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Abstract 
 
 The non-steady state current density for reversible electrochemical coupled with a 

homogeneous enzyme reaction and a constant potential is presented in this manuscript for the first 

time. The model is based on non-stationary diffusion equations with semi infinite boundary 

condition containing a nonlinear term related to the kinetics of an enzymatic reaction. The 

nonlinear differential equation for the mediator is solved for reversible homogeneous enzyme 

reaction. Approximate analytical expressions for the concentration of the mediator and 

corresponding current for non-steady state conditions are derived. Kinetic parameters are also 

determined such as Michaelis–Menten constants for substrate (KMS) and mediator (KMM) as well 

as catalytic 

rate constant (kcat).. Upon comparison, we found that the analytical results of this work are in 

excellent agreement with the numerical (Matlab program) and existing limiting case results. The 

significance of the analytical results has been demonstrated by suggesting two new graphical 

procedures for estimating the Michaelis–Menten constants for substrate )( MSK and mediator

)( MMK as well as catalytic rate constant )( catk  from the current densities. 
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1. Introduction 

 Cyclic voltammetry has been used for the measurement of electroanalytical properties of 

analytes by means of modified electrodes. During the past two decades, cyclic voltammetry has 

attracted a great interest in electrochemical reactions, in particular coupled with a mediated 

enzyme reaction. Since Nicholson and Shain [1] first reported their theoretical treatment of cyclic 

voltammetry, it has commonly been used as an analytical method to explore reaction kinetics.  

Simulations of mediated enzyme electrochemistry have been extensively reported [2-5]. 

Bartlett and Pratt have reviewed and analyzed previous works on the simulation of enzyme 

electrodes [6]. Simulations are classified as either approximate analytical methods or numerical 

methods. To obtain an approximate analytical solution, approximation and classification of each 

different condition are needed. On the other hand, digital simulation to obtain a numerical solution 

can be applied to any case, and neither simplification nor classification is necessary [7]. Many 

digital simulations for steady-state and non steady-state responses of enzyme electrochemistry 

have been reported [8-12]. However, concentration polarization of the substrate in the vicinity of 

an electrode surface has never been considered for cyclic voltammetric simulation of a mediated 

enzyme reaction. A cyclic voltammetric simulation of the homogeneous case has been described 

in a preliminary way by Bartlett and Pratt [6] and compared to the simulated cyclic voltammetric 

system with the simple EC’ system. Unfortunately, no further studies have been reported. 

  Osman and coworkers [13] analyzed and discussed about the validation of model against 

the experimental polarization and power curves under different conditions.  Do et al. [14]  

developed and investigated the influence of the electrode structure and the immobilization 

procedure, for two types of enzymatic electrodes. A computation model for microbial fuel cells 

(MFC) based on redox mediators was described by Picioreanu et al. [15]. Voltage and power 

current characteristics can also be calculated at different moments in time to evaluate the limiting 

regime in which the MFC operates. Ideally the most powerful approach is to combine the use of 

approximate analytical solutions that provide physical insights into the nature of the rate limiting 

processes and the physical behavior of the system with numerical approaches that can be used to 

fit the full range of experimental data and to extract the best estimates of the controlling kinetic 

parameters.  Eswari et al. [16,17] derived analytical expressions of concentration and current for 
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an EC and EC’ reaction using Laplace transform method for cyclic voltammetry. The simulation 

of an idealized model for particular type of voltammetry and focusing on the effects of adsorption 

coverage and binding strength on the surface on the voltammetry response was stated [18]. Molina 

et al. [19] presented a series of simple analytical equations for multi electron transfer processes in 

cyclic voltmmetry and staircase cyclic voltammetry at disc electrodes of any size.  

Kenji et al. [20] developed a cyclic voltammetric simulation that can be applied to an 

electrochemically mediated enzyme reaction involving any substrate and mediator concentration. 

Rajendran et al. [21] reported an analytical expression of transient and steady-state catalytic 

current of homogeneous mediated bioelectrocatalysis for ping-pong mechanism for semi finite 

domain. 

 Kenji et al. [22] developed an electrochemically mediated enzyme reaction involving any 

substrate and mediator concentrations from cyclic voltammetry simulation for reversible 

electrochemical reactions with one electron followed by an enzyme reaction with two electrons. 

To the best of our knowledge, no rigorous analytical expressions for non-steady state 

concentrations and current with a constant potential for all values of parameters have been 

previously reported. In this manuscript, we present for the first time the approximate analytical 

expressions for the concentration of mediator using homotopy perturbation method. The current 

for constant potential was determined corresponding to all possible values of the parameters.  

 

2. Mathematical formulation 

   

2.1 Reversible reaction coupled with a homogeneous enzyme reaction 

We first, consider an electrochemical reaction coupled with a homogenous enzyme 

reaction. In equation 1, we assume one electron transfer for the electrochemical reaction and in 

equation 2, two electron transfers for the enzyme reactions as shown below:  
−+↔ eOR     (electrochemical reaction)     (1)

 PRSO +→+ 22   (enzyme reaction)      (2)  

 

where PSOR and,, are the reduced and oxidized forms of the mediator, substrate and product 

respectively. Fig. 1 represents the schematic diagram of the above mediated enzyme reaction 

mechanism. Reaction (1) represents electrochemical reaction at the electrode surface with 
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reversible kinetics and reaction (2) represents the enzyme catalysis by Michaelis-Menten kinetics. 

Although two molecules of the oxidant O are involved in reaction (2), first-order kinetics in O are 

assumed [20]. Considering one-dimensional diffusion with coupling of reactions (1) and (2) 

described by Fick’s law leads to the following strongly nonlinear partial differential equations 

[22]: 
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where ),(),,( txCtxC oR and ),( txCs represents the reduced and oxidized forms of the mediator and 

substrate concentration respectively. catk  is the turnover number. MSMM KandK are the Michaelis-

Menten constants for the mediator and substrate respectively. EC is the enzyme concentration.

RD and SD  represents the diffusion coefficients for the reduced form of the mediator and 

substrate. The initial and boundary conditions for the above equations are given as follows: 

∞∞ == ssRR CCCC , when 0,0 ≥= xt and ∞→> xt ,0      (5) 
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RT
Fneη and ∞

RC and ∞
SC are the bulk concentration of mediator and substrate 

respectively. Here we can assume that the scan rate is very small and the concentration at x=0 is 

potential dependent. At all x  and t , sum of the concentrations of reduced  and oxidized form of the 

mediator is constant )( ∞
RC .  

∞=+ RoR CtxCtxC ),(),(          (7) 

The current density )/( 2cmAj µ is given by 
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 By using Eqn. (7), we can rewrite the Eqn. (3) as 
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Now the initial and boundary conditions for the Eqns. (4) and (9) becomes as follows: 

∞== sso CCC ,0 when ∞→>≥= xtxt ,0and0,0      (10) 
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  Now the current density (Eqn. (8)) becomes [21] 
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Using a recent approach of homotopy perturbation method [23-25] and shifting formula of 

Danckwerts’ expression [26-28] (Appendix-A), we can obtain the approximate analytical 

expression for the concentration of mediator: 
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where the dimensionless parameters  
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Above Eqn. (13) satisfies the boundary condition (10) and (11) when τ  is very small. 

Therefore, the dimensionless current density becomes  
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The Eqns. (13) and (15) are the new expression for mediator and current correspond to a constant 

potential for semi infinite boundary conditions. The current density for steady state condition

)( ∞→τ  becomes 

'αψ ass =            (16) 

When MMMS KK or are very large )largeisor( γβ 0' =α . In this case τπψ /a= . This is 

represented by the Cottrell equation of current for planar electrode. 

 

2.2 Limiting cases 

Case (i): Homogenous system in the presence of excess amount of substrate and low mediator 

concentration 
 If the substrate concentration is extremely high and the mediator concentration is extremely low 

then Eqn. (3) becomes as follows [22]: 
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Then dimensionless form of Eqn. (17) is as follows: 
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where ]/1['1 γα =  is the dimensionless parameter. We obtain the approximate analytical expression 

of mediator concentration and the current density with enzyme reaction, by replacing 'α  as '1α in 

the Eqns. (15) and (16).  Now, the dimensionless current density becomes: 
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The steady state current density becomes: 
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By plotting )/( ssψψ verses )/1( τ  we obtain the kinetic parameter )/( ∞= RMM CKγ . 
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Case (ii): Homogenous system in the presence of excess amount of substrate when the 

mediator is confined in bulk phase [22]. 

If the substrate concentration is extremely high, then the Eqn. (3) is written as: [22]
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Then the dimensionless form of the above Eqn. (22) is as follows: 
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where )]/(1['
2 a+= γα  is dimensionless parameter. We obtained the approximate analytical 

expression of mediator concentration and the current density for without enzyme reaction, by 

replacing 'α  as '2α in the Eqns. (15) and (16).The current density for this case becomes: 
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The steady state current density becomes: 
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From the Eqn. (24) - (25) we also get )/( ssψψ  as 
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3.Determination of kinetic parameters of the enzyme reaction from current density profile 

A simple and closed-form of an analytical expression for the current density (Eqn.(15)) leads to 

find the rate constant and Michaelis - Menten constants. The current density is dependent upon the 

parameters '
1,', ααa and .'

2α Then the Eqn. (15) can be rewritten as:  
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Substituting the value of 1α and 'α in the above equation (27), we can obtain the linear equation 

as: 
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1 , we 

can  estimate the Michaelis-Menten constant for the substrate MSK  and mediator MMK , turnover 

rate catk (Fig. 2(b)) . The flowchart for estimation of rate constants from the Eqn. (27) is also given 

in Fig. 3. The graphical procedure yields the Michaelis–Menten constants ,1mMKMS =

,1mMKMM = ,/5 smMkcat = mMCandmMC RS 1010 == ∞∞ .  

 

4. Determination of diffusion layer thickness 
An estimate can be made of the diffusion layer thickness ,δ  [28] by using the 

following equation: 
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By substituting Eqn.(15) in Eqn.(29), we can obtain the Eqn. (30) as follows: 
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From the above Eqn. (30), the dimensionless diffusion layer thickness )(τδ  can be determined as 

given below: 
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From Eqn. (31), we can also obtained the mass transfer coefficient )/( δRD . 

 

5. Validation of the model 

Next, we present how the analytical model is validated against the simulation results. Our 

analytical expression of concentrations of mediator is compared with simulation results in Tables 
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1(a–b) and Fig. 4 for non-steady state conditions. Matlab/Scilab program is also given in Appendix 

B as a supplementary material.  From these tables, it can be noticed that our analytical results 

matches quite well with the numerical results for various values of timeτ  and potentialη , provided

.γβ ≤  The concentration of mediator attains the steady-state value when time 100=τ . Our 

approximate analytical expression for current density (Eqn.(15)) is also compared with the limiting 

case results in Fig.5.  

 

6. Discussion 

 Eqns. (13) and (15) represent the new closed approximate analytical expression of the non 

steady-state concentration of mediator and current for all values of parameters. The current density 

depends upon the parameters such as dimensionless potential, oxidized form of bulk mediator 

concentration and Michaleis-Menten constant for the mediator. Fig. 4. illustrates dimensionless 

concentration of oxidized mediator versus dimensionless distance from the electrode  surface using 

Eqn. (13) for various values of the parameters. Oxidised form of the mediator generated at the 

electrode is consumed within the diffusion layer by reaction with the reduced form of the enzyme 

present at its bulk concentration. 

From the figures, it is also observed that the concentration of mediator in the vicinity of the 

electrode surface increase when potential increases. This is also due to depletion of the substrate 

concentration in the vicinity of electrode when there is a high enzyme activity and mediator 

concentration and low substrate concentration. Dimensionless current density (Eqn. (15)) is 

compared with the limiting cases results ( Eqns. (19) and (24)) in Fig.5. Satisfactory agreement is 

noted between analytical results and simulation 

results is 3.567%. 

 

5.1 Influence of the electrode potential , reduced concentration of mediator on the current  

  The influence of the current density versus dimensionless potential for various values of 

parameters τγβ and,  is shown in Figs. 6(a-c). From this figure, it is observed that, the current 

density reaches the peak value when potential 4≥η for all values of the other parameters. Also 

the current density decreases when dimensionless Michaelis-Menten constants for substrate )(β , 

mediator )(γ and time )τ( increases.  From the Figs. 6, it is also noted that the shape of the cyclic 
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voltammograms changes significantly with enzyme )1α( , substrate )∞
SC( and mediator )∞

RC(  

concentrations. At higher substrate concentration, the catalytic current density reaches the 

maximum value.  

 

5.2 Influence turnover, Michalis-Menten constant for the mediator and substrate on the 
current 

Fig.6 (a-c) illustrates the dimensionless current density versus potential for various values of the 

parameters. The current density increases as the dimensionless parameters decreases. From Fig. 

6(d), it is inferred that the current density increases as the dimensionless potential increase.  

5.3 Influence of diffusion layer thickness on the current  

Increasing the velocity of the solution brings reactants up to the electrode surface more 

easily, thus reducing the thickness of the diffusion layer )(δ . As δ  decreases, the value of the 

limiting diffusion current density will increase, as per Eqn. (29). The diffusion-layer thickness is 

the only factor influencing the limiting current density, which corresponds to the results of current 

transients indicated in Fig. 9. 
Diffusion layer thickness is plotted against the potential as shown in Fig.9 (a-d). The figure 

demonstrates that the diffusion layer thickness depends on the parameters bulk concentration of 

substrate and mediator, turnover number and time. When the bulk concentration of substrate or 

mediator increases the diffusion layer thickness is increases. The diffusion layer thickness is 

increases when the turnover number and time decreases. From the Fig. 9, it is observed that the 

diffusion layer thickness reaches the steady state value when the potential 2=η  for all values of 

other parameters. The thickness of the approximately linear diffusion layer grows with time. 

6. Differential sensitivity analysis of parameters 

Differential sensitivity analysis is based on partial differentiation of the aggregated model. 

We have found the partial derivative of current density ψ  (dependent variable) with respect to the 

parameters  ηγβ and,  (independent variables). At some fixed experimental values of the 

parameters )15,05.0( === ηγβ and , numerical value of rate of change of current density ψ   can 

be obtained. From this value we can obtain the percentage of change in current density with respect 

to the parameters ηγβ and, . Sensitivity analysis of the parameters is given in Fig. 10. 
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From this figure, it is inferred that the potential )(η has more impact than the Michalies constant 

for mediator for the variation of the current density. The remaining parameter Michaelis–Menten 

constant substrate accounts for only small changes in current density. This result is also confirmed 

in the Fig. 10. 

 

7. Conclusion
 

A theoretical model for reversible electrochemically mediated enzyme reaction has been 

described. In this work, systems of coupled, non-steady state nonlinear reaction diffusion equations 

are solved analytically.  We can determine the enzyme kinetic constants from the current density. 

The influence of the parameters such as diffusion layer thickness, turnover, Michaelis-Menten 

constant for the mediator and substrate and the electrode potential on the current are also discussed. 

Sensitivity analysis of the parameters is also reported. This technique can also be extended for any 

reaction system between any redox enzymes and mediator for quasi reversible reactions. 

Nomenclature: 

The nomenclature employed in this manuscript is represented in the table below: 

Parameters Definition Units 

)1/( ηη eea +=
 

Dimensionless parameter 
 

(none) 

EC
 

Enzyme concentration 
 

(mM) 

OC
 

Concentration of oxidized mediator
 

(mM)
 

∞
RC

 

Bulk concentration of reduced mediator
 

(mM)
 

RC  
Bulk concentration of reduced mediator (mM) 

sC  
Concentration of substrate (mM) 

∞
sC  

Bulk concentration of substrate (mM) 

osR DDD ,,  
Diffusion coefficients    (cm2/s) 

MMK  
Michaelis constants for the mediator  (mM) 

MSK  
Michaelis constants for the substrate  (mM) 
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catk  
Turnover number (1/s) 

)/( RS DDr =  Dimensionless parameter (none) 

T Time (s) 

)/( ∞= Ro CCu  Dimensionless concentration of oxidized mediator (none) 

)/( ∞= ss CCv  Dimensionless concentration of substrate (none) 

x  Distance from electrode (cm) 

RDxX /1α=  Dimensionless distance from the electrode (none) 

)/( ∞= SMS CKα  Dimensionless parameter  (none) 

)/2(1
∞= REcat CCkα  Dimensionless parameter      (1/s) 

)/( ∞= RMS CKβ  Dimensionless Michaelis constants for the 

substrate 

(none) 

∞= REcat CCk /)(1β
 

Dimensionless parameter     (1/s) 

∞=
R

MM

C
K

γ
 

Dimensionless Michaelis constants for the 

mediator  

(none) 

RT
EEFne )( 0−

=η
 

Dimensionless potential (none) 

t1ατ =
 

Dimensionless time (none) 
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Appendix A: Non linear dimensionless form 

Eqns. (4) and (9) can be written as given below: 
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The nonlinear partial differential equation (A1) are made dimensionless by defining the following 

dimensionless parameters: 
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The governing nonlinear reaction diffusion  Eqns. (A1) can be expressed as non dimensional form 

as follows: 
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where vu and represent a normalized concentration of mediator and substrate respectively. X is 

the normalized distance from the electrode. 1and, βγβ are the normalized kinetic parameters. 

The initial and boundary conditions in dimensionless form becomes as follows: 

1,0 == vu when ∞→>≥= XX ,0and0,0 ττ        (A5) 
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A general relationship, arising from Danckwerts’ expression, allows the computation of the 

transient concentration/limiting current in a system with a homogeneous first-order reaction 

regenerating the electroactive species with diffusion and convection, from the 

concentration/limiting current at the same electrode when there is no homogeneous reaction. 
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where )]/([' aa1 ++= γβα is a  dimensionless parameter. Here, ),(0 τXu  is the concentration of 

mediator without homogeneous term. The normalized concentration and current density becomes 

))2/((),(0 ττ XerfcXu = and )/1( πτ . Using this result and shifting formula of Danckwerts’ 

expression, we can obtain the concentration of mediator u(X, τ) as follows:  
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Integrating the above equation we get the equation (13) in the text.  

 

Appendix B: Homogeneous mediated bioelectrocatalysis in ping-pong mechanism of the 

oxidoreductases (semi finite) 

For this finite case, the nonlinear reaction diffusion equations (3) and (4) can be written in the form 

as Eqn. (B1) and (B2): 
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Now the initial and boundary conditions for the Eqns. (B1) – (B2) are 
∞== sso CCC ,0 when Lxtandxt =>≥= ,0,0,0        (B3) 
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The dimensionless parameter  1αRDL =   is included in the Eqn. (A2).  We get the equation 

as same as Eqns. (A3) and (A4) for the finite case. The initial and boundary conditions for the 

dimensionless concentration are described as follows: 

1,0 == vu when 1,0,0,0 =>≥= XandX ττ       (B5) 
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Using a recent approach of Homotopy pertuberation method, we obtained an approximate 

analytical expression for the concentration of mediator u and substrate v 
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where )/(' 1 aaa ++= γβββ  

Therefore the dimensionless current density for finite case is as follows: 
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where )]/(1[' aa ++= γβα  
Rajendran and Saravanakumar [21] obtained the analytical expressions of concentration of 

mediator and current by solving the Eqn. (B1) for the boundary conditions 0
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Appendix C: Matlab/Scilab coding to find the numerical solution of Eqns (A3) and (A4) 

 

function pdex4 
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m = 0; 

x = linspace(0,30); 

t = linspace(0,100); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

%————————————————————– 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,1)') 

figure 

plot(x,u2(end,:)) 

title('u2(x,t)') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

%----------- 

function [c,f,s] = pdex4pde(x,t,u,DuDx)                                                                        

c =[1;1]; 

f =[1;1].* DuDx; 

beta=.1;gamma=100;beta1=1;cri=10;  

F=-(u(1)*u(2)/((beta*u(1))+(gamma*u(2))+(u(1)*u(2)))); 

F1=-beta1*((u(1))*u(2)/((beta*(u(1)))+(gamma*u(2))+((u(1))*u(2)))); 

s =[F;F1]; 

% ————————————————————– 

function u0 = pdex4ic(x)  

u0 = [0;1]; 

function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)  

eta=(2); 

pl = [ul(1)-(exp(eta)/(1+exp(eta)));0]; 
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ql = [0;1]; 

pr = [ur(1)-0;ur(2)-1]; 

qr = [0;0]; 
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Fig.1. Schematic diagram of mediated enzyme reaction mechanism. 

 

Fig. 2.  Determination of kinetics parameters MMMScat KKk and,  using the Eqn. (27). The 

graphical procedure yields the Michaelis–Menten constants ,1mMKMS = ,1mMKMM =

,/5 smMkcat = mMCandmMC RS 1010 == ∞∞ .  
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Fig .3.Flowchart for estimation of the rate constant and Michaelis–Menten constants by using the 

Eqn. (27).  

 
Fig. 4.Plot of dimensionless concentration of oxidized mediator versus dimensionless distance 
from the electrode using Eqn. (13) for various values of the parameters. 
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Fig.5. Comparison of dimensionless current density (Eqn. (15) ) with the limiting cases using 
Eqns. (19) and (24). 

 



24 
 

 

Fig. 6.Plot of dimensionless current density on (a-c) dimensionless potential for various values of 

parameters (d) dimensionless time for various values of potential using Eqn. (15). 

 

 

 

 
 

 
 

Fig.9.Plot of diffusion layer thickness versus current potential using Eqn. (31) 
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Fig.10.Sensitivity analysis of the parameters: Percentage change in dimensionless current density 

when 1and5,05.0 === ηγβ .



26 
 

Table 1 (a): Comparison of normalized non-steady-state concentration of oxidized mediator u with simulation results for various values 

of X and for some fixed values of 2100,1.0 === ηγβ and .  

 

 

  

X Substrate concentration  u 

u  (when 3=τ ) u   (when 15=τ ) u   (when  30=τ ) u   (when 100=τ ) 

This 

work 

Eq.(13) 

Simulation % of error 

deviation 

This 

work 

Eq.(13) 

Simulation % of 

error 

deviation 

This 

work 

Eq.(13) 

Simulation % of 

error 

deviatio

n 

This 

work 

Eq.(13) 

Simulation % of 

error 

deviatio

n 

1 0.5968 0.5966 0.0335 0.7386 0.7384 0.0271 0.7687 0.7686 0.0130 0.7928 0.7928 0.0000 

2 0.3698 0.3699 0.0270 0.6073 0.6070 0.0494 0.6654 0.6652 0.0301 0.7129 0.7126 0.0421 

5 0.0355 0.0353 0.5634 0.2958 0.2954 0.1352 0.4079 0.4075 0.0981 0.5140 0.5148 0.1556 

7 0.0037 0.0037 0.0000 0.1621 0.1621 0.0000 0.2793 0.2794 0.0353 0.4100 0.4119 0.4631 

10 0.0000 0.0000 0.0000 0.0537 0.0537 0.0000 0.1449 0.1449 0.0000 0.2879 0.2851 0.9726 

Average error %           0.1248 

 

Average error %   0.0423 

 

Average error %            0.0353 Average error %            0.3268 



27 
 

Table 1(b): Comparison of normalized non-steady-state concentration of oxidized mediator u with simulation results for various values 

of X and for some fixed values of 100100,1.0 === τγβ and . 

 

 

 

 

X Substrate concentration  u 

u  (when 2−=η )   u  (when 1.0=η ) u   (when  1=η ) u   (when  2=η ) 

This 

work 

Eq.(13) 

Simulation % of error 

deviation 

This 

work 

Eq.(13) 

Simulation % of error 

deviation 

This 

work 

Eq.(13) 

Simulation % of error 

deviation 

This work 

Eq.(13) 

 

Simulation % of error 

deviation 

1 0.1072 0.1072 0.0000 0.4725 0.4720 0.1058 0.6580 0.6580 0.0000 0.7928 0.7928 0.0000 

2 0.0964 0.0964 0.0000 0.4247 0.4246 0.0000 0.5916 0.5917 0.0169 0.7129 0.7126 0.0421 

5 0.0694 0.0692 0.2882 0.3061 0.3060 0.0000 0.4265 0.4262 0.0703 0.5140 0.5148 0.1557 

7 0.0554 0.0550 0.7220 0.2441 0.2454 0.5326 0.3402 0.3418 0.4703 0.4100 0.4119 0.4634 

10 0.0388 0.0385 0.7732 0.1714 0.1721 0.4084 0.2388 0.2397 0.3769 0.2879 0.2851 0.9726 

Average error %                 0.3567 

 

Average error %        0.2094 Average error %        0.1869 Average error %         0.3268 
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