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ABSTRACT 

An estimated 2,500 offshore decommissioning projects are expected to be 

completed between 2018 and 2040 with significant accompanying challenges.  

In this research, a decision model for decommissioning offshore platforms is 

developed. The decommissioning decision model (DDM) aids logical 

determination of the optimal option for decommissioning a platform through 

a multicriteria decision analysis of the considered options with respect to 

safety, cost, environmental impact, technical feasibility, and public 

perception. It synthesizes information about a platform’s features with expert 

opinion to identify the best option for decommissioning the platform from a 

list of available options. It also facilitates the progressive integration of 

historical data to replace subjective human opinion and improve the quality 

of decision-making as this becomes available.  

A case-study approach was used to demonstrate the DDM’s applicability with 

information from an industry survey of decommissioning practitioners. Five 

decommissioning options were considered for the case study platform, and 

these were evaluated with a hybrid of Likert scale and Analytic Hierarchy 

Process (AHP). Using this technique, the optimal option for decommissioning 

the case study was determined with a 60% efficiency savings in time taken 

to complete the analysis as compared to the traditional AHP process. Results 

showed that partial removal is the preferred option for the case study, and 

the platform features with high relevance to options selection are substructure 

weight, water depth and age. Moreso, respondents from the North Sea were 

observed to be more averse to leaving platform materials in place as 

compared to people from Offshore USA, Africa, and Asian Seas. These findings 

were seen to agree with literature and industry practice through a 

comprehensive validation process. Thus, evidencing the DDM’s flexibility and 

robustness and making a case for its industry adoption. 

After its validation, the DDM’s capability to support integration of historical 

data was investigated with the aid of a prediction model for estimating the 

costs of using different options for decommissioning offshore platforms. This 
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costing model was developed by applying machine learning regression to 

historical decommissioning cost data. The model predicts decommissioning 

options costs for five different scenarios with reasonable accuracy as indicated 

by an r-squared value of 0.935, implying that it is reliable for predicting 

decommissioning costs. It was used to predict decommissioning options costs 

for the case study. These costs were then integrated into the DDM to replace 

the input data for cost criterion as obtained from the survey. 

The models developed in this research improve upon the existing works in 

decommissioning optimisation. Industry adoption of the decision model will 

result to significant reduction of time, resources and efforts spent in decision-

making during decommissioning. By acting as an unbiased basis for justifying 

the choice of a decommissioning option for an offshore asset, the DDM 

mitigates the traditional conflict between stakeholders of decommissioning 

projects. The costing model aids early estimation of decommissioning costs 

for budgeting, asset trading and other preliminary cost evaluation purposes 

prior to detailed engineering cost estimation. Therefore, both models 

represent a significant contribution towards the advancement of the current 

offshore decommissioning practice. 

Keywords: Decommissioning, Offshore platforms, AHP, Multicriteria decision 

analysis, Option selection, Decision model, Costing model, Machine learning.
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Chapter 1 : INTRODUCTION 

1.1. Background 

Offshore platforms that are used for petroleum exploration play a crucial role 

in meeting the global energy need. They are situated in locations across fifty-

three countries worldwide as shown in Figure 1.1 and have an average life 

cycle ranging between 20-50 years (Statista 2018; Bernstein 2015). After this 

operational period and barring any life-extension strategy, the platform 

requires to be decommissioned. 

 

* Numbers exclude pipelines and smaller subsea structures 

Figure 1.1: Worldwide distribution of major* offshore oil and gas structures. 

(Sommer et al. 2019) 

The decommissioning sequence comprises of all activities conducted from the 

cessation of production from the platform through to its final disposal. This 

process is more complex and capital-intensive for offshore platforms as 

compared to their onshore counterparts and its planning can take over two 

years. 

The concept of decommissioning is broad and multi-faceted. Fam et al. (2018) 

performed an extensive review of decommissioning in several countries and 

pooled the findings together to describe decommissioning as a process which 
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occurs in the final stage of the life cycle of an offshore structure, and entails 

closing the structure through methods which give due consideration to 

monetary costs, convenience to humans and wellbeing of the environment. In 

addition, Shen et al. (2017) explained that decommissioning is the process of 

planning, gaining approval, and implementing the removal, disposal, or reuse 

of an offshore hydrocarbon facility when its use is no longer beneficial. 

Decommissioning has also been described as a complex undertaking by the 

operator of an offshore hydrocarbon structure which involves planning and 

implementing the procedure for dealing with disused structure (Na et al. 

2017). These perspectives on decommissioning provide insight to several 

aspects of the process including its timing, justification, and purpose.  

Decommissioning can be defined as a process which entails all activities 

carried out at the end of the active lifetime of a platform, with the intent of 

remediating incurred adverse consequences, and preventing potential 

unwanted impacts which might arise from the operational use of the platform. 

Offshore decommissioning is a dynamic and rapidly evolving aspect of the 

petroleum industry with varying legislations across different offshore regions. 

In the U.S. state of California for example, the regulations requiring the 

removal of all parts of offshore production facilities alongside any associated 

infrastructure has been relaxed to allow for reuse for other purposes after 

topsides removal (Bressler and Bernstein 2015). This contrasts with the more 

stringent regulations in the UK where it is rare to find an offshore platform 

that has been decommissioned by being converted to a different use (OGUK 

2017). In Malaysia, the government has picked interest in reefing alternative 

for offshore platforms following the successful toppling of the BARAM-8 

platform to create an artificial reef (Cheng et al. 2017). Bressler and Bernstein 

(2015) attributed the variations in decommissioning regulations to 

technological advances in aspects such as cutting and lifting capacity of 

machinery, but this has also been demonstrated to be strongly influenced by 

the attitude of the public (Jørgensen 2012). Moreso, the potential adverse 

impacts of decommissioning offshore platforms tend to be more severe than 

those of their onshore counterparts (Hall, João. and Knapp 2020). 
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According to International Energy Agency, IEA (2018), there has been a 

significant increase in global decommissioning activity levels. Factors driving 

this trend include the general drop in oil price and technological advancements 

(Palandro and Aziz 2018).  

In the Gulf of Mexico, there has been a rapid increase in decommissioning 

activity such that, as of 2018, about 40% of all decommissioning in the region 

have taken place in the last ten years, and at rates which far surpass that of 

platform installation (Kaiser and Narra 2018). This mature basin in which 

production operations began in 1947, had 108 offshore structures 

decommissioned in 2017 whereas only one structure was installed in the same 

period (Kaiser and Narra 2018). In California alone, 27 offshore platforms are 

projected to require decommissioning before 2030 (Cantle and Bernstein 

2015).  

Another location experiencing a spike in decommissioning activities is the 

North Sea, a mature basin with an estimate of about 1,300 offshore platforms 

and a history of offshore exploration that dates to the early 1960s (OSPAR 

2019). For example, an excess of six hundred decommissioning projects were 

estimated to have been completed in this location between 2016 and 2021 

(Offshore Engineer 2016). The decommissioning-related financial burden to 

be borne by field operators and government in the UK is estimated to be 

approximately £40 billion by 2040 (Murray et al. 2018). Similarly, the 

estimated cost of decommissioning all the existing offshore assets in the UK 

Continental Shelf alone is currently estimated to be £51 billion (OGA 2019).  

The IEA report quoted earlier forecasts that there will be over 2,500 offshore 

decommissioning projects between 2018 and 2040 as production platforms 

approach the end of their operational lifetimes. Furthermore, the nature of 

these projects is going to become increasingly complex, shifting from the 

conventional shallow water steel structures to larger and more technically 

challenging platforms in deeper water. This translates to higher costs 

especially as these diverse projects involve platforms which have individual 

unique characteristics (Kaiser and Narra 2018).  
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It is almost inevitable that the petroleum industry will be adversely affected 

by the offshore decommissioning challenge, especially in lieu of the exigent 

nature of this challenge. The situation is further complicated by several factors 

such as the rising concerns for environmental preservation, complexity and 

uniqueness of each project, high attendant financial burden, and stringent 

regulatory regimes. Indeed, a significant proportion of the global active 

offshore structures are either operating beyond or approaching the end of 

their design life (Ars and Rios 2017).  

A report by IHS Markit predicts that the global yearly cost expended on 

decommissioning projects will increase from approximately $2.4 billion in 

2015, to $13 billion per year by 2040, an increase of over 500% (Offshore 

Engineer 2016). The report also forecasts about two thousand offshore 

decommissioning projects between 2021 and 2040 with the total expenditure 

estimated at $210 billion.  

Despite being capital-intensive, decommissioning projects deliver little or no 

return on investment as compared to other phases of an oil and gas field life 

cycle as shown in Figure 1.2. The figure shows the typical profitability of 

distinct phases of the lifecycle of a hydrocarbon asset. It indicates that the 

profitability of the field peaks after development but falls to zero at the 

decommissioning stage which occurs at the end of the lifecycle. 
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Figure 1.2: Typical stages in the life cycle of an oil and gas field (Adapted 

from Lakhal et al. 2009) 

As stated in Offshore Engineer (2016) “The effective decommissioning of 

offshore platforms, subsea wells, and related assets is one of the most 

important business challenges facing the oil and gas industry today and, in 

the future”. The huge costs and apparent adverse consequences that 

accompany decommissioning projects necessitate that these projects be 

optimised or executed as effectively as possible. Thus, there is a pressing 

need for innovations and tools to optimise decommissioning projects by 

improving the efficiency of carrying out these projects, and consequently 

driving cost savings. 

1.2. Research Justification 

There are several options for decommissioning a platform and using a 

suboptimal option for a decommissioning project can result to adverse 

consequences. Potential victims of these consequences include the asset 

owners (monetary loss, physical harm to employees, and reputational 

damage), environment (pollution, loss of fish stocks and marine communities, 
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climate change), and public (loss of recreational site, tax, impairment to 

trawling and other fishing activities, lower navigational access). Thereby 

making decommissioning option selection a high-stake decision. This decision 

is often the prerogative of asset owners, although not exclusively, as external 

entities such as the government and the public are important stakeholders of 

the project.  The government is responsible for approving the selected 

decommissioning option and this often requires that the asset owner can 

evidence that the option selection followed a thoroughly scientific and logical 

assessment process. The public typically expects return to a clear seabed after 

operations and have the potential to push back on even government-approved 

decisions if they perceive that the decision-making process is flawed (Owen 

and Rice 1999). Therefore, a “robust and transparent decision-making process 

is essential in developing public trust and acceptance of any decommissioning 

solution that leaves materials in situ.” (Nuffel et al. 2022). 

Platform decommissioning option selection represents a complex decision-

making problem due to the existence of several decommissioning options and 

severe consequences that can arise from using a suboptimal decommissioning 

option for a project (Andrawus et al 2009; Guevara 1998). Hence, due 

diligence by project stakeholders in identifying a decommissioning option 

which results in the best outcome is important. This typically entails complex 

trade-offs between specified decision criteria to identify an option likely to 

result in the overall most positive outcome.  

The challenge in dealing with such a multi-criteria problem arises primarily 

because the decision criteria often conflict with each other (Jørgensen 2012; 

Wilkinson et al. 2016; Shaw, Seares and Newman 2018). For example, the 

safest option might be one with the worst environmental impact or the 

cheapest option can also have a lot of associated safety risks. In addition, 

care must be taken to account for all influencing factors while arriving at a 

decision as an inadequate criteria/sub-criteria scope will likely result to 

backlashes from certain stakeholder groups and correcting these can be either 

expensive or impossible. For example, Shell suffered reputational damage 

during the Brent Spar controversy and eventually had to dismantle the Brent 
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platform on land, resulting to an additional cost in the range of £20M to £80M 

(Owen and Rice 1999). The company appeared to have underestimated the 

strength of public perception when it decided that deep-sea disposal was the 

best option for decommissioning the structure after scientific studies 

(Jørgensen 2012). This highlights the need for a decision support tool in the 

form of a decision model which eases the complexities of decommissioning 

decision-making through a logical process. A decision model comprises a 

network of interconnected decisions, information and knowledge which 

represents a repeatable decision-making approach. It supports effective 

decision-making by providing a way to “visualize the sequences of events that 

can occur following alternative decisions or actions in a logical framework, as 

well as the outcomes associated with each possible pathway” (Kuntz et al. 

2013). 

Options selection has been identified as one of the key decision-making 

problems encountered when decommissioning an offshore platform, alongside 

selection of well abandonment technique and subsea structure 

decommissioning methodology (TSB 2016a; Vrålstad et al. 2019; Vidal et al 

2022). Gourvenec (2018) suggests that the solution to this problem is likely 

to exist in the form of a consistent and reusable procedure for collecting and 

synthesizing decommissioning data in a streamlined manner and using a 

transdisciplinary approach. Accurate cost estimation is also crucial to the 

success of a decommissioning project and has a large bearing on the option 

that will be adopted. Resolving the current challenges with decommissioning 

project costing requires the combination of existing knowledge with 

mathematical techniques through bespoke cost estimation approaches 

(Ahiaga-Dagbui et al. 2017). Therefore, development of decision support for 

addressing these two issues translates to a significant contribution towards 

decommissioning projects optimisation. 
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1.3. Aim and Objectives 

This research aims to develop decision support for assisting decision-makers 

to determine the best available option for decommissioning their offshore 

platform. To achieve this aim, the specific objectives are as follows:  

i. To develop a decision model for identifying the best decommissioning 

option for an offshore platform with the aid of multicriteria decision 

analysis. 

ii. To investigate the applicability of the developed decision model by 

using it to evaluate decommissioning options for a case study platform. 

iii. To investigate the validity of the developed decision model and results 

obtained from its application to the case study platform. 

iv. To develop a decommissioning options costing model and integrate this 

into decommissioning decision-making. 

 

1.4. Research Context 

Decommissioning projects, just like every other project, comprises of a 

planning and an execution stage. These can be optimised using two main 

approaches, namely the planning-focused approach and execution-focused 

approach. The execution-focused approach to decommissioning optimisation 

entails seeking out innovative ideas to improve the coordination of human 

resources and equipment during decommissioning. Key considerations when 

taking this approach include effective personnel safety measures, efficient 

scheduling of activities, waste management, environmental friendliness of 

workflow and technological advancements (Bemment 2001; Decom North Sea 

2014; ABB 2015; Invernizzi et al. 2018; Hall, João and Knapp 2020). 

The planning-focused approach, on the other hand, ensures that high-quality 

decisions and choices are made while planning at the early stages of the 

decommissioning project management. Optimised decision-making during 

planning is tantamount to the success of decommissioning projects. Key 
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considerations of the planning-focused approach include budgeting, 

contractor (and equipment) selection, determination of project timeline, 

decommissioning option selection, and selection of a decommissioning 

methodology (Ferris and Tjea 2015; McCann, Henrion and Bernstein 2016; 

TSB 2016a; Cheng et al. 2017; Martins et al. 2020). This research adopts a 

planning-focused approach to decommissioning optimisation in that it is 

directed towards the decision-making stage of decommissioning project 

management. 

In terms of scope, fixed steel jacket-type platforms were adopted as the 

primary focus of this research. This platform type comprises over 80% of the 

global offshore platforms and there is more flexibility around their 

decommissioning options as compared to other platform types (Sarhan and 

Raslan 2021; OGUK 2022). In considering the platform, the analysis focuses 

on the topsides and substructure as these are the largest components of the 

structure. Decommissioning options for fixed steel jacket-type platforms 

include complete/partial removal to land/sea, toppling in place as artificial 

reef, reuse in another location, and leaving in place and repurposing for 

alternative use. 

1.5. Ethical Considerations 

Ethical considerations are an essential aspect of any research which involves 

participants such as this research. According to Resnik (2015), ethics can be 

understood from two perspectives; first as the norms for conduct that 

distinguish between acceptable and unacceptable behaviour but also as a 

method, procedure, or perspective for deciding how to act and for analysing 

complex problems and issues.  

Bell, Harley and Bryman (2022) classified ethical principles into harm to 

participants, lack of informed consent, invasion of privacy, and deception. 

These issues require consideration in every research but are particularly 

crucial when human beings or animals are the subject of the research and 

when personal data is involved because usage of information of such nature 

must comply with data protection regulations (Voigt and von dem Bussche 
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2017). However, the subject of this research is a theoretical case study 

platform and although expert opinion is obtained from individuals via the 

survey, no personal data were collected. Hence there were no attendant 

privacy or confidentiality issues. 

The only ethical issue that was encountered during the conduction of this 

research related to the handling of information obtained from the online 

survey of decommissioning experts. The survey was structured such that the 

responses were anonymous, and explicit consent of the respondents was first 

obtained to ensure that no confidentiality rights were infringed upon. 

Furthermore, the questionnaire was hosted on a European Union General Data 

Protection Regulation compliant online platform with adequate protective 

measures taken to ensure privacy when analysing the data.  

Lastly, precaution was applied in designing the survey questionnaire in line 

with the following guidelines from ALHababi (2015). 

i. Participants must understand the goal of the research, purpose of the 

research, the nature of their involvement, length of time required, and 

what will be done with their responses. 

ii. Participants must be explicitly informed that involvement is voluntary, 

and they can withdraw at any time. 

iii. Privacy and confidentiality of data and participants must not be 

violated.  

iv. Participants must not be deceived, and information must either be 

explicitly stated or implicitly defined. 

v. The location of the research must be explicitly stated. 

1.6. Thesis Structure and Organisation 

This thesis report presents all aspects of the research conducted towards the 

achievement of the research objectives in ten chapters. 

CHAPTER ONE: This chapter provides an overview of offshore 

decommissioning and justification for the research. It also highlights the 

research aim and objectives. Furthermore, it delineates the research by 
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outlining its context and limitations. The chapter concludes by discussing the 

ethical considerations for the research. 

CHAPTER TWO: The literature review chapter presents a detailed discussion 

of the current decommissioning practice in the offshore industry. It begins 

broadly by describing offshore structures and their components before 

narrowing into decommissioning of offshore platforms with particular 

emphasis on procedure, existing regulations, and options for carrying out such 

projects. This is followed by a critical review of existing works in evaluation of 

decommissioning options to identify the decision criteria to be adopted for 

options evaluation and establish the foundation for developing a 

decommissioning decision model. Finally, the application of a multi-criteria 

decision analysis technique called the Analytic Hierarchy Process (AHP) to 

offshore decommissioning is discussed.  

CHAPTER THREE: Following the findings from Chapter two, this chapter 

outlines the plan and procedure for achieving the research aim and objectives. 

It presents the research approach, design, strategies, and data analysis 

techniques used in this work and the justification for their adoption.  

CHAPTER FOUR: This chapter describes the development of the 

decommissioning decision model (DDM) using the methodology presented in 

Chapter three. It presents the model’s general framework and detailed design 

for each of its four constituent phases. Lastly, the benefits envisaged from 

industry adoption of the decision model are highlighted. 

CHAPTER FIVE: This chapter introduces the theoretical case study used in this 

research to demonstrate the applicability of the DDM developed in Chapter 

four. It examines the regional context of the case study platform and provides 

information about the platform’s physical features. The chapter also presents 

the application of the DDM to the case study and the main results from 

evaluating decommissioning options for the case study platform using 

information from a survey of decommissioning practitioners as input. It 

concludes by discussing the use of the survey to prioritise and rank platform 

features in order of their relevance to decommissioning options selection. 
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CHAPTER SIX: This chapter investigates the validity of the DDM and results 

of its application to the case study as presented in Chapter five. The validation 

specifically examines the survey input data, model logical structure, and 

accuracy of model results. The outcomes of these endeavours are also 

discussed. 

CHAPTER SEVEN: This chapter describes the integration of historical data into 

decommissioning decision-making. It discusses the use of mathematical 

modelling to relate decommissioning options costs to the prioritised platform 

features identified from the survey as reported in Chapter five. The chapter 

concludes by presenting a methodology for decommissioning options costing 

from historical data. 

CHAPTER EIGHT: This chapter presents the development of a 

decommissioning options costing model from machine learning, secondary 

decommissioning cost data and prioritized platform features. After its 

development, the model is used to forecast the decommissioning options 

costs for the case study platform. This is then integrated into the DDM in 

replacement of subjective survey input data to improve accuracy. 

CHAPTER NINE: This chapter presents the research conclusion and its wider 

impacts along with recommendations for future work. 
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Chapter 2 : LITERATURE REVIEW 

Existing literature pertinent to formulating the research aim and objectives 

are reviewed in this chapter.  

The chapter begins by describing offshore structures and the regulations and 

procedure for their removal. This is followed by a discussion of the options for 

decommissioning offshore platforms. Subsequently, the applicable decision 

criteria and key desirable capabilities of a fit-for-purpose decommissioning 

decision model is established from critically reviewing existing works in the 

domain of decommissioning options evaluation. The last section introduces a 

Multicriteria Decision Analysis technique called the Analytic Hierarchy Process 

and highlights its suitability for decommissioning decision-making. 

2.1. Offshore Structures  

An offshore structure or platform is a large marine facility with components 

which enable the production, processing, and storage of petroleum resources 

from reservoirs beneath the seabed. The main material composition of 

offshore structures is steel, though some older platforms have a base 

structure made of reinforced concrete. These structures are globally 

distributed. Since 1947, an excess of 7,500 platforms have been installed in 

several offshore locations across fifty-three countries and in water depths up 

to 1,850 meters (Manjunatha, Sathish and Sahana 2016; Statista 2018). 

Although the function, size, and configuration of these structures vary widely, 

and no general descriptions can encompass all platform types, most comprise 

of two major components namely topsides or deck, and substructure. 

2.1.1. Types of Offshore Platforms 

There are different types of offshore platforms as shown in Figure 2.1 and 

these are broadly classified as fixed or mobile depending on their mobility 

when in use (Bull and Love 2019). However, this research focuses on the 

decommissioning of fixed platforms because their removal presents the 

greatest difficulty, and they constitute most offshore installations in the world 

(Decom North Sea 2014). 
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Figure 2.1: Types of offshore platforms (Adapted from Strukts 2012) 

Fixed platforms are further sub-divided into fixed steel jacket platform and 

concrete gravity-based platforms depending on the material composition of 

their substructure or section which is anchored to the seabed (Lawrence and 

Fernandes 2022). Steel jacket platforms are drilled into the seabed using piles 

while gravity-based platforms rest on the seabed and are held in place by the 

weight of the structure. 

The types of fixed platform and their main components, the topsides, and the 

substructure, are illustrated in Figure 2.2. These components are further 

discussed below. 
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Figure 2.2: Components of an offshore platform (Adapted from Rachain 2017) 

2.1.1.1. Topsides 

Topsides comprise of all facilities which sit on the substructure of the platform 

and above the water level including the living quarters for accommodating rig 

personnel and the equipment used for drilling and processing hydrocarbon 

from the reservoir. It is made up of prefabricated modules which are 

assembled on either land or sea depending on the available offshore lifting 

capability.  

The topsides of most offshore platforms weigh between 1,000 to 30,000 

tonnes and their removal during decommissioning is a complex operation as 

shown in Figure 2.3. Nevertheless, this is a compulsory requirement in most 

offshore regions with well-defined decommissioning guidelines including the 

North Sea and Gulf of Mexico (Fam et al. 2018). The North-West Hutton 

topsides, which was one of the largest in the North Sea, weighed about 20,000 

tonnes as at the time of its decommissioning (Jee 2014). 
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Figure 2.3: Removal of the Welland platform topsides (Nixon 2019) 

2.1.1.2. Substructure 

Substructure refers to the component that directly supports the topsides of 

an offshore platform. The design of a substructure is dependent on several 

factors including the environmental condition of its target location, water 

depth, capacity of the topsides it is to support, average sea wave heights, 

expected life span (Chandrasekaran 2018). The substructure of a fixed 

offshore platform can be classified as either concrete gravity based or steel-

jacket type depending on the nature of its constituent material. 

Concrete Gravity Base (CGB) structures are large, reinforced structures that 

have concrete as the main make-up material and rest firmly of the ocean floor 

primarily due to their own weight. The decommissioning of this platform 

component poses a greater challenge than that of their steel jacket 

counterpart due to their massive weights. Difficulties encountered in such 

decommissioning projects are often due to structural uncertainties, buoyancy, 

and manner of structural disintegration during removal operation.  
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Removal of CGB structures during decommissioning is not a compulsory 

regulatory requirement in some regions. The Oslo and Paris (OSPAR) 

regulation which applies to the North Sea region specifies that operators can 

apply for a derogation case during the decommissioning of gravity-based 

structures. The Maureen and Frigg platforms which were decommissioned in 

year 2000 and 2003 respectively are examples of recent decommissioning 

projects involving concrete gravity-based structures. In both cases, the 

platforms were left in place after removal of all toxic substances (Broughton, 

Davies and Green 2004). 

Fixed-steel jackets primarily consist of a lattice with steel circular hollow 

sections which are securely welded together and rigidly fixed to the ground 

with the aid of steel piles. This platform component rests on the ocean floor 

and extends to 10-20 feet (3.1-6.2 metres) above the water surface. It 

comprises of open pipe columns, or legs, interconnected by tubular bracing 

members, which make the jacket a rigid space frame structure able to support 

the weight of the topsides.  

Their sizes and weights vary depending on the water depth and the amount 

of deck work area required, however they are typically fabricated onshore in 

one piece and transported on a barge offshore, where they are installed. 

During jacket installation, tubular pilings are inserted through the legs of the 

jacket and driven into the ocean floor 200-400 feet (61-122 meters) to 

support the weight of the platform and resist the horizontal forces caused by 

current, wind, and waves. These pilings are connected to the jacket with a 

welded connection at the top of the jacket legs. Conductors extending from 

the deck are also installed through guides in the jacket and this component 

houses the wells that are drilled and completed to produce oil and gas from 

the underground reservoir.  

A substantial proportion of global offshore structures have a steel jacket base 

(OGUK 2018; Sarhan and Raslan 2021) with about 50% of all offshore 

platforms in the North Sea belonging to this category (ABB 2015). Figure 2.4 

is an illustration of the Murchison jacket, the heaviest decommissioned steel 
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jacket in the world to date with a weight of 27,600 tonnes and height of 166 

meters above the seabed. 

 

Figure 2.4: Schematics of Murchison platform (Adapted from CNRI 2013) 

The decommissioning of offshore platforms is a major operation which can 

span from 2 years for smaller structures up to 15 years for much larger 

structures in deep-water. This large scale of decommissioning projects 

necessitates that adequate care is taken to follow the correct procedure in 

their execution. 

2.2. Offshore Decommissioning Procedure 

The procedure for decommissioning offshore platforms can vary across 

projects depending on the platform’s unique characteristics and the governing 

legislative framework amongst other factors (Byrd, Miller and Wiese 2014). 
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Notwithstanding these variations which exist in terms of scale, scope, and 

complexity, decommissioning projects follow a similar procedure. 

In general, the major stages of any decommissioning project can be 

summarised from (Byrd, Miller and Wiese 2014; Saeed 2016; Fam et al. 2018; 

OGUK 2022) and include 

i. Initial analysis and planning  

ii. Regulatory approval 

iii. Cessation of production 

iv. Well plugging and abandonment 

v. Platform preparation  

vi. Pipeline abandonment 

vii. Components’ removal 

viii. Site clearance and remediation 

ix. Post decommissioning monitoring. 

The nature of the last four stages depends on the decommissioning option 

selected for executing the project. Thus, adequate planning and 

documentation is required for the entire process. This is achieved using a 

decommissioning program; a document which details the field operator’s 

intended project plan for decommissioning a platform and is submitted to the 

regulatory body for approval 2-5 years before the commencement of 

decommissioning operations (Bureau Veritas 2018). 

Additionally, the selected option for decommissioning a fixed-steel jacket 

must be approved by the applicable regulatory regime in the location where 

the platform is situated before it can be used for executing the project. Thus, 

it is imperative to understand the nature of government regulations that are 

relevant to offshore decommissioning projects. 
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2.3. Decommissioning Regulations 

There are a wide range of national, regional, and global legislations that 

govern the decommissioning of offshore structures as shown in Table 2.1. 

Among these are fifteen regional conventions that apply to the environmental 

protection aspect of offshore decommissioning of which the Oslo and Paris 

Convention (OSPAR) is the convention overseeing the protection of the marine 

environment in the North Sea region (Saeed 2016). 

Table 2.1: Offshore decommissioning legislations (Adapted from IOGP 2017) 

Global Regional National 

United Nations 

Convention on the Law 

of the Sea 

OSPAR Convention United Kingdom 

Petroleum Act, Energy 

Act, etc. 

London Convention and 

Protocol 

Helsinki Convention United States of America 

National Fishing 

Enhancement Act 

International Maritime 

Organisation Guidelines 

Bucharest Convention  Norway Petroleum 

Activities Act, Pollution 

Control Act, etc. 

Geneva Convention on 

the Continental Shelf 

Barcelona Convention etc. 

 Abidjan Convention  

 etc.  

The reader is referred to IOGP (2017) for further details of the relevant 

decommissioning legislations as this information is outside the remit of this 

research. Nonetheless, a brief explanation of some of these regulations are 

provided below. 

2.3.1. International Maritime Organisation (IMO) 

Guidelines and Standards 

The IMO global standards were established in 1989 and require complete 

removal of all offshore structures installed at shallow water depth (<100 

meters) and having a substructure weighing below 4,000 tonnes (Al-Ghuribi 

et al. 2016). Partial removal is permitted for heavier structures in greater 

depths with the condition that not less than 55 meters of clear water is 
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provided, and the site is clearly marked to avoid potential adverse interference 

with navigation (Fam et al. 2018). The guidelines also specify that structures 

can remain on the sea, if permitted by the State, depending on the technical 

feasibility, potential environmental impact, cost, risks, and potential for reuse 

associated with its decommissioning, as determined from a case-by-case 

evaluation (Chandler et al. 2017). 

2.3.2. Oslo and Paris (OSPAR) Convention  

The OSPAR convention was established in 1992 as a merger between the Oslo 

Convention for the Prevention of Marine Dumping from Ships and Aircraft and 

the Paris Convention on Prevention of Marine Pollution from Land-based 

Sources (Saeed 2016). It came into force in 1998 and covers fifteen European 

countries including the United Kingdom and a maritime area containing about 

1,400 offshore installations as shown in Figure 2.5. This convention serves as 

the framework for protecting and conserving the North-East Atlantic which 

includes the North Sea (Enright and Boteler 2020). 
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Figure 2.5: Distribution of offshore installations in the OSPAR region (OSPAR 

2019) 
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In July 1998, the OSPAR Decision 98/3 act which bans the disposal of offshore 

structures at sea was adopted by OSPAR member countries (OSPAR 1998). 

Decision 98/3 is generally thought to have been shaped by the Brent Spar 

incident of 1995 in which Shell was prevented by an environmental activist 

group from decommissioning a platform with deep sea disposal option even 

though the decommissioning plan had been approved by the UK government 

(Lau 2018). 

The act specifies that 

i. The topsides of all installations must be returned to shore. 

ii. All steel installations with a jacket weight less than 10,000 tonnes in 

air must be completely removed for re-use, recycling, or final disposal 

on land. 

Individual countries can decide to be more stringent in their decommissioning 

legislation than the regional legislations to which they are a party. For 

example, the UK government stipulates that toppling and dumping of offshore 

installations is prohibited in its waters even though Decision 98/3 allows the 

disposal of concrete installations at a licensed deep-water site (BEIS 2018). 

From the above, it can be deduced that regulatory requirements are 

structured to ensure that operators make dedicated efforts to properly 

decommission their offshore facilities. McCann, Henrion and Bernstein (2016) 

observed that regulatory requirements encapsulate a host of issues including 

‘potential residual risk to animals and ecological processes from remaining 

debris; potential interference with natural ecosystem processes and potential 

risk of long-term pollution’. 

2.3.3. The United Nations Convention on the Law of the 

Sea (UNCLOS) 

The United Nations Convention on the Law of the Sea (UNCLOS) is an 

international treaty which was adopted in 1982 and came into force in 

November 1994 (Nordquist 2011). It is a widely accepted legislation which 

specifies the rights and responsibilities of countries in relation to their use of 
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water bodies, and institutes guidelines for responsible exploration and 

management of natural resources in the marine environment (IOGP 2017). 

UNCLOS is currently ratified by 167 United Nations member states and the 

European Union as shown in Figure 2.6. 

 

Figure 2.6: Status of countries with respect to UNCLOS adoption (IOGP 2017) 

UNCLOS is the first legislation to make provision for leaving some part of the 

structure behind on decommissioning (Fam et al. 2018). Article 60(3) of the 

treaty addresses the decommissioning of disused offshore structures without 

specifying their complete removal and mandates appropriate publicity on 

details of any incompletely removed structures, thus failing to impose an 

absolute obligation to remove offshore structures and consequently 

establishing the possibility of partial removal (IOGP 2017; Trevisanut 2020). 

The article also makes it compulsory for participating countries to comply with 

generally accepted decommissioning standards such as the IMO Guidelines 

which were originally soft laws (Klabbers 2017; Fam et al. 2018). This was 
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achieved by explicitly specifying that these standards are to govern 

decommissioning operations in countries that are a party to UNCLOS. 

There is no mention of pipelines or cables removal in UNCLOS but article 210 

of the legislation accentuates protection and preservation of the marine 

environment by requiring countries to prevent, reduce and control pollution 

of the marine environment which results from dumping (IOGP 2017; Fam et 

al. 2018). 

Having explored decommissioning regulations that oversee decommissioning 

projects, the different decommissioning options for executing these projects 

will be discussed in the subsequent section. 

2.4. Decommissioning Options 

The availability and acceptability of a decommissioning option depends on the 

condition and location of the offshore platform and applicable legislation 

(Truchon et al. 2015). Some characteristics of a platform that can be used to 

infer its condition include the type of construction, size, structural integrity, 

and distance to shore (APPEA 2016). 

Several options exist for decommissioning an offshore platform, but these can 

broadly be grouped into three main options namely leave in place, partial 

removal, and complete removal. 

2.4.1. Complete Removal 

Complete removal entails the entire removal of the offshore structure and 

remediation of the disturbed site. This is the default decommissioning option 

in regions such as the North Sea where the prevalent view is that complete 

removal of the platform will result to minimal negative impact on the marine 

environment and allow the ecosystem to return to its original conditions 

(Sommer et al. 2019). It is popularly accepted as the decommissioning option 

that best mitigates environmental and safety risks (Fowler et al. 2014; Al-

Ghuribi et al. 2016). This notion is captured in the precautionary principle 

which mandatorily requires, as much as is reasonably possible, the cleaning 
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up of the ocean after all human activities (McCann, Henrion and Bernstein 

2016). 

However, Fowler et al. (2018) notes that regulations that mandatorily require 

structure removal usually exist only as a legacy of past policy and have been 

a historical subject of conflict. There are scenarios where regaining the 

previous condition is impossible or not preferable. For such cases, removal of 

platforms may result to the loss of biological species and associated 

ecosystem and functions, thus having a detrimental impact on the 

environment (Lusseau, Paterson and Neilson 2016). Furthermore, complete 

platform removal is likely to always be the most financially expensive option 

and involves industrial activities which can cause environmental disturbance, 

generate substantial atmospheric emission of non-eco-friendly gases such as 

carbon, and result to loss of fish stocks (Fowler et al. 2014; Cantle and 

Bernstein 2015). 

2.4.2. Partial Removal 

Partial removal involves dismantling the installation and leaving some of the 

base matter in place. For regions under the IMO regulation, the part of the 

structure left in place must be such as to allow for at least 55 meters of clear 

water in order not to jeopardise the safety of other sea users. The removal of 

offshore platforms is usually a complex engineering activity due to their 

weight and size. Therefore, operators might opt to settle for this option due 

to technical difficulties and huge associated costs of complete removal 

(Chandler et al. 2017; Fam et al. 2018).  

McCann et al. (2017) analysed decommissioning options for Platform 

Harmony in the GOM and their results indicated that partial removal is better 

than complete removal if assessed only based on cost and environmental 

impact. The authors concluded that the choice between complete and partial 

removal is primarily dependent on how much importance the governing 

legislation places on strict compliance to lease agreement as compared to 

financial and environmental implication of the operation.  
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2.4.3. Leave in Place 

Leaving the platform in place is a decommissioning option which is often 

permissible in areas where there is considerable emphasis on conserving the 

marine environment. This option usually entails removal of the topsides and 

installation of navigational aids which is maintained for as long as the 

structure remains in place. For locations with calm water conditions, the 

components of the platform can act as an artificial reef and support entire 

ecosystems of living organisms (Macreadie, Fowler and Booth 2011). An 

offshore platform can also be left in place for the purpose of acting as a haven 

for threatened species, feeding site for predators, and breeding site for fish 

biomass including overfished species such as Sebastes paucispinis (Claisse et 

al. 2014; Coolen 2017; Fowler et al. 2018). Hence, this option is permissible 

in such regions as the Gulf of Mexico where mechanisms exist through which 

platforms serve as valuable ecological habitats that support localised food 

webs (Truchon et al. 2015). However, there might be stipulated maintenance 

and asset integrity requirements for platforms decommissioned using this 

option to mitigate any envisaged negative impacts. 

Furthermore, the platform can be adapted to serve a different purpose 

depending on its condition. Several alternative uses of disused offshore 

structures have been proposed such as 

• Renewable energy hub for power generation from wind, wave, and/or 

solar energy 

• Hub for space exploration 

• Site for aquaculture projects 

• Site for CO2 sequestration or gas storage 

• Prison or Military training facility. 

• Recreational facility such as hotel, tourism site, etc 

However, these reuse alternatives do not eliminate the ultimate need for 

removal because the platform will eventually lose its structural integrity over 
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time (McCann et al. 2017). Additionally, the decision to leave a structure in 

place is extremely controversial and has been the subject of debate in most 

parts of the world (Jørgensen 2012; Fowler et al. 2014). 

2.5. Review of Decommissioning Options Evaluation  

Globally, a wide range of approaches exist for analysing the risks, benefits 

and trade-offs involved in selecting a suitable decommissioning option. The 

set of criteria used to evaluate decommissioning options is critical to the 

quality of decision-making as it forms the basis for judgement. It should cover 

all known aspects of the decommissioning operation and have criteria which 

are individually holistic, independent, and assessable with either data or 

expert judgement (Fowler et al. 2014). 

Stakeholders in the assessments of the suitability of any chosen 

decommissioning option includes government representatives, operating 

companies, and the public (Bressler and Bernstein 2015). Owing to the 

difference in values and perspectives of these stakeholders, the decision to 

adopt an option for the decommissioning operation often involves complex 

and contentious trade-offs (Fowler et al. 2014; McCann, Henrion and 

Bernstein 2016). This requires a holistic evaluation of all the available 

decommissioning options with reference to some accepted decision criteria 

(Al-Ghuribi et al. 2016; Ahiaga-Dagbui et al. 2017). For any given structure, 

the suitability of a decommissioning option is dependent on its unique 

characteristics and immediate environment, hence no single decommissioning 

options will be optimal for all scenarios. As a result of this, decommissioning 

requires consideration on a case-by-case basis in which the most suitable 

option is chosen based on the structure’s unique decommissioning 

requirements and outcome of a formal assessment (Ekins, Vanner and 

Firebrace 2006).  

In regions with well-developed decommissioning regimes such as the Gulf of 

Mexico and the North Sea, there are frameworks used by operators to 

formalise the process for decommissioning options assessment. These 

frameworks contain sets of criteria that are deemed relevant to a 
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decommissioning project and can be implemented using decision-making 

approaches. They were investigated in this research work to identify the 

criteria that are relevant to choosing the option for decommissioning an 

offshore platform. 

2.6. Decommissioning Options Assessment 

Frameworks  

These are frameworks typically designed by the government body responsible 

for overseeing decommissioning projects in the region where the offshore 

structure is situated. The three most widely used assessment frameworks are 

Comparative Assessment, Net Environmental Benefit Analysis and Best 

Practical Environmental Option (Sommer et al. 2019). 

2.6.1. Best Practical Environmental Option 

Best practicable environmental option (BPEO) is a systematic procedure which 

involves the examination of all reasonable decommissioning options with 

specific reference to technical feasibility, environmental, risk and safety, 

costs, and public acceptance (Sommer et al. 2019). It is commonly practiced 

in Malaysia and other countries in the Asian region.  

BPEO provides a structured evaluation of decommissioning options by 

considering the project in five sections: jackets, cutting methods and depth, 

offshore pipelines, onshore pipelines, and seabed deposits. This evaluation is 

conducted at a high level to determine the removal option that best suits the 

platform under consideration through a clear decision-making process 

(Kanmkamnerd, Phanichtraiphop and Pornsakulsakdi 2016). The assessment 

is done both qualitatively and quantitatively with the findings utilised by both 

operators and regulators. BPEO also provides auditable traces to support 

decisions which is based on environmental considerations.  

However, there is limited guidance on the methodology used to conduct BPEO 

and its application is not well documented, thus it is prone to being 

misinterpreted (Palandro and Aziz 2018). Furthermore, there is likely to be 

challenges with adapting the assessment for scenarios where there is need 



30 

  

for a more detailed analysis due to its limited documentation and 

standardisation. 

2.6.2. Net Environmental Benefit Analysis 

Net Environmental Benefit Analysis (NEBA) is a framework for evaluating and 

quantitatively ranking the decommissioning options for a platform by 

considering ecosystem values and weighing the associated costs and net 

environmental benefits. The net environmental benefit of a decommissioning 

option depends on how much adverse/beneficial impact will potentially result 

from executing the project with the option, the duration required for the 

ecosystem to recover its baseline conditions, and the final condition 

afterwards.  

Use of NEBA requires adequate definition of the assessment scope, and 

ecological service areas (and metrics) that will independently represent 

aspects of the impact being assessed. The general methodology is to develop 

a NEBA model unique to the platform in which assessment results are 

presented as mean scores that reflect the difference between the service gains 

and service loss for each evaluated option as evaluated through the service 

areas (Kanmkamnerd, Phanichtraiphop and Pornsakulsakdi 2016; Palandro 

and Aziz 2018). NEBA is typically adopted in regions such as the Gulf of Mexico 

where all or part of the structure may be left in place provided that the 

operators can demonstrate that leaving the platform in place is more 

beneficial to the environment than removing it. It is also utilised in scenarios 

where there is a requirement to gain a more detailed understanding of how 

the decommissioning options will affect the environment. For example, the 

decommissioning options for the Bongtok platform in Thailand was assessed 

using NEBA despite the BPEO assessment results (Sommer et al. 2019).  

Nevertheless, the efficiency of NEBA as a decision-making tool is limited in 

that it is entirely based on environmental considerations. In the light of the 

multi-faceted nature of decommissioning decision-making, NEBA alone is 

insufficient for making a balanced judgement. Therefore, the framework is not 

sufficiently robust in terms of the set of criteria it considers.  
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2.6.3. Comparative Assessment 

Comparative Assessment (CA) is the assessment framework used in the UK 

Continental Shelf. It is a detailed process for assessing the impact of 

decommissioning options with reference to five main criteria as shown in Table 

2.2. Conducting this assessment is a mandatory requirement before a 

structure can be considered for derogation in the UKCS (OGUK 2015). The 

default option when using CA is that all installations will be completely 

removed as dictated by decision 98/3 (OSPAR 1998). 

Table 2.2: Main Decision Criteria and Sub-criteria used in Comparative 

Assessment  

Assessment Criteria Matters to Be Considered 

Safety Risk to personnel 

Risk to other users of the sea 

Risk to those on land 

Environmental Other environmental compartments 

(including emissions to the atmosphere) 

Energy/Resource consumption 

Other environmental consequences 

(including cumulative effects) 

Technical Risk of major project failure 

Societal Fisheries impact 

Amenities 

Communities 

Costs (Economic) Cost estimates 

As can be seen from Table 2.2, CA considers a more robust set of criteria in 

comparison to BPEO and NEBA. There are publicly accessible reports of its 

implementation and a worked guidance example to make it easier to use 

(Genesis and Catalyze 2015; GOV.UK 2022). In addition, it is flexible and can 

be applied to decommissioning decision-making across a wide range of 

complexities by being used alongside a multi-criteria decision analysis model 

(Ferris and Tjea 2015). 

Nevertheless, a critical evaluation of CA reveals that its use can be subjective 

in scenarios where the assessment criteria indicate that differing options are 
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most suitable for the decommissioning project e.g., societal consideration 

showing that complete removal is the best option whereas technical feasibility 

favours partial removal. The availability of several sub-criteria for each of the 

main criteria also means that operators can choose to focus on those sub-

criteria that favour a decommissioning option that is more convenient for 

them. More so, the Environmental Impact Assessment (EIA) used to evaluate 

the environmental criterion in CA often overlooks the potential ecosystem 

values of plants and animals which might have been developing at the base 

of the platform since its operational lifetime (Sommer et al. 2019). This 

undermines any positive environmental impact that the jacket may have by 

acting as a habitat. For example, during the decommissioning of the 

Murchison platform it was decided that no further investigation will be 

conducted even though the EIA had revealed the presence of fish biomass 

and large volumes of marine growth (CNRI 2013).  

Despite these issues, the CA framework is superior to BPEO and NEBA due to 

its robust criteria set, well-defined process and flexibility of application which 

makes it adaptable to different regions and range of complexities. Further, its 

superiority over other assessment frameworks has been acknowledged by 

several authors (Palandro and Aziz 2018; Tung 2020). 

Therefore, the decision criteria of the CA framework were adopted for 

evaluating decommissioning options in this research work with some 

modifications: 

i. The societal criterion is replaced with public perception due to the 

relevance of public opinion to decommissioning decision-making as 

demonstrated in the Brent Spar controversy (Jørgensen 2012). 

ii. The scope of the environmental criteria is broadened to facilitate a more 

complete evaluation that duly considers the ecosystem values of 

offshore platforms. 

iii. Additional sub-criteria from extensive literature review are included to 

the list of sub-criteria for Technical Feasibility and Cost criteria in Table 

2.2. 
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2.7. Decision Criteria 

Following the review of assessment frameworks in the preceding sections, five 

decision criteria were adopted for the assessment of decommissioning 

options. These are Safety, Environmental Impact, Technical Feasibility, Cost, 

and Public Perception. Further description of these criteria is subsequently 

presented. 

2.7.1. Safety 

Safety is a primary consideration in offshore decommissioning. It is a crucial 

aspect of the planning and implementation of all stages of the project 

irrespective of the size and location of the platform. Most regulatory regimes 

require operators to re-appraise the safety condition of the facility to be 

decommissioned before the work can be started. This is necessary because 

decommissioning activities present new and different hazards from those 

arising from the normal operation of the platform (Tsimplis, Dbouk and 

Weaver 2019). 

Safety considerations significantly dictate the suitability of a decommissioning 

option because the anticipated level of risk will vary depending on the selected 

course of action. Using this criterion to evaluate a decommissioning option 

requires an assessment of the safety risk to all personnel involved in the 

project as well as individuals who are likely to be exposed to risk from the 

successful completion of the work if decommissioning is executed with the 

option (SHELL 2017).  

A study of eight offshore decommissioning projects by Bemment (2001) 

revealed that leaving an offshore platform in place, or reusing it, is the overall 

safest decommissioning options and there are higher safety risks associated 

with complete removal options when compared to partial removal. Further 

analysis of the results also suggested that the risks associated with partial 

removal and toppling in place are similar. This is because leaving the platform 

in place only requires its effective monitoring whereas its removal involves 

various levels of hazardous activities such as those listed in Table 2.3.  
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Table 2.3: General safety concerns during decommissioning operations 

(OGUK 2017) 

Area of Concern Potential Source of Risk 

Lifting The substantial number of lifts and the 

uncertainties surrounding load paths and 

structural integrity 

Diving Significant diver intervention may be required to 

support extensive subsea cutting and lifting 

operations 

Cutting The thickness of the sections to be cut and 

number of cuttings required all increase the risk 

to personnel. 

Hazardous substances Legacy materials of construction and operations, 

as well as poisonous chemicals and other harmful 

products released during decommissioning 

activity, such as from hot work during dismantling 

Integrity Hidden flaws and structural degradation in aged 

facilities can lead to unforeseen safety threats. 

High levels of manual 

activity 

High numbers of personnel can be involved at all 

stages of the project, onshore and offshore, 

performing extensively manual tasks. The number 

of hours personnel spend offshore loosely 

correlate with the likelihood of harm. 

Transportation Accidents can happen while either loading the 

dismantled parts of the platform onto a sea vessel 

or unloading it onshore.  

Disposal Safety issues can arise from the burial, reuse or 

recycling of steel and other materials that make 

up the platform 

Safety can be measured either quantitatively, semi-quantitatively or 

qualitatively depending on the level of estimated risk, available data, and the 

complexity of the analysis (HSE UK 2013). Quantitative risk assessment 

methods such as annual Potential Loss of Life and Fatal Accident Rate yield 

more precise outputs however qualitative assessments can be used for cases 

where there is insufficient safety data.  
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2.7.2. Environmental Impact 

The environmental impact of a decommissioning option is a major factor that 

determines its suitability. Most legislations require operators to evaluate the 

environmental consequences of decommissioning their offshore platform 

hence this criterion is considered in BPEO, NEBA and CA. Though the scope 

and implication of findings from environmental assessments typically differ 

depending on the decommissioning context.  

There has been significant research in understanding the positive and 

negative environmental implications of decommissioning an offshore structure 

(Fowler et al. 2014, 2018; Truchon et al. 2015; Sommer et al. 2019). The 

ecosystem within which a platform exists can vary from the cold deep-sea 

environment of the North Sea to tropical shallow waters e.g., Southeast Asia. 

These differences in environmental factors lead to significant differences in 

the nature of the biological communities that develop around the platform 

over time.  

While most environmental studies have focused on understanding the 

relationship between marine ecosystems and offshore platforms which remain 

in the sea over time (Heery et al. 2017; Shaw, Seares and Newman 2018), 

adequate knowledge of the consequences of removing these platforms is yet 

to be established (Fowler et al. 2018). This can be attributed to the fact that 

the removal of offshore structures is a new practice when compared to how 

long ago the installation of these structures began. 

Fowler et al. (2014) observed that the environmental implications of 

decommissioning options are likely to be examined less elaborately in regions 

where complete removal is mandatory than in regions where a range of 

decommissioning options is permissible. Consequently, there is a higher 

tendency to disregard aspects of the ecosystem which require further 

investigation while evaluating the environmental impact of decommissioning 

a North Sea platform when removal is compulsory. The EIA (Environmental 

Impact Assessment) which is conducted as part of decommissioning planning 

in the UKCS provides good insight into the changes that will occur in the 
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environment because of using a decommissioning option, however it is often 

criticised for being overly simplistic and placing less importance on the 

continuity of the marine ecosystem that forms around the base of the platform 

during its operating lifetime (Anifowose et al. 2016; OPRED 2019). This 

inconsistency in depth and scope of environmental assessment highlights the 

need for cooperation between decommissioning stakeholders to better 

understand the influence of offshore platforms on the marine environment. 

A GOM-based environmental analysis by Truchon et al. (2015) indicated that 

environmental aspects which are most sensitive to the choice of 

decommissioning option are trophic interactions, dispersal, support of rare 

species and biodiversity. Similarly, Fowler et al. (2014) identified the most 

deterministic environmental aspects of decommissioning to be alteration of 

hydrodynamic regimes, habitat damage from scattering of debris, and 

smothering of soft-bottom communities. Other aspects of the environment 

that require consideration during decommissioning include energy usage, 

atmospheric emissions, and other forms of environmental pollution. 

2.7.3. Technical Feasibility 

The technical feasibility of a decommissioning option refers to the likelihood 

of using the option to successfully decommission an offshore platform. 

Technical feasibility is usually assessed qualitatively based on expert opinion 

from industry specialists which can be obtained through technical workshops 

or engineering studies organised by the owner of the platform to be 

decommissioned. It depends on many factors including existing technology 

and industry experience, physical condition of the platform, and proposed 

project execution plan.  

A good understanding of the likelihood of completing a decommissioning 

project in a desired manner with the aid of a selected decommissioning option 

is crucial when evaluating how that option compares to others. Several 

existing works have addressed aspects of the relationship between technical 

feasibility and the suitability of decommissioning alternatives. For example, 

Andrawus, Steel and Watson (2009) listed technical feasibility as one of the 
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criteria for assessing the suitability of a decommissioning option. Similarly, 

Na et al. (2017) highlighted logistic requirements such as availability of sea 

vessel for hire and feasibility of technology as a decision criterion in his 

analytic hierarchy process (AHP) model for evaluating decommissioning 

options. Also, Cheng et al. (2017) observed that it is often the case that only 

one vessel is used to carry the removed parts of the platform and further 

proposed a semi-automated 4D/5D Building Integrated Modelling approach to 

aid the efficient scheduling of activities during decommissioning project 

execution. These works demonstrate the relevance of technical feasibility, or 

aspects of it, to the selection of a suitable decommissioning option for a 

project. 

According to OGUK (2017), the main aspects of technology that influences the 

selection of a decommissioning option are offshore and subsea cutting and 

offshore lifting. Hence, the technical feasibility of a decommissioning option 

depends on the activities involved when using that option for the 

decommissioning project as determined from either engineering and technical 

studies or experience from past projects. Assessment of technical feasibility 

is achievable because most of the machinery (vessels and equipment) 

required for executing decommissioning projects, unless they are newly 

developed or emerging technology, will already have a track record. Technical 

data which comprises such records is likely to include equipment capabilities, 

environmental working envelope and station keeping methods, crew size, 

experience of executing similar activities and possible operational issues.  

Aspects of technical feasibility that were considered by BP while assessing 

decommissioning options for the Brent Field include complexity of option, 

novelty of equipment and procedure, reliability of equipment and vulnerability 

to weather issues (SHELL 2017). Further, the UK decommissioning guidelines 

suggests risk of major project failure, technology demands, availability, and 

track record as some of the sub-criteria for technical feasibility (OGUK 2015). 

Nonetheless, strategic engagement with the decommissioning supply chain 

and other operators is an integral part of understanding existing and new 
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technologies and techniques, and consequently adequately assessing the 

technical feasibility criterion. 

2.7.4. Public Perception 

Public perception refers to the beliefs and opinion of the masses about how a 

decommissioning project should be carried out. The diversity of people who 

make up the public is vast and includes the academia, fishermen, pressure 

groups, local community, and the media. Since the 1980s, the public has 

played an increasingly important and influential role in determining the 

appropriateness of decision that affect the society especially when there is a 

consensus opinion by its members (Almond and Esbester 2016). However, 

effectively communicating technical issues about the project to the public 

usually poses a challenge because of their limited understanding of the 

industry concepts. 

The low-trust relationship between the public and the energy sector is historic 

as evidenced by the findings from the global study conducted by Edelman 

Intelligence (2019) and shown in Figure 2.7. The energy sector’s 61% public 

trust level is the lowest when compared to the trust levels of 

Telecommunication, Healthcare, Technology, and other sectors. 

 

*Data used for this survey spreads across five years (2015-2019) 

Figure 2.7: Global public trust levels for different commercial sectors 

(Adapted from Edelman Intelligence 2019) 
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The result in Figure 2.7 primarily applies to the Oil and Gas industry because 

this is the core of the energy sector. Suggestions about how to manage public 

trust during decommissioning projects are subsequently briefly discussed.  

2.7.4.1. Management of Public Opinion During Decommissioning 

A decommissioning plan that meets the regulatory requirements can still be 

rejected if it is deemed by the public to be unacceptable. The Brent Spar 

controversy of 1995 demonstrates the dire consequences that can result when 

operators fail to effectively engage the public while making decisions 

pertaining to their decommissioning projects (Smith et al. 2019). Greenpeace, 

the environmental group that led the Brent Spar protest, also compelled the 

Norwegian government to reject a proposal by Esso to decommission the Odin 

jacket by toppling in situ to form an artificial reef. Additionally, plans to dump 

components of the North-East Frigg platform in the Norwegian Sea failed due 

to public opposition. In the end, both the Odin jacket and the Frigg platform 

were returned to shore for other uses (Shaw 1999). Following these incidents, 

operators have begun to increasingly incorporate public opinion in the 

decision-making process during decommissioning of their offshore assets 

(SHELL 2017).  

The modalities for managing public opinion and exchanging knowledge that 

pertains to offshore decommissioning are outlined in the literature (Cvitanovic 

et al. 2015; Wilkinson et al. 2016). Ignoring public opinion can mar the 

success of a decommissioning project by generating avoidable conflicts 

(Wilkinson et al. 2016). On the other hand, an approach that embraces 

cultural differences of all stakeholder groups can expedite the engagement 

process and ensure a smooth interaction between the parties involved 

(Cvitanovic et al. 2015).  

The results from a public survey in Australia indicated that protection of the 

environment is of highest priority to the public during decommissioning 

(Shaw, Seares and Newman 2018). Based on this, the public is more likely to 

favour the complete removal of an offshore platform over the option of leaving 

it in place despite the higher costs that this would incur. Though this stance 
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can be shifted if people are convinced about the benefits of leaving the 

platform in place as demonstrated in California’s adoption of rigs-to-reef 

programme (McCann et al. 2017).  

Nevertheless, both operators and the public are likely to benefit from further 

research into the development of decision models. Such models can be used 

by both technical and non-technical personnel to determine the most suitable 

decommissioning option for an offshore structure with a significant degree of 

confidence. 

2.7.5. Cost 

This refers to the financial burden that will be incurred by using a 

decommissioning option for a project. Accurate cost prediction is important to 

all stakeholders of the decommissioning project (Baxter 2016; Fowler et al. 

2018). However, the costs of decommissioning projects are often difficult to 

estimate due to the rapidly evolving nature of cutting and lifting technology 

(Cheng et al. 2017). In addition, determining the future costs of 

decommissioning projects is fraught with significant uncertainties. For 

example, the UK Oil and Gas Authority disclosed in 2019 that it expected 49% 

of the decommissioning cost estimates by operators in the region to be 

accurate to within -20% to +100% (NAO 2019). These uncertainties are 

mainly because operators will not incur majority of the costs for many years, 

by which time decommissioning technology, supply chain prices, and 

environmental regulations could all have changed significantly. Also, there is 

potential for some offshore assets to be reused for carbon capture usage and 

storage, for example, rather than being removed at end-of-life. Discounting 

is another possible means of reducing uncertainty in decommissioning cost 

estimation. But the dynamic nature of the supply chain and permissible 

decommissioning options make it challenging to determine appropriate 

discount rates for reducing decommissioning costs into a long-term cash flow. 

Offshore decommissioning costs vary across different regions due to several 

factors which include typical structure weights, weather and climatic 

conditions, depths per region and proximity to shore. Additionally, the type of 
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asset, existing legislative requirements and adopted decommissioning 

strategy can significantly contribute to cost variations in offshore 

decommissioning projects. The disparity in project costs is huge, ranging from 

$2 million for a simple fixed steel structure in shallow water situated in the 

GOM up to about $2 billion for a gravity-based platform weighing over 

200,000 tonnes installed in deep-water in the North Sea (Eke et al. 2021). 

Cost data of decommissioning projects is usually withheld by companies and 

treated as confidential information. In the UKCS, yearly cost estimates are 

compiled by the Oil and Gas Authority from information obtained through a 

nation-wide operators’ survey (OGA 2021). However, these are presented as 

high-level summaries which do not show the actual project costs.  

2.7.5.1. Existing Works in Decommissioning Cost Analysis 

Several research works have been directed towards the subject matter of 

decommissioning cost analysis and a chronicled review of these works provide 

a sound foundation for making contributions to the research area. 

Ekins, Vanner and Firebrace (2006) conducted a material and energy flow 

analysis for the decommissioning of a large fixed offshore structure in the 

North Sea which included estimation of the financial expenditures of 

undertaking the project under different scenarios. The authors considered 

three decommissioning scenarios; leave in situ, shallow disposal, and 

complete removal to shore. The costs of completely removing the platform’s 

topside and jacket were first obtained on a confidential basis from an 

operating company which had performed intensive studies on the offshore 

asset for the purpose of drafting a decommissioning programme. These costs 

were then multiplied by factors corresponding to the cost proportions for 

removal observed from the decommissioning cost estimate of a previous 

project to estimate costs of shallow disposal. The authors assumed that the 

leave in-situ scenario would attract no expenditure. Using this method to 

estimate the costs of different decommissioning options for a platform is 

beneficial when there is limited data available such as when cost of only one 

option is known. However, more accurate results are only achievable if there 
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is a means to obtain cost proportions of the activities that are involved in 

using the other options under consideration. Furthermore, the cost 

proportions are likely to be inaccurate if the platform being decommissioned 

has varying attributes like configuration, weight and location as compared to 

the platform from which the parallels are being drawn. 

In a similar work, Proserv Offshore (2009) conducted a decommissioning cost 

estimation study in the US Gulf of Mexico on behalf of the Minerals 

Management Service, an agency of the United States Department of the 

Interior that manages the nation's petroleum and other mineral resources in 

the outer continental shelf. Kaiser and Liu (2014) translated the cost data 

reported Proserv Offshore, with the aid of basic regression analysis, into 

generalized functional relations for estimating the costs of the various stages 

of decommissioning for 53 deep-water structures in the Gulf of Mexico. 

Different decommissioning stages and the platform features that serve as 

input to their cost estimation models in their work are shown in Table 8.1. 

Table 2.4: Platform Features used for cost estimation (Kaiser and Liu 2014) 

Decommissioning Stage Platform Feature used as Cost Factors 

Well plugging and 

abandonment 

Water depth, number of wells, rig/rig-less 

method 

Conductor severance and 

removal 

Water depth, number of conductors 

Pipeline decommissioning Water depth, diameter, length, and volume 

Umbilical and Flowline 

removal 

Water depth, length 

Riser removal Water depth 

Fixed Platform removal Water depth, number of piles 

Use of a parametric cost estimation technique like regression analysis is 

beneficial for reducing statistical data into a more compact form. It also 

provides an indication of the major factors that influence the project cost and 

the nature of these influences. However, basic regression analysis has been 

criticized for being too simplistic and inadequate for capturing finer details of 

complex systems such as decommissioning projects (Maxwell 1975). 
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Application of machine learning regression analysis is likely to perform better 

than basic regression analysis when solving such problems. 

In a related study, TSB Offshore leveraged on information collected from over 

ten years of experience and collaboration with field specialists in the GOM to 

develop algorithms for estimating the costs of the various tasks involved in 

decommissioning (Byrd, Miller and Wiese 2014). These estimates were then 

coded into a proprietary database software tool called the Platform 

Abandonment Estimation System (PAES). The tool receives the general 

descriptive information about the structure and produces an initial estimate 

of its decommissioning cost which can be further customized by a 

knowledgeable cost engineer. Figure 2.8 shows the variation of 

decommissioning costs with depth for a 4-piled platform as generated by the 

PAES tool.  

 

Figure 2.8: Complete removal cost variation with depth for a platform 

(Adapted from Byrd, Miller and Wiese 2014) 
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The accuracy of results from PAES is high and the primary source of 

discrepancies has been identified to be the quality of input information. 

Nevertheless, there are several limitations to using PAES. The costing 

algorithms used for its development are kept confidential hence the tool can 

be regarded, to a considerable extent, as a black box that provides little 

insight into the cost elements of decommissioning. Furthermore, the tool only 

provides cost estimates for decommissioning with the Complete Removal 

option with no consideration for other options. 

In the North Sea region, the Living North Sea Initiative (LiNSI) conducted a 

study in 2015 to estimate jacket removal costs for all platforms in the North 

Sea and assess the potential cost savings for alternative decommissioning 

options (LiNSI 2015). The man-hours and equipment directly involved in the 

process of jacket decommissioning were used as basis for their analysis. In 

addition to complete removal of jackets, their partial removal to 25 metres 

(depth of GOM rigs-to-reef programme) and 55 metres (cut-off depth from 

IMO guidelines) were considered. The analysis results were presented as cost 

ranges for distinct categories of jackets based on size and location. The LiNSI 

study shows that there is value to be realised from decommissioning options 

cost analysis in that it can provide project stakeholders with information for 

decision making and be used as input to government policy development. 

However, a limitation of this work is that it only focused on jacket structure 

and no consideration was given to other parts of the platform such as topsides 

and conductors, hence it is insufficient for estimating the full decommissioning 

project cost. Also, the use of cost ranges, though beneficial from the aspect 

of increasing the likelihood of obtaining accurate estimations, makes it 

challenging to determine the cost of decommissioning an individual platform. 

Hence, use of the cost estimates for assessing the cost of decommissioning 

an asset is limited. 

In a related work, Bressler and Bernstein (2015) used the Bureau of Safety 

and Environmental Enforcement cost estimates for complete removal of oil 

and gas platforms in offshore California (TSB 2016) to develop estimates for 
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partially removing the platforms in a bid to compare both decommissioning 

options. Partial removal is defined in Bressler and Bernstein (2015) as removal 

down to 85 feet below mean sea level with the upper jacket section left on 

the seabed beside the remaining portion as an artificial reef. The cost for this 

decommissioning option was estimated by identifying the differences in the 

option’s engineering procedure as compared to complete removal option and 

quantifying the change in cost due to these differences with inputs from 

engineers. Their results indicate that partially removing twenty-seven 

platforms will result to a 56% savings on the cost of their complete removal. 

However, it is difficult to verify the accuracy of their results as the platforms 

are yet to be decommissioned. Nevertheless, there is agreement between the 

authors and Smith and Byrd (2020) on the decommissioning phases where 

cost differences are likely to exist. This knowledge is adopted when deriving 

Partial Removal costs in this research. Further, the cost dataset they used is 

a reliable basis for estimating the costs of decommissioning with Complete 

Removal, especially as it intended to be updated at five-yearly intervals to 

account for changes in market conditions of the decommissioning industry 

(TSB 2016b). 

Decommissioning options cost analysis as performed by Bressler and 

Bernstein (2015) is more detailed and precise than that of LiNSI (2015) in 

that it makes use of exact cost values for the considered platforms. It also 

identifies the key platform attributes that determine the cost difference 

between complete and partial removal costs to be size and water depth of the 

structure. However, only one variant of the partial removal options was 

considered unlike the study by LiNSI (2015) which considered three variants, 

and replicating their analysis is challenging as this was performed using a 

proprietary software called PLATFORM®. Therefore, the work can be improved 

by expanding the cost analysis to a larger number of partial removal options 

and presenting the results in a readily accessible format with the aid of 

appropriate mathematical tools and techniques. 
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Ahiaga-Dagbui et al. (2017) interviewed individuals involved with 

decommissioning projects in the UKCS and found that error margins as high 

as 40% in forecasted versus actual budget figures was common. Similarly, a 

study of 40 decommissioning projects from 1994 to 2005 revealed that actual 

costs were typically about 12% higher than estimated costs (Henrion, 

Bernstein and Swamy 2015). The North-West Hutton decommissioning 

project cost £230 million at completion, a deviation of approximately 50% 

from the predicted value of £154 million (Jee 2014). These results interpret 

to complexities in decommissioning costing and highlight the need for 

innovation in this project aspect. 

Having defined the decision criteria, the next step is to review existing 

decision-making approaches for evaluating decommissioning options with 

reference to these criteria to determine which will be most suitable for a 

decommissioning project. 

2.8. Review of Approaches to Optimising 

Decommissioning Options Evaluation 

The application of mathematical and statistical techniques to decommissioning 

is understudied in comparison to other aspects of the offshore platform life 

cycle (Nishanth, John and Whyte 2016; Ahiaga-Dagbui et al. 2017). However, 

remarkable progress has been made in this area within the last decade due 

to the global increase in the number of platforms that require 

decommissioning and availability of data as more experience of implementing 

such projects is gained. 

Kaiser and Narra (2018) observed that there have been significant 

collaborative efforts to share knowledge from decommissioning projects. 

Several independent publications which describe offshore decommissioning 

operations in several regions are now available in the public domain (APPEA 

2016; Bureau Veritas 2018). Government is working towards cost reductions 

by promoting the sharing of decommissioning knowledge amongst operators 

(Bernstein 2015; OGA 2021). A web-based tool called Late Life Planning Portal 

was launched by Decom North Sea in 2017 to foster cooperation of regulators, 
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operators, and supply chain towards the improvement of decommissioning 

practice (Decom North Sea http://decomnorthsea.com/l2p2). These 

developments have resulted to rapid growth in decommissioning knowledge, 

thus fostering research in this domain. There has also been increased efforts 

towards optimising the decision-making process of evaluating 

decommissioning options to determine the best option for carrying out a 

decommissioning project. 

The approaches that have been proposed for evaluating decommissioning 

options can be broadly categorised into quantitative and mixed approaches 

depending on the nature of criteria they handle.  

2.8.1. Quantitative Approaches 

This comprises of decision-making approaches which only deal with 

quantifiable information about aspects of the decommissioning project to 

minimise subjectivity and bias in the obtained results (Nicolette, Travers and 

Price 2014). Quantitative approaches are desirable when measurable data is 

available and can be readily acquired. They yield results which can be clearly 

communicated, verified, and reproduced. However, the application of 

quantitative approaches to the evaluation of decommissioning options is 

limited by the unavailability of data to quantify several criteria used in 

assessing decommissioning options. Quantitative metrics is not fully 

developed for such criteria as technical feasibility and public perception. 

Hence, most studies that utilise this approach tend to focus on a few decision 

criteria. Furthermore, obtaining the required data for these models may be 

expensive and involve complex data gathering processes. 

2.8.1.1. Ecosystem-Based Management Assessment 

Truchon et al. (2015) developed an ecosystem-based management approach 

for evaluating decommissioning options for offshore platforms by analysing 

all interactions within the ecosystem where the platform is situated. In their 

work, a remotely operated video (ROV) study was conducted on a deep-water 

fixed-steel jacket platform in the GOM to obtain data which was then used to 

rank three decommissioning options based on their ecosystem services. The 

http://decomnorthsea.com/l2p2
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obtained results, which is factual and based on empirical data, indicated that 

leaving the jacket in the marine environment is the best option. However, 

repeating this technique for another platform will be expensive and the model 

has limited scope as it primarily considers the environmental criterion of 

decommissioning. Thus, it can only serve as supporting evidence for a more 

thorough evaluation of options.  

2.8.1.2. Building Information Model 

Similarly, Cheng et al. (2017) proposed the use of 4D/5D building information 

modelling (BIM) technology for evaluating decommissioning options by 

visualizing the schedules, cost and resources involved in the project 

implementation. This approach is useful for project management 

consideration of decommissioning and can help to reduce non-productive 

time, monitor costs, and track resource utilization. However, it does not show 

which option is best for a given offshore platform and no consideration is given 

to safety, environment, and other aspects of the project. Thus, it appears to 

be an over-simplification of decommissioning projects. 

The use of quantitative approaches for options evaluation is favoured by 

advancements in ROV and other technologies that can be used to measure 

the structural and environmental condition of offshore platforms. At present 

however, their exclusive use is inadequate for complete evaluation of 

decommissioning options because other criteria that are difficult to quantify 

are also of equal or even greater importance to stakeholders (Fowler et al. 

2014; McCann, Henrion and Bernstein 2016). 

2.8.2. Mixed Approaches 

This comprises of decision-making approaches which are developed for 

evaluating decommissioning options by considering both qualitatively and 

quantitatively assessed criteria. They are typically developed using 

information from platform data analysis and discussions with 

decommissioning experts. Mixed approaches are particularly effective in 

handling decision-making issues like those encountered during 

decommissioning in which it is required to both incorporate the objectives of 
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different stakeholder groups and handle a wide range of data types (Cinelli, 

Coles and Kirwan 2014; Govindan and Jepsen 2016). Most research into 

decommissioning options evaluation falls into this category due to its 

suitability in dealing with cases involving either unquantifiable or missing 

data. 

2.8.2.1. Material and Energy Flow Analysis 

One of the first works in this domain was the use of material and energy flow 

analysis to assess the performance of two decommissioning options as 

compared to the leave in-situ option for a large North Sea fixed steel jacket 

platform (Ekins, Vanner and Firebrace 2006). Twelve aspects of 

decommissioning were considered and data for the analysis was obtained 

from the owners of the considered platform on a confidential basis, with values 

inferred from two past decommissioning projects when unavailable. The 

results showed some useful relationship between aspects of partial and 

complete removal options which can be extended to other platforms. In 

addition, the wide range of issues incorporated into the model makes it useful 

as a reference point for future works. However, the information required for 

the analysis is only available from extensive platform studies which are carried 

out just before decommissioning, and often withheld from the public by 

operators in a bid to protect their reputation. Thus, it cannot be easily 

replicated for other platforms.  

2.8.2.2. Net Present Value Analysis and Weighted Evaluation 

Andrawus, Steel and Watson (2009) leveraged on the knowledge of 

decommissioning experts to develop a hybrid technique which combines 

weighted evaluation (WE) and net present value (NPV) analysis for evaluating 

decommissioning options. The authors used this approach to evaluate four 

decommissioning options for platform Hidalgo by assessing the financial and 

non-financial impacts of the options as shown in Figure 2.9. 
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Figure 2.9: Decommissioning options evaluation for Hidalgo platform 

(Andrawus et al. 2009) 

WE is a variant of a multicriteria decision analysis (MCDA) technique known 

as the Analytic Hierarchy Process (AHP). It involves pairwise comparisons of 

criteria to determine their weights and scoring of decommissioning options 

based on their individual performance with reference to these criteria. The 

scores from WE are divided by the NPV values of the assessed options to 

obtain a benefit-to-cost ratio which is then used to rank the options. This 

procedure is mathematically represented by equations 2.1 and 2.2. 
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 𝐴𝑖 = ⋁ ∑ 𝑊𝑗. 𝑆𝑖𝑗

𝑚

𝑗=1𝑖=1,𝑛

 (2.1) 

 

 
𝐵𝑇𝐶𝑖 = ⋁

𝐴𝑖

𝑁𝑃𝑉𝑖
𝑖=1,𝑛

 (2.2) 

 

Where A is the weighted score of a decommissioning option, W is the weight 

of importance of a criterion and S represents the performance rating of the 

option with reference to a criterion. BTC and NPV are respectively the benefit-

to-cost ratio and net present value of the decommissioning option. 

This approach improved on the work of Ekins, Vanner and Firebrace (2006) 

by utilising the experience gained by industry to develop a more reproducible 

analysis, and clearly highlighting the importance of public perception to 

decommissioning options assessment. Furthermore, the use of expert opinion 

also implies that the results will be more accurate as more decommissioning 

experience is gained despite the inherent subjective nature of human 

judgement. However, the analysis cannot be performed without actual 

decommissioning cost figures, and it is not clear how the discussions with 

decommissioning experts was synthesised to obtain the criteria weights and 

performance scores. Some of the decision criteria also appear to have been 

double counted, for example, future liability appears to refer to aspects of 

safety and cost. Hence, the approach can be improved by using the CA 

criteria, using cost figures in a relative format like the other criteria, and better 

structuring the process of collecting expert opinion. 

2.8.2.3. Multi-Criteria Approval 

Fowler et al. (2014) proposed the use of an MCDA technique called Multi-

criteria Approval (MA) for evaluating decommissioning options through the 

judgement of decommissioning experts. MA involves the assignment of 1 and 

0 as scores of decommissioning options depending on their performance 

against the decision criteria and ranking of each option based on the 
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summation of its scores across all criteria. The method was applied to the 

evaluation of decommissioning options for an offshore platform in California 

and the results indicated that leaving the platform in place was the best 

option. The work further points to the relevance of criteria weights and 

viability of using expert opinion in evaluating decommissioning options. 

However, MA is overly simplistic in that it is an outright pass/fail analysis that 

provides little insight into the relative performance of the assessed options. 

Furthermore, performing a full assessment of decommissioning options with 

all criteria used in their work is a challenging task, requiring over thirty 

judgements by each of the experts.  

2.8.2.4. Multi-Attribute Utility Theory 

McCann et al. (2017) also proposed the use of an MCDA technique called Multi 

Attribute Utility Theory (MAUT) for evaluating decommissioning options for 

twenty-seven platforms in California. MAUT is based on utility theory (Keeney 

1968) and involves independent determination of each criteria score. 

Information for the analysis was obtained from extensive data studies of the 

considered platforms. Their work was widely accepted and influenced the 

state of California to adjust its regulatory policy to accommodate a reefing 

decommissioning option.  

Furthermore, quantitative values like cost were scaled by interpolation as 

shown in Equation 2.3 to be easily comparable and the criteria weights was 

made variable to suit the preference of decommissioning stakeholders. Thus, 

it allows for sensitivity analysis. 

 𝑈𝑖 =
𝑋𝑖 − 𝑋𝑤𝑜𝑟𝑠𝑡

𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑤𝑜𝑟𝑠𝑡
 (2.3) 

Where for element i, 𝑈𝑖 is the scaled value, 𝑋𝑖 is the actual value, 𝑋𝑏𝑒𝑠𝑡 is the 

best possible value, and 𝑋𝑤𝑜𝑟𝑠𝑡 is the worst possible value.   

However, criteria used are mainly environment-focused and do not account 

for other aspects of decommissioning such as safety and technical feasibility. 

Also, MAUT is data-intensive and requires extensive data gathering before it 

can be applied to decommissioning due to the complexity of such projects. 
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Data gaps were still reported by the authors despite evaluating only two 

decommissioning options for the twenty-seven platforms over a 20-year 

period (Bernstein 2015). Hence, it is expensive to replicate in other regions 

with much higher number of platforms.  

2.8.2.5. Analytic Hierarchy Process  

Na et al. (2017) proposed the use of AHP to evaluate the decommissioning 

options for a platform based on the platform’s structural parameters and 

optimal project planning. The information used for the analysis was obtained 

by interviewing decommissioning experts and mathematical steps were taken 

to reduce inconsistencies in their responses. This approach is well structured 

and minimises error in collating expert opinion.  

However, the aspects of decommissioning considered are limited with no 

consideration for either environmental impact or public perception, and 

criteria weights are fixed as shown in Figure 2.10. In practice, criteria weights 

are variable because they represent the preferences of the stakeholders 

evaluating the decommissioning options. Hence, the analysis can be more 

robust if other criteria are incorporated, and the weightings made flexible. 

 

Figure 2.10: Weights of decommissioning decision criteria and sub-criteria 

(Na et al. 2017) 
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The learnings from the review of these research endeavours in optimising the 

evaluation of decommissioning options forms the basis of developing an 

improved decision model for decommissioning decision-making. This tool will 

capture the identified strengths and minimises the weaknesses of previous 

works.  

In addition, it will be useful to understand how changing platform 

characteristics and environmental condition will affect the result of evaluating 

decommissioning options. This is because proper understanding of this 

relationship is key to developing a reusable tool which can be easily adapted 

to different platforms and regions. 

A summary of the reviewed approaches to evaluating decommissioning 

options is shown in Table 2.5 with their considered decision criteria presented 

as a subset of the decision criteria adopted in this research. 
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Table 2.5: Existing approaches to optimising decommissioning options 

evaluation 

Technique 

Used 

Approach 

Type 

Criteria Considered Source Strengths Weaknesses 

Material and 

energy flow 

analysis, 

financial flow 

analysis 

Mixed Safety – Health and 

safety. 

Environmental – 

Relative energy use 

and emissions, rate of 

recovery of materials 

from present 

structure, clear 

seabed, conservation 

of stocks of non-

renewable resources, 

impacts on the marine 

environment, impacts 

of resource extraction, 

impacts of landfill. 

Public perception – 

Jobs in the UK, 

impacts on the fishing 

industry, impacts on 

fish stocks and other 

marine life. 

Economic – Financial 

expenditures. 

(Ekins, 

Vanner and 

Firebrace 

2006) 

Wide range 

of decision 

criteria. 

Does not 

account for the 

safety of 

personnel and 

technical 

feasibility of 

each option. 

Difficult to 

replicate due 

to difficulty of 

obtaining 

required data. 

Net Present 

Value (NPV) 

analysis and 

Weighted 

Evaluation 

(WE) 

Mixed Safety – Safety, 

future liability. 

Environmental – 

Environmental impact. 

Technical – Technical 

feasibility. 

Public perception – 

Public requirements. 

Economic – Revenue 

generation. 

(Andrawus, 

Steel and 

Watson 

2009)* 

Easy to 

replicate. 

Wide range 

of decision 

criteria. 

Criteria is 

weighted. 

Expert opinion 

poorly 

structured. 

Actual cost 

figures 

required. Some 

criteria not 

independent 

Multi-criteria 

decision 

analysis 

(Multi-

criteria 

Approval) 

Mixed Safety – Health and 

safety. 

Environmental. 

Public perception – 

Socioeconomic, 

additional stakeholder 

concerns. 

Economic – Financial. 

(Fowler et 

al. 2014) 

Easy to 

replicate, 

Wide range 

of decision 

criteria. 

Difficult to 

compare 

similar options 

because there 

are only two 

scoring 

outcomes. 

Large number 

of judgements 

required 

Ecosystem-

based 

management 

(EBM) 

Assessment 

Quantitative Environmental – 

Habitat extent and 

structural complexity, 

biodiversity, trophic 

interactions, dispersal, 

spawning, secondary 

production, benthic 

(Truchon et 

al. 2015) 

Based on 

empirical 

data and 

minimizes 

bias. 

Detailed 

analysis of 

environmental 

Limited range 

of decision 

criteria. 

Difficulty of 

obtaining 

required data 

for some 

criteria. 
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production, rare 

species. 

Public perception – 

aesthetic values, 

marine harvested 

species (commercial), 

marine harvested 

species (recreational), 

biomedical. 

impact of 

options. 

4D and 5D 

building 

information 

modelling 

(BIM) 

Quantitative Technical – Schedules. 

Economic – Cost, 

resources. 

(Cheng et al. 

2017) 

Based on 

empirical 

data and 

minimizes 

bias. 

Supports 

project 

management 

Limited range 

of decision 

criteria. 

Difficulty of 

obtaining 

required data 

for assessing 

some criteria. 

Multi-criteria 

decision 

analysis 

(Multi-

Attribute 

Utility 

Theory) 

Mixed Safety – Compliance. 

Environmental – 

Impact on marine 

mammals and birds, 

benthic impacts, air 

quality, water quality. 

Economic – Economic 

costs. 

Public perception – 

Marine resources and 

fish biomass, ocean 

access impacts. 

(McCann et 

al. 2017) 

Wide range 

of decision 

criteria. 

Criteria is 

weighted 

Limited 

number of 

considered 

options 

(complete 

removal and 

partial 

removal). 

Difficulty of 

obtaining 

required data 

for some 

criteria. 

Multi-criteria 

decision 

analysis 

(Analytic 

Hierarchy 

Process) 

Mixed Safety – Structural 

integrity. 

Technical – Platform 

type, weight 

management, logistic 

requirement. 

Economic – Weight 

management. 

(Na et al. 

2017) 

Expert 

opinion is 

structured. 

Easy to 

replicate. 

Limited range 

of decision 

criteria 

*Regulatory requirements considered as a criterion by authors but not 

included in table. 
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The use of expert opinion to support the evaluation of decommissioning options is 

a prevalent theme in the reviewed works. Figure 2.11 presents the number of 

criteria considered in each of the reviewed works on decommissioning options 

evaluation and groups these based on whether expert opinion is used or not. It is 

deduced from the figure that usage of expert opinion is more prevalent when a 

wide range of decision criteria is considered.  

 

Figure 2.11: Prevalence of the use of expert opinion in evaluating 

decommissioning options. 

Lack of empirical data relating to offshore decommissioning has been identified as 

a major challenge to optimising decommissioning options evaluation, hence use 

of expert opinion seems justifiable (Macreadie, Fowler and Booth 2011).  

On the other hand, Fowler et al. (2014) observed that human judgement is 

inherently subjective and can be influenced by 

i. Historical controversies such as the Brent spar saga in the North Sea 

ii. Communication inefficiencies due to language differences and interpretation 

of the criteria 

iii. Cultural background, extent of training and prior experience of the experts  

iv. Personal interests of parties involved. 
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Therefore, it is important to progressively replace expert opinion by integrating 

decommissioning data into the decision-making approach as these become 

available.  

The conducted literature review provides rich insights into key desirable 

capabilities of a robust decommissioning decision model. Firstly, the model must 

be able to account for both qualitative and quantitative criteria. Secondly, for the 

purpose of minimising subjectivity of human judgement, caution must be applied 

when the use of expert opinion is unavoidable by gathering these opinions 

systematically and with the aid of a well-structured technique that is easy to 

understand. Lastly, multi-criteria decision analysis is best suited for developing 

the model due to the multifaceted nature of decommissioning. 

Concisely, the established desirable capabilities of a robust decision model for 

determining the optimal option for decommissioning an offshore platform are: 

i. Broad range of decision criteria and ability to accommodate qualitative and 

quantitative data for evaluating options with respect to these criteria. 

ii. Clarity and structure in use of expert opinion when required, and capability 

for replacing expert opinion with actual decommissioning project data as 

this becomes available. 

iii. Use of Multi-Criteria Decision Analysis 

2.9. Survey Application to Offshore Decommissioning 

Surveys are a widely used research tool for collecting human opinion. Collis and 

Hussey (2013) describe a survey as the elicitation of information from respondents 

with the aid of either questionnaires, interviews, or both, and for the purpose of 

generalising from a sample to a population. Surveys are a viable workaround to 

challenges with data scarcity. Despite the existence of drawbacks to the use of 

surveys such as insufficient sample size and risk of bias from either the developer 

or the respondents, the method is a valid means of exploring a wide range of 

issues such as those inherent in decommissioning.  

The use of surveys in offshore decommissioning studies is gradually becoming 

commonplace in recent times, particularly since the 20th century (Bernstein et al. 

2010; Fowler et al. 2014, 2018; Na et al. 2017; Capobianco et al. 2021). This 

trend is driven by the steady increase in the decommissioning knowledge of 



59 
  

professionals in the energy sector as more projects are executed globally (Tung 

and Otto 2019; Kumar et al. 2021; Kaiser 2022). It is also supported by the 

growing realisation that sound decommissioning decisions must incorporate both 

quantitative and qualitative information (Fowler et al. 2014; McCann et al. 2017). 

Further, paucity of decommissioning data is a challenge to research in offshore 

decommissioning because the domain is multifaceted and still emerging. Hence it 

was deemed necessary to make use of experts’ opinions, with the aid of a survey 

of decommissioning practitioners, to capture comprehensive information for 

supporting the analysis in this research work. 

A questionnaire is a survey instrument for data collection which comprises of either 

close-ended, open-ended, or both types of questions, and typically include a series 

of items which reflect the research aims (Ponto 2015). Adequacy of design is the 

most controversial issue associated with using survey questionnaires (Harlacher 

2016) due to its strong influence on the accuracy of measuring respondents' 

perceptions. Therefore, standard questionnaire design guidelines must be followed 

in developing survey questionnaires. 

2.10. Multi-Criteria Decision Analysis 

MCDA encompasses all mathematical modelling techniques used to solve complex 

decision problems in which it is required to consider several criteria to determine 

the best alternative or course of action. It has been successfully applied to 

decision-making problems in such industries as engineering, resource 

management and healthcare (Hamurcu and Eren 2019; Stojčić et al. 2019). 

Literature reviews of MCDA and their merits/demerits have been extensively 

covered in the literature (Velasquez and Hester 2013; Kumar et al. 2017; Mardani 

et al. 2017; Sriram et al. 2022). Hence, MCDA has widespread acceptance across 

several industries. 

MCDA is readily applicable to solving the decision-making problem of selecting an 

optimal option from a list of options for decommissioning an offshore platform if 

the problem is conceptualised as a multicriteria problem in which the goal is to 

determine the optimal decommissioning option from a list of options. Moreso, 

knowledge of decommissioning options for offshore platforms and the decision 

criteria for their evaluation is already well-established. Therefore, in this research, 

the AHP MCDA technique is applied to solving the multi-criteria problem of 
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evaluating decommissioning options for an offshore platform to determine which 

is best for its decommissioning.  

Further information about the AHP technique and the procedure for its application 

is provided below. 

2.10.1. Analytic Hierarchy Process 

AHP aids comprehensive decision-making by logically structuring the decision 

elements according to their hierarchy and showing the relationship between 

criteria and the possible alternatives through the aid of pairwise comparison 

matrices. 

A hierarchy is simply a stratified system of arranging the components of a 

multicriteria decision-making problem such that each component, except for the 

top one, is subordinate to one or more components. AHP handles the complexities 

of decision-making by reducing the task to basic pairwise comparisons and using 

the results to develop overall priorities which then enable the ranking of the 

alternatives. This technique, which was developed by Saaty (1977), involves 

relative measurement and is thus suitable for scenarios when absolute 

measurements are not obtainable. Hence it can be used to effectively handle 

MCDA involving both qualitative and quantitative criteria with ease (Ishizaka 

2019).  

Islam and Saaty (2010) identified several uses of the AHP technique, and these 

include 

i. Simplified representation of a complex problem 

ii. Measurement/allocation of criteria weights 

iii. Determination of optimal choice among alternatives 

iv. Measurement of consistency in human judgement 

v. Prediction of future outcomes 

vi. Resolution of conflicts by clear analysis 

vii. Framework for forward/backward planning  

viii. Supporting tool for other decision-making techniques such as Cost Benefit 

Analysis and MAUT. 
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Usage of the AHP technique is further promoted by the availability of user-friendly 

computer software such as Decision Lens, Super Decisions and Expert Choice 

which aid the decision-maker in evaluating the mathematical aspects of the 

technique (Mu and Pereyra-Rojas 2018). The AHP approach involves applying 

rational and intuitive thinking to the determination of the best option from several 

alternatives by evaluating these with respect to a set of criteria. It is also very 

flexible in that it can accommodate the subjectivity of human judgements by 

making provision for managing inconsistencies. 

With the aid of AHP, a decision-maker can structure the decision-making problem 

visually in the form of an attributes hierarchy as shown in Figure 2.12. The decision 

aim is the main objective or aim of the decision-making process, and the criteria 

are the factors to be considered in making the decision. The last level of the 

hierarchy shows the options available for the decision-maker to choose from. 

 

Figure 2.12: AHP decision hierarchy structure (Adapted from Mu and Pereyra-

Rojas 2018) 

In addition to the three major hierarchy levels, there might be a need to include 

sub-criteria which further compartmentalise aspects of the criteria and improve 

the objectivity of the options comparisons as shown in Figure 2.13. However, 

comparisons must only be between elements at the same hierarchy level to make 

sense. For example, a criterion cannot be directly compared with the sub-criterion 

Decision Aim 

Criteria 

Alternatives 
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of another criterion. Also, usage of sub-criteria is not compulsory because some 

criteria (such as criteria 3 in Figure 2.13) are standalone in nature. 

 

Figure 2.13: Modification of AHP hierarchy to incorporate decision sub-criteria. 

Elements at the same hierarchy level are compared in pairs to assess their relative 

preference with respect to each of the elements at the immediate higher level. 

The comparisons are also made with respect to a single element i.e., sub-criteria 

comparison is made with reference to the parent criterion, criteria comparison is 

made with reference to the main goal, and alternatives are compared with 

reference to each sub-criterion. 

To standardise the AHP process of paired comparison judgments, Saaty (1977) 

developed the scale shown in Table 2.5 for translating verbal description of relative 

importance to numbers which then aid the hierarchical ranking of the decision 

elements according to their relative importance. 

Table 2.6: AHP Relative Importance Scale (Saaty and Vargas 2012) 

Intensity of 

Importance 

Definition Explanation 

1 Equal importance Two activities contribute 

equally to the objective 

2 Weak importance 



63 
  

3 Moderate importance Experience and judgment 

slightly favour one 

activity over another 

4 Moderate plus importance Experience and judgment 

strongly favour one 

activity over another 

5 Strong importance 

6 Strong plus importance An activity is favoured 

very strongly over 

another; its dominance 

demonstrated in practice 

7 Very strong or demonstrated 

importance 

8 Very, very strong importance The evidence favouring 

one activity over another 

is of the highest possible 

order of affirmation 

9 Extreme importance 

Reciprocals of 

above 

If activity i has one of the above 

nonzero numbers assigned to it 

when compared with activity j, 

then j has the reciprocal value 

when compared with i 

A reasonable assumption 

Rationals Ratios arising from the scale If consistency were to be 

forced by obtaining n 

numerical values to 

span the matrix 

Saaty’s scale is easy to use, and its effectiveness has been validated through 

theoretical justification and numerous successful applications by different authors 

(Saaty and Vargas 2012). 

2.10.1.1. Application of AHP to Multicriteria Decision-Making Problems 

AHP has been successfully applied to decision problems in several fields including 

engineering, economics, medicine, and policy-formulation (Velasquez and Hester 

2013; Kumar et al. 2017). It has also been applied to the problem of site-selection 

for energy projects (Merrouni et al. 2018; Ozdemir and Sahin 2018), 

transportation planning (Islam and Saaty 2010; Moslem 2020), economics 

(Sharma 2018) and construction (Salem, Salman and Ghorai 2018) with 

satisfactory results.  

Other fields where AHP has been successfully applied include government, 

business, industry, healthcare, shipbuilding, and education (Sharma 2018) and 

these examples clearly demonstrate the interdisciplinary applicability and versatile 

nature of the technique.  
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Moreso, the use of AHP to solve Petroleum Engineering problems is detailed in the 

literature. A form of Fuzzy-AHP was used to conduct risk assessments for the 

upstream oil and gas industry and evaluate the risks involved in investment 

activities (Chang et al. 2006). White et al (2014) combined AHP and a geometric 

database to solve the complex problem of pipeline routing decisions in the offshore 

Arctic environment. AHP was employed to validate the results obtained from using 

Quality Function Deployment process to determine the optimal subsea processing 

technology for marginal field development (Ohanyere and Abili 2015).  

AHP has been successfully applied to decision-making in the nuclear industry 

which shares similarities to offshore structures in terms of financial scale of 

projects, being situated in relatively isolated locations, and tendency to cause 

harm to people and environment (Wan, Yongling and Junjie 2016; Bai, Liu and 

Chao 2017; Invernizzi et al. 2018). It has also been used in combination with 

other Operations Research tools such as Digital Mock-up System and Data 

Envelopment Analysis to facilitate management of nuclear reactors 

decommissioning projects with satisfactory results (Kim and Song 2009; Ho and 

Ma 2018). 

2.10.1.2. Application of AHP to Offshore Decommissioning 

The inherent ability of the AHP technique to produce meaningful results even in 

the absence of quantitative data makes it particularly appealing for solving 

decision-making problems in the offshore decommissioning problem domain due 

to the paucity of data in this area (Fowler et al. 2014).  

For example, Andrawus, Steel and Watson (2009) utilised pairwise comparison in 

weighted evaluation technique which combined consideration of financial and non-

financial criteria in evaluating decommissioning options for a platform. Similarly, 

Na et al. (2017) determined the AHP technique to be the MCDA method most 

suited for decommissioning planning and management. Their work focused on 

platforms in the South China Sea and only addressed the structural and technical 

aspects of decommissioning. Nevertheless, it was recommended as a starting 

point for the development of more robust decision-making approaches that 

incorporate financial as well as environmental aspects of decommissioning 

projects. The present research builds on their work in that the AHP technique is 
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applied to decommissioning options evaluation with consideration for a wider suite 

of criteria and sub-criteria.  

Furthermore, a merit of the AHP technique is its ability to enable efficient group 

interaction and decision-making (Saaty and Peniwati 2013). This feature makes it 

particularly suitable for addressing the MCDA problems that arise during 

decommissioning planning because these issues typically require collective inputs 

from stakeholders across several departments. In addition, a robust review by 

Martins et al. (2020) suggests that AHP is the MCDA technique with the most 

widespread use in solving decommissioning problems within the oil and gas 

industry. 

Asset owners in the UKCS whose fields are at the end-of-life stage are required to 

submit a decommissioning programme (DP) which details the intended workflow 

for decommissioning the platform and associated facilities. Preparation of a DP 

entails considerable data-gathering which necessitates the conduction of platform-

based technical studies. To ensure conciseness and robustness, the report is 

furnished with information from other supporting documents as illustrated in 

Figure 2.14.  
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Figure 2.14: Main documents and supporting studies for Murchison 

decommissioning (CNRI 2012) 

Elaborate documentation is particularly important for platforms that are 

candidates for derogation as there is a legal requirement for the platform operator 

to justify the decision to leave any part of the platform structure behind (BEIS 

2018). A comparative assessment report is one of the primary supporting 

documents for a DP and the AHP technique has been applied to various degrees 

in developing this report for several decommissioning programs (CNRI 2012; 

Repsol 2017, 2020; Xodus Group 2017, 2018, 2020). Hence, it is beneficial to 

further understand this MCDA technique and its effective adoption for solving the 

decision problem of evaluating decommissioning options. 
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2.11. Summary 

The review of existing literature in this chapter has set the stage for the research 

by providing a rich understanding of offshore decommissioning. The different 

alternatives for decommissioning offshore platforms were grouped into three main 

options i.e., complete removal, partial removal and leave in place. Through a 

critical review of previous works in decommissioning options evaluation, five 

decision criteria were adopted for evaluating decommissioning options. These are 

safety, environmental impact, technical feasibility, cost, and public perception. 

Next, a review of decommissioning cost analysis was performed, and this 

highlighted the need for improvements to current decommissioning options 

costing approaches. Through this critical review, the AHP technique was identified 

as the MCDA technique most suited for developing a robust decommissioning 

decision model. It was also established that such a model must ensure structured 

use of expert opinion and replacement of this with actual decommissioning project 

data when it becomes available. These insights guided formulation of the research 

objectives as stated in Chapter one and will also be used to furnish an adequate 

methodology for this research in the next chapter. 
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Chapter 3 : RESEARCH METHODOLOGY 

This chapter discusses the research techniques and tools used to achieve the aim 

and objectives of this research as stated in Chapter one. The research approach 

and design are presented in section 3.1 and section 3.2 respectively. Section 3.3. 

outlines the research methods and strategy used for data collection. The main 

data analysis techniques used in this research are subsequently described in 

section 3.4. Finally, a summary of the chapter is presented in section 3.5. 

3.1. Research Approach 

The key differences between the three main research approaches to investigating 

the aims and objectives of a research are shown in Table 3.1. 

Table 3.1: Differences between deductive, inductive, and abductive research 

approaches (Adapted from Saunders, Lewis and Thornhill 2020) 

Research Approach 

Key Aspect Deductive Inductive Abductive 

Logical 

inference 

When the 

premises are 

true, the 

conclusion 

must also be 

true. 

Known 

premises are 

used to 

generate 

untested 

conclusions. 

Known premises are used 

to generate testable 

conclusions. 

Generalisability Generalising 

from the 

general to the 

specific. 

Generalising 

from the 

specific to 

the general. 

Generalising from the 

interactions between the 

specific and the general. 

Use of data To evaluate 

propositions or 

hypotheses 

related to an 

existing theory. 

To explore a 

phenomenon, 

identify 

themes and 

patterns and 

create a 

conceptual 

framework. 

To explore a phenomenon, 

identify themes and 

patterns, locate these in a 

conceptual framework and 

test this through 

subsequent data collection 

and so forth. 

Theory Theory 

falsification or 

verification. 

Theory 

generation 

and building. 

Theory generation or 

modification; incorporating 

existing theory where 

appropriate, to build new 

theory or modify existing 

theory. 
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Based on this information, the deductive research approach was identified to be 

the most adequate for this research work. The research begins by using 

information from reviewing literature and existing knowledge about options 

evaluation to develop a decision model for identifying the optimal 

decommissioning option for an offshore platform. This is followed by investigating 

the applicability of the developed model with the intent of either confirming or 

contradicting the performance of the model depending on the obtained outcomes. 

3.2. Research Design 

The design adopted for this research comprises of a synthesis of quantitative and 

qualitative research methods and utilises multiple data analysis techniques 

including AHP, machine learning, sensitivity analysis and data scaling. The novelty 

of this methodological approach lies in its unique combination and application of 

existing research elements to the optimisation of offshore decommissioning 

decision-making to facilitate objective analysis and unlock valuable insights. 

Hence, the research design is innovative, and its outcome represents an 

advancement of the existing body of decommissioning knowledge. 

A schematic flowchart showing the logical steps followed in this research is 

presented in Figure 3.1. The figure illustrates the general plan of action used to 

accomplish the research aim and objectives. 
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Figure 3.1: Research design 
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The research aim is to develop decision support to aid decision-makers in 

determining the best available option for decommissioning their offshore platform. 

This was initiated by a review of existing literature that is pertinent to offshore 

decommissioning to establish the theoretical foundation of the research.  

Literature review in Chapter two of this thesis investigated the concept of offshore 

decommissioning and existing approaches for identifying the best option for 

decommissioning a platform with focus on their strengths and weaknesses. This 

provided an understanding of the main options for decommissioning offshore 

structures as well as the key considerations for choosing an option for a given 

project. The review identified flaws in the existing approaches such as limited 

scope of considered decision criteria, results ambiguity, excessive human bias in 

judgement, inability to combine qualitative and quantitative data, and inability to 

integrate historical data and emerging knowledge into options analysis as more 

decommissioning projects are completed. These findings were used to furnish the 

desirable capabilities of a robust decision model. Also, the key decision criteria 

that determine the suitability of a decommissioning option for a project were 

identified. A decommissioning decision model (DDM) which captures these 

learnings was subsequently developed in Chapter four. 

After its development, the DDM’s functionality and applicability to 

decommissioning projects was demonstrated by using the model to solve the 

problem of decommissioning options evaluation for a case study platform. 

Evaluation of the considered decommissioning options was facilitated by a survey 

of decommissioning experts. Analysis of the survey responses involves weighing 

the decision criteria, scoring the considered decommissioning options based on 

their expected performances in terms of each criterion, and combining the 

calculated weights and scores to obtain weighted scores for each option. The 

options were ranked based on their weighted scores, a value which indicates the 

level of expected desirable outcome from using the option for the 

decommissioning project. Following this, the DDM was validated and modified if 

the results were unsatisfactory, otherwise it was proposed for industry use. 

A requirement of the DDM is the capability to support integration of historical data. 

To demonstrate this, the decommissioning survey was also used to identify 

platform features that have the highest influence on the selection of a 

decommissioning option. Machine learning regression was then applied to these 
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features in combination with secondary historical data to develop a mathematical 

model for predicting the costs of decommissioning options. Finally, the costing 

model was used to predict the costs of using different options for decommissioning 

the case study and these costs were transformed into input for the DDM. 

3.3. Research Methodology 

The main methods and data analysis techniques used for achieving the aim and 

objectives of this research are mapped to the research objectives in Table 3.2.  

Further description of these research elements is subsequently provided. 
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Table 3.2: Research Methodology 

Research 

Objectives 

Associated Tasks Research 

Method 

Data 

Analysis 

Technique  

1. To develop a 

decision model for 

identifying the best 

decommissioning 

option for an offshore 

platform with the aid 

of multicriteria 

decision analysis. 

a. Critically assess the 

existing approaches for 

evaluating decommissioning 

options for offshore 

platforms to identify their 

limitations. 

Literature 

Review 

- 

b. Develop a novel 

decommissioning decision 

model with information from 

2(a) and multi-criteria 

decision analysis. 

Literature 

Review 

AHP, 

Machine 

Learning, 

Sensitivity 

Analysis 

2. To investigate the 

applicability of the 

decision model by 

using it to evaluate 

decommissioning 

options for a case 

study platform. 

a. Establish the relative 

importance of the factors 

considered in 

decommissioning options 

selection for a case study. 

Case 

Study, 

Survey 

Likert-AHP 

b. Evaluate 

decommissioning options for 

the case study platform. 

Case 

Study, 

Survey 

Likert-AHP 

c. Perform sensitivity 

analysis of the results for 

the case study. 

Case 

Study 

Sensitivity 

Analysis 

3. To investigate the 

validity of the 

developed decision 

model and results 

obtained from its 

application to the 

case study. 

a. Compare model results 

for the case study with 

results from similar works in 

literature. 

Literature 

Review 

- 

b. Validate the 

decommissioning decision 

model. 

Survey - 

4. To develop a 

decommissioning 

options costing model 

and integrate this into 

decommissioning 

decision-making. 

a. Review existing 

decommissioning cost 

estimation techniques to 

identify their limitations. 

Literature 

Review 

- 

b. Develop an improved 

approach for predicting the 

costs of decommissioning 

offshore platforms. 

- Machine 

Learning 

c. Integrate the outcome of 

4(b) into the developed 

decision model. 

- Data 

Scaling 
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3.3.1. Case Study 

Case study research strategy entails extensive examination of a single 

instance of a phenomenon in its real-life context for the purpose of generating 

an in-depth understanding (Crowe et al. 2011; Ridder 2017). This strategy 

was identified in this research as the most viable medium for generating the 

primary data for analysis. Case study implementation is achieved in four 

stages (Stake 1995; Hancock and Algozzine 2021), namely definition of the 

phenomenon of interest, selection of case study, data collection, and analysis, 

interpretation, and reporting of findings. These stages were followed in 

Chapter five of this thesis to investigate the applicability of the 

decommissioning decision model after its development i.e., objective 2. 

3.3.2. Survey 

A survey of decommissioning practitioners enabled the capturing of 

comprehensive information for supporting the analysis in this research work. 

This method was used for achieving parts of objective 3 and objective 4. 

3.3.2.1. Survey Questionnaire Design 

A copy of the decommissioning survey is attached to appendix 2 of this thesis. 

It comprises twenty-four questions distributed into three main sections as 

follows: Demographics (five questions), Comparisons and Judgements 

(eleven questions), and Additional Information (eight questions). 

1. Demographics 

The demographics section contained questions for understanding the defining 

characteristics of participants, namely their offshore region of operation, level 

of education, years of decommissioning-related experience, affiliation to 

decommissioning, and the aspect of decommissioning that they were most 

knowledgeable about. Based on these characteristics, the survey respondents 

were classified into distinct groups to understand the degree of diversity in 

the responses and extent of representation for each group. 
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2. Comparisons and Judgements 

In this section of the questionnaire, the respondents were first provided with 

a factual description of the features of the case study to be decommissioned. 

Using this information and their knowledge of decommissioning, they 

proceeded to compare several alternatives with the aid of a predefined Likert 

scale and based on five decision criteria. The section is sub-divided into two 

parts namely Criteria and Sub-Criteria Weighting, and Decommissioning 

Options Scoring. 

2A(I). Criteria Weighting 

The survey questions are posed to solicit for qualitative responses and with 

the aid of a Likert scale, these qualitative responses are converted to their 

quantitative equivalents to make it possible to perform numerical calculations 

(see Table 3.3). This 5-point scale has been derived from the preference scale 

recommended for AHP analysis by Saaty (Asadabadi, Chang and Saberi 

2019). A discussion of the effect of using other measurement scales for AHP 

analysis can be found in the literature (see Hossain, Adnan and Hasin (2014)). 

Table 3.3: Conversion from qualitative to quantitative scales for criteria and 

sub-criteria weighting 

Qualitative Response Equivalent Quantitative Value 

Least Important 1 

Less Important 3 

Moderately Important 5 

Highly Important 7 

Extremely Important 9 

To harmonise differences in the opinion of participants to the questions in this 

section, responses to each question were aggregated into single consensus 

values by taking the geometric mean. These aggregated values are the input 

for Likert-to-AHP calculations to determine criteria weights. 

2A(II). Sub-Criteria Weighting 

As discussed in Chapter two of this thesis, decision criteria typically comprise 

key aspects or sub-criteria that capture all the important considerations within 

them. These sub-criteria had previously been explored by the researcher and 
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a decision was made to explicitly include them in the survey as the tendency 

of participants being oblivious or only partly aware of these sub-criteria exists. 

Moreso, thorough knowledge of the interrelationship between the sub-criteria 

of a criterion is valuable to project stakeholders, especially when gathering 

data to inform decision-making in that this knowledge will influence effective 

allocation of resources and streamlining of efforts to focus on relevant data. 

With these in mind, the survey investigated sub-criteria weighting for two 

main reasons. These were to 

i. Explicitly inform the participants about the key aspects of the decision-

criteria and subsequently increase their likelihood of making good 

judgements when completing the survey. 

ii. Further understand the decision criteria by investigating the relative 

importance of their constituent sub-criteria.  

2B. Decommissioning Options Scoring 

After establishing the weights of all decision criteria (and sub-criteria), the 

expected performance of decommissioning options for the case study platform 

with respect to each criterion was determined in the form of options ratings. 

To achieve this, the previously explained steps were repeated using responses 

to questions referring to options evaluation or scoring with reference to safety, 

environmental impact, technical feasibility, cost, and public perception.  

The Likert scale used for scoring decommissioning options is shown in Table 

3.4. This scale was also derived from the Saaty scale but differs from the scale 

for criteria weighting in that different adjectives are used for describing the 

rating alternatives in alignment with the wording of the questions. 

Table 3.4: Conversion from qualitative to quantitative scales for 

decommissioning options scoring 

Qualitative Response Equivalent Quantitative Value 

Worst 1 

Poor 3 

Average 5 

Good 7 

Best 9 
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Having determined the priorities for criteria weights and performance scores 

for the decommissioning options, the final step in the options evaluation was 

to combine both values into weighted scores for each evaluated option. 

3. Additional Information 

In the third section of the survey, participants were requested to suggest 

possible additional sub-criteria to be considered in the decision-making. The 

survey structure is restrictive due to the nature of the issues it addresses. 

However, making provision for respondents to include any additional 

information provides an opportunity for the survey to capture information that 

the author might not have considered during its design. 

Also, survey participants were asked to give their opinion about the relative 

relevance or priority of platform features to options selection. Offshore 

platforms have distinctive features e.g., topsides weight and platform age. 

Knowledge of platform features which are most relevant to decommissioning 

considerations will aid the development of parametric decommissioning 

models which can feed into the DDM developed in this research. Eight main 

platform features are presented in this part of the survey and the participants 

qualitatively provide their judgement about the relevance rating for each of 

these. The platform features include: 

• Topsides weight 

• Substructure weight 

• Water depth 

• Platform age 

• Distance from land 

• Jacket weight 

• Piles weight, and 

• Number of piles 

Prioritisation of these platform features was achieved by first converting each 

of the qualitative relevance ratings ascribed to them by the survey 

participants to quantitative values as shown in Table 3.5 to enable numerical 

calculations. 
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Table 3.5: Conversion from qualitative to quantitative scales for relevance 

rating 

Qualitative Response Equivalent Quantitative Value 

No Relevance 1 

Low Relevance 3 

Moderate Relevance 5 

High Relevance 7 

Extremely high Relevance 9 

Decommissioning-related work experience is regarded as the strongest 

indicator of the expertise of respondents since the decommissioning industry 

is still at an infancy stage (Birchenough and Degraer 2020). Hence, the 

prioritisation values were aggregated by calculating the Weighted Geometric 

Mean based on the years of decommissioning-related work experience of 

respondents as shown in Table 3.6. This implies that the opinions of 

individuals with more years of work experience weighed more than those of 

individuals with less work experience, as the former are assumed to be more 

knowledgeable on the subject. Note that conversion scales in Table 3.5 and 

Table 3.6 are adaptations of the Saaty scale. 

Table 3.6: Assignment of Weights to Participants’ years of work experience 

Years of Work Experience Assigned Weight 

0 – 3 years 1 

4 – 7 years 3 

8 – 11 years 5 

12 – 15 years 7 

>15 years 9 

3.3.2.2. Distribution of Survey Questionnaire  

The target participants for the survey comprised individuals that are experts 

in decommissioning and people who had engaged with previous 

decommissioning projects as members of stakeholder groups. After its design, 

the survey questionnaire was uploaded to a website platform with its address 

link distributed to the target participants via personal emails, online groups, 
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and social media networks. Online surveys are advantageous over offline 

surveys due to their ability to reach many target participants in less time, and 

with less manpower, and less expenses involved (Sinclair et al. 2012; Mondal 

et al. 2018). Hence, their adoption for this research. 

The decommissioning survey was hosted on the JISC Online Survey tool, a 

web-based tool designed for academic research, education and public sector 

organisations (https://www.onlinesurveys.ac.uk/). The tool is easy to use, 

GDPR (General Data Protection Regulation) compliant, and ISO 27001 

certified. It also has functionality for exporting the responses data to external 

tools such as Excel and SPSS. This made it an excellent choice for hosting the 

survey because, as part of the data analysis, follow-on AHP calculations were 

performed on the collated response data using Excel Software. 

3.3.2.3. Pilot Survey 

The pilot version of the online survey was conducted for a duration of two 

months in the period between November 2021-December 2021. This trial run 

was necessary for checking the appropriateness of the survey in terms of ease 

of comprehension, and time taken for completion, and for timely identification 

of any errors in the questions or their structuring.  

There were thirty-three participants to the pilot survey and their feedback 

informed several changes to the original survey design including: 

i. Clarification of the ethical statement in the first page of the survey to 

clearly highlight that any personal information will be kept anonymous. 

ii. Removal of a question in the demographic section about respondent’s 

current role in the offshore industry as this information was seen to be 

irrelevant to the analysis goal. 

iii. Addition of a question to the demographic section for capturing the 

specific areas of decommissioning that a respondent is most 

knowledgeable about. 

iv. Explicit explanation of the problem hierarchy to make it more 

understandable to the respondents and minimise ambiguities in 

interpretation of the information. 
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v. Adoption of a theoretical offshore platform in the POCS California region 

instead of Hidalgo platform as the case study to avoid ethical issues 

which would likely arise with the asset’s owners if a real-life platform 

were to be used as the case study. 

vi. Restriction of responses to questions in the Criteria and Sub-Criteria 

weighting sections such that respondent cannot assign the same rating 

to more than two elements at the same level. This restriction was to 

encourage critical reflection by the respondent in making judgements. 

An explanation of this rule is provided in the introduction of the section. 

vii. Removal of Employment, Ocean Access, Recreational Use, And Tax 

Concessions as sub-criteria of the Public Perception criterion. 

viii. Explicit description of the endpoint of removed portion of the platform 

by including a footnote to the Decommissioning Options illustration 

figure to clarify that all removed portions are taken to land for 

recycling/disposal. 

Implementing these key changes to the content and structure of the pilot 

survey led to developing an improved version which then served as the main 

survey. Thus, effectively serving the purpose of questions and presentation 

validation prior to carrying out the main survey (Ball 2019). 

After collection, numerical analyses were performed on the survey data using 

Excel software following its importation from JISC Online Survey Platform. 

AHP calculations constituted most of the analyses and the formulars for 

implementing the technique were coded into Excel software by the researcher 

before data importation in line with the procedure described in Burge (2014).  

The next section details the data analysis techniques employed in this 

research. 
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3.4. Data Analysis Techniques 

3.4.1. AHP Methodology 

The methodology for implementing AHP as identified from literature (Islam 

and Saaty 2010; Ohanyere and Abili 2015; Mu and Pereyra-Rojas 2018; 

Ozdemir and Sahin 2018) is described below. 

1. Decomposition: Define the elements of the AHP model including the 

goal or main objective of the process, criteria or factors that matter to 

the decision-maker, sub-criteria which highlight aspects of the criteria, 

and the alternatives or options that the decision-maker must choose 

from. These are used to develop the hierarchical structure which helps 

the decision-maker to gain a clearer understanding of the problem and 

nature of the desired solution. For more complex problems, experts are 

consulted at this stage to ensure that all relevant criteria and 

alternatives have been captured. 

2. Prioritisation: Develop pairwise comparison square matrices, also called 

judgement matrices, for each set of elements in the same level except 

for the top element. For each matrix E, use the Saaty preference scale 

to assign values to the matrix cells as shown in Equation 3.1, where Eij 

is the value of the cell in the ith row, mth column of matrix E and 

represents the preference of the element in the ith row over the 

element of the jth determinant when both are compared with reference 

to their parent element. For example, a value of 1 indicates that the 

elements being compared contribute equally to the objective while a 

value of 9 indicates that the contribution of one element is significantly 

more important than the other. 

 𝐸 =  [
𝐸11 ⋯ 𝐸1𝑛

⋮ ⋱ ⋮
𝐸𝑛1 ⋯ 𝐸𝑛𝑛

] 

 

 

 

(3.1) 
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 𝐸𝑖𝑖 = 1, 𝐸𝑗𝑖 =
1

𝐸𝑖𝑗
, 𝐸𝑖𝑗 ≠ 0  

Where n represents the number of elements in the comparison matrix. 

The number of judgements or comparisons required to populate a 

matrix with n number of elements via pairwise comparisons was 

determined by Belton and Stewart (2002) to be given by Equation 3.2. 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑗𝑢𝑑𝑔𝑒𝑚𝑒𝑛𝑡𝑠, 𝐽 =  
𝑛(𝑛 − 1)

2
 (3.2) 

3. Synthesis: From the values in each judgement matrix, generate a 

priority vector which shows the weights of importance of all elements 

in the matrix. The priority vector, also called the eigenvector, can be 

estimated as the average of normalised columns as shown in Equations 

3.3 and 3.4 (Shapira and Goldenberg 2005; Mu and Pereyra-Rojas 

2018; Wang et al. 2020). This involves summing the values in each 

column to obtain column totals, normalising each cell by dividing its 

value with its column total, and taking the average value of each row. 

 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑣𝑒𝑐𝑡𝑜𝑟, 𝑃 =  [
𝑃𝑖

…
𝑃𝑛

] (3.3) 

 
𝑃𝑖 =  

1

𝑛
∗ ∑

𝐸𝑖𝑗

∑ 𝐸𝑘𝑗
𝑛
𝑘=1

𝑛

𝑗=1

 
 

(3.4) 

Where, 𝐸𝑖𝑗 is an element located in row i and column j of the judgement 

matrix.  

Consistency checks are also performed to verify if the pairwise 

comparison judgements are consistent or in agreement with each 

other. Saaty (1977) proposed a term called the consistency ratio (CR) 

for this purpose which can be calculated from Equation 3.5. CR 

indicates the level of logical agreements between the judgements used 

to populate the pairwise comparison matrix. In general, the 

judgements are accepted as being consistent if the calculated CR does 
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not exceed 0.10. Otherwise, improvements are made to the judgement 

matrix before it can be used with confidence. 

 𝐶𝑅 =  
𝐶𝐼

𝑅𝐼𝑛
 (3.5) 

Where CI is the consistency index calculated using Equation 3.6 

 𝐶𝐼 =  
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (3.6) 

Where λmax and n respectively represent the maximum eigenvalue and 

size of the pairwise comparison matrix being investigated. And RIn or 

random index is an estimate of the average consistency index obtained 

from a large enough set of randomly generated n-sized matrices. The 

random indexes for different values of n are shown in Table 3.7.  

Table 3.7: Random Index values for different matrix sizes (Brunelli 2015) 

Matrix 

Size (n) 

3 4 5 6 7 8 9 10 

Random 

Index 

0.525 0.882 1.109 1.248 1.342 1.406 1.45 1.485 

4. Aggregation: Combine the products of each criterion weight with the 

score of an alternative when evaluated with reference to the criterion 

to obtain the weighted score for that alternative as shown in Equation 

3.7 (Na et al. 2017; Nnaji and Banigo 2018). The procedure is repeated 

for all considered alternatives and their obtained weighted scores are 

used for comparatively ranking the alternatives. 

 𝑊𝑖 = ∑ 𝑤𝑗 ∗ 𝑠𝑖𝑗

𝑛

𝑗=1

 (3.7) 

Where 𝑊𝑖 is the weighted score for alternative i, 𝑤𝑗 is the weight of 

importance of criterion j and 𝑠𝑖𝑗 is the score of alternative i with respect 

to criterion j. 



84 

  

Note that steps 1-3 alone generate priorities or relative weights for the criteria 

and sub-criteria which show how important they are to achieving the desired 

objective and step 4 is purely for the purpose of ranking the alternatives. The 

AHP technique was used in this research to develop the decommissioning 

decision model (i.e., objective 1) in Chapter four. 

Despite its extensive application, the AHP technique suffers from several 

weaknesses which include ambiguous questions, rigid measurement scales, 

and variations in results depending on the hierarchy structure (Song and Kang 

2016; Çalişkan et al. 2019; Çetinyokuş et al. 2020). Overcoming these issues 

requires proper structuring of the decision problem into AHP hierarchy and 

soliciting for expert opinion in a manner that effectively captures their 

judgements and minimises inconsistencies (Hossain, Adnan and Hasin 2014). 

The latter measure is achieved in this research with the Likert-AHP technique. 

3.4.2. Integration of Likert Scale with AHP (Likert-AHP) 

The number of judgements required for populating a decision matrix increases 

with the number of elements involved (see equation(3.2)). This leads to 

challenges with inconsistencies when using AHP to solve decision-making 

problems that require plenty of comparisons due to having a high number of 

criteria and alternatives (Çetinyokuş et al., 2020). Moreso, real-life problems 

are often complex and multi-faceted, and Saaty (1977) defined the allowable 

bound of consistency ratio to be 0.01 which is quite a small margin. This has 

led to a recent increase in research efforts to simplify the AHP process while 

ensuring that the accuracy of its results meet acceptable standards (Song and 

Kang 2016). 

Hossain, Adnan and Hasin (2014) asserted that the weightings provided by 

AHP are only useful for prioritising or ranking the alternatives and should not 

be interpreted as the actual proportion of relative importance of alternatives. 

Franek and Kresta (2014) also concluded that judgment scales have a 

profound impact on criteria priorities but not on ranking of criteria. This 

assertion is supported by the analysis performed by Shapira and Goldenberg 

(2005). Furthermore, some authors have taken a broader view and posited 
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that MCDA methods tend to yield same ranking results despite variations in 

the scores (Ertuğrul and Karakaşoğlu 2008; Dehe and Bamford 2015). Thus, 

suggesting that the primary target of AHP is ranking alternatives according to 

their preferences. 

Hossain, Adnan and Hasin (2014) further proposed a combination of Likert 

scale and AHP to improve the weight assignment process. In their proposed 

approach Likert scale is used for eliciting responses from the survey 

participants which are then used to perform AHP calculations with some 

modifications. The benefits from using this approach are threefold. 

i. Likert scale enables its user to clearly capture the opinions of 

individuals hence its widespread applications in the areas of 

psychometry, prioritisation, and resource allocation (Joshi et al. 2015). 

This scale reduces the likelihood of survey participants 

misunderstanding the posed questions, a potential challenge when 

using the traditional AHP technique (Shapira and Goldenberg 2005).  

ii. The Likert-AHP approach ensures that there are no inconsistencies in 

the judgements (i.e., consistency ratio = 0) while yielding results that 

are sufficient for ranking the evaluated alternatives. 

iii. It results in a more user-friendly input and time savings from requiring 

a lower number of judgements than the traditional AHP technique as 

shown in Figure 3.2. The number of judgements required when using 

Likert-AHP approach is n whereas using the traditional AHP approach 

requires (𝑛2 − 𝑛)/2 judgements, where n is the number of elements 

being compared with each other at the same hierarchy level. 
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Figure 3.2: Comparison of the number of required judgements for the 

traditional AHP approach and the Likert-AHP approach. 

Due to these benefits, the Likert-AHP technique was applied in this research 

for designing the survey questionnaire and analysing the responses from 

participants i.e., objective 2. 

The procedure for using the Likert-AHP technique is depicted in Figure 3.3. It 

differs from the traditional AHP process in that the prioritisation stage is 

replaced with suggestion matrix formulation. 

 

Figure 3.3: Likert-AHP procedure 

0

5

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12

N
u

m
b

e
r 

o
f 

ju
d

ge
m

e
n

ts
 r

e
q

u
ir

e
d

Number of elements to be evaluated
Likert-AHP Approach Traditional AHP Approach

AggregationSynthesis
Suggestion 

matrix 
formulation

•Likert-scale based 
questionnaire

•Relative rating

•Transitivity and 
reciprocity rules

Decomposition



87 

  

The Likert-AHP calculations in this research are detailed in appendix 3. For 

further details about using the procedure, the reader is referred to Hossain, 

Adnan and Hasin (2014). 

3.4.3. Sensitivity Analysis 

Sensitivity analysis is a mathematical procedure for investigating how results 

or decisions might change with different input data (Goepel 2017). The 

analysis is a viable means of validating the input data of a model and the 

results obtained from its use (Smith et al. 2008). It is considered risky to rely 

on the current inputs of a decision model if sensitivity analysis of the model 

results suggest that a change of 5% or less to any of the model’s input 

parameters causes a change in the most-preferred alternative (Abu-Shabeen 

2008). Such findings warrant further review and validation of the initial 

weights of the input parameters. This analysis was applied in Chapter six of 

this research to check validity of the input data i.e., objective 3 and 

constituted part of the model implementation for the case study (objective 2). 

Numerical incremental analysis (NIA), which is adopted in this research, is the 

most popular sensitivity analysis method in the literature for cases where AHP 

is used to solve MCDA problems and for software tools which implement AHP 

(IJzerman, Groothuis-Oudshoorn and Hummel 2011; Chen and Kocaoglu 

2008; Siraj et al. 2013). This method, also known as One-at-a-time analysis, 

entails incrementally changing the numerical values of specific parameters 

and observing the corresponding changes in the model result. Only one 

parameter of interest is investigated for each sensitivity analysis run, hence 

the name one-at-a-time analysis. The procedure used to implement NIA for 

the developed decision model after obtaining its results for the case study was 

adopted from the literature (Barker and Zabinsky 2011; SHELL 2017; Rahman 

and Szabó 2021; Enyinda et al. 2022; Haag, Aubert and Lienert 2022). The 

weights of each of the five decision criteria were varied from 0% to 100% 

while distributing the remaining weight proportion to the other four criteria in 

proportion to their original weights, with the corresponding changes in the 
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ranking of the decommissioning options recorded. The sensitivity for each 

decision criterion was then visualised with a graphical plot. 

3.4.4. Machine Learning 

Machine learning refers to the use of statistical and mathematical models to 

obtain a general understanding of data and to make predictions. It is the 

application and science of algorithms that make sense of data. This field of 

learning evolved in the latter part of the 20th century as an aspect of artificial 

intelligence involving self-learning algorithms that derive knowledge from 

data to make predictions (Raschka and Mirjalili 2019). Furthermore, use of 

machine learning for mathematical modelling is increasingly becoming 

popular due to abundance of data and advances in computing technology 

(Arasu, Seelan and Thamaraiselvan 2020; Chaudhary et al. 2021). A 

significant rise in the frequency of applying machine learning modelling within 

the petroleum industry has been observed over the past few years, driven by 

increasing data availability, computational power, and development of more 

advanced computational algorithms (Khan et al. 2022). 

Machine learning is sub-divided into supervised and unsupervised learning. 

Unsupervised learning deals with unlabelled data or data of unknown structure 

and comprises techniques for exploring the structure of data to extract 

meaningful information without the guidance of a known outcome variable. 

Supervised learning, on the other hand, entails creating a model from labelled 

training data to understand underlying relationships between its parameters 

and making predictions about unseen or future data as shown in Figure 3.4. 

This is achieved through analysing a set of training examples (or data inputs) 

where the desired output signals (or labels) are already known. 
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Figure 3.4: Workflow of supervised learning  

Supervised learning tasks are further divided into tasks involving discrete 

class labels or classification, and tasks involving continuous values or 

regression. Nonetheless, there is some overlap between classification and 

regression tasks, and algorithms such as decision trees and artificial neural 

networks can be used for performing both task with little modifications. 

Regression analysis is the primary concern of this research because the nature 

of most historical data pertaining to decommissioning is continuous with real 

numerical values. 

This technique was used in Chapter eight to create a mathematical model for 

predicting the costs of utilising different options for a decommissioning project 

based on historical data (objective 4). 

3.4.5. Data Scaling 

Data scaling is a technique used to mathematically transform quantitative 

values into magnitudes that are easily comparable. Through data scaling, 

quantitative historical data can be expressed in a relative format and made 

comparable to expert opinion, thus enabling the integration of both data 

sources as model input (ALHababi 2015). Therefore, this technique was 

applied to improve the quality of input data to the decision model developed 

in this research. 
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McCann et al. (2017) applied interpolation in scaling decommissioning data 

with the formula shown in Equation 3.8 for any given numerical parameter, 

X. 

 𝑋𝑠 =
𝑋𝑖 − 𝑋𝑤𝑜𝑟𝑠𝑡

𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑤𝑜𝑟𝑠𝑡
 (3.8) 

Where, 𝑋𝑠 is the scaled value, 𝑋𝑖 is the original value of the parameter, 𝑋𝑤𝑜𝑟𝑠𝑡 

is the value corresponding to the most undesirable state of the parameter, 

and  𝑋𝑤𝑜𝑟𝑠𝑡 is the value corresponding to the most desirable state of the 

parameter.  

It can be inferred from Equation 3.8 that actual quantitative values of a 

parameter such as decommissioning cost are scalable to relative ratios, 

provided there is knowledge of the desired target scale and range of values 

for the target parameter. However, the equation suffers a limitation of only 

being able to scale values between the range of 0 to 1, therefore it cannot be 

used to reduce values into a range with a non-zero minimum value such as 

the input data for Likert scale which has a custom range of 1-9. Nevertheless, 

this drawback was overcome in this research by adopting the range 

transformation scaling method proposed in the literature (Akanbi, Amiri and 

Fazeldehkordi 2015; Liu et al. 2022) for performing linear transformation of 

numerical data.  

Suppose that 𝑂𝑀𝐼𝑁𝑖 and 𝑂𝑀𝐴𝑋𝑖 are the minimum and the maximum values for 

a parameter, i. Range transformation scaling can be used to map a value 𝑉 of 

i to 𝑉′ in the range (𝑁𝑀𝐼𝑁𝑖, 𝑁𝑀𝐴𝑋𝑖) by computing as shown in Equation 3.9. 

 𝑉′ =
𝑉 − 𝑂𝑀𝐼𝑁𝑖

𝑂𝑀𝐴𝑋𝑖 − 𝑂𝑀𝐼𝑁𝑖
 𝑥 (𝑁𝑀𝐴𝑋𝑖 − 𝑁𝑀𝐼𝑁𝑖) + 𝑁𝑀𝐼𝑁𝑖 (3.9) 

To scale decommissioning cost values into their equivalent values in the Likert 

scale using Equation 3.9, 𝑂𝑀𝐼𝑁𝑖 is replaced by the cost value of the most 

expensive decommissioning option and 𝑂𝑀𝐴𝑋𝑖 becomes the cost value of the 

cheapest decommissioning option. Similarly, the new range (𝑁𝑀𝐼𝑁𝑖, 𝑁𝑀𝐴𝑋𝑖) 

becomes (1,9) and V is replaced by the decommissioning cost value of 

interest.  



91 

  

Equation 3.9 is applied in this research for transforming the decommissioning 

costs for the case study platform into the Likert scale after their estimation in 

Chapter eight i.e., objective 4(c). 

3.5. Summary 

This chapter outlined the key elements of the research methodology in detail 

and explained the data analysis techniques applied throughout the research 

to achieve the aim and objectives stated in Chapter one. Firstly, the deductive 

approach was identified to be the most adequate for this research. This was 

followed by a presentation of the design adopted for this research. The 

research design comprises a synthesis of quantitative and qualitative research 

methods and utilises several data analysis techniques. Descriptions of the 

case study and survey research methods were also presented with the 

justification for their adoption in this research. Finally, the main data analysis 

techniques used in this research (i.e., AHP, Likert-AHP, sensitivity analysis, 

machine learning and data scaling) were discussed with regards to how they 

are applied and the justification for their adoption. The next chapter describes 

the logical development of a decision support model for decommissioning 

decision-making in line with the discussed methodology. 
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Chapter 4 : DEVELOPMENT OF 

DECOMMISSIONING DECISION MODEL 

As highlighted in Chapter one, the complexity of decommissioning decision-

making necessitates the requirement for a decision model to aid the process. 

Following the review of existing approaches to decommissioning options 

evaluation in Chapter two, a decision model which harnesses the strengths 

and mitigates the weaknesses of these approaches was developed. This 

chapter discusses the development of the decommissioning decision model 

(DDM). It also highlights benefits that are envisaged to accrue to 

decommissioning decision-makers from a widespread adoption of the model. 

4.1. General Framework 

An overview of the decision model’s underlying framework is illustrated in 

Figure 4.1. From start to finish, it comprises of four primary phases namely 

pre-assessment (process A-B), data gathering (process B-C), alternatives 

evaluation (process C-D) and results interpretation (process D-E). These 

phases have been carefully identified such that usage of the model will 

streamline the efforts and resources that a decision-maker expends in 

determining the optimal option for decommissioning an offshore platform.  
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Figure 4.1: Framework of Decommissioning Decision Model 

Further details of the activities which constitute each of the phases are 

subsequently provided. 

4.2. Detailed Design 

4.2.1. Phase I: Pre-Assessment 

The first phase in using the decision model entails gaining an initial 

understanding of the offshore platform to be decommissioned, the options 

being considered for executing the project and the applicable legislative 

context. The activities that comprise this phase are shown in Figure 4.2. 
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Figure 4.2: Pre-Assessment Phase of the DDM 

Some key physical features of an offshore platform to be identified at this 

phase include the size and configuration of its components, water depth, 

structural integrity, and proximity to land. Also, the decision-maker is 

required to compile a list of all the possible decommissioning options for the 

project. This compilation is necessary because a wide range of 

decommissioning options are in existence (Chen 2017) and some of these 

might not be applicable to the platform due to its physical features. Next, the 

considered decommissioning options are screened against the regulations 

which oversee decommissioning in the location where the platform is situated, 

provided that these regulations exist. Decommissioning options not permitted 

by the overseeing regulations are discarded and only permitted options are 

progressed for further analysis. According to Andrawus, Steel and Watson 

(2009), establishing a screening medium which defines the minimum 

standard requirements is the first step in selecting an optimal 

decommissioning option. Government regulations were adjudged in this study 

to be a valid medium for screening decommissioning options because it 

encapsulates several measures that align with industry best practice (McCann 

et al. 2017). Screening of decommissioning options leads to efficiency savings 
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to the decision-maker from timely discarding of options not approved by the 

overseeing legislation. 

In the UK, regulatory screening of decommissioning options depends on the 

platform type and substructure weight as shown in Table 4.1, thus 

necessitating initial knowledge of the platform’s physical features. 

Table 4.1: Possible decommissioning options for offshore structures located 

in the UKCS (Adapted from BEIS 2018) 

Platform 

Type 

Weight of 

Substructure 

(tons) 

Complete 

Removal 

Partial 

Removal 

Leave 

in Place 

Reuse Disposal 

at Sea 

Fixed 

Steel 

<10,000 Yes No No Yes No 

>10,000 Yes Yes No Yes No 

Concrete-

gravity 

Any Yes Yes Yes Yes No 

Floating Any Yes No No Yes No 

Subsea Any Yes No No Yes No 

If only one decommissioning option passes the screening exercise, the option 

becomes selected as being optimal for the project. However, it is more likely 

that several options are approved, and these are then carried forward for 

further analysis. 

Lastly, an evaluation scheme specifying the decision criteria to be used for 

evaluating the decommissioning options and the desired level of detail is 

defined in agreement with the project stakeholders. The evaluation scheme is 

also influenced by the decommissioning approach of the regulator which can 

either be a prescriptive or goal-setting approach.  

4.2.2. Phase II: Data Gathering 

The decision criteria that are relevant to decommissioning options evaluation 

for offshore platforms have been identified in Chapter two of this thesis. Figure 

4.3 shows the main activities involved in the data gathering phase. These 

activities are directed towards ensuring that there is adequate information for 

the decision maker to evaluate the considered decommissioning options for 

the platform in terms of these decision criteria.  
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Figure 4.3: Data Gathering Phase of the DDM 

Supporting studies such as Environmental Impact Assessment and Technical 

Feasibility studies are conventional sources of decommissioning information. 

Historical data from previous decommissioning projects is also a valuable 

source of quantitative data to support the decision-making, especially when 

collated into datasets or formulated into mathematical models (Eke et al 

2021; Kaiser and Liu 2014, TSB 2016). In the absence of sufficient 

information, and for furnishing qualitative aspects of the decision criteria, 

inputs from decommissioning experts supplement the available information. 

This enables a thorough assessment of all aspects of the decommissioning 

options being considered for the platform vis a vis the decision criteria in the 

next phase. 

4.2.3. Phase III: Alternatives Evaluation 

Figure 4.4 illustrates the Alternatives Evaluation phase. This phase involves 

the logical evaluation of all considered decommissioning options for the 

platform with reference to the decision criteria i.e., safety, technical 

feasibility, environmental impact, cost, and public perception. This is achieved 

using an MCDA technique and information from the data gathering stage as 

input. 
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Figure 4.4: Alternatives Evaluation Phase of the DDM 

The Analytic Hierarchy Process was determined in Chapter two of this thesis 

as the most suitable MCDA technique for this purpose due to its flexibility in 

handling different data types and well-documented record of use. Evaluating 

the decommissioning options with this technique minimises bias in expert 

opinion by enforcing logic in their judgement. Through AHP, weighted scores 

which comparatively quantify the expected performance of the 

decommissioning options are calculated for each option. These weighted 

scores are the key result from options evaluation phase and are progressed 

into the next phase. 

4.2.4. Phase IV: Results Interpretation 

In this phase of the model, the results obtained from evaluating the 

decommissioning options are further probed for insights and then put to final 

use by guiding the decision maker to identify the optimal option for the 

decommissioning project. The activities that constitute Results Interpretation 

are shown in Figure 4.5.  
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Figure 4.5: Results Interpretation Phase of the DDM 

First, the options are ranked in ascending order of their weighted scores such 

that the option with the highest weighted score becomes the top-ranked 

option. For example, given three evaluated decommissioning options, the best 

option would be assigned a rank value of 1 and the worst option assigned a 

rank of value 3. Following this ranking, a sensitivity analysis is conducted to 

validate the input data used for the options evaluation and robustness of the 

obtained results. Ranking of the evaluated options and sensitivity analysis of 

results unlocks further insights into other scenarios. Thus, effectively 

capturing concerns of the decommissioning stakeholders to ensure an optimal 

course of action for the decommissioning project is identified. Finally, the 

decision-maker chooses the top-ranked decommissioning option as the 

optimal course of action, thus completing the decision-making process. 

4.3. Decommissioning Decision Model 

A comprehensive view of all phases of the model’s framework along with the 

constituent activities and their interdependencies is shown in Figure 4.6 

(Andrawus, Steel and Watson 2009). This integration of all the components 

into a logical structure represents the model developed in this research for 

optimising decommissioning decision-making, also called the 

decommissioning decision model. 
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Figure 4.6: Decommissioning Decision Model 



100 

  

4.4. Benefits of the Decision Model 

By leveraging on the strengths of previous works on decommissioning 

decision-making as identified in Chapter two, the DDM enables the decision-

maker to unlock higher levels of efficiency and effectiveness in the decision-

making process of option selection. Note that the model is a decision-support 

system and specifically serves the purpose of facilitating the decision-making 

process but does not assume the decision-taking role of its user (Minguella 

and Buj 2019). 

The developed model is unique, and specific benefits are envisaged to accrue 

from its widespread adoption by the offshore decommissioning industry. 

Some of these benefits are subsequently outlined.  

i. The model represents a systematic and auditable decision-making 

process. It minimizes human subjectivity in the decision-making 

process through the provision of structured guidance on steps for the 

decision-maker to follow. Traceability of the final decision to the 

information inputs will ensure accountability of the platform owner and 

clarity in communicating the justification for choosing a 

decommissioning option. Thus, reducing the likelihood of conflicts 

between stakeholders of the decommissioning project. 

ii. The model provides a transparent, logical framework for structuring the 

decommissioning option selection process; it holistically synthesizes all 

the available information that is relevant to solving the decision-making 

problem. Its use will streamline efforts towards decommissioning data 

collection by enabling the platform owners to decipher what information 

is required for determining the optimal option for decommissioning 

their asset. 

iii. It is highly flexible and makes use of data from diverse sources to 

facilitate an efficient decision-making process, irrespective of the 

desired level of detail. In addition to information from platform-specific 

studies, existing decommissioning datasets/models from historical data 
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and expert opinion are harnessed by the model to ensure a proper 

evaluation of all the considered decommissioning options. Therefore, it 

can yield results even in circumstances when available data is minimal.  

iv. The model is reusable and easily adaptable to different contexts and 

offshore areas. Consequently, its widespread adoption by the global 

decommissioning industry will enable direct comparison of the 

decommissioning decision-making approach of different countries to 

identify lapses and areas of improvement in current practices. 

4.5. Summary 

This chapter described the development of a structured decision model for 

determining the optimal option for decommissioning offshore platforms. The 

model harnesses the strengths of existing works in the domain and comprises 

of four phases, i.e., pre-assessment, data gathering, alternatives evaluation 

and results interpretation phase. Each of the model phases and their 

associated activities were discussed independently and then logically arranged 

to form the model. Finally, the envisaged benefits from adoption of the 

developed model by the oil and gas offshore decommissioning industry were 

discussed. These include minimisation of human subjectivity, streamlining of 

efforts, data flexibility, reusability, and adaptability. The next chapter 

introduces a case study platform for demonstrating the applicability of the 

developed decision model and discusses the results for evaluating 

decommissioning options for the case study.
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Chapter 5 : MODEL APPLICATION TO A CASE 

STUDY PLATFORM AND PRESENTATION OF 

SURVEY RESULTS 

As stated in section 3.2, demonstrating the decommissioning decision model’s 

applicability with the case study research strategy involves using the model 

to determine the optimal option for decommissioning an offshore platform. 

Detailed description of the case study adopted for this purpose is presented 

in this chapter. An overview of the application of the decommissioning 

decision model to the case study is also outlined alongside key results from 

the survey of decommissioning experts conducted as part of this research. 

5.1. Regional Context of Case Study 

The case study is a theoretical fixed steel jacket-type platform situated in the 

California Pacific Outer Continental Shelf, USA. It is pertinent that a physical 

location be used as reference location for the case study platform. This is 

because the evaluation of decommissioning options is heavily influenced by 

this factor. The applicable regulation, weather and climate conditions, and 

public perception are all variable elements that are location-dependent (Fam 

et al. 2018; Tung 2020). 

5.1.1. Decommissioning in California, USA 

The USA offshore industry was birthed in the early years of the 20th century 

and since then has contributed immensely to the economic development of 

the state (Mount and Voskanian 2005). The country’s major oil producing 

states are Louisiana, Texas, Alaska, and California (IOGP 2017). Currently 

there are twenty-three platforms in federal waters on the Pacific Outer 

Continental Shelf (POCS) of California in water depths ranging from 150 feet 

to nearly 1,200 feet. These are shown in Figure 5.1.  
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Figure 5.1: Geographical location of the offshore oil and gas facilities in 

california (MRS Environmental Inc 2019 p. 11) 

As stipulated by federal regulations, decommissioning of these offshore assets 

is a compulsory requirement for operators when the structures are no longer 

useful for operations or when the leases expire (Bull and Love 2019). This 

process is overseen by the Bureau of Safety and Environmental Enforcement 

(BSEE) and Bureau of Ocean Energy Management (BOEM) to ensure that it is 

completed in a timely fashion without significant adverse environmental 

impact (Bressler and Bernstein 2015). 

BOEM is responsible for managing the development of California’s offshore 

energy and mineral resources such as oil and gas; wind, wave, and current 

energy; sand, gravel, and other minerals in an environmentally and 

economically responsible way. BSEE, on the other hand, is tasked with 

promoting safety, protecting the environment, and conserving offshore 

resources through vigorous regulatory oversight and enforcement. Although 

it is the prerogative of the asset operator to propose their decommissioning 

project and timeline to the government, the BSEE, BOEM, and other federal 

and state agencies with regulatory authorities are responsible for reviewing 

and approving the proposed decommissioning process and approach. 
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The regulations require removal of platforms to at least 15 feet below the mud 

line during their decommissioning. However, BSEE may grant a departure 

from this requirement and permit other decommissioning options such as 

partial removal, rigs-to-reef, and reuse or alternative use if certain conditions 

are met. In such situations, the platform operator must support their 

decommissioning application with the most up-to-date information regarding 

ecology, engineering, and socioeconomics of the planned project. 

Peradventure there are information gaps, the regulatory agencies may 

request that studies be conducted, or additional information be provided. 

Therefore, decommissioning project plans require careful and detailed 

preparation with scientific backing to gain regulatory approval (McCann, 

Henrion and Bernstein 2016).  

Moreso, decommissioning is particularly important to California’s populace. 

Decisions made during the decommissioning process, such as the choice of a 

decommissioning option, can have long-term effects on the surrounding 

marine resources and coastal areas and adversely impact the future use of 

the area (Meyer‐Gutbrod et al. 2020). Execution of such projects can affect 

the water quality and result to disruptions for marine vessels, fishers, and 

other sea users (Mount and Voskanian 2005; Birchenough and Degraer 2020). 

There is also the potential for these to result to air pollution which will be 

harmful to people living in the location. Hence, the public closely observes 

decommissioning-related activities especially as many of the offshore facilities 

are close to land and highly visible. Focus groups that represent public interest 

are included in the decision-making process as stakeholders to ensure their 

opinions are considered and to consequently reduce the likelihood of a 

backlash from them (Bernstein et al. 2010; Wilkinson et al. 2016; Bull and 

Love 2019; IDWG 2019).  

Owing to its precarious nature, offshore decommissioning in California has 

always been and will continue to be a fiercely debated topic (Mount and 

Voskanian 2005). Since the early 2000s, numerous studies and public 

workshops have been conducted in partnership with various academic 

institutions and agencies around decommissioning in the POCS, most of which 
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are government funded. The topics covered by these studies include policies, 

economics, ecology, and recent experiences of decommissioning in other 

offshore locations. As a result, the literature is replete with platform ecology 

studies on fish, other biota, and cultural resources including shell mounds and 

studies regarding decommissioning technology and cost studies that are 

focused on the platforms in this location. Further information about these 

studies is outside the remit of this report but their compendium (BOEM and 

BSEE 2022) is publicly available for interested readers.  

At present, all the major decommissioning projects offshore California have 

been in state waters where relatively smaller platforms are located while none 

of the platforms in the federal waters have been decommissioned (Byrd, 

Smith and Spease 2018). Thus, despite the offshore decommissioning 

experience, a challenge is envisaged with the future decommissioning of 

larger platforms and these projects are expected to be accompanied by unique 

removal problems because of the large weights and greater water depths 

involved (Twachtman Snyder & Byrd Incorporated 2000; Wilkinson et al. 

2016). The largest of these platforms, Platform Harmony, sits in a water depth 

of 1,198 feet and weighs about 70,000 tons. To put this size in context, Figure 

5.2 compares the platform to other megastructures including the empire state 

building which extends to 1,250 feet and the world record for a large platform 

decommissioning as at 2005 (Mount and Voskanian 2005). 
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Figure 5.2: Size comparison of platform harmony with some of the world's 

megastructures (Adapted from Mount and Voskanian 2005) 

There has already been a considerable amount of discourse surrounding the 

future of these sizeable platforms in federal waters, especially with the issue 

of determining the best option for their decommissioning (McGinnis 2001; 

Mount and Voskanian 2005; Gourvenec 2018). This is because there are a 

plethora of merits and demerits associated with using any option for 

decommissioning a platform and these issues are more significant for larger 

platforms (Schroeder and Love 2004; Fowler et al. 2014; Bernstein 2015). 

Also, the situation is becoming increasingly alarming as the timeline for 

decommissioning these platforms draws near (Bull and Love 2019; Kulovic 

2021). Consequently, there is currently a pressing need in the POCS California 

for research endeavors which are focused on optimising offshore 

decommissioning such as this research. Moreso, the insights unlocked from 

these endeavors will, by extension, be beneficial to other offshore locations in 

the world with upcoming decommissioning projects such as the North Sea and 

Offshore Australia, Asia, and Africa (Sea and Enterprise 2014; Chandler et al. 

2017; Fam et al. 2018; Bull and Love 2019; Martins et al. 2020). 

(
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5.2. Case Study Platform Description 

A theoretical case study is used in this research instead of an actual platform. 

This is to avoid conflicts with platform operators who typically regard their 

platform information as confidential and safeguard it to avoid reputational 

damage and loss of competitive advantage to other operators (Lakhal, Khan 

and Islam 2009; Murray et al. 2018).  

The decision to select a platform in the California region for the 

decommissioning study was informed by four primary reasons. 

i. The US Offshore region has the highest number of decommissioning 

projects in the world and, along with the North Sea region, is most 

advanced in terms of the maturity of decommissioning technology and 

legislation (Offshore Engineer 2016; IOGP 2017). This rich experience 

of decommissioning makes the region ideal for this research. 

ii. The decommissioning regulations in POCS California permit a wide 

range of decommissioning options including Toppling, and the few 

decommissioning projects that have been completed in this location 

witnessed strong opposition from stakeholder groups (Fowler et al. 

2014).  

iii. Secondary data about platforms in the location is easy to gather 

because California is the subject of several decommissioning-related 

studies reported in the literature (TSB 2000; Schroeder and Love 2004; 

Bernstein et al. 2010; Claisse et al. 2014; Kaiser and Liu 2014; Bressler 

and Bernstein 2015; Cantle and Bernstein 2015; McCann, Henrion and 

Bernstein 2016; TSB 2016a, 2016b; McCann et al. 2017). 

iv. Decommissioning activity in the region is expected to increase and 

hence there is a real need for studies to support the successful planning 

and execution of these projects. 

Since the case study platform is theoretical, its features were determined as 

the average of the features of the platforms in the POCS. Thus, ensuring that 

the platform is an adequate representation of the platforms in this location. 

Given this representative nature, it can be argued that the results from 
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evaluating decommissioning options for the case study can be extended (to 

various degrees) to all the platforms in California POCS. 

Details of the case study platform features are presented in Table 5.1 below. 

This was provided to the survey respondents as background information to 

ensure clarity and serve as a common reference for their judgments. Further 

details about generation of the data in Table 5.1 can be found in the appendix 

1 of this thesis. 

Table 5.1: Features of Case Study Platform  

Platform Feature Description 

Location Pacific Outer Continental Shelf, California 

Platform type Fixed steel jacket structure 

End of economic life?  Yes 

Water depth 406 feet (124 metres) 

Topsides weight 4,715 tons 

Substructure weight 11,137 tons 

Jacket weight 8,774 tons 

Piles weight 2,363 tons 

Number of piles 16 (8-main and 8-skirt piles) 

Conductors weight 3,926 tons 

Distance from land 7 miles (11 kilometres) 

Date of installation 1979 (43 years) 

5.3. Decommissioning Options Considered for Case 

Study 

Asides the substantial number of decommissioning options currently in 

existence, there is potential for new options to emerge as technology 

advances. Therefore, a limited number of decommissioning options for the 

case study platform have been selected for detailed analysis to streamline the 

efforts. Nevertheless, the findings from this analysis can be extended to other 

options.  

The decommissioning options considered for the case study include leave in 

place (with topsides removed, wells plugged and abandoned, and the entire 

underwater portion of the platform is preserved as an artificial reef), complete 
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removal (to 3 meters below the mudline) and three partial removal variants 

as shown in Figure 5.3. In all cases, the removed part of the platform is 

assumed to be disposed on land.  

 

Figure 5.3: Decommissioning options considered for the case study 

Leave in place decommissioning option has been included in this work due to 

its mention in several publications (Schroeder and Love 2004; SEPA 2018; 

Sommer et al. 2019; Meyer‐Gutbrod et al. 2020). Also, with the wells plugged 

while the entire underwater portion of the platform is preserved, this option 

can potentially support alternative uses of platforms such as energy 

generation, aquaculture, prisons, meteorological stations, navigational 

landmark, hotels, gambling casinos, and water desalination plants (Schroeder 

and Love 2004; Bernstein 2015). 

Further information about the decommissioning options is detailed in Eke et 

al. (2021) and OGUK (2017). However, a key differentiator between them is 

their depth of removal as shown in Figure 5.4 below. 

Decommissioning 
Options

Leave in Place Partial Removal

Partial Removal to 
85 feet

Partial Removal to 
IMO-approved 

Depth

Partial Removal to 
Top of Footings

Complete 
Removal
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Figure 5.4: Illustration of decommissioning options considered for the case 

study 

5.4. Application of Decommissioning Decision Model 

to Case Study 

Using the developed decommissioning decision model to solve the problem of 

determining the optimal option for decommissioning the case study involves 

going through the phases of the model as described in Chapter four. 
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i. Pre-Assessment: The physical features of the case study platform are 

as shown in Table 5.1. The platform is a fixed-steel jacket structure 

situated in a water depth of 406 feet (124 metres) and located in the 

California POCS, USA. Its topsides and substructure weigh 4,715 tons 

and 11,137 tons, respectively. Also, after 43 years since its installation, 

the platform has come to the end of its economic life and set to be 

decommissioned. Regarding options screening, it is possible to use any 

of the five considered options for decommissioning the platform under 

the California decommissioning regulations, therefore no option is 

discarded at this phase. 

In terms of the evaluation scheme, the decision criteria identified in 

Chapter two (i.e., safety, technical feasibility, environmental impact, 

financial cost, and public perception) are adopted for evaluating the 

options. To facilitate detailed analysis, these criteria have been further 

expatiated by highlighting their sub-criteria as identified from the 

literature (Ekins, Vanner and Firebrace 2006; Andrawus, Steel and 

Watson 2009; Fowler et al. 2014; Oil and Gas UK (OGUK) 2015; 

Truchon et al. 2015; Cheng et al. 2017; McCann et al. 2017; Na et al. 

2017; GOV.UK 2022). The sub-criteria for each criterion are described 

in Table 5.2, Table 5.3, Table 5.4, and Table 5.5, respectively. 

Table 5.2: Safety Sub-Criteria 

Safety sub-criteria Description 

Risk to onshore personnel What is the likelihood and extent of harm 

from using the decommissioning option to 

personnel who receive the removed structure 

and handle its demolition and disposal?  

Risk to offshore personnel What is the likelihood and extent of harm 

from using the decommissioning option to 

personnel who execute the removals 

offshore? 

Risk to other sea users How much risks arise from using the 

decommissioning option to fishers, ships, and 

other sea users during and after the project 

completion? 
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Table 5.3: Environmental Impact Sub-Criteria 

Environmental Impact sub-criteria Description 

Energy use How much energy will be required 

to execute the decommissioning 

project with the option? 

Emissions What is the anticipated level of 

gas emissions to the atmosphere 

associated with the 

decommissioning project when 

using the option? 

Waste generation How much waste material will be 

required to be sent to landfill 

when the decommissioning option 

is used? 

Impacts on fish stocks  What is the anticipated net effect 

of using the decommissioning 

option on fishes? 

Loss of the developed community To what extent will using the 

decommissioning option result to 

mortality of organisms and 

ecosystem supported by the 

platform, and its potential to act 

as an artificial reef? 

Water pollution What is the tendency of accidental 

spills or harmful discharges to the 

marine environment from vessels 

and other machinery on site when 

using the decommissioning 

option? 

Physical disturbance  What is the expected level of 

vibrations, noise and disruptions 

from vessels and divers' activities 

in the platform vicinity when using 

the decommissioning option? 

Legacy impacts What is the likely extent of long-

term detrimental impacts on the 

environment due to using the 

decommissioning option? 
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Table 5.4: Technical Feasibility Sub-Criteria 

Technical Feasibility 

sub-criteria 

Description 

Probability of a major 

technical failure 

What is the likelihood of occurrence of 

significant setbacks that make the project 

infeasible to complete as planned when using 

the decommissioning option? 

Use of proven 

technology and 

equipment 

Are technology and equipment for 

decommissioning a structure having the 

platform’s features, such as water depth, 

location, and weight, with the option currently 

within the State of the Art? 

Ease of recovery from 

excursion 

How readily can the project get back on track in 

the event of unforeseen setbacks while using 

the option? Are the contingency measures well 

understood? 

Logistic requirement What is the proximity of the disposal site that 

will be required for the decommissioning project 

if it is executed with the option? Are the 

required vessels readily available? 

Structural integrity How much fatigue life does the platform have 

left, and is the structure strong enough to allow 

using the decommissioning option? 

Table 5.5: Costs Sub-Criteria 

Costs sub-criteria Description 

Financial expenditures How much money is required to execute the 

decommissioning project using the option? 

Revenue generation Are there any financial incentives that will 

accrue to the platform owners from using the 

decommissioning option?  

Post Decommissioning 

liability 

How much monitoring costs and other future 

liabilities will remain for the platform owners 

after completing the project with the 

decommissioning option? 

 

ii. Data Gathering: There is insufficient information for evaluating the 

decommissioning options in terms of the agreed decision criteria. 

Therefore, the evaluation will be heavily reliant on expert opinion from 
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a survey of decommissioning practitioners. A decommissioning 

mathematical model will also feed into the options evaluation after its 

development in Chapter eight of this thesis. 

iii. Alternatives Evaluation: Decommissioning options for the case study 

are evaluated using the AHP MCDA technique. The results are 

presented in the next section since decommissioning options evaluation 

comprises a major part of the survey analysis. 

iv. Results Interpretation: Ranking of decommissioning options, sensitivity 

analysis of the results and selection of the optimal decommissioning 

option for the case study are also reported in the next section. 

5.5. Presentation of Survey Results 

The conducted survey was used to evaluate decommissioning options for the 

case study platform and investigate the relative relevance of platform features 

to decommissioning options selection. The exercise took a duration of four 

months in the period between January 2022-April 2022. A total of seventy-

eight responses were received from decommissioning practitioners, all of 

which were complete and valid for inclusion into the analysis. The average 

time for completing the survey was fifteen minutes. 

Summary data of the survey responses was generated from the JISC Online 

Survey tool and further data analysis was performed on these using Excel 

spreadsheets. Key findings from the analysis are subsequently presented. 

5.5.1. Demographics 

As previously mentioned, information about the defining characteristics of a 

population sample is important for creating the survey interpretation context 

and the first section of the survey focused on this. Graphical representation 

of the survey participants’ demographics is shown in Figure 5.5. 
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Figure 5.5: Demographics of survey participants showing the distribution of 

Offshore region, Level of Education, Work Experience, Affiliation to 

Decommissioning, and Specific Knowledge area. 
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Figure 5.5(I) shows that about 60% of the respondents are based in the North 

Sea. The predominance of North Sea-based respondents is expected as this 

is one of the leading regions of the world in terms of documented 

decommissioning activities. In second position is the 13% of respondents from 

Offshore USA (Louisiana, Texas, California, and Alaska), another region with 

a mature decommissioning industry. The least represented regions are the 

Caribbean Seas, and the Asian Seas, a region with a decommissioning 

industry still in the early stages (Tung and Otto 2019). Note that the “Other” 

group comprises respondents who operate in more than one region. 

It can be observed from Figure 5.5(II) that the respondents are well educated 

as almost 94% of them are educated up to university level. Also, Figure 

5.5(III) indicates that approximately 70% of the respondents have worked in 

the decommissioning industry for over 12 years. This indicates that the 

survey, to a reasonable extent, adequately reflects the opinion of subject 

matter experts. With respect to their affiliation to the decommissioning 

industry, Figure 5.5(IV) shows that about 40% of the respondents are 

affiliated to operating companies with an additional 31% from service 

companies. Respondents from these two groups are likely to have rich 

practical knowledge of offshore decommissioning from their experience of 

carrying out these projects. However, only one respondent was from an 

interest group. This is a concern because interest groups are strongly 

influential stakeholders in decommissioning projects (Fowler et al. 2014, 

2020). The respondents in the “Other” group are respectively a Retired Decom 

Project Leader, a Trade Association member, and an individual whose job role 

involved working as a Contractor, Operator and Consultancy. 

Lastly, Figure 5.5(V) indicates that about half of the respondents are most 

knowledgeable in the aspect of technical feasibility. Additionally, most 

respondents considered themselves to be knowledgeable in multiple aspects 

of offshore decommissioning. This outcome is an accurate reflection of the 

interdisciplinary and multifaceted nature of the decommissioning industry 

(Ahiaga-Dagbui et al. 2017; Invernizzi et al. 2020). 
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5.5.2. Decommissioning Options Evaluation for Case Study 

The AHP-Likert technique was applied using the survey data to evaluate 

decommissioning options for the theoretical case study platform based on the 

five decision criteria. All calculations required for this analysis were performed 

on Excel Spreadsheets with the aid of AHP equations as described in section 

3.4.1 of this thesis. Only the key results are presented here. Further 

information about the calculations is included in appendix 3. 

5.5.2.1. Hierarchy Structure for the Case Study 

The problem hierarchy structure for selecting the best decommissioning 

option to be used for decommissioning the case study combines all the key 

elements of the decision-making problem into a single structure (Figure 5.6). 

 

Figure 5.6: Hierarchy structure of decommissioning option selection for the 

case study 

The goal of the analysis is to determine the optimal decommissioning option 

for the case study. To achieve this, the five considered options are individually 
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evaluated with reference to safety, environmental impact, technical feasibility, 

cost, and public perception. 

As stated in Chapter three, the number of required judgements when using 

the Likert-AHP approach is n but using the traditional AHP approach requires 

(𝑛2 − 𝑛)/2 judgements, where n is the number of elements being compared 

with each other at the same hierarchy level. Therefore, it can be inferred from 

Figure 5.6 that the number of elements to be compared is 5 for both the 

criteria weighting level and the decommissioning options scoring level. This 

implies that a total of 60 judgments would have been required for evaluating 

the decommissioning options using the traditional AHP (i.e., 10 judgements 

for criteria weighting and 50 judgments for decommissioning options scoring 

across the five criteria). However, using the Likert-AHP approach only 

required 30 judgements (i.e., 5 judgments for criteria weighting and 25 

judgments for decommissioning options scoring across the five criteria), 

implying a 60% efficiency savings in time taken to complete the analysis. 

5.5.2.2. Criteria Weighting 

The consensus of the values that the survey respondents assigned to the 

relative importance of safety, environmental impact, technical feasibility, cost, 

and public perception respectively are shown in Table 5.6. This is calculated 

as the geometric mean of individual responses with respect to the decision 

criterion of interest. 

Table 5.6: Aggregation of survey responses for criteria weighting 

How would you rank 

the importance of the 

following criteria in 

determining the 

optimal 

decommissioning 

option for the Case 

Study Platform? 

Safety Environmental 

Impact 

Technical 

Feasibility 

Cost Public 

Perception 

Geometric Mean of 

responses 

(𝑮𝑴 = √∏ 𝒙𝒊
𝒏
𝒊=𝟏

𝒏 ) 

8.267 6.802 6.464 4.986 4.225 
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The pairwise comparison matrix generated from the aggregated data above 

is shown in Table 5.7. Consistency checks verified that this matrix was 

perfectly consistent, hence there was no need for any remedial calculations 

to correct inconsistencies in the judgements (Benítez et al. 2011; Na et al. 

2017). 

Table 5.7: Judgement Matrix for Criteria Weighting 

Decision 

Criteria 

Safety Environmental 

Impact 

Technical 

Feasibility 

Cost Public 

Perception 

Priority 

(%) 

Safety 1.0000 1.2155 1.2789 1.6580 1.9567 27% 

Environmental 

Impact 

0.8227 1.0000 1.0522 1.3641 1.6098 22% 

Technical 

Feasibility 

0.7819 0.9504 1.0000 1.2964 1.5300 21% 

Cost 0.6031 0.7331 0.7714 1.0000 1.1801 16% 

Public 

Perception 

0.5111 0.6212 0.6536 0.8474 1.0000 14% 

The priority column in Table 5.7 shows the criteria weights of importance, 

calculated from equations 3.3 and 3.4 as shown in appendix 3. 

From these priorities, it is deduced that the respondents judged safety to have 

the highest importance when assessing decommissioning options for the case 

study. This is followed by environmental impact while public perception has 

the least importance to the assessment. A graphical depiction of the criteria 

priorities is shown in Figure 5.7. 
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Figure 5.7: Calculated weights of importance for the decision criteria 

It is important to note that the above result only captures the preferences of 

the respondents about the criteria in a strictly comparative or relative sense. 

Also, the results obtained from using the AHP-Likert procedure to determine 

the relative weights of the sub-criteria are shown in appendix 4. 

5.5.2.3. Decommissioning Options Scoring 

After establishing the weights of all decision criteria and sub-criteria, the 

expected performance of decommissioning options for the case study platform 

with respect to each criterion was determined as priority values or scores as 

graphically presented in Figure 5.8. These values were calculated from 

synthesising the survey responses and the step-by-step procedure is shown 

in appendix 3. 
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Figure 5.8: Decommissioning options performance scores for safety, 
environmental impact, technical feasibility, cost, and public perception 

criterion 

The performance scores (or priorities) for Leave in Place, Partial Removal to 

85 feet, IMO approved depth, and Top of Footings respectively, and Complete 

Removal decommissioning options with reference to the five decision criteria 

are shown in Figure 5.8.  

With regards to the Safety criterion, Figure 5.8 shows that the partial removal 

options are more suitable for decommissioning the case study than Leave in 

Place and Complete Removal options when evaluated exclusively in terms of 

Safety. Partial removal to IMO-approved depth emerged as the most preferred 

(i.e., safest) decommissioning option for the project whereas Complete 

Removal was adjudged to be the least suitable option based on safety alone.  

The performance scores for the decommissioning options with reference to 

the Environmental Impact criterion follow a similar ranking order to the results 
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obtained from safety-based scoring of the options. Figure 5.8 indicates that 

the partial removal options were adjudged to be more suitable for 

decommissioning the case study when the options are evaluated exclusively 

in terms of Environmental Impact. Again, partial removal to IMO-approved 

depth emerged as the most preferred (i.e., environmentally friendly) 

decommissioning option for the project while Complete Removal is the least 

preferred option. 

Considering only the Technical Feasibility criterion, it is observed from Figure 

5.8 that decommissioning the case study by Partial Removal to 85 feet is the 

most preferred (i.e., technically feasible) option while Complete Removal was 

adjudged to be the least preferred option for the project. Additionally, the 

Leave in Place decommissioning option scored highly for this criterion, 

emerging as the second most preferred option. 

With reference to the Cost criterion alone, it is observed from Figure 5.8 that 

the most preferred option (i.e., cheapest) for decommissioning the case study 

is the Leave in Place decommissioning option. Conversely, the least preferred 

option for the project with reference to Cost alone was determined to be the 

Complete Removal option. These results are identical to those obtained when 

evaluating the decommissioning options based on technical feasibility with the 

only difference being that the Partial Removal to 85 feet option emerged as 

the best option in that scenario. 

Finally, with regards to only the Public Perception criterion, it is inferred from 

Figure 5.8 that the most preferred (i.e., publicly acceptable) decommissioning 

option for the case study platform is the Complete Removal option and leaving 

the platform in place is the least preferred course of action. Note that the 

ranking of decommissioning options based on the Public Perception criterion 

was based on the perspective of decommissioning practitioners and therefore 

might contain an element of bias as compared to the actual reality.  
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5.5.2.4. Aggregation of Results and Ranking of Decommissioning 

Options for the Case Study 

The final stage of the AHP analysis entailed combining the obtained criteria 

weights and option scores to obtain weighted scores as shown in Table 5.8. 

The results suggest that Partial removal to IMO-approved depth is the best 

option for decommissioning the case study platform while Complete Removal 

is the worst option for the project. Furthermore, the partial removal options 

were preferred over other decommissioning options and leaving the platform 

in place was deemed to be a better alternative than its complete removal. 
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Table 5.8: Evaluation of Decommissioning Options for Case Study Platform 

   

Decommissioning 

Option 

 

 

 

 

 

Decision Criteria 

Leave in Place 
Partial Removal to 

85ft 

Partial Removal to 

IMO Depth 

Partial Removal to Top 

of Footings 
Complete Removal 

Decision 

Criteria 

Weight of 

Importance  

Option 

score 

Weighted 

score 

Option 

score 

Weighted 

score 

Option 

score 

Weighted 

score 

Option 

score 

Weighted 

score 

Option 

score 

Weighted 

score 

Safety 27%  Safety 0.167 0.045 0.226 0.061 0.257 0.069 0.225 0.060 0.125 0.033 

Environmenta
l Impact 22%  

Environmental 
Impact 0.142 0.031 0.231 0.051 0.266 0.059 0.224 0.050 0.136 0.030 

Technical 

Feasibility 21%  

Technical 

Feasibility 0.247 0.052 0.264 0.056 0.243 0.051 0.176 0.037 0.069 0.015 

Cost 16%  Cost 0.270 0.044 0.263 0.043 0.244 0.040 0.163 0.026 0.060 0.010 

Public 

Perception 14%  

Public 

Perception 0.052 0.007 0.143 0.020 0.222 0.030 0.286 0.039 0.297 0.041 

              

Total 100.00%  

Weighted 

Score (Sum) 0.1793 0.2299 0.2492 0.2129 0.1287 

   Rank 4 2 1 3 5 
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5.5.2.5. Results Interpretation 

Sensitivity analysis of the results obtained for the case study are detailed in 

Chapter six as one of the validation techniques used in this research. 

Furthermore, deeper insights can be extracted from the information in Table 

6.4 for communicating the options evaluation results to project stakeholders. 

A summary of the performance of decommissioning options with respect to 

each decision criteria as denoted by their weighted scores is graphically 

illustrated with the spider chart in Figure 5.9. This clearly highlights that the 

most preferred decommissioning option for the case study was also adjudged 

to be the most preferred option in terms of Safety and Environmental Impact 

respectively, and by a significant margin. Hence, its emergence as the best 

option is an expected outcome considering that these were the highest-

weighted criteria. Moreover, the figure clearly depicts the complex interaction 

between the decision criteria for each decommissioning option. 

 

Figure 5.9: Performance of decommissioning options with respect to each 

decision criteria for the case study. 
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Lastly, recall that it had been established in Chapter three that the key result 

from AHP which feeds into decision-making is the final ranking of alternatives. 

This ranking for the options that have been evaluated for decommissioning 

the case study platform is shown in Figure 5.10. The figure indicates that 

Partial Removal to IMO-approved depth is the optimal option for 

decommissioning the case study. This proposition is deemed to be correct 

because the approach taken to arrive at it holistically considered the safety, 

environmental impact, technical feasibility, cost, and public perception 

implications of all considered options. 

 

Figure 5.10: Ranking of decommissioning options for the case study 

Despite the unavailability of quantitative data, the information obtained from 

analysing the expert opinion (survey input data) have been used to evaluate 

the five decommissioning options for the case study platform. Through this 
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ensure a clear and auditable decision-making process. It has also facilitated 

structured analysis of expert opinion to arrive at a logical conclusion.  

Moreso, the effectiveness of the Likert-AHP technique has been demonstrated 

by using it to determine the optimal option for decommissioning the case 

study with 60% less judgements than would have been required when using 

the traditional AHP process for the same analysis. 

5.5.3. Additional Information 

5.5.3.1. Suggested Additional Sub-Criteria 

The survey participants generally agreed that the sub-criteria detailed in the 

survey covered the key aspects of all the decision criteria. However, several 

additional sub-criteria were suggested for inclusion, and these are shown in 

Table 5.9 for completeness. Note that the actual survey responses have been 

edited for conciseness and to avoid duplication. 

Table 5.9: Additional Sub-Criteria Suggested by Survey Participants 

Decision 

Criteria 

Suggested Additional Sub-Criteria 

Safety Removal methodology - single-lift or multiple-lift 

(reverse of installation). 

Risk to onshore public 

Environmental 

Impact 

Impact on SACS, SPAs, MPAs, and Sensitive Areas 

(protected habitats, species, marine mammals)/ Loss of 

protected habitat for breeding nurseries. 

Risk of dissemination of invasive species 

Technical 

Feasibility 

Original design and installation method of structure 

Vulnerability to weather conditions 

Cost Cost certainty/Risk of cost overrun 

Public 

Perception 

Stakeholder concerns 

Corporate Reputation 

Cultural heritage preservation 

5.5.3.2. Platform Features Prioritisation 

Analysis of survey responses to the platform features prioritisation question 

yielded results which suggest that Substructure Weight, Water Depth, and 
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Platform Age are the platform features adjudged to have the highest relevance 

to options selection. These features should be prioritised when gathering 

information about the structure to be decommissioned as they have high 

relevance to the decision-making process of selecting the optimal 

decommissioning option for an offshore platform. The ranking of platform 

features based on their relevance to decommissioning decision-making as 

indicated by their weighted geometric mean (WGM) is shown in Table 5.10. 

Note that despite being the platform feature with the highest WGM, a decision 

was made to exclude Jacket Weight from the top-ranking features because it 

already constitutes a part of the substructure weight. The substructure of a 

fixed-steel jacket type platform comprises of the platform’s jacket and piles. 

Table 5.10: Ranking of Platform Features with respect to Relevance to 

Decommissioning Decision-making 

Platform Feature WGM of Relevance Ranking Reason for 

Exclusion 

Topsides weight 5.22 5 - 

Substructure weight* 6.04 2 - 

Water depth* 5.95 3 - 

Platform age* 5.80 4 - 

Distance from land 3.58 8 - 

Jacket weight 6.49 1 Main component 

of substructure 

Piles weight 4.24 6 - 

Number of piles 3.72 7 - 

*Top-ranking platform feature 

5.6. Summary 

This chapter described the case study used in this research to demonstrate 

the applicability of the decommissioning decision model. The case study 

platform is a large fixed-steel jacket structure situated in California. With 

regards to applying the model to this platform, the chapter presented an 

overview and discussed the results from the pre-assessment and data 

gathering phases of the model process. Further details of the outcomes of the 

DDM’s alternatives evaluation and results interpretation phases were 
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subsequently presented. Key findings from the decommissioning survey used 

to facilitate implementation of the developed decision model on a case study, 

and the main results from analysing the survey response data were then 

discussed. It was observed from the demographics of the survey participants 

that these individuals were appreciably knowledgeable of offshore 

decommissioning. The chapter also investigated the relationship between a 

platform’s physical features and its decommissioning options selection with 

substructure weight, water depth, and platform age emerging as the platform 

features that most influence the choice of a suitable decommissioning option.  

The next chapter discusses validation of the decommissioning decision model 

and the results obtained from its application to the case study platform. 
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Chapter 6 : VALIDATION OF THE DEVELOPED 

DECOMMISSIONING DECISION MODEL 

The applicability of the decommissioning decision model (DDM) was 

demonstrated in Chapter five by using the model to evaluate decommissioning 

options for a case study platform with survey input data. A decommissioning 

project is an expensive venture and using an ill-designed tool to support 

decision-making while executing such a project is risky. Therefore, the 

developed model, and the results of its application to the case study are 

validated in this chapter as a quality check on the tool and its applicability. 

This chapter discusses the steps that have been taken in this research to 

investigate the validity of the DDM, namely sensitivity analysis, comparison 

of model results with existing information, and validation with expert opinion. 

The key outcomes from using these validation techniques are also presented. 

6.1. Background to Model Validation 

Validation is the systematic assessment of a model to determine the 

soundness of its underlying structure and accuracy of its predictions based on 

comparison with established knowledge. Model validation, within the 

decommissioning context, is primarily aimed at strengthening the confidence 

of stakeholders in using the model (Oberkampf and Trucano 2008). However, 

it also provides feedback to the model developers that can be used to further 

improve the decision model and optimise its use (Dowding and Rutherford 

2003). 

Kerr and Goethel (2014) classified model validation into two types namely, 

conceptual validation and operational validation. Conceptual validation 

involves examination of a model’s theory and underlying assumptions to 

determine whether these are justifiable. This contrasts with operational 

validation which focuses on examining the agreement between results 

outputted by the model and existing information. Operational validation may 

be challenging when the tool is dealing with a scenario that extends beyond 

the realm of observed conditions or addressing a problem by incorporating 
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new, currently immeasurable, or previously unassessed variables. 

Nevertheless, conceptual validation is always feasible. 

Furthermore, several techniques exist for validating a decision model either 

subjectively or objectively, and these techniques can be used either 

exclusively or in some form of combination. A validation technique is regarded 

as objective if it incorporates any form of mathematical or statistical 

procedure, otherwise, the technique is subjective. Nevertheless, Gass (1983) 

pointed out that all model validation techniques entail the gathering of 

evidence pertaining to the credibility and applicability of the model by an 

interested party.  

Validation techniques, as identified from the literature (Kennedy et al. 2005; 

Akadiri 2011) include Comparison to Similar Studies, Events Validity, Face 

Validity (Expert opinion), Fixed Values validity, Historical Data validity, 

Sensitivity Analysis, Predictive Validation, Turing Tests, and Tracing. Others 

include Animation, Internal Validity, Degenerate Tests, and Extreme Condition 

Tests. However, the end product of using any of these techniques is to justify 

confidence in the model and its applicability. 

6.2. Adopted Techniques for Validating the 

Decommissioning Decision Model 

The technique for validating a model primarily depends on the nature of the 

problem being addressed, functionalities of the model and nature of its results 

or predicted outcomes.  In this regard, the developed model is an MCDA-

centric approach for supporting decommissioning decision-making and its 

aspects that require validation are the input data, logical structure, and 

generated results.  

As stated in Chapter three of this thesis, sensitivity analysis is appropriate for 

validating the model’s input data. Additionally, considering the validation 

techniques identified in the preceding section, expert opinion and comparison 

to similar studies were deemed to be adequate for validating the model’s 

structure and results, respectively.  
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6.3. Validation of Model Input Data by Sensitivity 

Analysis 

Sensitivity analysis of the results from applying the model to the case study 

provided insights into the validity of the input data. In addition to acting as a 

sense-check to the survey data, the analysis is required when using the DDM. 

The outcomes from the sensitivity analysis are subsequently presented.  

In Figures 6.1-6.6, as the criterion weight increases from left to right along 

the horizontal axis of the figure, the preference for each decommissioning 

option (represented by its weighted score) follows linear paths which are 

referred to as the sensitivity lines. Also, a black solid vertical line indicates the 

current weight of the criterion being investigated, and the weighted scores of 

the decommissioning options at any point determines their relative rankings. 

Lastly, a dotted vertical red line indicates the weight of the criterion for which 

a change in the ranking order, or rank reversal, occurs. 

6.3.1. Sensitivity to Safety Criterion 

The relationship between decommissioning options ranking for the case study 

and the weight of the safety criterion is graphically illustrated in Figure 6.1.  

 

Figure 6.1: Sensitivity of decommissioning options ranking to the weight of 

safety criterion 

0.000

0.100

0.200

0.300

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W
e

ig
h

te
d

 S
co

re

Safety  Weighting

Leave in Place Partial Removal - 85ft Partial Removal - IMO Partial Removal - ToF Complete Removal

27% 



133 

  

Figure 6.1 shows that the current weight of the safety criterion is 27% and 

Partial Removal to IMO Depth is the most preferred decommissioning option. 

The plot further suggests that the decommissioning options ranking is 

insensitive to the variations in the weight of safety criterion. There is no 

crossover of the sensitivity lines for the full range of criterion weighting i.e., 

the preferred option does not change irrespective of the variations in safety 

criterion weighting. 

6.3.2. Sensitivity to Environmental Impact Criterion 

The relationship between decommissioning options ranking for the case study 

and the weight of the environmental impact criterion is graphically illustrated 

in Figure 6.2. 

 

Figure 6.2: Sensitivity of decommissioning options ranking to the weight of 

environmental impact criterion 

It can be inferred from Figure 6.2 that the current weight of the environmental 

impact criterion is 22%. Like the sensitivity results for safety criterion, the 

plot suggests that the decommissioning options ranking is insensitive to 

environmental impact criterion. There is no crossover of the sensitivity lines 

for the entire range of criterion weighting i.e., the preferred option does not 

change despite the weight variations. 
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6.3.3. Sensitivity to Technical Feasibility Criterion 

Figure 6.3 shows a graphical illustration of the relationship between 

decommissioning options ranking for the case study and the weight of the 

technical feasibility criterion. It can be inferred from the figure that the current 

weight of the technical feasibility criterion is 21%.  

 

Figure 6.3: Sensitivity of decommissioning options ranking to the weight of 

technical feasibility criterion 

Moreover, the crossover of the sensitivity lines when the weight of the 

technical feasibility criterion is 59% suggests that the decommissioning 

options ranking is affected by changes in the weight apportioned to the 
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Partial Removal to IMO depth as the most preferred option. Therefore, a 38% 

increase in the weight of the technical feasibility criterion results to rank 

reversal. The observed trend in Figure 6.3 can be interpreted to suggest that 

technical feasibility is related to the quantity of removed platform material. 
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(i.e., Leave in Place and Partial Removal to 85 Feet) as the weight of Technical 

Feasibility criterion increases from zero to 100%. 

6.3.4. Sensitivity to Cost Criterion 

The relationship between decommissioning options ranking for the case study 

and the weight of the cost criterion is graphically illustrated in Figure 6.4. It 

can be inferred from the figure that the current weight of the cost criterion is 

16%.  

 

Figure 6.4: Sensitivity of decommissioning options ranking to the weight of 

cost criterion 
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matter translates to higher costs owing to longer work duration, increased 

vessel costs, and increased complexity of removal operations. In addition, 

Leave in Place is the cheapest decommissioning option so preferring this 

option when cost is apportioned almost all the criteria weight (greater than 

91%) is logical. 

6.3.5. Sensitivity to Public Perception Criterion 

The relationship between decommissioning options ranking for the case study 

and the weight of the public perception criterion is graphically depicted in 

Figure 6.5. From the figure, it can be observed that the current weight of the 

public perception criterion is 14%.  

 

Figure 6.5: Sensitivity of options ranking to the weight of public perception 

criterion 

Further, the plot suggests that the decommissioning options ranking is 

affected by changes in the weight apportioned to public perception criterion. 

Crossovers of the sensitivity lines occur when the weights of the public 

perception criterion are 45% and 90% respectively. Partial Removal to Top of 

Footings is observed to replace Partial Removal to IMO depth as the most 

preferred decommissioning option at the first crossover while Complete 

Removal becomes the most preferred option at the second crossover. 

Therefore, increases of 31% and 76% in the weight of the cost criterion results 

to rank reversal. 
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A plausible explanation for this outcome is that the public are likely to be 

averse to the leaving behind of any platform materials during 

decommissioning (Ekins, Vanner and Firebrace 2006; Fowler et al. 2014). 

Hence, their expected preference is for the entire platform to be removed. 

This is observable from the upward trajectory of the overall priorities of 

options involving higher quantities of removed materials (i.e., Complete 

Removal and Partial Removal to Top of Footings) as the public perception 

criterion weight increases towards 100%. Consequently, Complete Removal 

becomes the preferred decommissioning option for the case study when public 

perception is apportioned up to 90% of the criteria weight. 

6.3.6. Summary of Sensitivity Analysis Results 

The sensitivity analysis results for all the decision criteria are summarised in 

Table 6.1. The decommissioning options ranking is unaffected by changes in 

the weights of Safety and Environmental Impact criteria but can be altered by 

the changing the weights of Technical Feasibility, Cost and Public Perception. 

Table 6.1: Sensitivity Analysis of Model Results to Decision Criteria 

Decision Criteria Sensitivity of 

Model Results 

Absolute Minimum Change 

in Current Weight before 

Rank Reversal 

Safety Insensitive - 

Environmental Impact Insensitive - 

Technical Feasibility Low sensitivity* 38% 

Cost Low sensitivity 42% 

Public Perception Low sensitivity 31% 

*Sensitivity is low if the minimum change in criterion weight for rank reversal 

exceeds 5% (see Section 3.4.3 for more information) 

Nonetheless, Table 6.1 suggests that the model results are stable because for 

all five decision criteria, the minimum change required to cause a change in 

the decommissioning options ranking exceeds 5%. This implies that there is 

no need for further review and validation of the initial weights and options 

ranking results are deemed to be stable. Thus, the sensitivity analysis results 
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indicate that the input data used for evaluating decommissioning options for 

the case study platform is valid, and the survey responses are sensible. 

6.4. Validation of DDM Results by Comparison to 

Similar Studies in Literature 

The decision criteria weighting and decommissioning options rankings that 

have been obtained from using the developed model to evaluate the case 

study platform are the two model results that require validation. These two 

aspects of the case study results are compared to the outcomes from similar 

studies in the literature to assess their accuracy and validity. 

Additionally, differences exist across different offshore regions in 

stakeholders’ perception of decommissioning, especially in attitude to leaving 

any part of the offshore structure in the sea (O’Connor et al. 2004; Palandro 

and Aziz 2018; Sommer et al. 2019; Tan et al. 2021; Trevisanut 2020). 

Stakeholders in the USA offshore region are more tolerant to leaving portions 

of offshore structures during decommissioning and this is understood to 

encourage biodiversity in the marine environment (Claisse et al. 2015; Bull 

and Love 2019; Meyer‐Gutbrod et al. 2020). In contrast, stakeholders in the 

North Sea region often posit that offshore structures should be completely 

removed from the marine environment during decommissioning as 

encapsulated by the precautionary principle (BEIS 2018; Fowler et al. 2020). 

These differences in opinions have persisted despite the recent push for a shift 

in the North Sea stance on leaving some parts of offshore structures in-situ 

during decommissioning (Jørgensen 2012; Sommer et al. 2019; van Elden et 

al. 2019). Therefore, to facilitate comparison of results from the present study 

with information from literature, it is necessary to first identify differences in 

survey input data due to the location of the respondents and 

compartmentalise their contributions to the model results. 

To achieve this, the survey participants were divided into three groups (North 

Sea, Offshore USA, and Others) based on their location to represent the major 

offshore regions in the world. The “Others” group comprises Offshore Africa, 

Asian Seas, Offshore Australia, Caribbean Seas, and Offshore South America. 
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Figure 6.6, Figure 6.7, and Figure 6.8 show the variations in the model results 

for the case study with reference to these offshore regions. 

 

Figure 6.6: Results from evaluating decommissioning options for the case 

study (North Sea, n=45) 
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Figure 6.7: Results from evaluating decommissioning options for the case 

study (Offshore USA, n=10) 
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Figure 6.8: Results from evaluating decommissioning options for the case 

study (Others, n=23) 

The weights of the decision criteria obtained from analysis of the case study 

platform for all three regions are observed to be of the same ranking order, 

despite differences in weight proportions. This ranking of decision criteria 

weights is shown in Table 6.2 and was used for comparison with information 

from literature. 
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Table 6.2: Decision Criteria Ranking for Case Study Platform Based on 

Weights of Importance 

Decision Criteria Ranking 

Safety 1 

Environmental Impact 2 

Technical Feasibility 3 

Cost 4 

Public Perception 5 

Also, the ranking of decommissioning options weighted scores for the case 

study when grouped according to the offshore location of the survey 

participants is shown in Figure 6.9. 

 

**Others comprises Offshore Africa, Asian Seas, Offshore Australia, 

Caribbean Seas, and Offshore South America. 

Figure 6.9: Decommissioning options ranking for case study based on 
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6.4.1. Comparison to TSB (2000) 

The results from TSB (2000), an industry study in the USA which utilised 

expert opinion to quantitatively evaluate and compare three decommissioning 

options for platform removal, are presented in Table 6.3 and Table 6.4 below. 

Table 6.3: Decision Criteria Weights Ranking (Adapted from TSB 2000) 

Decision Criteria Ranking 

Safety 1 

Environmental Impact 2 

Technical Feasibility 2 

Permitting Requirements 4 

Disposal Option 4 

Cost 6 

Schedule 7 

Table 6.4: Decommissioning Options Ranking (Adapted from TSB 2000) 

Decommissioning Option Ranking 

Complete Removal 3 

Partial Removal 1 

Remote Reefing 2 

Comparing the results from TSB (2000) with those obtained from applying the 

DDM to the case study, when filtered for responses from survey participants 

in the USA region, shows clear similarities. Firstly, the criteria weights rank 

order is similar for overlapping criteria in both analyses with the only 

difference being that Environmental Impact ranks higher than Technical 

Feasibility in this research whereas both criteria are equally ranked in TSB 

(2000).  

With regards to the ranking of the decommissioning options based on their 

weighted scores, a strong agreement is observed between both results in that 

Partial Removal is the top-ranking option and Complete Removal is the least-

ranking option. Remote Reefing option, as described in TSB (2000) is akin to 

the Leave in Place option in this research and this option ranks between Partial 

Removal and Complete Removal in both studies. These correlations suggest 
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that, based on TSB (2000), the results obtained for the case study platform 

from using the DDM are accurate and reasonable. 

6.4.2. Comparison to Bernstein et al. (2010) 

Bernstein et al. (2010) conducted an investigative industry study on the 

implications of decommissioning platforms in the POCS by using either 

Complete Removal or Partial Removal option. The options were evaluated with 

reference to eight attributes (costs, air quality, water quality, marine 

mammals, birds, benthic impacts, fish production, ocean access and strict 

compliance to regulations). Their results suggested that partial removal of the 

platforms scores higher than complete removal across the attributes except 

for ocean access and strict compliance. 

These findings from Bernstein et al. (2010) appear to support the outcomes 

of the analysis in this research. Partial Removal was identified by the 

developed DDM as the most-preferred decommissioning option and Complete 

Removal was also the least-preferred option when filtered to only represent 

responses from survey participants in USA. Therefore, the results from the 

DDM are accepted as valid and accurate based on comparison to Bernstein et 

al. (2010). 

6.4.3. Comparison to Andrawus, Steel and Watson (2009) 

Andrawus, Steel and Watson (2009) comparatively evaluated four 

decommissioning options for Hidalgo platform, an offshore platform in the 

USA with similar features to the case study platform in this research. Their 

results are summarised in Table 6.5 and Table 6.6. 

Table 6.5: Decision Criteria Weights Ranking for Hidalgo (Adapted Andrawus, 

Steel and Watson 2009) 

Decision Criteria Ranking 

Safety 4 

Environmental Impact 5 

Technical Feasibility 6 

Regulatory Requirements 3 

Future Liability 1 
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Revenue Generation 7 

Public Requirements 1 

Cost (Net Present Value) - 

Table 6.6: Decommissioning Options Ranking for Platform Hidalgo (Adapted 

from Andrawus, Steel and Watson 2009) 

Decommissioning Option Ranking 

Complete Removal 4 

Partial Removal 2 

Re-use for Artificial Reefing 3 

Re-use for Wind Power Generation 1 

The results from the current research are observed to generally agree with 

the results from Andrawus, Steel and Watson (2009). In terms of criteria 

weighting, the overlapping decision criteria i.e., Safety, Environmental Impact 

and Technical Feasibility are observed to have an identical ranking or order of 

preference in both studies. However, if Public Perception in this research is 

deemed to have the same meaning as Public Requirements in Andrawus, Steel 

and Watson (2009), then a significant exception to the general agreement of 

both studies is observed in the ranking of this criterion. Public Perception 

criterion is the least-ranking in this research despite being a top-ranking 

criterion in Andrawus, Steel and Watson (2009). Reconciling the difference 

between both results is challenging due to the highly subjective nature of 

human opinion, and differences in the data gathering and analysis approach 

for the studies (Guevara 1998; Fowler et al. 2014). 

Nonetheless, the ranking of decommissioning options is observed to be 

identical for both studies with Partial Removal emerging as the top-ranking 

option, Complete Removal is the least-ranking option, and Leave in Place (Re-

use for Artificial Reefing) is mid-ranked in both cases. Note that Re-use for 

Wind Power Generation is a hypothetical decommissioning option which was 

adjudged to be the preferred decommissioning option for Hidalgo Platform by 

Andrawus, Steel and Watson (2009) primarily due to its potential to generate 

revenue unlike the other decommissioning options. Hence the cited study 
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supports the validity of results for the case study obtained from using the 

DDM. 

6.4.4. Comparison to UK Government Guidelines for 

Decommissioning 

Government guidelines for any activity can suffice as an authoritative source 

of information pertaining to that activity because it leverages on best practice 

to address key concerns for that activity (McCann, Henrion and Bernstein 

2016). According to the UK Government’s guidelines for decommissioning, 

“…the safety and environmental impacts of the options, including the impact 

on climate change, will clearly be important. Options where the safety risks 

are intolerable or involve major unacceptable environmental impacts may be 

ruled out without further consideration. Proportionality must also be 

considered but it is unlikely that cost will be accepted as the main driver…” 

(BEIS 2018 p. 77). The statement appears to imply that Safety and 

Environmental Impact Criteria are expected rank high for decommissioning 

decision-making considerations based on their weights of importance while 

Cost criterion would rank low. This assertion is observable in the criteria 

ranking from the decision model as shown in Table 7.2. Thus, implying that 

the results from using the DDM are acceptable as valid and in agreement with 

the UK Government’s guidelines for decommissioning.  

6.5. Validation of DDM Logical Structure using Expert 

Opinion 

The structure and underlying logic of the DDM was validated using the opinion 

of decommissioning subject matter experts since the model is conceptual and 

not akin to any physical real-world system. This technique was also adjudged 

to be adequate as a precursor to the industry-wide adoption of the model. 

Validation of the model logical structure entails assessing the feasibility of the 

model with regards to its fitness-for-purpose and fitness-for-use. Thus, 

enabling the accuracy of the model’s representation of reality and its 

acceptability to users to be ascertained (Olewnik and Lewis 2005). 
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The semi-structured questionnaire used for this validation was carefully 

designed to capture the views of decommissioning experts about the model 

structure. In alignment with recommendations in the literature for validating 

decision-support models (Gass 1983b; Borenstein 1998; Moisil 2010), the 

questions focused on the accuracy, completeness, comprehensibility, and 

cost-effectiveness of the DDM. Respondents were also allowed to add any 

additional comments they had about the model. 

A copy of the questionnaire is shown in appendix 6. The questionnaire was 

administered along with a presentation describing the model and its 

application to the case study to avoid any misunderstanding by the experts. 

Furthermore, the participants were chosen based on their expertise, 

experience, academic and professional qualifications to ensure that their 

views adequately represented those of the decommissioning industry.  

6.5.1. Analysis of the DDM Logical Structure Validation 

Results 

Ten decommissioning practitioners responded to the DDM validation 

questionnaire. Their profile, as shown in Table 6.7, indicates that they are 

appreciably knowledgeable about offshore decommissioning. Additionally, 

they are all highly educated and well experienced with a combined 

decommissioning-related work experience of over one hundred and fifty 

years.  

Table 6.7: Profile of Validation Experts  

Expert Profession Academic 

Qualification 

Job Designation Years of 

Work 

Experience 

1 Engineering MEng Senior Consultant 

(Subsea & 

Decommissioning) 

21 

2 Decommissioning 

Manager 

MSc Decommissioning 

Strategist & 

Business 

Development 

15+ 

3 Decommissioning 

(Oil and Gas) 

MSc HSE & Regulatory 

Lead 

10 
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4 Energy 

Consultancy 

MSc Senior 

Decommissioning 

Engineer 

3 

5 Engineering MSc Energy 

Consultant/ 

Decommissioning 

Project Lead 

1 

6 Oil & Gas and 

Energy Transition 

MSc  Decommissioning 

Study Manager 

20 

7 Energy 

Consultancy 

PGDip 

BEng 

Decommissioning 

and Integrated 

Project Lead 

15+ 

8 Decommissioning 

Project Manager 

MEng Facilities 

Decommissioning 

& Optimisation 

Lead 

15+ 

9 Decommissioning 

Consultancy 

BSc 

Practitioner 

level, IEMA* 

Decommissioning 

Manager 

16 

10 Structural 

Engineer, Marine 

Specialist in 

Offshore Facility 

Decommissioning  

PhD Retired Senior 

Consultant. 

30 

* Associate Member of the Institute of Environmental Management and Assessment 

The experts provided their opinion of the model by individually responding to 

the validation questionnaire. This feedback was positive as inferred from the 

summary of their responses which is shown in Table 6.8. 

Table 6.8: Summary of responses to DDM validation questions by Experts 

Validation 

Criteria 

Expert Response 

1 2 3 4 5 6 7 8 9 10 

Importance of 

addressed issue 

QS QS QS - QS QS QS NS NS QS 

Accuracy UCL SCL VCL VCL VCL SCL VCL VCL VCL VCL 

Completeness SC VC VC VC SC SC VC SC SC VC 

Comprehensibility Yes Yes Yes Yes Yes No Yes Yes Yes Yes 

Cost-Effectiveness JCB JCB JCB JCB JCB DCB JCB - JCB JCB 

Key 

QS: Quite significant. 

NS: Not significant. 
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VCL: Very close match between model’s results and expected results. 

SCL: Slightly close match between model’s results and expected results. 

UCL: Unsure of the match between model’s results and expected results. 

SC: Somewhat complete. 

VC: Very complete. 

JCB: Benefits of use justifies cost of implementation. 

DCB: Benefits of use does not justify cost of implementation. 

It is inferred from Table 6.8 that 70% of the experts agreed that the DDM 

addresses a significant issue in decommissioning. Similarly, the experts were 

strongly in agreement that the DDM accurately performs its intended function 

and 90% of them stated that the model results closely matched what they 

would expect from evaluating decommissioning options for the case study 

platform. This indicates that the model is fit for purpose.  

Table 6.8 also shows that the experts generally agreed that the model’s flow 

process is complete with respect to the problem it seeks to address. This 

response significantly buttresses the logic of the model, given the richness of 

the respondents’ decommissioning knowledge. Regarding the 

comprehensibility of the DDM, 90% of the experts concurred that the model 

is understandable and easy to use with little or no practical difficulties. Thus, 

implying that industry adoption of the model would not be challenging. Lastly, 

80% of the experts opined that the benefits of using the model in actual 

decommissioning projects would justify any attendant resource requirements.  

Conclusively, the responses from the experts suggest that the DDM’s logical 

structure is sound, and its adoption would be valuable for the 

decommissioning industry. Hence the DDM represents a positive contribution 

to the body of knowledge and practice of offshore decommissioning. 

6.6. Summary 

Complete validation of the DDM is impossible due to subjectivity of human 

opinion, conceptual nature of the model, and the fact that it was applied to a 

theoretical case study. However, the validation endeavors described in this 
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chapter are deemed sufficient to indicate the accuracy and usefulness of the 

model. This included validation of model’s input data by sensitivity analysis, 

validation of model’s results by comparison to similar studies in literature, and 

validation of model’s logical structure using expert opinion. The three 

validation techniques yielded positive results about the model’s validity, 

ultimately making a case for its industry adoption. On this basis, the model is 

recommended to decommissioning practitioners, subject to future 

modifications that can improve its acceptability and performance. The next 

chapter builds on these findings by exploring the use of mathematical 

modelling to integrate historical data into the decision model in replacement 

of the survey-derived input data used for scoring decommissioning options for 

the cost criterion. 
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Chapter 7 : MATHEMATICAL MODELLING 

APPLICATION TO HISTORICAL DATA OF 

OFFSHORE DECOMMISSIONING 

7.1. Historical Data of Offshore Decommissioning 

Historical data refers to actual information that is gathered from previously 

completed projects. In the context of this research, this information relates to 

decommissioning projects that have been planned and executed in the past. 

A robust analysis of data from past projects is likely to reveal insights through 

which aspects of future projects such as causality, action, and consequence 

are logically predicted with reasonable accuracy (Guldi and Armitage 2014). 

This is because the patterns, structures and regularities uncovered by such 

analysis enable decision-makers to establish accurate generalisations which 

apply to current and future projects. 

Information from completed decommissioning projects are increasingly 

becoming accessible to the public, especially in the offshore USA and North 

Sea regions where several projects have been successfully executed (Fam et 

al. 2018; Kaiser and Narra 2018; GOV.UK 2022). However, there are 

mitigating factors to this trend such as the risk perception by platform owners 

that sharing their project information can give a commercial advantage to 

their competitors or result to reputational damage (Murray et al. 2018). 

Hence, the commercially sensitive aspects of this historical data are protected 

as confidential information. 

The paucity of decommissioning information makes it is pertinent that any 

available data is thoroughly analysed for helpful insights towards 

improvement of decision-making for future projects. This is likely to require 

that the historical data be preconditioned, structured, or contextualised into 

a form that is usable by the decision-maker (Sigsgaard et al. 2020). 

Therefore, the procedure for adapting historical data into a decision support 

model entails a three-staged data processing step as shown in Figure 7.1. 
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Figure 7.1: Adaptation of historical data into a decision support model 

7.2. Mathematical Modelling 

Mathematical modelling is the use of mathematical concepts and language to 

describe the behaviour of a system with the intent of developing 

understanding of the system, testing effects of changes within the system, 

and/or supporting decision-making (Daniel and Glenn 2008). It is particularly 

beneficial for exploring relationships between the entities within a system 

because the language is precise, has well-defined rules for manipulations, and 

can readily be analysed with computers in the form of numerical calculations 

(Towers, Edwards and Hamson 2020). Therefore, mathematical modelling 

approaches, such as Machine Learning and Generalised Reduced Gradient 

(GRG) method, are viable for data processing when adapting historical data 

into a decision-making tool (Eke et al. 2021). 

The decision criteria for selection of decommissioning options for projects 

were investigated and partitioned into criteria and sub-criteria in Chapter two 

Historical Data

1. Precondition

2. Structure

3. Integrate 

•Data Processing

Input for Decision 
Support Model
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of this report. However, some sub-criteria such as financial expenditures and 

air emissions have previously been quantitatively assessed for past 

decommissioning projects and a few of these historical datasets are available 

in the public domain. The application of mathematical techniques on these 

datasets, especially when they are sufficiently large, makes it possible to 

predict the sub-criteria values for a platform based on its physical features 

when these are known as shown in Equation 7.1. These models can then be 

used for making forecasts when evaluating decommissioning options for 

platforms with similar characteristics and location as those platforms from 

which the datasets were obtained. 

 𝑆𝑐𝑜𝑟𝑒𝑖,𝑗 = 𝑓(𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) +∈𝑖,𝑗 (7.1) 

Where 𝑆𝑐𝑜𝑟𝑒𝑖,𝑗 is the performance score of decommissioning option i with 

reference to criterion (or sub-criterion) j, 𝑓(𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) is a 

mathematical function which requires as argument the prioritised features of 

the platform to be decommissioned and ∈𝑖,𝑗 represents the error term which 

accounts for noise and randomness in the data. Note that Equation 7.1 is 

parametric when the nature of 𝑓(𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) is specified, and non-

parametric when it is not specified a priori but instead is determined from the 

data set used to develop the model (Mahmoud 2019). 

As there are numerous platform features, these must be carefully screened to 

shortlist the ones to be used in developing Equation 7.1 for effectiveness of 

analyses. The decommissioning survey described in the Chapter five was used 

to address this issue in the Platform Features Prioritisation section. The results 

suggested that substructure weight, water depth and platform age are the 

platform features most relevant to decommissioning option selection. 

Notwithstanding, challenges with availability of decommissioning data from 

past projects is a prevalent roadblock to developing predictive models. 

Historical decommissioning data are often scarce and descriptive of platforms 

that are sparsely distributed across various locations (Fowler et al. 2014; 

Kaiser and Narra 2018; Vidal et al. 2022). Regarding the availability of 

decommissioning cost data in the public domain, Kaiser et al. (2003) observed 
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that most of the reported values represent pre-job estimates as opposed to 

actual post-job cost data and particular care must be taken to ensure their 

accuracy before usage. Their assertion appears to suggest that estimates from 

credible experts are a viable alternative to historical data, and such 

decommissioning cost estimates exist in literature for offshore platforms in 

California’s Pacific Outer Continental Shelf (Bernstein et al. 2010; TSB 2016b). 

The dataset includes financial costs for decommissioning the twenty-three 

fixed-steel jacket platforms in this location with the Complete Removal option 

along with descriptive information about the platforms’ features. Therefore, 

mathematically linking these costs and platform features will enable 

estimation of decommissioning costs for the case study and other platforms 

with similar characteristics and location as the POCS platforms. 

7.3. Modelling the Relationship Between 

Decommissioning Options Costs and Platform 

Features 

Sufficient information will be available to mathematically model the 

relationship between the costs of different decommissioning options and 

platform features after these costs are determined. Equation 7.1 can then be 

re-written to Equation 7.2.  

 𝐶𝑜𝑠𝑡𝑖 = 𝑓(𝑆ubstructure weight, water depth, platform age) +∈𝑖,𝑗 (7.2) 

Where 𝐶𝑜𝑠𝑡𝑖 is the financial expenditure from using decommissioning option i 

for a project, 𝑓(𝑆ubstructure weight, water depth, platform age) is a mathematical 

function which requires as argument the substructure weight, water depth 

and age of the platform to be decommissioned, and ∈𝑖,𝑗 is the error term which 

accounts for randomness in data. 

Recall that the nature of the model equation depends on the type of 

mathematical modelling technique used for its development. Machine 

Learning technique, which is used in this research, yields a non-parametric or 

“black box” model.  Hence, despite such model’s physical system behaviour 
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not being directly visible from Equation 7.2, it would be flexible and defined 

by the available training data (Salvador 2017). 

7.3.1. Machine Learning Regression Analysis for 

Decommissioning Options Cost Modelling 

Regression analysis is the machine learning technique that constitutes the 

primary concern of this research because the nature of most historical data 

pertaining to decommissioning is continuous with real numerical values. For 

example, the cost of decommissioning North-West Hutton platform was 

£245m and total weight of topsides and jacket materials removed to shore 

was 28,427 tonnes (Jee 2014). In regression analysis, the goal is to try to 

find a relationship between several predictor (explanatory) variables and a 

continuous response variable (outcome) to enable prediction of an outcome 

for other values of the predictor variables. Within the field of machine 

learning, the predictor variables are commonly called independent variables 

while the response variables are referred to as the dependent variables. 

Therefore, regression analysis entails using data to determine empirical 

relationships between independent and dependent variables and using those 

relationships to predict the value of a dependent variable that corresponds to 

an independent variable. 

Within the context of this research, this interprets to establishing an empirical 

relationship between the known decommissioning options costs and features 

of platforms (Equation 7.2) and using this relationship to forecast the 

decommissioning options costs of other platforms which have known features. 

Note that the empirical relationship or forecasting model will exist as a “black 

box” because machine learning yields a non-parametric model.  

Regression is data-oriented in that it focuses on the data used for its 

development with no consideration for the underlying process of the system 

being analysed. Nevertheless, this technique introduced by Legendre (1805) 

is well-developed, and details of its scientific application abound in the 

literature (Ray 2019; Tai 2021). Additionally, several machine learning 

algorithms exist for implementing regression analysis such as Linear 
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Regression, Random Forest, and Support Vector Regression algorithms (Doan 

and Kalita 2015) and these are either classed as single output or multioutput 

depending on the number of predicted variables. However, the current 

research focuses on multioutput regression due to the nature of the use case 

which is such that the predictor variables are the substructure weight, water 

depth and age of the platform under consideration while the predicted 

variables are the individual decommissioning options costs for the project (see 

Figure 7.2). 

 

Figure 7.2: Input/Output variables relationship for decommissioning costing 

model 

The requirement in a multi-output problem is to predict 𝑛 number of outputs 

synchronically. In situations where no correlation exists between the outputs, 

this type of regression problem is solved by building 𝑛 independent models, 

i.e., one for each output, and then using those models to independently 

predict each one of the 𝑛 outputs. However, in situations like the current 

research where the parameters being considered (i.e., the substructure 
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weight, water depth and age of a platform and the decommissioning options 

costs for the platform) are known to be correlated, a better approach is to 

build a single model capable of simultaneously predicting all 𝑛 outputs. The 

benefits of using multi-output regression include lower training time since only 

a single estimator is built, and likelihood of increased generalization accuracy 

of the resulting estimator (Pedregosa et al. 2011). 

Further information about multioutput regression is available in the literature 

(Borchani et al. 2015; Xu et al. 2019; Schmid et al. 2022) but this is outside 

the remits of this research. 

Determining the most-suitable machine learning regression algorithm for 

developing the cost model is an iterative process which entails applying 

different machine learning methods, comparing their results, and selecting 

the most appropriate method based on the observed prediction performance 

(Ray 2019). Owing to this iterative process, machine learning traditionally 

requires large volume of data with number of required samples typically at a 

ratio of 15:1 to the number of predictor variables for multioutput regression 

(Harrell 2015). Additionally, limited amount of data results in a more severe 

bias/variance trade-off, hence making the model development more 

challenging. Therefore, the low volume of available data for this research 

(twenty-three samples) adversely impacts the applicability of machine 

learning to the model development. Thus, necessitating the inclusion of a 

resampling method called cross-validation for mitigating this challenge. 

7.3.2. Cross Validation 

Cross-validation is a method used by data scientists to measure and improve 

model accuracy while ensuring that minimal assumptions are made on the 

statistics of the data. Berrar (2018) defines cross-validation as a data 

resampling method for assessing the generalization ability of predictive 

models and preventing overfitting. The method was first formally proposed by 

Mosteller and Tukey (1968). Further information about its working procedure 

and reviews are available in the literature (Stone 1978; Camstra and 

Boomsma 1992; Browne 2000; Little et al. 2017).  
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Ensuring accuracy of the developed model is a predominant concern when 

using supervised machine learning. In this regard, problems with accuracy 

encountered during machine learning modelling are classified into underfitting 

and overfitting (Berrar 2018; Isakova 2019). Underfitting occurs when the 

developed model fails to adequately capture the relationship between the 

system parameters and is likely to occur when using simpler models such as 

Ordinary Least Squares, even though such models are less prone to noise in 

the data. This contrasts with overfitting in which the model is perfectly 

adapted to the data used for its development while also being unable to 

generalize well to new data (Burnham and Anderson 2002). Overfitting occurs 

when the model correlates too closely to the training dataset such that it not 

only reflects the relationship between the system parameters but also 

captures the inherent noise in the data as though this noise is part of the 

underlying structure of the model. Nonetheless, it is pertinent to seek the 

right balance between underfitting and overfitting due to the polar nature of 

these two accuracy problems. 

For this reason, the standard approach for modelling with supervised machine 

learning is to split the available data into two sets such that one set (training 

data) is used to build the model while the other set (testing or validation data) 

is used to evaluate the model accuracy (Berrar 2018). However, this becomes 

a challenge when there is a limited quantity of data such as in this research 

where the available dataset contains only twenty-three records. Moreso, it is 

important to use as much of the data as possible for training the model, but 

this would result in the detrimental situation of only being able to obtain a 

noisy estimate of the model’s predictive performance (Isakova 2019). Hence 

there was a critical need in this research to maximise usage of the small 

volume of available data by including cross-validation in the model 

development process. 

Fundamentally, cross-validation involves splitting the available data into x 

number of equal parts, withholding the first part as test data, and training a 

model with all data samples comprising the remaining x-1 parts before testing 

this model’s accuracy with the withheld data and recording the performance 
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score. This procedure is repeated for x number of times and the average of 

all the obtained performance scores is calculated at the end, implying that all 

the data samples both serve as training and testing data at separate times. 

There are several types of cross-validation methods including hold-out 

method, leave-one-out cross-validation (LOOCV), K-fold cross-validation and 

stratified k-fold cross-validation.  

Nevertheless, this research restricts itself to LOOCV method, a type of cross-

validation best suited for cases where there is limited data, and in which x=N, 

where N is the total number of data samples (Berrar 2018). The use of LOOCV 

implies that hyper-parameter tuning during model development will require 

high computational cost because the computing machine will iterate through 

the entire code for N times to assess just one value of a hyper-parameter, 

and this process will be repeated severally before finding the optimal value of 

that hyper-parameter. Therefore, it was decided that the machine learning 

models will be developed with default values of the hyper-parameters, 

especially as various models were being investigated to find the optimal model 

and these models consist of several hyper-parameters. 

7.4. Decommissioning Cost Estimation and Analysis 

As highlighted in Chapter two, cost estimation for an offshore 

decommissioning project is a challenging task which often requires 

information about platform features that might not be readily available. To 

aid generation of decommissioning cost estimates, operators are constrained 

to perform several studies, some of which become more expensive as the 

project execution time draws nearer especially if there is some time 

constraint. Cost-savings can be realized if operators know what platform 

information influences decommissioning costs and start collecting these data 

much earlier. Furthermore, early knowledge of decommissioning cost is 

important to the operator for reasons such as budgeting, asset profitability 

evaluation and setting of lease transfer terms. Hence the industry will benefit 

from innovative techniques for easily generating initial estimates of 
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decommissioning costs before detailed engineering analysis (Andrawus et al. 

2011).  

A fit-for-purpose decommissioning cost estimating model for performing cost 

analysis and generating early cost estimates would be useful to operators, 

regulatory bodies, and other project stakeholders in reducing the complexity 

of planning decommissioning projects. Moreso, it would enable companies 

that set aside some part of their revenue towards amortization of their 

decommissioning liabilities to keep track of the progress being made in this 

regard. 

7.5. Cost Analysis for Decommissioning Case Study 

Platform  

Detailed cost estimates by the USA0 Department of the Interior's Bureau of 

Safety and Environmental Enforcement (BSEE) for decommissioning offshore 

oil and gas platforms in the Pacific Outer Continental Shelf (POCS) of California 

with the Complete Removal option are detailed in TSB (2016b). The dataset 

consists of only the costs of completely removing the platforms and this is 

subdivided into thirteen decommissioning phases. The costs of the well 

plugging and abandonment phase are not included in this analysis to reduce 

complexity. These platforms share similarities with the case study platform in 

that they are all fixed steel jacket-type platforms and situated in same 

location. Hence, it is feasible to forecast the cost for decommissioning the 

case study from this costing information. The methodology developed in this 

research for this purpose is shown in Figure 7.3. 
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Figure 7.3: Methodology for forecasting decommissioning costs for case 

study platform from historical cost data 

The first step is to precondition or normalise the dataset into a useable form. 

This is followed by the application of engineering judgement and assumptions 

based on decommissioning knowledge to estimate the costs of executing the 

projects with different options. Next, cost model which generates the costs 

for decommissioning a platform with different options based on the structure’s 

features is developed from the now-enlarged cost dataset. Finally, the costs 

for using different options for decommissioning the case study platform are 

forecasted with the aid of the cost model since the platform’s features are 

already known. 

This methodology will be logically followed in Chapter eight of this thesis to 

forecast decommissioning options costs for the case study platform before 

integrating these into the decommissioning decision model. 

Normalise existing cost 
data  for platform 
decommissioning using 
Complete Removal option.

Derive costs for 
decommissioning platforms 
with other options of interest.

Model the relationship 
between decommissioning 
costs for differents options 
and prioritised platform 
features.

Forecast costs for 
decommissioning case study 
platform with different 
options.

Identify 
decommissioning 
project phases where 
costs are likely to differ 
based on the option 
being used.

For all platforms and 
options, adjust the costs of 
project phases to reflect 
option-dependent 
differences. 

For each platform, 
aggregate all phase costs 
for an option to obtain the 
decommissioning cost for 
that option. 
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7.6. Summary 

This chapter described the procedure for integrating historical data into the 

decision model developed in this research. Firstly, the application of machine 

learning mathematical modelling to historical data of decommissioning was 

identified to be beneficial for predictive purposes. Next, the integration of 

cross-validation into machine learning regression analysis for the purpose of 

developing a model for costing decommissioning options is discussed. The 

chapter concludes by outlining a scheme for developing the costing model and 

using it to predict decommissioning costs for the case study platform 

introduced in Chapter five. This methodology is systematically implemented 

in the next chapter. 
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Chapter 8 : INTEGRATION OF 

DECOMMISSIONING COST DATA INTO 

DEVELOPED DECISION MODEL 

As highlighted in Chapter two of this thesis, a robust decision model should 

have the capability for improving the quality of its results as more accurate 

information becomes available. This capability was incorporated as a key 

requirement of the decommissioning decision model (DDM).  

To demonstrate this capability, this chapter describes the integration of 

decommissioning costs into the DDM after predicting these using a costing 

model developed from the methodology described in Chapter seven. 

8.1. Normalizing Existing Decommissioning Cost Data 

The California POCS Platforms were separated by TSB (2016b) into project 

groupings based on operator obligation, geographic location and working 

season before obtaining the decommissioning cost estimates. Altogether there 

are six groups. Platforms within the same group equally share the costs of 

two decommissioning phases: Permitting and Regulatory Compliance, and 

Mobilization and Demobilization of Derrick Barges. Whereas cost sharing 

within groups is a cost optimisation strategy, the costs of these two phases 

cannot be used in their raw state for the analysis in this research and hence 

require to be normalised. This entails apportioning the full cost of Mobilization 

and Demobilization of Derrick Barges, for example, to a single platform 

instead of what this would be in a Campaign approach scenario.  

The BSEE cost estimates were developed with the assumption that topsides 

are removed by reverse installation while the substructures are removed with 

either single lift or piece-large method depending on structural weights 

involved. 

In addition, it is assumed that only two heavy lift vessels (HLVs) are available 

for the projects. These vessels can be mobilized from Southeast Asia and their 

normalised mobilization and demobilization costs are shown in Table 8.1. 
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Table 8.1: Derrick Mobilization and Demobilization Costs for HLVs 

Vessel 

ID  

Lift Capability 

(tons) 

Mobilization and Demobilization 

Cost ($) 

DB500 500 14,850,000 

DB2000 2000 18,810,000 

8.2. Derivation of Other Decommissioning Options 

Costs from Complete Removal Cost 

Deriving the partial removal and leave in place decommissioning options costs 

from the complete removal cost was achieved in this research by considering 

each decommissioning phase i.e., bottoms-up approach. This method, though 

more data intensive than a top-down approach, is known to produce more 

accurate results (Kaiser and Liu 2014). Moreso, the decommissioning phases 

were considered individually before aggregation because the unit costs of 

some of the phases for a project remain unchanged irrespective of the 

adopted removal option.  

The three-stage process for deriving the costs of other decommissioning 

options from Complete Removal cost follows the methodology described in 

Section 7.5. For ease of analysis, future liability such as maintenance and 

inspection costs have not been considered. 

• Stage 1: The differences between Complete Removal and the other options 

for each decommissioning phase are identified from engineering 

knowledge as shown in Table 8.2. The costs of the decommissioning 

phases were modified with the aid of simplifying assumptions to reflect 

these differences for each option. The newly derived costs were then 

aggregated for each platform with respect to each of the decommissioning 

options to obtain the cost estimate for decommissioning platforms with the 

options. 
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Table 8.2: Derivation of Partial Removal Cost from Complete Removal Cost 

for Decommissioning Phases (adapted from Bressler and Bernstein (2015)).  

Decommissioning Cost 

Element 

Differences Between 

Complete Removal 

Option and Partial 

Removal Options 

Differences Between 

Complete Removal 

Option and Leave in 

Place Option 

Permitting and 

Regulatory Compliance, 

Platform Preparation, 

Pipeline 

Decommissioning, Power 

Cable Removal, Site 

Clearance 

None. Same in both 

options 

None. Same in both 

options 

Conductor Removal Conductors removed in 

partial Removal options 

only to the depth of cut 

below mean sea level as 

specified by the Partial 

Removal option. 

None. Same in both 

options 

Mobilization & 

Demobilization of Derrick 

Barge 

Smaller and less 

expensive lifting 

equipment for Partial 

Removal options 

depending on the 

heaviest single topside’s 

module (or section) lift of 

platform 

Smaller and less 

expensive lifting 

equipment for leave in 

place option depending 

on the heaviest single 

topside’s module (or 

section) lift of platform 

Platform Removal Jacket and piles removed 

only to the depth of cut 

below mean sea level 

specified by the Partial 

Removal options 

Only Topsides are 

removed. 

Materials Disposal Less mass to be 

transported and disposed 

for Partial Removal 

options. 

Less mass to be 

transported and disposed 

(i.e., mass of the 

topsides) for Leave in 

Place option. 

Weather Contingency, 

Miscellaneous Work 

Provision, Project 

Management Engineering 

and Planning 

Lower costs for Partial 

Removal options. 

Calculated as percentages 

of other decommissioning 

phases. 

Lower costs for Leave in 

Place option. Calculated 

as percentages of other 

decommissioning phases. 
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• Stage 2: The costs for the Conductor Removal, Platform Removal and 

Material Disposal phases for partial removal options were calculated for 

each platform based on the estimated quantity of residual material, that 

is, the amount of structural material that would be left in place after the 

removal process. For a platform, this is mathematically expressed as 

shown in Equation 8.1. 

 𝑃𝑅𝑋 = 𝐶𝑅𝑋 − 𝑅𝑀𝑋 (8.1) 

Where for a project phase X, 𝑃𝑅𝑋 is the cost incurred when 

decommissioning the platform with a partial removal option. 𝐶𝑅𝑋 is the cost 

incurred when decommissioning the platform with the Complete Removal 

option (this is specified in the BSEE dataset). 𝑅𝑀𝑋 is the cost avoided due 

to leaving some residual materials. 

Note that the Leave in Place option is a special case of the Partial Removal 

Option where only the topsides of the platform are removed during 

decommissioning. Therefore, Equation 8.1 will only apply to the Platform 

Removal and Material Disposal phases in that scenario. 

The 𝑅𝑀𝑋 is calculated for conductors, jacket, and piles from Equation 8.2. 

 𝑅𝑀𝑋 = 𝐶𝑅𝑋 𝑥  %𝑊𝑒𝑖𝑔ℎ𝑡 𝑥 
𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑖𝑛 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝐻𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑖𝑛 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑝𝑡𝑖𝑜𝑛
 (8.2) 

Where, 

%Weight is a factor which represents the weight proportions of the 

platform components and described in Table 8.3. 

Table 8.3: %Weight for Platform Components. 

Component %Weight 

Conductor* 1 

Topsides 𝑇𝑜𝑝𝑠𝑖𝑑𝑒𝑠 𝑊𝑒𝑖𝑔ℎ𝑡 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡 ∗∗
 

Jacket 𝐽𝑎𝑐𝑘𝑒𝑡 𝑊𝑒𝑖𝑔ℎ𝑡 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡
 

Piles 𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑃𝑖𝑙𝑒𝑠

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡
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*All conductor-related costs are accounted for in the Conductor Removal 

phase. 

**Estimated Removal Weight for a platform comprises the weights of 

Topsides, Jacket, and Piles down to 15 feet below the seabed. 

The following assumptions apply when using equations 8.1 and 8.2 

because only the topsides weight, jacket weight and height of each 

platform are known with confidence. 

i. Complete Removal option entails removal of all topsides, jackets 

down to the seabed, and piles and conductors down to a depth of 

15 feet below the seabed. 

ii. Removal costs can be reduced to $/ton. 

iii. There is a uniform weight distribution across the substructure 

height. 

iv. Jacket extends to 5 meters or 16.404 feet above the mean sea level 

(Byrd, Miller and Wiese 2014). 

v. All piles are considered as main piles which are installed through the 

jacket legs, as against skirt piles which are placed adjacent to the 

platform legs. 

vi. On average, conductors extend to 65 feet above the mean sea level 

(TSB 2016b). 

• Stage 3: The costs of individual project phases for each decommissioning 

option were aggregated across the platforms to obtain cumulative phase 

costs for all five options as shown in Figure 8.1. There are no cost savings 

in the Permitting and Regulatory Compliance, Platform Preparation, 

Pipeline Decommissioning, Power Cable Removal and Site Clearance 

phases irrespective of the option used. However, significant cost savings 

are realised from other project phases when partial removal 

decommissioning options are used. This is because of the option-

dependent nature of these phases. 
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Figure 8.1: Variations in costs of project phases for different 

decommissioning options 

Decommissioning options costs for individual platforms were then calculated 

by summing the costs of all project phases under an option for each platform. 

These costs are shown in Figure 8.2 in which platforms have been sorted in 

order of increasing jacket weight. Further details about the physical features 

and the decommissioning options costs of the platforms are respectively 

shown in appendix 1 and appendix 6 of this thesis.  

0

50

100

150

200

250

300

350

400

450

500

C
u

m
m

u
la

ti
ve

 C
o

st
 (

$
 m

ill
io

n
)

Decommissioning Project Phase

Cost of Complete Removal ($) Cost of Partial Removal to 85ft ($)
Cost of Partial Removal to 180ft ($) Cost of Partial Removal to top of Footings  ($)
Cost of Leave in Place ($)



169 

  

 

Figure 8.2: Costs of decommissioning POCS platforms using different 

options. 

Project cost-savings due to options used varies across all platforms although 

the cost of Complete Removal is always more than that of any of the other 

options considered. The cumulative costs of using the decommissioning 

options across all the twenty-three platforms are compared in Figure 8.3. 
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Figure 8.3: Costs of decommissioning all POCS platforms using different 

options. 

It is observed from Figure 8.3 that Complete Removal of the platforms will 

cumulatively cost $1.67 billion. However, decommissioning all platforms with 

the Leave in Place option will cost just under $1 billion which is equivalent to 

a significant cost savings of 44%. Partial Removal of all platforms to 85 feet 

results to a cost of $1.08 billion, that is, a cost-savings of about 35% in 

comparison to Complete Removal. On the other hand, the option with the 

lowest potential cost-savings when compared to Complete Removal is Partial 

Removal to Top of the Footings. Using this option results to a cumulative cost 
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of $1.49 billion which represents a cost-savings of about 11% on the cost of 

the Complete Removal decommissioning option. 

8.3. Modelling the Relationship Between 

Decommissioning Options Costs and Platform 

Features 

8.3.1. Developed Decommissioning Options Cost Models 

Ten multioutput machine learning regression algorithms with capability for 

handling multi-output problems were investigated in this research for 

modelling decommissioning options costs. The investigated algorithms 

included Decision Tree, Elastic Net, Gradient Boosting, K Nearest Neighbour 

(KNN), Least Absolute Shrinkage and Selection Operator (LASSO), Multiple 

Linear, Multivariate Adaptive Regression Splines (MARS), Random Forest, 

Ridge, and Support Vector regression algorithms. 

The algorithms were each used to regress the decommissioning options costs 

for the twenty-three platforms against their substructure weight, water depth 

and age. The dataset compiled for this purpose is shown in appendix 6. It 

comprises the physical features of the platforms from TSB (2016b) and their 

decommissioning options costs which were statistically derived in section 8.2. 

8.3.2. Performance Evaluation of Developed Machine 

Learning Models 

Following the development of these regression models, their prediction 

accuracies were evaluated graphically using cross-plots and quantitatively 

using accuracy metrics. The purpose of this performance evaluation was to 

investigate the accuracy of the developed models to identify the most suitable 

for forecasting the decommissioning options costs for the case study. 

Graphical evaluation of a prediction model provides a quick way of visually 

assessing its performance. Quantitative evaluation, on the other hand, is more 

tedious and requires some statistical analysis but generates more precise and 

objective numerical output as compared to those of graphical evaluation. 
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8.3.2.1. Graphical Evaluation of Machine Learning Regression Models’ 

Performance using Cross-Plots 

Graphical evaluation of the developed models entailed examining cross-plots 

of the actual versus predicted decommissioning options costs for the training 

and testing data. A cross-plot is a plot of predicted values from a model 

against the corresponding actual values of the modelled system, equated with 

a unit slope line or y=x line which is representative of the ideal model. In 

interpreting a model’s cross-plot, the distance between the datapoints and 

the y=x line provides an indication of the accuracy of the model. Therefore, 

high predictive capability and accuracy of the model is inferred when 

substantial amounts of the datapoints are in proximity with this diagonal line 

(Balogun 2021). Conversely, deviations of the datapoints from the y=x line 

indicates predictions error in the model. Usually, a good model has datapoints 

scattered symmetrically around the y=x line. 

The developed regression models and their graphically illustrated cross-plots 

are discussed below. 

• Decision Tree Regression: This is a supervised learning method that 

works by creating a model which predicts the values of target variables 

by learning simple decision rules inferred from the data features 

(Pedregosa et al. 2011). The implementation of Decision Trees to 

regression problems is achieved by using the DecisionTreeRegressor 

class of the Python scikit-learn library. Figure 8.4 shows the cross-plot 

of the cost estimation model developed using this algorithm. 
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Figure 8.4: Cross-plot of decommissioning cost model predictions for POCS 

platforms (decision tree regression) 

• Elastic Net Regression: This regression method assumes a linear 

relationship between the input and target variables and is trained by 

regularisation of the coefficients (Friedman, Hastie and Tibshirani 

2010). For multi-output regression problems, this relationship can be 

conceptualised as a hyperplane which connects the input variables to 

the target variable. The method is particularly useful when there are 

multiple features that are correlated with one another. Figure 8.5 shows 

the cross-plot of the cost estimation model developed using this 

algorithm. 
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Figure 8.5: Cross-plot of decommissioning cost model predictions for POCS 

platforms (elastic net regression) 

• Gradient Boosting Regression: This regression method is a 

generalization of boosting to arbitrary differentiable loss functions 

which can be applied to regression problems by using the 

GradientBoostingRegressor class of the Python scikit-learn library 

(Hastie et al. 2017). The Gradient Boosting estimator builds an additive 

model in a forward stage-wise fashion where a regression tree is fit on 

the negative gradient of the given loss function in each stage. Figure 

8.6 shows the cross-plot of the cost estimation model developed using 

this algorithm. 
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Figure 8.6: Cross-plot of decommissioning cost model predictions for POCS 

platforms (gradient boost regression) 

• KNN Regression: This regression method works based on distance 

metrics by finding a predefined number of training samples closest in 

distance to the new point and predicting the label or target variables 

from these (Hastie et al. 2017). The KNeighborsRegressor class of the 

Python scikit-learn library implements this learning based on the 

nearest neighbours of each query point, where k is an integer value 

specified by the user or set to the value of 5 by default. Figure 8.7 

shows the cross-plot of the cost estimation model developed using this 

algorithm. 
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Figure 8.7: Cross-plot of decommissioning cost model predictions for POCS 

platforms (k-nearest neighbour regression) 

• LASSO Regression: This regression method estimates sparse 

coefficients and mathematically consists of a linear model with an 

added regularization term (Hastie et al. 2017). The Lasso class of the 

Python scikit-learn library implements this method by using coordinate 

descent as the algorithm to fit the coefficients. Figure 8.8 shows the 

cross-plot of the cost estimation model developed using this algorithm. 
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Figure 8.8: Cross-plot of decommissioning cost model predictions for POCS 

platforms (LASSO regression) 

• Multiple Linear Regression: This regression method assumes a linear 

relationship between the input and target variables and works by 

minimising the residual sum of squares between the observed targets 

in the dataset, and the targets predicted by the linear approximation 

(Maxwell 1975). It is an extension of linear Ordinary Least Square 

regression with the only difference being that it attempts to 

simultaneously account for the variations of the explanatory variables 

in the target variables (Uyanık and Güler 2013). Figure 8.9 shows the 

cross-plot of the cost estimation model developed using this algorithm. 
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Figure 8.9: Cross-plot of decommissioning cost model predictions for POCS 

platforms (multiple linear regression) 

• MARS Regression: This is a regression method for solving multivariate 

non-linear regression problems and works by finding a set of simple 

linear functions that results in the best prediction performance when 

aggregated (Hastie et al. 2017). It can be conceptualised as a 

generalization of stepwise linear regression where there is an ensemble 

of linear functions. Figure 8.10 shows the cross-plot of the cost 

estimation model developed using this algorithm. 
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Figure 8.10: Cross-plot of decommissioning cost model predictions for POCS 

platforms (MARS regression) 

• Random Forest Regression: Random Forest is an extension of the 

Decision Trees that works by using an ensemble of trees where each 

tree in the ensemble is built from a sample drawn with replacement 

from the training set (Biau and Scornet 2016). The combination of 

decision tress enables Random Forest to achieve reduced variance in 

the model predictions, though this can sometimes be accompanied by 

a slight increase in bias, and this variance reduction is often significant 

hence yielding an overall better model than that of the Decision Trees. 

Figure 8.11 shows the cross-plot of the cost estimation model 

developed using this algorithm. 
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Figure 8.11: Cross-plot of decommissioning cost model for POCS platforms 

(random forest regression) 

• Ridge Regression: This is a linear regression method that improves 

upon the Ordinary Least Squares regression by imposing a penalty on 

the size of the coefficients (Avila and Hauck 2017). By minimising a 

penalized residual sum of squares, Ridge regressions derives 

coefficients that are more robust to collinearity than the Ordinary Least 

Squares regression. Figure 8.12 shows the cross-plot of the cost 

estimation model developed using this algorithm. 
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Figure 8.12: Decommissioning cost model predictions for POCS platforms 

(ridge regression) 

• Support Vector Regression: This regression method works by using 

support vector machines to build a prediction model which depends 

only on a subset of the training data and has a cost function which 

ignores samples whose prediction is close to their target (Smola and 

Schölkopf 2004). It is implemented by the “svm” class of the Python 

scikit-learn library. Figure 8.13 shows the cross-plot of the cost 

estimation model developed using this algorithm.  
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Figure 8.13: Decommissioning cost model predictions for POCS platforms 

(support vector regression) 

The concentration of datapoints around the y=x line for all the investigated 

models indicate that they make predictions that are accurate to a reasonable 

degree. However, it is challenging to decipher the best performing model 

based on the cross-plots alone. Hence their quantitative evaluation was 

deemed necessary.  

8.3.2.2. Quantitative Evaluation of Machine Learning Regression 

Models’ Performance using Accuracy Metrics 

Quantitative evaluation of a model entails comparing the model predictions 

with actual data and measuring the degree of deviation between both sets of 

values. Root mean square error, mean absolute error, mean absolute 

percentage error (MAPE), and R-Squared are some popular metrics used for 

evaluating machine learning models.  

For metrics with values ranging between zero and infinity, a common 

drawback is that their value does not say much about the performance of the 
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regression with respect to the distribution of the ground truth elements 

(Chicco, Warrens and Jurman 2021). In addition, since the order of magnitude 

of decommissioning costs is quite high (typically in millions of dollars), failure 

to assess the model’s accuracy with performance metrics that are based on 

relative measurements is likely to lead to misinterpretations. Therefore, this 

research elected to evaluate the developed models with relative measurement 

metrics i.e., scale-free accuracy metrics whose values are bounded between 

0 and 1 (or 0-100%). This includes Mean Absolute Percentage Error (MAPE), 

R-Squared, and Adjusted R-Squared. 

• MAPE: MAPE has emerged as one of the most used accuracy metrics 

since the start of the 21st century (Gneiting 2011; Botchkarev 2018). 

MAPE is a unitless metric determined as shown in Equation 8.3 and 

expressed as a percentage (Velasco-Gallego and Lazakis 2020). 

 𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑖 − �̂�𝑖

𝑦𝑖
|

𝑛

𝑖=1

 (8.3) 

Where n corresponds to the sample size, and 𝑦𝑖 and �̂�𝑖 represents the 

i-th occurrence of the actual and the predicted values, respectively.  

One disadvantage of using MAPE is that its value is undefined when the 

observed value is zero. Nevertheless, it is beneficial for a problem 

domain like decommissioning costing which has a varying and 

sometimes unclear scale and context. 

• R-Squared: The coefficient of determination, 𝑅2, is a metric calculated 

as expressed in Equation 8.4 and defined as the proportion of variations 

in the data explained by the linear regression model (Montgomery, Peck 

and Vining 2021). It can be interpreted for a multioutput regression 

model as the proportion of the total variation in the set of 

predicted/dependent variables that is accounted for by the set of 

observed/independent variables (Dharumarajan et al., 2017).  

 𝑅2 =
∑ (𝑝𝐼 − 𝑝�̅�)2𝑛

𝑖=1

∑ (𝑜𝐼 − 𝑜�̅�)2𝑛
𝑖=1

 (8.4) 
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Where 𝑝𝐼 and 𝑜𝐼 are the predicted and observed values, and �̅� and 𝑜�̅� 

are the means of the predicted and observed values. 

A model’s accuracy is indicated by the nearness of its 𝑅2 to one. 

Conversely, the 𝑅2 value becomes zero in the absence of any linear 

relationship between the sets of response and predictor variables. 

However, this metric poorly handles addition of new predictor variables 

to the model. 

• Adjusted R-Squared: The adjusted R-Squared, 𝑅2
𝑎𝑑𝑗 is another metric 

used for assessing the goodness-of-fit of a model. This accuracy metric 

modifies the 𝑅2 value by compensating for the number of predictor 

variables included in the model (Montgomery, Peck and Vining 2021). 

The formula for calculating 𝑅2
𝑎𝑑𝑗 from 𝑅2 is shown in Equation 8.5 

(Harrell 2017) from which it can be deduced that the 𝑅2
𝑎𝑑𝑗 value of a 

model will always be less than or equal to its 𝑅2. 

 𝑅2
𝑎𝑑𝑗 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑥 − 1
 (8.5) 

Where n and x are respectively the number of observations and the 

number of independent variables in the data. 

Table 8.4 shows the values of the MAPE, R-Squared and Adjusted R-Squared 

for all the developed regression models. 

Table 8.4: Performance Metrics Values for Developed Regression Models 

Accuracy Metric 

Regression 

Algorithm 

MAPE 

(Lower 

value is 

desirable) 

R-Squared 

(Higher value 

is desirable) 

Adjusted R-

Squared 

(Higher value 

is desirable) 

Decision Tree 13.541% 0.882 0.864 

Elastic Net 12.319% 0.931 0.921 

Gradient Boosting 10.103% 0.935* 0.925* 

KNN 9.394%* 0.863 0.842 

LASSO 12.322% 0.931 0.921 

Multiple Linear 12.322% 0.931 0.921 

MARS 13.814% 0.903 0.887 
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Random Forest 9.781% 0.924 0.912 

Ridge 12.322% 0.931 0.921 

Support Vector 10.744% 0.836 0.810 

*Best performance with respect to accuracy metric. 

Based on the performance evaluation results, Gradient Boosting is observed 

to be the most adequate for modelling the decommissioning options costs 

based on its R-squared and Adjusted R-squared values. Although the KNN-

based model preformed best in terms of MAPE, Gradient Boosting performed 

best in terms of R-Squared (and Adjusted R-Squared) which has been 

identified as being more informative than other accuracy metrics, particularly 

for regression analysis evaluation (Chicco, Warrens and Jurman 2021). 

Consequently, the regression model developed using Gradient Boosting 

algorithm was adopted as the machine learning model for forecasting 

decommissioning options costs. The python script for developing this model 

is presented in appendix 7. 

8.4. Predicting Decommissioning Options Costs for 

the Case Study using the Costing Model 

From Equation 7.2, the substructure weight, water depth, and age of a 

platform are the input required by the developed machine learning costing 

model to predict the costs of decommissioning the platform with different 

options. These platform features for the case study are 

• Substructure weight = 8,774 tons + 2,363 tons = 11,137 tons 

• Water depth = 406 feet 

• Platform age = 43 years 

Inputting these data into the machine learning model yields the costs of 

decommissioning the case study platform with different decommissioning 

options as shown in Table 8.5. 
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Table 8.5: Predicted Decommissioning Options Costs for Case Study  

Cost of 

Complete 

Removal 

($) 

Cost of 

Partial 

Removal to 

85 feet ($) 

Cost of 

Partial 

Removal to 

IMO Depth 

($) 

Cost of 

Partial 

Removal to 

Top of 

Footings ($) 

Cost of 

Leave in 

Place ($) 

77,931,854 63,816,150 69,470,612 69,693,463 55,745,763 

With the decommissioning costs for the case study platform forecasted, data 

scaling was applied to transform these values into a range that is compatible 

with the LIKERT scale input data of the decommissioning decision model. 

8.4.1. Data Scaling of Forecasted Decommissioning Options 

Costs for the Case Study 

Applying the data scaling equation (Equation 3.9) to the decommissioning 

options cost values for the case study produces the LIKERT-scale equivalent 

values shown in Table 8.6.  

Table 8.6: LIKERT Scale Equivalent of Decommissioning Options Costs 

Decommissioning Option Cost ($) LIKERT Scale Equivalent 

Complete Removal 77,931,854 6.391 

Partial Removal to 85 feet 63,816,150 7.070 

Partial Removal to IMO Depth 69,470,612 6.798 

Partial Removal to Top of 

Footings 

69,693,463 6.788 

Leave in Place 55,745,763 7.458 

Because cost-savings is desirable during decommissioning, the most 

expensive decommissioning option in Table 8.6 is observed to be equivalent 

to the least value on the LIKERT scale while the cheapest option has the 

highest equivalent value. 

The values in Table 8.6 can effectively be inputted into the DDM as a more 

accurate replacement for the expert opinion data pertaining to the cost criteria 

as obtained from the decommissioning survey in this research. Thus, 
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demonstrating the model’s capability to support the incorporation of historical 

data as input as this information becomes available. 

8.5. Summary 

This chapter discussed the development of a decommissioning options costing 

model with the aid of machine learning regression algorithm and a 

decommissioning costing dataset in the public domain. The costing model 

predicts the decommissioning options costs from the features of the platform 

to be decommissioned, namely the substructure weight, water depth and age. 

Results from the graphical and quantitative performance evaluation of the 

model both indicated a high prediction accuracy. The costing model was used 

to forecast the costs of using five options for decommissioning the case study 

platform. These costs were then scaled into their equivalent values in the 

Likert scale range to facilitate direct integration into the decommissioning 

decision model. Thus, demonstrating that the decision model supports the 

integration of historical data when this becomes available.  

The next chapter provides a conclusion to this research and recommendations 

for future research in the knowledge domain.
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Chapter 9 : CONCLUSION AND 

RECOMMENDATIONS 

This chapter concludes this report by summarising the information presented in 

all the preceding chapters and highlighting the golden thread that links all the 

chapters. It begins by presenting an evaluative summary of the conducted 

research in form of its conclusions and findings. Next, the impact of the research 

is discussed to highlight the implications of the conclusions to the broader context 

within which the research belongs. A critical appraisal of the research limitations 

and challenges encountered while conducting the research are also outlined. The 

chapter closes by providing recommendations for future works in the knowledge 

domain of the research. 

9.1. Conclusion and Findings 

The overarching aim of this research was to develop decision support for assisting 

decision-makers to determine the best available option for decommissioning their 

offshore platform. However, the achievement of this aim entailed meeting several 

targets as captured by the research objectives. Completion of this research 

contributes to the body of knowledge by providing a better understanding of the 

key elements and decision-making process of determining the optimal 

decommissioning option for offshore platforms. Hence, stating its conclusion 

requires a careful reflection on the completed work and its significant contributions 

vis a vis the aim and objectives. 

In performing this research, the researcher has 

i. Completed a robust literature review of current practices in offshore 

decommissioning with focus on the main decommissioning options and key 

considerations for choosing an option for a project. These considerations or 

decision criteria were identified to be safety, environmental impact, 

technical feasibility, financial cost, and public perception. Existing 

approaches for evaluating decommissioning options for offshore platforms 

and identified their limitations and strengths have also been reviewed. 

Through this critical review, the primary desirable capabilities of a robust 

decision model for identifying the optimal option for a decommissioning 

project were also established. These capabilities comprise the ability to 
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account for qualitative and quantitative data, clarity and structure in use of 

expert opinion when required, and use of Multi-Criteria Decision Analysis. 

Lastly, the Analytic Hierarchy Process was identified as the most suitable 

Multi-Criteria Decision Analysis technique for solving the multicriteria 

problem of decommissioning options evaluation. This technique was 

combined with Likert scale to overcome the AHP limitations of having a 

cumbersome number of judgements and matrix inconsistency issues. 

ii. Developed a novel decision model for determining the optimal option for 

decommissioning an offshore platform. Also demonstrated the applicability 

of the same by applying it to a case study with information from a 

decommissioning survey as input. This analysis provided better 

understanding of the decision-making process of options selection and the 

complex interaction of the decision criteria. The decision model comprises 

of four phases and supports efficient identification of the optimal 

decommissioning option for an offshore platform as demonstrated by the 

result of its application to a case study. 

iii. Validated the survey input data, logical structure, and results of applying 

the decommissioning decision model with the aid of sensitivity analysis, 

comparison to similar studies and expert opinion, respectively. All three 

validation schemes yielded positive outcomes, strongly supporting the 

fitness-for-purpose and fitness-for-use of the developed model. On this 

basis, the model is proposed for adoption by the decommissioning industry. 

iv. Applied machine learning to an existing dataset to develop a model for 

estimating decommissioning options costs and subsequently integrating 

historical data into the decision model. The costing model uses the 

substructure weight, water depth and age of a platform to predict the costs 

of its decommissioning under five different scenarios with reasonable 

accuracy. It was implemented by identifying platform features which highly 

influence choice of decommissioning option for a project and applying 

machine learning regression with secondary data to these features to 

develop a decommissioning options costing model with reasonable 

prediction accuracy. The costs of decommissioning the case study under 

five different scenarios were then predicted using the developed costing 

model and integrated into the decision model, thus replacing the survey 

input data and minimising bias from human judgement. 
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These findings represent a significant advancement on the current understanding 

of decision-making during the decommissioning of offshore platforms with regards 

to determining the optimal option for a project. The DDM is valuable for improving 

the efficiency of future decommissioning projects as demonstrated by its 

successful application to a case study and positive outcomes from its validation. 

As such, its industry use is expected to improve decommissioning decision-making 

in that the model’s logical process will infuse engineering rationality into the 

options assessment process, thus reducing bias and minimising conflicts between 

project stakeholders.  

9.2. Wider Impact of Research  

This work represents a novel approach to the optimisation of offshore 

decommissioning that is focused on decision-making during the project planning 

stage. Its outcomes improve on existing decommissioning option selection 

approaches by developing a more efficient approach. It is also expected to reduce 

the cost of future decommissioning projects by aiding effective and timely 

estimation of the financial costs of using different options. 

There are several significant impacts of the research, some of which are described 

below. 

i. The decommissioning decision model can serve as an unbiased basis for 

justifying the choice of a decommissioning option for an offshore asset by 

establishing traceable steps in the decision-making process. Hence, 

reducing the traditionally rife conflict between stakeholders of 

decommissioning projects. The model’s structured handling of expert 

opinion minimises the subjectivity of human judgement, thus increasing the 

likelihood of arriving at a balanced and logically sound decision as 

demonstrated by the case study analysis. Additionally, the outcome of the 

decision-making process can be easily traced back to the beginning if there 

is a need for auditing the decision. Industry adoption of the decision model 

will result to significant reduction of time, resources and efforts spent in 

decision-making during decommissioning. The proposed framework for 

decommissioning option selection streamlines the entire process of 

identifying the optimal option for a project. Also, the DDM identifies the key 

elements of the decision-making and their interplay vis a vis decision 
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criteria comparisons and influence on decommissioning options 

performance for a project. The model is easily adaptable and therefore can 

be applied to platform wells, subsea tiebacks and bundles, and pipelines 

with little modification. Given adequate information supply, the model can 

facilitate detailed decision-making analysis of assets and components that 

are more complex than the case study used in this research.  

ii. The decommissioning options costing model developed using machine 

learning regression represents a novel contribution. Its use will improve 

accuracy in early determination of the potential exposure to 

decommissioning costs for decommissioning, reporting, asset trading and 

budget purposes. A paramount aspect of the costing model’s novelty relates 

to its capacity to predict the costs of using five different options for 

decommissioning a platform while only requiring the substructure weight, 

water depth, and age of the platform as input. Hence, it is expected to be 

a game-changer in the decommissioning industry due to its usefulness, 

particularly at the preliminary stages of decommissioning projects when 

data is scarce and cost estimates are highly uncertain. Moreover, the model 

represents the first attempt to concurrently predict the costs of using five 

different options for decommissioning a platform. Hence, it is expected to 

be extremely useful to asset owners for preliminary cost evaluation 

purposes prior to detailed engineering cost estimation. 

iii. The elaborate literature review of offshore decommissioning and 

comparison of decommissioning perception by individuals in different 

offshore regions can serve as a catalyst for driving policymakers to improve 

upon existing decommissioning legislation and practices. Highlighting 

differences in legislations of countries is likely to increase the possibility 

that governing authorities will identify and correct flaws in their state’s 

current approach to decommissioning. The wide variation in the location of 

the decommissioning survey participants was invaluable in this regard, 

especially considering the fragmented nature of decommissioning practice 

in the world. Even more, this research can support decommissioning policy 

formulation by countries like Nigeria with ageing infrastructure but no 

comprehensive decommissioning regulation system. 

iv. The relative comparison which established weights of decision criteria and 

sub-criteria for the case study can support asset owners to effectively 
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develop a scale of preference for these decision elements, and subsequently 

optimise resource allocation to aspects of the data gathering. Moreso, this 

research represents a pioneering effort to prioritise platform features in 

terms of their relevance to decommissioning options selection and relating 

the prioritised features to options cost. This streamlines data gathering for 

supporting decommissioning decisions and contributes towards valuable 

use of historical data. The AHP hierarchy structure used for applying the 

DDM to the case study was developed from extensive review of literature. 

It provides a template for collection of decommissioning information from 

completed projects and using these to realise process improvements in 

future projects. This is likely to benefit platform owners by improving the 

efficiency of knowledge transfer between their projects. It can also benefit 

the offshore decommissioning industry by fostering information sharing 

which is likely to catalyse process improvements. 

v. The completed research work as documented in this report represents the 

addition of an educational reference to the existing body of offshore 

decommissioning knowledge. The review of literature pertinent to offshore 

decommissioning, decision model development, analysis of the case study 

and integration of historical data to improve the accuracy of decision-

making are some of the obvious areas where this work will benefit future 

research endeavours. 

Therefore, this research represents an original contribution to the domain of 

offshore decommissioning despite making use of existing research elements. This 

is encapsulated in both the methodological context (i.e., unique combination of 

quantitative and qualitative research tools to optimise offshore decommissioning), 

and the application context (i.e., novel approach to decommissioning options 

selection that builds on the limitations of existing works, is reusable across various 

locations, and supports integration of historical data) of the research. 

9.3. Critical Appraisal of Completed Work 

Throughout the conduction of this research, considerable effort was directed 

towards ensuring achievement of the aim and systematic integration of different 

expert opinions to arrive at consensus that mitigates extreme outcomes. In this 
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regard, an assessment of some issues of concern in the research is subsequently 

presented. 

i. DDM applicability to more complex scenarios than the case study: Several 

types of offshore platforms are in existence (see Figure 2.1), but the 

developed decision model was only applied to a single fixed-steel jacket 

platform in this research. This limited example is acknowledged as a 

potential source of bias in determining the usefulness of the model and its 

application to a more complex platform (and varying legislative 

requirements) is likely to be more cumbersome. Notwithstanding, the 

decision model’s flow process is generic and hence readily adaptable to 

varying complexities and levels of analysis detail, provided that sufficient 

data is made available to the decision-maker. For example, it is expected 

that the decision criteria will always remain the same when applying the 

DDM although there might be need to consider a wider range of sub-criteria 

than those considered in the case study analysis depending on the 

application context. In essence, the decision-maker’s requirements, 

platform features and available information influence the accuracy of the 

DDM results. 

ii. Use of Work Experience to gauge expertise level of survey respondents: In 

determining the relative importance or priorities of platform features to 

decommissioning option selection, the opinion of survey respondents with 

more years of work experience was weighed more than those of individuals 

with less work experience. This assumption is a possible source of bias 

because some individuals who have worked for a limited number of years 

may possess extensive knowledge of decommissioning from other formal 

or informal sources. Conversely, it is possible that an individual with more 

work experience only possesses knowledge of decommissioning relating to 

a very specific part of such projects.  In retrospect, the survey analysis 

would have benefitted from using a factor which combines the respondent’s 

Work Experience, Level of Education, and Perceived Level of Confidence in 

Judgement instead of Work Experience alone. 

iii. Appropriateness of DDM and Results Validation: Despite the efforts that 

have been made to logically develop and validate the decommissioning 

decision model, it is worth noting that the model still possesses some level 
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of subjectivity. This, however, does not diminish the value of applying the 

model to decommissioning option selection. As highlighted by the literature 

review in Chapter two, MCDA approaches are suited for decommissioning 

decision-making due to vast knowledge gaps even though complete 

verification of the accuracy of the results obtained from such approaches is 

impossible due to their conceptual nature. 

iv. Research Challenges: Two major challenges were encountered during this 

research due to the uniqueness and relative infancy of the research domain. 

• Scope definition challenge: Decommissioning is multifaceted. It can 

be viewed from engineering, social, economics, policy-making and 

environmental science perspectives and each of these perspectives 

have their unique considerations. Additionally, there is a wide range 

of offshore structures and each of these, to an extent, has varying 

decommissioning procedures. Moreso, developing a solution that is 

reusable across various locations is not straightforward because of 

the regional differences in decommissioning practice in terms of 

regulations and perspectives of stakeholders. Hence it was 

challenging to define boundaries for this research. Addressing this 

challenge necessitated a careful trade-off between the breadth and 

depth of analysis in this research. Literature review guided the 

researcher to choose to focus on fixed-steel platforms located in 

California while developing a robust solution that is reusable for other 

offshore structures and adaptable to other locations. In addition, the 

location-based differences in stakeholders’ approach to offshore 

decommissioning was explored during analysis of the industry survey 

carried out as part of this research. 

• Data-related challenges: Obtaining either live project or historical 

decommissioning data to support the analysis in this research proved 

to be an arduous task. Where such data existed for public use e.g., 

UKCS publicly available decommissioning data 

(https://www.gov.uk/guidance/oil-and-gas-decommissioning-of-

offshore-installations-and-pipelines), there were significant 

inconsistencies in the procedure followed and documented results. 

Also, it was observed that data for furnishing most qualitatively 
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assessed decision criteria and sub-criteria were non-existent despite 

being mentioned in the literature, possibly because these had neither 

been adopted by the offshore industry nor documented for past 

projects.  Adopting the workaround strategy of demonstrating the 

decommissioning decision model’s applicability using a theoretical 

case study and input data from a decommissioning survey enabled 

the researcher to overcome this challenge. Also, in developing the 

decommissioning options costing model, the researcher used 

secondary data from literature and was able to apply machine 

learning regression despite the limited volume of this data by 

incorporating the Leave-One-Out cross validation technique. 

9.4. Recommendations for Future Research 

Despite the achievements of the current work, prospects for further research in 

offshore decommissioning abounds. Hence, some recommendations are presented 

for future research endeavours in this knowledge domain. 

i. Research is needed in understanding the implications of the currently 

ongoing energy industry net-zero transition to offshore decommissioning. 

Offshore platforms are a significant contributor to atmospheric emissions 

due to their running and maintenance operations, and their removal will 

result to a decrease in the generation of greenhouse gases although the 

machinery used for such projects also emit pollutant gases. Research in this 

area can focus on development of more environmental-friendly 

decommissioning procedures and options. It can also be directed towards 

catalysing the adoption of repurposing as an alternative to complete 

platform removal during decommissioning.  

ii. In future research, it would be interesting to apply the developed decision 

model to the decommissioning of other types of offshore structures like 

concrete gravity-based platforms, FPSO platforms, and tension leg 

platforms. More decommissioning options such as toppling and deep-sea 

disposal can also be investigated for platforms as there are countries where 

the overseeing regulations permit these options. Also, future research can 

apply the DDM to a platform with similar features to the case study platform 

in this research but situated in a different location such as the North Sea. 
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Comparing the outcomes will help to unlock a deeper understanding of the 

differences in approaches to offshore decommissioning by different 

countries alongside the attendant strengths and weaknesses.  

iii. In the future, the DDM and the options costing model developed in this 

research can be adapted to a software tool which implements their 

functionality with minimum human interference. Such tool was not 

developed in the current work due to time constraints but is expected to be 

economically viable and beneficial to the decommissioning industry. 

iv. Future research is required in developing innovative strategies to promote 

data sharing and improving the consistency of documenting 

decommissioning projects. Progress in this area will likely result to 

improvements to the current decommissioning practices by fostering more 

objective research and development of innovative solutions. Given 

adequate access to industry data, it would be interesting to investigate the 

application of the decision model to an actual project and objectively 

quantify how much improvement can be realised through its use as 

compared to a similar project completed with the current industry approach. 

v. As more decommissioning data becomes available, future research in 

platform features prioritisation will benefit from taking the more formal 

computing approach of principal component analysis (Jolliffe and Cadima 

2016). This technique is useful for reducing the dimensionality of large 

datasets and increasing their interpretability while concurrently minimizing 

information loss. Similarly, gradient boosting algorithm was identified in this 

research to be the best algorithm for developing a decommissioning options 

cost forecasting model. However, due to time constraints the model 

developed from this algorithm was not optimised before using it to forecast 

costs. Future research can investigate optimisation of the costing model 

through hyper-parameters tuning to improve its prediction accuracy. 

In summary, the aim of this research has been achieved. The research, despite 

its completion at this stage, has created opportunities for further research in other 

areas of decommissioning decision-making. Therefore, there is room to extend 

and build upon the findings from this research towards further optimisation of 

offshore decommissioning.  
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Appendix 1: Dataset for Derivation of the Features of the Case Study Platform from 

Features of Platforms in Pacific Outer Continental Shelf, California 

Platform_Na

me 

Age_(

Years) 

Conductors_

Weight_(t) 

Topsides_

Weight_(t) 

Jacket_W

eight_(t) 

Piles_We

ight_(t) 

Substructure

_Weight_(t) 

Structural_

Weight_(t) 

Water_D

epth_(ft) 

Distance_from_

Shore_(miles) 

A 53 1,439 1,357 1,500 600 2,100 3,457 188 5.8 

B 53 1,502 1,357 1,500 600 2,100 3,457 190 5.7 

C 44 2,261 1,357 1,500 600 2,100 3,457 192 5.7 

Edith 38 518 4,134 3,454 450 3,904 8,038 161 8.5 

Ellen 41 2,065 5,300 3,200 1,100 4,300 9,600 265 8.6 

Elly 41 0 4,700 3,300 1,400 4,700 9,400 255 8.6 

Eureka 37 4,377 8,000 19,000 2,000 21,000 29,000 700 9.0 

Gail 34 7,064 7,693 18,300 4,000 22,300 29,993 739 9.9 

Gilda 40 3,251 3,792 3,220 1,030 4,250 8,042 205 8.8 

Gina 41 374 447 434 125 559 1,006 95 3.7 

Grace 42 4,684 3,800 3,090 1,500 4,590 8,390 318 10.5 

Habitat 40 2,047 3,514 2,550 1,500 4,050 7,564 290 7.8 

Harmony 32 21,424 9,839 42,900 12,350 55,250 65,089 1,198 6.4 

Harvest 36 6,110 9,024 16,633 3,383 20,016 29,040 675 6.7 

Henry 42 1,174 1,371 1,311 150 1,461 2,832 173 4.3 

Heritage 32 12,996 9,826 32,420 13,950 46,370 56,196 1,075 8.2 

Hermosa 36 3,538 7,830 17,000 2,500 19,500 27,330 603 6.8 

Hidalgo 35 2,334 8,100 10,950 2,000 12,950 21,050 430 5.9 

Hillhouse 52 2,734 1,200 1,500 400 1,900 3,100 190 5.5 

Hogan 54 1,426 2,259 1,263 150 1,413 3,672 154 3.7 

Hondo 45 5,928 8,450 12,200 2,900 15,100 23,550 842 5.1 

Houchin 53 1,388 2,591 1,486 150 1,636 4,227 163 4.1 

Irene 36 1,662 2,500 3,100 1,500 4,600 7,100 242 4.7 
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Mean* 

(Average 

Value) 

42 3926 4,715 8,774 2,363 11,137 15,852 406 7 

*Defines the physical features of the theoretical case study platform 
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Appendix 2: Questionnaire for Application of the 

Decommissioning Decision Model to Case Study 

Platform 

Introduction 

This survey is part of a doctoral research study aimed at the development of 

a decision support model for offshore decommissioning options selection. The 

study is being conducted by Emmanuel Eke at the Robert Gordon University, 

Aberdeen UK. 

You have been selected to take part in this survey because you are deemed 

to be knowledgeable in the subject matter of offshore decommissioning. 

The survey is designed to capture the judgements of decommissioning 

stakeholders across different offshore regions of the world about the 

performance of decommissioning options. Additionally, analysis of the results 

is intended to uncover new insights into the decision-making process of 

decommissioning options selection for a project. 

Your participation in this survey is voluntary, therefore you can decide to 

discontinue at any stage. If you are happy to take part, kindly answer the 

questions that follow. Confidentiality is paramount in this study; hence your 

answers shall be treated as such. There are no ethical concerns with the 

survey as it does not require any personal information, Nevertheless, such 

information, if divulged, shall be kept anonymous in any future research-

related output.  

For further information, kindly contact Emmanuel by email via 

e.eke@rgu.ac.uk. 

This survey should take about 15 minutes to complete. Your input is much 

appreciated. 

 

 

  

mailto:e.eke@rgu.ac.uk
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Appendix 3: Likert-AHP Calculations  

Pre-Processing of Likert Scale Input Data          

A. Calculation of Relative Ratings (Ri/Ri-1)  B. Development of Suggestion Matrices**  
A1. Weighting of Decision Criteria         

 Rating* Relative Rating  Decision Criteria Safety Environment Technical Cost Public  
Safety 8.2673 -  Safety 1.0000 1.2155 1.2789 1.6580 1.9567  
Environment 6.8016 0.8227  Environment 0.8227 1.0000 1.0522 1.3641 1.6098  
Technical 6.4642 0.9504 

 

Technical 0.7819 0.9504 1.0000 1.2964 1.5300  
Cost 4.9862 0.7714  Cost 0.6031 0.7331 0.7714 1.0000 1.1801  
Public 4.2251 0.8474  Public 0.5111 0.6212 0.6536 0.8474 1.0000  
        

A2. Scoring of Decommissioning Options*** for the Decision Criteria       

-with reference to Safety         

 Rating Relative Rating  Safety LIP PR1 PR2 PR3 CR  
LIP 3.3994 -  LIP 1.0000 0.7390 0.6511 0.7436 1.3428  
PR1 4.6000 1.3532  PR1 1.3532 1.0000 0.8810 1.0062 1.8171  
PR2 5.2215 1.1351 

 

PR2 1.5360 1.1351 1.0000 1.1421 2.0626  
PR3 4.5719 0.8756  PR3 1.3449 0.9939 0.8756 1.0000 1.8060  
CR 2.5315 0.5537  CR 0.7447 0.5503 0.4848 0.5537 1.0000  
-with reference to Environmental Impact         

 Rating Relative Rating  Environment LIP PR1 PR2 PR3 CR  
LIP 2.9022 -  LIP 1.0000 0.6149 0.5345 0.6339 1.0456  
PR1 4.7194 1.6262  PR1 1.6262 1.0000 0.8692 1.0308 1.7003  
PR2 5.4293 1.1504 

 

PR2 1.8708 1.1504 1.0000 1.1858 1.9561  
PR3 4.5785 0.8433  PR3 1.5776 0.9702 0.8433 1.0000 1.6496  
CR 2.7756 0.6062  CR 0.9564 0.5881 0.5112 0.6062 1.0000  
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-with reference to Technical Feasibility 

 Rating Relative Rating  Technical LIP PR1 PR2 PR3 CR  
LIP 5.3750 -  LIP 1.0000 0.9357 1.0157 1.4031 3.5600  
PR1 5.7445 1.0688  PR1 1.0688 1.0000 1.0856 1.4996 3.8048  
PR2 5.2917 0.9212 

 

PR2 0.9845 0.9212 1.0000 1.3814 3.5048  
PR3 3.8307 0.7239  PR3 0.7127 0.6668 0.7239 1.0000 2.5372  
CR 1.5098 0.3941  CR 0.2809 0.2628 0.2853 0.3941 1.0000  
-with reference to Cost          

 Rating Relative Rating  Cost LIP PR1 PR2 PR3 CR  
LIP 6.0308 -  LIP 1.0000 1.0251 1.1045 1.6550 4.5055  
PR1 5.8832 0.9755  PR1 0.9755 1.0000 1.0774 1.6145 4.3953  
PR2 5.4604 0.9281 

 

PR2 0.9054 0.9281 1.0000 1.4984 4.0794  
PR3 3.6441 0.6674  PR3 0.6042 0.6194 0.6674 1.0000 2.7224  
CR 1.3385 0.3673  CR 0.2219 0.2275 0.2451 0.3673 1.0000  
-with reference to Public Perception         

 Rating Relative Rating  Public LIP PR1 PR2 PR3 CR  
LIP 1.2129 -  LIP 1.0000 0.3662 0.2357 0.1830 0.1759  
PR1 3.3124 2.7311 

 

PR1 2.7311 1.0000 0.6436 0.4997 0.4804  
PR2 5.1463 1.5536  PR2 4.2431 1.5536 1.0000 0.7763 0.7464  
PR3 6.6289 1.2881  PR3 5.4655 2.0012 1.2881 1.0000 0.9614  
CR 6.8951 1.0402  CR 5.6850 2.0816 1.3398 1.0402 1.0000  
 
*Aggregation of the numerical equivalent of survey responses, calculated as the geometric mean of the values 
**Developed from applying transitivity and reciprocity rules to the relative ratings, replaces the AHP Pairwise Comparison Matrices  

***Decommissioning Options Key 

LIP Leave in place 

PR1 Partial removal to 85 feet 

PR2 Partial removal to IMO-approved depth 

PR3 Partial removal to top of footings 

CR Complete removal 
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Synthesis of AHP Pairwise Comparisons Matrices (i.e., Suggestion Matrices)          

  Matrix size = 5    Standardised Matrix*     

A1. AHP Matrix for Weighting of Decision Criteria           

 Safety Environment Technical Cost Public  Decision Criteria Safety Environment Technical Cost Public Priority (Wi)** 

Safety 1.0000 1.2155 1.2789 1.6580 1.9567  Safety 0.2689 0.2689 0.2689 0.2689 0.2689 0.2689 

Environment 0.8227 1.0000 1.0522 1.3641 1.6098  Environment 0.2212 0.2212 0.2212 0.2212 0.2212 0.2212 

Technical 0.7819 0.9504 1.0000 1.2964 1.5300  Technical 0.2103 0.2103 0.2103 0.2103 0.2103 0.2103 

Cost 0.6031 0.7331 0.7714 1.0000 1.1801  Cost 0.1622 0.1622 0.1622 0.1622 0.1622 0.1622 

Public 0.5111 0.6212 0.6536 0.8474 1.0000  Public 0.1374 0.1374 0.1374 0.1374 0.1374 0.1374 

Column Total 3.7188 4.5202 4.7561 6.1659 7.2767         

              
A2. AHP Matrix for Scoring of Decommissioning Options*** for the Decision Criteria       

-with reference to Safety             

 LIP PR1 PR2 PR3 CR  Safety LIP PR1 PR2 PR3 CR Priority (Sij) 

LIP 1.0000 0.7390 0.6511 0.7436 1.3428  LIP 0.1673 0.1673 0.1673 0.1673 0.1673 0.1673 

PR1 1.3532 1.0000 0.8810 1.0062 1.8171  PR1 0.2263 0.2263 0.2263 0.2263 0.2263 0.2263 

PR2 1.5360 1.1351 1.0000 1.1421 2.0626  PR2 0.2569 0.2569 0.2569 0.2569 0.2569 0.2569 

PR3 1.3449 0.9939 0.8756 1.0000 1.8060  PR3 0.2249 0.2249 0.2249 0.2249 0.2249 0.2249 

CR 0.7447 0.5503 0.4848 0.5537 1.0000  CR 0.1246 0.1246 0.1246 0.1246 0.1246 0.1246 

Column Total 5.9787 4.4183 3.8925 4.4455 8.0285         

                    

-with reference to Environmental Impact            

 LIP PR1 PR2 PR3 CR  Environment LIP PR1 PR2 PR3 CR Priority (Sij) 

LIP 1.0000 0.6149 0.5345 0.6339 1.0456  LIP 0.1422 0.1422 0.1422 0.1422 0.1422 0.1422 

PR1 1.6262 1.0000 0.8692 1.0308 1.7003  PR1 0.2313 0.2313 0.2313 0.2313 0.2313 0.2313 

PR2 1.8708 1.1504 1.0000 1.1858 1.9561  PR2 0.2661 0.2661 0.2661 0.2661 0.2661 0.2661 

PR3 1.5776 0.9702 0.8433 1.0000 1.6496  PR3 0.2244 0.2244 0.2244 0.2244 0.2244 0.2244 

CR 0.9564 0.5881 0.5112 0.6062 1.0000  CR 0.1360 0.1360 0.1360 0.1360 0.1360 0.1360 

Column Total 7.0309 4.3237 3.7583 4.4567 7.3516         

                    

-with reference to Technical Feasibility            
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Technical LIP PR1 PR2 PR3 CR  Technical LIP PR1 PR2 PR3 CR Priority (Sij) 

LIP 1.0000 0.9357 1.0157 1.4031 3.5600  LIP 0.2471 0.2471 0.2471 0.2471 0.2471 0.2471 

PR1 1.0688 1.0000 1.0856 1.4996 3.8048  PR1 0.2641 0.2641 0.2641 0.2641 0.2641 0.2641 

PR2 0.9845 0.9212 1.0000 1.3814 3.5048  PR2 0.2433 0.2433 0.2433 0.2433 0.2433 0.2433 

PR3 0.7127 0.6668 0.7239 1.0000 2.5372  PR3 0.1761 0.1761 0.1761 0.1761 0.1761 0.1761 

CR 0.2809 0.2628 0.2853 0.3941 1.0000  CR 0.0694 0.0694 0.0694 0.0694 0.0694 0.0694 

Column Total 4.0468 3.7865 4.1106 5.6783 14.4068         

                    

-with reference to Cost             

Cost LIP PR1 PR2 PR3 CR  Cost LIP PR1 PR2 PR3 CR Priority (Sij) 

LIP 1.0000 1.0251 1.1045 1.6550 4.5055  LIP 0.2697 0.2697 0.2697 0.2697 0.2697 0.2697 

PR1 0.9755 1.0000 1.0774 1.6145 4.3953  PR1 0.2631 0.2631 0.2631 0.2631 0.2631 0.2631 

PR2 0.9054 0.9281 1.0000 1.4984 4.0794 
 

PR2 0.2442 0.2442 0.2442 0.2442 0.2442 0.2442 

PR3 0.6042 0.6194 0.6674 1.0000 2.7224  PR3 0.1630 0.1630 0.1630 0.1630 0.1630 0.1630 

CR 0.2219 0.2275 0.2451 0.3673 1.0000  CR 0.0599 0.0599 0.0599 0.0599 0.0599 0.0599 

Column Total 3.7071 3.8001 4.0944 6.1352 16.7027         

                    

-with reference to Public Perception            

Public LIP PR1 PR2 PR3 CR  Public LIP PR1 PR2 PR3 CR Priority (Sij) 

LIP 1.0000 0.3662 0.2357 0.1830 0.1759  LIP 0.0523 0.0523 0.0523 0.0523 0.0523 0.0523 

PR1 2.7311 1.0000 0.6436 0.4997 0.4804  PR1 0.1428 0.1428 0.1428 0.1428 0.1428 0.1428 

PR2 4.2431 1.5536 1.0000 0.7763 0.7464  PR2 0.2219 0.2219 0.2219 0.2219 0.2219 0.2219 

PR3 5.4655 2.0012 1.2881 1.0000 0.9614  PR3 0.2858 0.2858 0.2858 0.2858 0.2858 0.2858 

CR 5.6850 2.0816 1.3398 1.0402 1.0000  CR 0.2973 0.2973 0.2973 0.2973 0.2973 0.2973 

Column Total 19.1248 7.0026 4.5072 3.4992 3.3641         

                    

*Calculated for each cell in the standardised matrix by dividing the corresponding cell value in the AHP pairwise matrix by its column total 

**Calculated for each row in the standardised matrix as the average of row values  
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***Decommissioning Options Key 

LIP Leave in place 

PR1 Partial removal to 85 feet 

PR2 Partial removal to IMO-approved depth 

PR3 Partial removal to top of footings 

CR Complete removal 

 

Calculation of the Weighted Scores of Decommissioning Options          

         

   
Criteria

 Option 

Leave in Place 
  

Partial Removal - 85ft 
  

Partial Removal - IMO 
  

Partial Removal - Top of 
Footings 

Complete Removal 
  

Decision 
Criteria 

Weight of 

Importance (Wi)  

Option 
score 

(Sij) 

Weighted 
score 
(𝑊𝑖𝑆𝑖𝑗) 

Option 
score 

(Sij) 

Weighted 
score 
(𝑊𝑖𝑆𝑖𝑗) 

Option 
score 

(Sij) 

Weighted 
score 
(𝑊𝑖𝑆𝑖𝑗) 

Option 
score 

(Sij) 

Weighted 
score 
(𝑊𝑖𝑆𝑖𝑗) 

Option 
score 

(Sij) 

Weighted 
score 
(𝑊𝑖𝑆𝑖𝑗) 

Safety 0.269  Safety 0.167 0.045 0.226 0.061 0.257 0.069 0.225 0.060 0.125 0.033 

Environment 0.221  Environment 0.142 0.031 0.231 0.051 0.266 0.059 0.224 0.050 0.136 0.030 

Technical 0.210  Technical 0.247 0.052 0.264 0.056 0.243 0.051 0.176 0.037 0.069 0.015 

Cost 0.162  Cost 0.270 0.044 0.263 0.043 0.244 0.040 0.163 0.026 0.060 0.010 

Public 0.137  Public 0.052 0.007 0.143 0.020 0.222 0.030 0.286 0.039 0.297 0.041 

              

Total 1.000  

Weighted 
Score 
∑(𝑊𝑖𝑆𝑖𝑗) 0.1793 0.2299 0.2492 0.2129 0.1287 
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Appendix 4: Calculated Sub-Criteria Weights for the Case 

Study 

Decision Criteria Sub-Criteria  Local 

Priority 

Local 

Rank 

Safety Risk to onshore personnel 0.3037 3 

Risk to offshore personnel 0.3876 1 

Risk to other sea users 0.3088 2 

Environmental 

Impact 

Energy use 0.0938 8 

Air emissions 0.1120 5 

Waste generation 0.1328 3 

Impacts on fish stocks 0.1229 4 

Loss of the developed community 0.1098 6 

Water pollution 0.1717 1 

Physical disturbance to seabed 0.0953 7 

Long-term impacts 0.1617 2 

Technical Feasibility Probability of a major technical 

failure 

0.2687 1 

Use of proven technology and 

equipment 

0.1839 3 

Ease of recovery from excursion 0.1722 4 

Logistic requirement 0.1446 5 

Structural integrity 0.2305 2 

Cost Financial expenditure 0.4030 1 

Revenue generation 0.2091 3 

Future liability 0.3879 2 

Public Perception* - - - 

* No suitable sub-criteria were identified from the literature for this criterion.  
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Appendix 5: Questionnaire for Validation of 

Decommissioning Decision Model Logical Structure 

Part A: Details of Respondent 

Profession:  

Academic 

Qualification: 

 

Current Job 

Designation: 

 

Years of 

Decommissioning-

Related Work 

Experience: 

 

 

Section B: Responses 

Question Options Tick/Comment as 

Appropriate 

Does the model address an 

important issue in offshore 

decommissioning? 

a) Yes, quite 
significant 

 

b) Yes, but not 
significant 

 

 

c) No, would make 
no difference 

 

d) Not sure of its 
significance 

 

Comments (if any): 

Accuracy: How closely do 

the obtained results match 

what, in your best 

knowledge, would have been 

obtained from evaluating 

decommissioning options for 

the case study?  

a) Very close  

b) Slightly close  

c) Not close  

d) Not sure of the 

match 

 

Comments (if any): 
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Completeness: How 

complete is the model’s flow 

process with respect to the 

problem it seeks to solve? 

a) Very complete  

b) Somewhat 

complete 

 

c) Incomplete  

d) Not sure of its 
completeness 

 

Comments (if any): 

Comprehensibility: Do you 

think the model simple, 

clear, and easy to 

understand and use with 

little or no practical 

difficulties?  

a) Yes  

b) No  

Comments (if any): 

Cost-effectiveness: What is 

your opinion on the 

resources needed to 

implement the model in 

actual decommissioning 

projects? 

a) Would be too 
costly to 

implement 

 

b) Benefits of using 

the model justifies 
any resource 
requirements 

 

Comment (if any): 

Please provide any other 

comments that you have on 

the model or suggestions for 

its improvement 

Comment (if any): 

Thank you very much for your time. 

NB: Confidentiality and anonymity are guaranteed as no personal data will be 

publicly divulged. All information collected will conform to the University’s Human 

Research Ethical procedure.
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Appendix 6: Decommissioning Options Costs for Platforms in Pacific Outer Continental 

Shelf, California 

Platform_Name Complete_Removal

_($) 

Partial_Removal_to_85ft

_($) 

Partial_Removal_to

_IMO_Depth_($) 

Partial_Removal_to_Top

_of_Footings__($) 

Leave_in_Place

_($) 

A 44,170,000 35,350,000 42,860,000 34,190,000 29,900,000 

B 39,470,000 30,830,000 38,190,000 29,810,000 25,620,000 

C 38,350,000 30,460,000 37,160,000 29,680,000 26,280,000 

Edith 45,080,000 41,000,000 45,080,000 38,270,000 35,310,000 

Ellen 46,170,000 38,090,000 41,690,000 40,220,000 32,630,000 

Elly 42,900,000 38,780,000 40,380,000 39,730,000 36,390,000 

Eureka 132,100,000 72,010,000 80,550,000 119,060,000 61,160,000 

Gail 116,260,000 61,680,000 68,350,000 105,130,000 52,750,000 

Gilda 59,880,000 52,970,000 57,440,000 52,440,000 46,330,000 

Gina 26,320,000 25,990,000 26,320,000 26,320,000 23,700,000 

Grace 55,860,000 45,050,000 48,410,000 49,670,000 39,790,000 

Habitat 45,610,000 39,590,000 41,600,000 41,710,000 36,300,000 

Harmony 190,000,000 70,170,000 78,510,000 175,480,000 58,350,000 

Harvest 112,620,000 64,320,000 70,910,000 101,720,000 55,600,000 

Henry 35,490,000 33,130,000 35,490,000 32,090,000 30,120,000 

Heritage 172,320,000 71,130,000 78,410,000 158,480,000 59,960,000 

Hermosa 109,230,000 62,850,000 70,380,000 97,350,000 53,290,000 

Hidalgo 88,670,000 61,260,000 67,700,000 78,190,000 52,980,000 

Hillhouse 40,170,000 31,650,000 39,040,000 30,660,000 26,610,000 

Hogan 38,400,000 35,280,000 38,400,000 32,780,000 30,330,000 

Hondo 108,350,000 64,320,000 68,960,000 100,540,000 57,960,000 

Houchin 37,540,000 34,320,000 37,540,000 32,340,000 29,730,000 

Irene 48,950,000 42,040,000 45,130,000 43,170,000 37,190,000 
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Appendix 7: Python Script for Machine Learning Model 

Development from Cost Data with Gradient Boosting 

Algorithm 

# -*- coding: utf-8 -*- 

 

#Gradient Boosting Regression 

#Importing the Libraries 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

from sklearn import ensemble 

from sklearn.multioutput import MultiOutputRegressor 

from sklearn.model_selection import LeaveOneOut 

 

#Importing the dataset 

dataset = pd.read_csv("Decom_Data2.csv") 

X = dataset.iloc[:, [1,3,4]].values 

y_cost = dataset.iloc[:, 5:10].values 

 

#Executing Leave-One-Out Cross-Validation 

loo = LeaveOneOut() 

loo.get_n_splits(X) 

predictions = [] 

for train_index, test_index in loo.split(X): 

    X_train, X_test = X[train_index], X[test_index] 

    y_cost_train, y_cost_test = y_cost[train_index], y_cost[test_index] 

    regressor = ensemble.GradientBoostingRegressor(random_state = 0) 

    regressor = MultiOutputRegressor(regressor) 

    regressor.fit(X_train, y_cost_train) 

    y_pred = regressor.predict(X_test) 

    predictions.extend(y_pred) 

predictions = np.array(predictions) 

 

#Assigning variable names to the decommissioning options costs 

#Complete Removal 

CR = predictions[:, 0] 

#Partial Removal to 85ft 

PR1 = predictions[:, 1] 

#Partial Removal to IMO-approved Depth (55m/180ft) 

PR2 = predictions[:, 2] 

#Partial Removal to Top of Footings 

PR3 = predictions[:, 3] 

#Leave in Place 

LIP = predictions[:, 4] 

 

#Evaluating the Accuracy of Model Predictions 

#Quantitative Model Evaluation 

#Calculating R-Squared and Adjusted R-Squared Values 

from sklearn.metrics import r2_score 

rsquared = r2_score(y_cost, predictions, multioutput='variance_weighted') 

print('R-Squared Value: %.3f' % rsquared) 

Adj_rsquared= 1 - (1-rsquared) * (len(y_cost)-1)/(len(y_cost)-X.shape[1]-1) 

print('Adjusted R-Squared Value: %.3f' % Adj_rsquared) 

#Calculating MAPE 

MAPE = np.mean(np.abs((y_cost - predictions)/y_cost))*100 

print('Mean Absolute Percentage Error: %.3f' % MAPE, "\b%") 

 



247 
  

#Graphical Model Evaluation 

#Crossplotting actual vs predicted decommissioning options costs 

model="Gradient Boosting Regression" 

plt.figure(figsize=(15,10)) 

plt.rcParams["font.weight"] ="bold" 

plt.rcParams["axes.labelweight"] ="bold" 

plt.scatter(CR, y_cost[:, 0], marker='x', label='Complete Removal') 

plt.scatter(PR1, y_cost[:, 1], marker='8', label='Partial Removal to 85ft') 

plt.scatter(PR2, y_cost[:, 2], marker='P', label='Partial Removal to IMO') 

plt.scatter(PR3, y_cost[:, 3], marker='*', label='Partial Removal to ToF') 

plt.scatter(LIP, y_cost[:, 4], marker='X', label='Leave in Place') 

plt.title(model,fontweight = 'bold', fontsize = 20, loc='center') 

plt.xlabel('Actual Cost ($)', fontweight = 'bold', fontsize = 18) 

plt.ylabel('Predicted Cost ($)', fontweight = 'bold', fontsize = 18) 

plt.legend(fontsize = 16, loc='lower right') 

plt.xlim(left=0, right=2E8) 

plt.ylim(bottom=0, top=2E8) 

plt.plot([0, 2E8], [0, 2E8]) 

plt.savefig(model, bbox_inches = 'tight') 

plt.show() 

 

#Predicting Decommissioning Options Costs for the Case Study platform 

features = [[43, 11137, 406]] 

costs = regressor.predict(features) 

print('The cost of decommissioning the platform with', "\n", 

      'Complete Removal: $', costs[0,0], "\n", 

      'Partial Removal to 85 Feet: $', costs[0,1], "\n", 

      'Partial Removal to IMO Depth: $', costs[0,2], "\n", 

      'Partial Removal to Top of Footings: $', costs[0,3], "\n", 

      'Leave in Place: $', costs[0,4]) 
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Appendix 8: Glossary 

𝐴𝑖 Weighted score of decommissioning option i 

𝐵𝑇𝐶𝑖 Benefit-to-cost ratio of decommissioning option i 

𝐶𝐼 Consistency index  

𝐶𝑜𝑠𝑡𝑖 Financial expenditure from using decommissioning option i for a 

project 

𝐶𝑅 Consistency ratio 

𝐶𝑅𝑋 Cost incurred in project phase x when decommissioning the 

platform with a Complete Removal option 

𝐸𝑖𝑗 Value of the element in cell in row i and column j of matrix E 

𝑓(𝑆ubstructure weight, water depth, platform age) Mathematical function which 

requires as argument the 

substructure weight, water depth 

and age of the platform to be 

decommissioned. 

𝐽 Number of judgements for populating a matrix 

𝑀𝐴𝑃𝐸 Mean Absolute Percentage Error 

𝑛 Number of elements in a comparison matrix 

𝑁𝑀𝐴𝑋𝑖 Maximum scaled value of parameter i 

𝑁𝑀𝐼𝑁𝑖 Minimum scaled value of parameter i 

𝑁𝑃𝑉𝑖 Net present value of decommissioning option i 

𝑂𝑀𝐴𝑋𝑖 Maximum actual value of parameter i 

𝑂𝑀𝐼𝑁𝑖 Minimum actual value of parameter i 

𝑃 Priority vector 

𝑃𝑅𝑋 Cost incurred in project phase x when decommissioning the 

platform with a partial removal option 

𝑅2 Coefficient of determination 

𝑅2
𝑎𝑑𝑗 Adjusted coefficient of determination 
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𝑅𝐼𝑛 Random index number 

𝑅𝑀𝑋 Cost avoided in project phase x due to leaving some residual 

materials 

𝑆𝑐𝑜𝑟𝑒𝑖,𝑗 Performance score of decommissioning option i, with reference to 

criterion (or sub-criteria) j 

𝑆𝑖𝑗 Performance rating or Score of decommissioning option i with 

reference to criterion j 

𝑈𝑖 Scaled value of element i 

𝑉 Actual value of a parameter 

𝑉′ Scaled value of a parameter  

%𝑊𝑒𝑖𝑔ℎ𝑡 Factor which represents the weight proportions of the platform 

components 

𝑋𝑏𝑒𝑠𝑡 Best possible value of element i 

𝑋𝑖 Actual value of element i 

𝑋𝑠 Scaled value of parameter X 

𝑋𝑤𝑜𝑟𝑠𝑡 Worst possible value of element i 

𝑊𝑗 Weight of importance of criterion j 

Greek Symbols 

∈𝑖,𝑗 Error term which accounts for noise and randomness in the data. 

𝜆𝑚𝑎𝑥 Maximum eigenvalue 
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