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Abstract: Subsea production systems design requires estimates of hydrodynamic loads 

related to characteristics of structures and the external flow. The current work 

investigates flow-induced forces for a group of stationary rigid structures modelled in 

2D including one structure with a squared cross-section and three smaller circular 

cylinders located in proximity of each other. Uniform flow and planar sheared flow 

conditions are considered in this work, with three different arrangements of smaller 

structures. Flow characteristics are obtained using CFD method and k-ω SST 

turbulence model. Simulation results include time histories of hydrodynamic 

coefficients, FFT data and velocity fields. Results for the planar sheared flow in the 

cases considered show a reduction of mean drag coefficients, increase of frequencies 

and amplitudes of the fluctuating drag and lift coefficients compared to values observed 

for the uniform flow.  
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1 Introduction  
Offshore oil and gas industry during construction, drilling and production 

operations may encounter disruptions and delays as a result of subsea structures 

subjected to active vortex shedding and increased fluid loads. Exploration of natural 

resources discovered in deep waters leads to an increased demand for reliable, off-

resonant safe designs in order to anticipate and prevent possible complications related 

to flow-induced forces. Subsea system layouts often involve arrangements of structures 

with different hydrodynamic properties in proximity to each other: pumping equipment, 

pipework, control units, supporting frames, jumpers, flow lines, umbilical lines, and 

risers. Design of a subsea system should account for various geometric configurations 

and statistically averaged velocity profiles of sea currents depending on the depth. 

Fundamental studies of a flow over a circular cylinder or a group of cylinders, 

in a fixed position or experiencing flow-induced vibration have mostly been focused 

on effects observed in uniform external flow conditions [1-7]. In parallel, a growing 

number of investigations are performed for a circular structure subjected to a sheared 

flow [8-15]. Investigations on the flow interference, hydrodynamic loads and vibration 

as a consequence of a wake superposition for a group of three structures of the same 

circular cross-section, placed in a tandem, were conducted by [16] and for four 

structures in a squared arrangement – by [17-20]. Systematic experimental and 

numerical studies of the dynamics of three and four flexible cylinders in tandem and 

side-by-side positions were performed by [21-25], and three structures in a triangular 

position were considered in [26]. Advancing this question further, a group of five risers 



of the same cross-section type and size was considered in [27], while the use of multiple 

smaller cylinders for the load mitigation purposes was extensively studied in [28]. 

Analysis of available studies indicates the existing gap related to arranging 

several structures of different cross-section types and dimensions in proximity, that 

would lead to a superposition of generated vortex street patterns. Also, there seem to 

be a lack of studies on the hydrodynamic forces acting on a group of pipelines 

submerged in sheared currents. Based on the literature survey, the present study aims 

to investigate hydrodynamic forces acting on three stationary structures of a circular 

cross-section placed near a larger piece of subsea equipment, represented by a cylinder 

of a squared cross-section. Structures are immersed in the planar uniform and two types 

of sheared flows corresponding to the developed turbulent flow regime. Computational 

fluid dynamics method is selected to achieve the goals of this investigation. 

In this paper, section 1 provides a brief theoretical background on the topic. 

Section 2 gives an overview of the numerical method and considered arrangements. 

Section 3 shows results of this study, and section 4 provides conclusions for this work. 

 

2 Numerical Model 
A system of three identical circular structures of diameter 𝑑 = 0.3 m is 

considered in this study in proximity of a squared cylinder with a side equal to D = 5d 

in a rectangular domain. CFD simulations are performed for the computational domain 

with a size of 30D x 16D, and three principal arrangements of smaller cylinders are 

illustrated in Fig. 1, with a different position of the downstream cylinder. Distance in 

between structures is 𝐿/𝐷 = 0.6, distance from the squared cylinder to the domain 

border is G = 20d, the incoming flow is entering the domain from the inlet, periodic 

and shadow conditions are used as the top and bottom boundary. 

Uniform flow of the Reynolds number 3900 is considered in Cases 1, 2 and 3, 

as illustrated in Figs 1(a)-1(c). Cases 4, 5, 6 correspond to the same structural 

arrangements as in Cases 1, 2, 3, but subjected to the planar sheared flow of type 1, as 

displayed in Fig. 1(d), where the maximum flow velocity is near the top boundary. 

Cases 7, 8, 9 are designed in the same manner, practically representing the structural 

arrangements in Cases 1, 2, 3, while subjected to the planar sheared flow of type 2, 

shown in Fig. 1(e), with the maximum flow velocity at the bottom boundary. Both 

sheared flows have a linear velocity profile U with the averaged velocity Uc consistent 

with the same Reynolds number of 3900 at the centreline of the computational domain:  
                   𝑈(𝑦) = 𝑈𝑐 + 𝐵𝑦, (1) 

where 𝑦 is the vertical coordinate, and the gradient B = 0.022 c-1. 

Simulations are performed using the incompressible Navier-Stokes equation, k-

ω SST turbulence model, PISO algorithm and the time step of 0.1 s. The triangular grid 

is used for simulation purposes. Mesh independence test results are reported in Table 1 

for the uniform flow of the Reynolds number of 3900, and the mesh shown in Fig. 1(f), 

is selected for all calculations in the next section. 

 

3 Results and discussion 

Numerical simulations are performed for three arrangements and three different 

flow types with an averaged flow speed corresponding to Re = 3900, which gives a 

matrix of nine considered cases in total. Maximum value of the lift and fluctuating drag 

coefficients, and the mean drag coefficient obtained for these cases are presented in 



Appendix for each structure. The drag coefficient CD acting on the cylinder is defined 

as a sum of the mean drag coefficient CD0 and the fluctuating drag coefficient CD
fl :  

𝐶𝐷 = 𝐶𝐷0 + 𝐶𝐷
𝑓𝑙

.                                                           (2) 
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(e)                                                          (f) 

 

Figure 1. Computational domain for the considered cases: (a) Case 1 with tandem  

and paired cylinders in uniform flow; (b) Case 2 with tandem and paired cylinders  

in uniform flow; (c) Case 3 with tandem and staggered cylinders in uniform flow;  

(d) Case 4 with tandem and paired cylinders in planar sheared flow of the type 1; 

(e) Case 7 with tandem and paired cylinders in planar sheared flow of the type 2;  

(f) Mesh of the computational domain for Cases 3, 6, 9. 



Table 1. Mesh independency test results 

Re = 3900 

Cases CD0 Number of cells y+ 

Current study 

Mesh 1 0.87 31 297 0.0133 

Mesh 2 0.91 53 951 0.0132 

Mesh 3 0.93 86 637 0.0131 

Mesh 4 0.93 153 227 0.0131 

Published data 

Experiment (Lourenco and Shih, 1993) 0.985 - - 

RANS (Nguyen, 2015) 0.920 78 000 - 

VMS-LES (Stephen et al, 2011) 0.990 - - 

 

Among the Cases 1-3 with uniform flow, shown in Fig. 2 and summarized in 

Appendix, the highest mean drag coefficient of 0.51 is recorded in Case 3 for cylinder 

1. The fluctuating drag coefficient amplitude for this structure is maximum in Case 2 

and minimum in Case 1, and the maximum amplitude of the lift coefficient signal is 

demonstrated in both Cases 1 and 2. The mean drag coefficient of 0.47 for cylinder 2 

is maximum in Case 1, while the maximum fluctuating drag coefficient of 0.26 is 

recorded for Case 2, and the maximum amplitude of the lift coefficient corresponds to 

Case 1. For cylinder 3, the maximum mean drag coefficient of 0.25 is recorded in Case 

2. The maximum amplitude of the fluctuating drag and of the lift coefficient is observed 

in Case 2.  

All signals obtained for the lift and drag force fluctuations, shown in Appendix, 

demonstrate very low and comparable frequency values. Superposition of wake 

patterns leads to a considerable presence of multiple frequencies in the signals of 

hydrodynamic forces, as shown in Figs 2-4(c,d). 

Fig. 3 illustrates the signals obtained for the sheared flow of type 1. According 

to Appendix and Fig. 3, the maximum mean drag coefficient of 0.35 and the maximum 

fluctuating drag for cylinder 1 are observed in Case 5. In Case 6, the maximum lift 

coefficient is observed. Cylinder 2 exhibits the maximum mean and fluctuating drag 

coefficients, and also the maximum lift coefficient amplitude in Case 4. 

Lift and drag coefficient signals for the sheared flow of type 2 are shown in Fig. 

4. Here, Cylinder 2 demonstrates the maximum mean drag coefficient of 0.40 in Case 

7. The maximum amplitudes of the fluctuating drag coefficient and the lift coefficient 

signal are observed for cylinder 3 in Cases 7 and 8 respectively.  

Vortex formation process differs for cylinder 3, depending on its position and 

the flow type. Fig 5 demonstrates the differences experienced in Cases 3, 6 and 9 in 

comparison. Evenly paired vortices are generated at the far downstream side of cylinder 

3 in the uniform flow, as in Fig. 5(a). In Fig. 5(c), uneven pair of vortices is generated 

at the immediate downstream side of cylinder 3. A single large vortex is formed just at 

the downstream side of cylinder 3 in Case 6, shown in Fig. 5(b) for the sheared flow. 

 



 
                                      (a)                                                                         (b) 

   
                                  (c)                                                                (d)                                                                

Figure 2. Fluid force coefficients for cylinder 3 immersed in the uniform flow:  

(a) time history of the fluctuating drag coefficient; (b) time history of the lift coefficient;  

(c) the drag coefficient FFT; (d) the lift coefficient FFT. 

 

 
                                (a)                                                                         (b) 

                                     
(c)                                                                         (d) 

Figure 3. Hydrodynamic coefficients for cylinder 3 in the planar sheared flow  

of type 1: (a) time history of the fluctuating drag coefficient; (b) time history  

of the lift coefficient; (c) the drag coefficient FFT; (d) the lift coefficient FFT. 



 

                                        (a)                                                                  (b) 

 

                                       (c)                                                                    (d) 
Figure 4. Hydrodynamic coefficients on cylinder 3 in the planar sheared flow  

of type 2: (a) time history of the fluctuating drag coefficient; (b) time history  

of the lift coefficient; (c) the drag coefficient FFT; (d) the lift coefficient FFT. 
 

   

                         (a)                                             (b)                                               (c) 

Figure 5. Velocity contours (velocity magnitude, m/s) observed at 2000 s: (a) uniform flow – 

Case 3; (b) planar sheared flow of type 1 – Case 6; (c) planar sheared flow of type 2 – Case 9. 

 

4 Conclusions 

Numerical simulations are performed in this work for three circular cylinders placed in 

a close proximity to a piece of equipment modelled as a squared cylinder. Considered 

structures, especially, the downstream cylinder, experience the effects associated with 

the overlay of vortex shedding patterns. Generally, decreased mean drag coefficients of 

smaller cylinders are observed for the planar sheared flow compared to coefficients in 

the uniform flow cases. Higher amplitudes of the fluctuating drag coefficient and the 

lift coefficient are observed for the sheared flows.   
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Appendix  

Cases 

Hydrodynamic coefficients 

CD0 CD
fl CL 

Dominant frequency, Hz 

CD  CL  

Uniform flow 

Cylinder 1 

Case 1 0.44 0.12 0.13 0.017 0.0025 

Case 2 0.44 0.23 0.13 0.011 0.0175 

Case 3 0.51 0.16 0.10 0.010 0.022 

Cylinder 2 

Case 1 0.47 0.22 0.44 0.002 0.015 

Case 2 0.44 0.26 0.32 0.002 0.009 

Case 3 0.40 0.18 0.24 0.003 0.013 

Cylinder 3 

Case 1 0.14 0.3 0.34 0.015 0.011 

Case 2 0.25 1.0 0.74 0.012 0.010 

Case 3 0.16 0.24 0.6 0.01 0.010 

Shear Flow 1 

Cylinder 1 

Case 4 0.30 0.18 0.11 0.0005 0.011 

Case 5 0.35 0.25 0.29 0.0005 0.011 

Case 6 0.31 0.19 0.18 0.0005 0.0165 

Cylinder 2 

Case 4 0.37 0.39 0.45 0.011 0.011 

Case 5 0.28 0.31 0.32 0.0005 0.01 

Case 6 0.28 0.16 0.25 0.0005 0.0135 

Cylinder 3 

Case 4 0.07 0.16 0.19 0.0125 0.01 

Case 5 0.10 0.46 0.43 0.01 0.01 

Case 6 0.11 0.28 0.32 0.0005 0.009 

Shear Flow 2 

Cylinder 1 

Case 7 0.31 0.17 0.43 0.0015 0.008 

Case 8 0.32 0.16 0.18 0.0015 0.012 

Case 9 0.30 0.13 0.04 0.0015 0.020 

Cylinder 2 

Case 7 0.40 0.21 0.48 0.012 0.013 

Case 8 0.35 0.15 0.40 0.009 0.0085 

Case 9 0.29 0.10 0.04 0.005 0.016 

Cylinder 3 

Case 7 0.10 0.73 0.66 0.0045 0.008 

Case 8 0.20 0.62 0.70 0.015 0.009 

Case 9 0.21 0.06 0.32 0.010 0.007 
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