for comparing models. In Chapter 5, latency
was compared among various models trained on diverse datasets. This comparison of
latency is crucial for assessing how well the models perform in real-time deployment
scenarios. However, similar latency comparisons have not been conducted for the
other methods. Additionally, when presenting model performance, performing statisti-
cal analysis on the metric values is another method to demonstrate the consistency of
detection performance. Nevertheless, this research reports model performance solely
as the average values of evaluation metrics, without incorporating statistical analysis.

7.2.2 Future Work

The following are some examples of future work that could be carried out in order to
take this research in different directions:

Measuring the Effectiveness of Task-Specific Learning in Domain Generalisa-
tion

A possible extension of the task-specific feature learning presented in this thesis is
the combination of data aggregation and task-specific learning. As part of the thesis,
three public datasets were considered and pre-trained models were fine-tuned using
each dataset. It is, however, possible to learn features from other attack variants by
using even more diverse datasets. Therefore, it is necessary to evaluate the domain
generalisation effectiveness of this method. This testing involves training the model
on three or more source databases and subsequently evaluating its performance on a
completely unseen database using the leave-one-out (LOO) strategy [235, 140]. For
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the task-specific learning method, the binary cross-entropy loss was used as the loss
function. A custom loss, however, would be another extension of this work.

Data Partitioning: Uncovering Advanced Strategies

Partitioning a dataset is a crucial task in data-driven models. One of the most straight-
forward and commonly used methods to divide such a dataset is by randomly sampling
a portion of it. In this thesis, the research delved into the significance of dataset parti-
tioning within the context of FPAD. The study involved both an official dataset partition
and a custom partition, where a specific percentage was randomly assigned to the
training and testing sets. Since the training set plays a pivotal role in discriminative
feature learning and model performance, it becomes imperative to select the optimal
training set to enhance both performance and efficiency, all while avoiding overfitting
and bias. Given these considerations, the exploration of optimizing dataset partition-
ing [236, 237] becomes a valuable pursuit. Implementing online optimization for data
partitioning [238], represents a viable strategy in this scenario.

Making the Most of Multi-Modal Data

NIR, thermal, and depth imaging provide multiple cues that can be used to identify
PAs and enhance their detection. In this scenario, however, there is a requirement for
additional hardware to be integrated with the FR system. As a consequence, mobile
devices are limited to using RGB-based FPAD models due to the lack of multi-modal
sensors. In recent years, mobile devices have become equipped with LiDAR sen-
sors. The authors of [182] have developed a multi-modal dataset that incorporates
LiDAR images. Among the other multi-modal FAS datasets is Echoface-Spoof [146],
which contains acoustic data recorded using inbuilt acoustic sensors of mobile de-
vices. These novel multi-modal datasets offer a promising avenue for enhancing FPAD
and its generalization. Considering the fact that sensors are now being incorporated
into mobile devices, there is still room for further exploration of multi-modal FPAD in
order to enhance generalisation.

Advancing FPAD with the Power of Vision Transformers

The Vision Transformer (ViT) model [239] is a deep learning model that is based on
the Transformer architecture. It was originally developed for Natural Language Pro-
cessing (NLP) applications but has recently been widely applied to Computer Vision
tasks. The introduction of ViT for image classification has also had a significant impact
on the FPAD research community. A ViT model can extract meaningful features from
a face image or video by treating the input as a series of tokens and processing them
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using the Transformer architecture. A significant amount of research has been con-
ducted recently using ViT to address PA detection in FR systems [240, 183, 241]. The
authors of [242] fine-tuned ViTs with FAS datasets, and compared their cross-dataset
performance with other deep models, including ResNet-101 and DenseNet-161. Ac-
cording to the results, ViTs have the potential to improve FPAD performance and gen-
eralisation. It is important to note, however, that vision transformers require a greater
amount of computational power as compared to deep pre-trained models. It is for this
reason that the authors of [243] used the lightweight but efficient transformer model
MobileViT [244] in order to address FPAD. The Mobile ViT module combines convo-
lution and transformer functions to capture local and global information in an efficient
manner. As a result, this shallow model can be used effectively as a visual translator
on edge devices. In this regard, ViT models represent a high potential for future FPAD
research.

Redefining Security: Generative AI and LLMs in FPAD

The influence of Large Language Models (LLM) and generative AI has extended be-
yond natural language processing tasks to contribute to vision-based tasks [245, 246].
As a result, advances in computer vision and multimodal AI have been made due
to their ability to enable cross-modal understanding, data augmentation, content ma-
nipulation, and enhanced search capabilities, among other uses. Vision-based tasks
continue to be developed and innovated as a result of these technologies. There is po-
tential for them to be used both by attackers and by defenders in the fields of security
and biometric identification [247, 248]. Recently, natural language-inspired processing
was used to improve FPAD [249]. It was also shown that vision language pre-trained
(VLP) models could improve feature learning to achieve generalisation [149] suggest-
ing the possibility of further improvement in FPAD by using prompt engineering. As a
result of the recent advancements, it is important to investigate how Generative AI and
Large Language Models are altering the world of security [250], particularly in FPAD.

Crafting More Diversified Data Sets with Synthetic Samples

The variance present in a dataset is of utmost importance when it comes to the per-
formance and generalization of FPAD. In an ideal scenario, the training dataset should
display variance in various aspects such as attacks, background settings, illumina-
tion, size, ethnicity, gender, and resolution. However, the existing public datasets are
limited in their variance of these factors, which in turn affects the FPAD performance
negatively. Recent research [251] has demonstrated that a more diverse dataset can
be created using image synthesis, which can help overcome the imbalances present
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in gender [252, 253], ethnicity [254, 255], and fairness [256]. Synthetic visual data
creation techniques [257] can aid in creating artificial modalities and address issues
such as privacy concerns.

Fusion: Exploring New Frontiers

The thesis proposed a methodology that combined deep features with hand-crafted
features, but there are additional possibilities for exploring fusion in the context of
FPAD. For instance, task-specific features can be extracted from RGB datasets using
pre-trained models, while domain-specific features can be extracted from correspond-
ing images of other modalities. The pre-trained models would need to be fine-tuned
appropriately. By combining these different cues, fusion has the potential to improve
both PA detection and generalization. Additionally, fusion can be extended beyond
pre-trained deep models by combining them with vision transformers.

7.3 Conclusion

As new and advanced presentation attacks continue to emerge, it is crucial to create
face presentation attack detection techniques that are both efficient and adaptable, in
order to maintain the credibility of face recognition systems in security applications.
This thesis demonstrates that by leveraging deep learning models to extract appropri-
ate features, it is possible to substantially improve the generalization of attack detec-
tion. Moreover, maximizing the variability of the training dataset is a critical factor in
determining the performance of the detection method. In this way, the power of deep
learning can be harnessed to unmask imposters in front of security systems.
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