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Abstract. A clinical dialogue is a conversation between a clinician and a
patient to share medical information, which is critical in clinical decision-
making. The reliance on manual note-taking is highly inefficient and leads
to transcription errors when digitising notes. Speech-to-text applications
designed using Automatic Speech Recognition (ASR) can potentially
overcome these errors using post-ASR error correction. Pre-trained
language models are increasingly used in this area. However, the
performance suffers from the lack of domain-specific vocabulary and the
mismatch between error correction and pre-training objectives. This
research explores these challenges in gastrointestinal specialism by
introducing self-supervision strategies to fine-tune pre-trained language
models for clinical dialogue error correction. We show that our mask-
filling objective specialised for the medical domain (med-mask-filling)
outperforms the best performing commercial ASR system by 10.27%.

Keywords: Automatic speech recognition; Error correction; Language 
models

1 Introduction

In the traditional clinical setting, healthcare providers manually take 
notes during conversations and patient interactions. This involves physically 
writing down relevant information, observations, and essential details the 
patient shares. The process typically entails using pen and paper or a 
digital device to record the information. This manual note-taking process 
requires clinicians to quickly process and capture information while 
focusing on the patient’s needs.

The main drawback to this approach is the time burden of record-
keeping of clinical communications [14], and it is associated with clinician 
burnout, increased cognitive load, information loss, and distractions [17]. One of 
the most promising avenues of automating clinical documentation with digital 
scribes is to use Automatic Speech Recognition (ASR) [18], where the audio data 
is converted to textual data.
   Given the critical nature of the medical field, ASR systems for clinical 
applications must demonstrate high performance levels. However, the 
effectiveness of ASR systems depends on three key factors: speaker variabilities, 
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spoken language variabilities, and other mismatch factors [2]. These factors 
contribute to the occurrence of errors in the textual outputs. Therefore, it is 
crucial to explore strategies that can mitigate the likelihood of transcription 
errors.

In this work, we propose a post-ASR error correction method that uses the 
advancements in transformer-based pre-trained language models. Our work aims 
to leverage the strengths of pre-trained language models and adapt them to the 
clinical domain for error correction. Rather than designing new architectures 
or fine-tuning models on specialized datasets, we aim to use publicly avail-
able clinical domain data to fine-tune these models. For that, we introduce a 
newly curated PubMed1 dataset to address the challenge of the lack of clinical 
dialogue data for fine-tuning language models. The dataset scraped from PubMed 
alleviates the need for large-scale real-world transcription data for self-
supervision. Our method is evaluated using the Gastrointestinal Clinical Dialogue 
(GCD) Dataset, which is a role-playing dataset collected in partnership with the 
National Health Service (NHS) Grampian Inflammatory Bowel Dis-ease (IBD) 
Clinic which emulates a real-world clinical setting. Results from our self-
supervision strategy applied to two pre-trained language models, T5-small and 
BART, demonstrate that it can reduce transcription errors compared to 
commercial ASR systems. Accordingly, our contributions are:
1. a self-supervision strategy to fine-tune pre-trained language models for clinical

dialogue error correction;
2. novel masked and med-masked PubMed datasets to fine-tune pre-trained

language models using self-supervision; and
3. an empirical evaluation that compares our method with commercial ASR

systems.
The rest of the paper is organised as follows. Section 2 presents related work

in the ASR error correction research domain. Our approach is presented in Sect. 3 
followed by evaluation and results in Sect. 4. Section 5 concludes the paper with 
a review of contributions and an outline of future directions.

2 Related Work

The performance of an Automatic Speech Recognition (ASR) model is influenced 
by several factors: speaker variabilities, spoken language variabilities, and other 
mismatch factors [2]. Speaker variabilities encompass changes in voice due to 
ageing, illness, emotions, and tiredness. Spoken language variabilities arise from 
variations in speech patterns, accents, and dialects. Other mismatch factors 
include variations in communication channels and the devices used during speech 
recognition. These factors contribute to transcription errors, making it 
challenging to extract meaningful insights from the generated transcripts [2].

When recognising the importance of error correction, there are two primary 
approaches to address ASR errors: incorporating an error correction algorithm
1 https://www.ncbi.nlm.nih.gov/pubmed/.
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within the ASR model itself or applying post-processing techniques to refine the 
ASR outputs. In the past, researchers explored the integration of error correction 
methods within ASR models, utilizing techniques like Hidden Markov Models 
(HMMs) [4,6] and more recently, deep neural architectures [5]. These approaches 
aimed to enhance the accuracy of ASR outputs by directly correcting errors during 
the recognition process.

Alternatively, the post-ASR error correction approach has gained popularity. 
This method involves applying error correction techniques as a subsequent step to 
refine the ASR outputs. Initially, unsupervised methods were employed, such as 
lexical co-occurrence analysis on large ASR transcription corpora [20] and 
statistical error correction methods [1]. These methods aimed to identify and 
rectify errors based on linguistic patterns and statistical analysis. More recently, 
transformer-based [21] language models have emerged as a promising approach for 
post-ASR error correction. These models, known for their robust contextual 
understanding, have been leveraged to improve the accuracy of ASR outputs. By 
fine-tuning transformer-based language models on domain-specific data, they can 
learn to correct errors present in the ASR transcriptions more effectively.

There are two prominent approaches to leveraging transformer-based language 
models for post-ASR error correction. One approach is exemplified by FastCorrect 
[7,8], which introduces modifications to a transformer-based encoder-decoder 
architecture. This architecture incorporates an error correction module that 
utilizes the edit distance metric [22] to guide the error correction process [8] 
FastCorrect models are trained on large-scale datasets and subsequently fine-tuned 
specifically for error correction using extensive ASR datasets [8,10,24]. In these 
approach, the models undergo a training process where they learn to correct errors 
by considering the edit distance between the ASR-generated text and the ground 
truth text. The models are trained to minimize this edit distance, improving their 
error correction capabilities.

Alternatively, pre-trained language models can be effectively fine-tuned using 
self-supervision for error correction, with the self-supervision objective being 
Machine Translation [12,13,15]. This approach involves training the models to 
correct errors by treating the ASR output as a source language and the ground 
truth transcription as a target language for translation. By fine-tuning the models 
using self-supervised learning, they can learn to align and correct errors in the 
ASR-generated text. It is worth noting that the fine-tuning process in these 
methods often relies on a significant portion of the ASR transcription data, 
typically using it as a training set for self-supervision [13]. Consequently, these 
approaches are particularly effective when large quantities of ASR transcriptions 
from the target domain are readily available.

In this paper, our approach is based on post-ASR error correction utilizing 
transformer-based architectures. However, instead of adopting custom-designed 
architectures [8,10,24] or fine-tuning specifically for error correction using a large-
scale dataset [12,13], we explore how to effectively fine-tune a pre-trained model 
using publicly available clinical domain data when the domain-specific data is 
limited.



Fig. 1. Self-supervision for clinical dialogue error correction

3 Methodology

We view error correction as a seq2seq task performed using an Encoder-Decoder
(ED) architecture-based language model to perform error correction, treating it
as a sequence-to-sequence task. However, before this model can be effectively
used for error correction, it needs to undergo a process of fine-tuning. This is
necessary to address the following:

Vocabulary Gap the pre-trained language models are general-purpose and not
initially tailored to handle domain-specific vocabulary (i.e., medical jargon
and terms).

Objective Gap the general-purpose models are also not initially fine-tuned to
perform specific downstream tasks (i.e., error correction).

To resolve these gaps, we introduce self-supervision strategies, which involve 
fine-tuning the pre-trained model on specific downstream datasets and tasks, 
specifically in the gastrointestinal domain.

3.1 Self-supervision

The approach of using the same unsupervised data to create multiple training 
objectives is known as self-supervision. When fine-tuning base language models, 
we need to create self-supervision tasks with the general structure of an input-
output text pair (Fig. 1). A self-supervision dataset for fine-tuning a language 
model consists of input-output text pairs. And in this work, we looked at three 
approaches to forming a self-supervision strategy best suited for error correction: 
(i) standard objective approaches, (ii) standard hybrid approaches and (iii) 
domain-specific approaches.

3.2 Standard Objective Approaches

Here we explore three self-supervision objectives from the literature that are 
best suited to bridge the vocabulary gap and error correction. Examples from the 
gastrointestinal domain for each objective are presented in Fig. 2, where coloured 
boxes refer to standard objective approaches: summarization, paraphrasing and 
mask-filling respectively.

Summarisation task generates a summary for given text input. The goal is to
capture key points of the input and present them in a concise manner.



Fig. 2. Self-supervision strategies

Paraphrasing task generates a rephrased text for a given text input. This aims
to rephrase the input text while preserving semantic meaning using synonyms
or by re-arranging words.

Mask-filling is the task of predicting missing words when indicated by a masked
token in the input text. A percentage of the input text is replaced with a
<mask> token, and the goal is to predict the masked words based on semantic
relations.



Algorithm 1. Med-mask-filling
Require: D = [S1, S2, ..., SN ]: reference text document
Require: M = [m1,m2, ...,mK ]: medical vocabulary
Require: p: masking percentage
1: for all S ∈ D do
2: S = [w1, w2, ..., wn]
3: IM = {i | wi ∈ M,wi ∈ S}
4: |IM | = k
5: words to mask = n × p
6: if words to mask = k then
7: (S, S′) ← mask(S, IM )
8: else if words to mask > k then
9: temp ← mask(S, IM )

10: Î = {j | wj ∈ S,wj /∈ M}
11: q = p − k

n

12: Î ← random select(q(n − k), Î)
13: (S, S′) ← mask(temp, Î)
14: else if words to mask < k then
15: ˆIM ← random select(n × p, IM )

16: (S, S′) ← mask(S, ˆIM )
17: end if
18: X ← (S, S′)
19: end for
20: return X

3.3 Standard Hybrid Approaches

In hybrid approaches, we explore multiple standard self-supervision tasks in an 
ordered manner and evaluate their impact on the model fine-tuning. 
Paraphrasing and mask-filling are used here as they are the most similar to error 
correction and also being informed by initial empirical evaluations.

Paraphrasing-to-masking is a hybrid approach where we perform

paraphrasing followed by mask-filling. As shown in Fig. 2, first, the pre-trained 
language model is fine-tuned for paraphrasing followed by a second objective of 
mask-filling. Intuitively, the masking-only approach is limited to the context, 
but by introducing paraphrasing-to-masking, we focus on expanding the 
contexts for the words in which they appear.

Masking-to-paraphrasing is a hybrid approach where mask-filling is the first
fine-tuning objective, followed by paraphrasing.

3.4 Domain-Specific Approaches

The goal of domain-specific self-supervision approaches are to further influence
the model to reduce the vocabulary gap. Our approach to domain-specific self-
supervision using conditional masking is presented in Algorithm 1. Here the
inputs to the conditional masking are the reference text document D and the



medical vocabulary M which is specific to the medical domain of interest and
consists of a list of specialist terms. Dataset compilation is described in Sect. 4.1.

Med-mask-filling objective is derived from standard mask-filling where we
randomly replaced a percentage (p) of the words in each sentence with the
token <mask>. However, in med-mask-filling, instead of random masking, we
are masking all the medical words in the sentence identified using the medical
vocabulary (M). This objective ignores masking percentage p but satisfies the
condition on Line 6.

Med-mask-filling (cm-p) where cm-p stands for conditional masking per-
centage consider two cases; (1) if the sentence contains at least one medical
word (k > 0) we ensure they are prioritised before masking non-medical
words, this may satisfy one of the three conditions in the Algorithm 1 lines
6, 8 or 14 based on k and p; and (2) in the absence of any medical words a
random mask is used which satisfies condition in Line 8.

Med-mask-filling (cm-p*) is similar to the previous task; except that sen-
tences with no medical words are not included in the Document D. This will
enable us to evaluate the impact of including and excluding random masking
as part of med-mask-filling.

4 Evaluation

In this section, we evaluate self-supervision strategies for clinical dialogue error 
correction using two pre-trained language models and compare them against 
commercial ASR systems. The language models are fine-tuned using the PubMed 
dataset and evaluated using the GCD dataset.

4.1 Datasets

Gastrointestinal Disease Dataset (GCD) consists of a set of role-playing 
clinical dialogues that took place at the NHS IBD Clinic. The data collection 
included clinical dialogues recorded with 7 participants with Scottish accents 
transcribed using commercial ASR systems. Here, the accent can be viewed as 
a form of noise in addition to common noise factors such as background noise, 
interruptions and repetitions. Each audio clip contains around 47 utterances 
by two persons engaged in a clinical conversation that is about 4–5 min long. 
Statistics of the GCD dataset can be found in Table 1 and some examples are 
presented in Table 2.

PubMed Dataset for Self-supervision the PubMed dataset consists of 
abstract and title pairs scraped from articles related to gastrointestinal 
conditions. Following variants of the PubMed dataset were created for 
evaluating self-supervision strategies. An example for each self-supervision task 
is presented in Table 3.



– Summarisation considers abstract as the input and title as the expected
output.

– Paraphrasing considers a paraphrased version of the title as the input and
the title as the expected output. The paraphrased title is obtained using the
T5 model fine-tuned for paraphrasing using the Google PAWS Dataset [23].

– Mask-filling apply <mask> token to 25% of the words in the title to create
the input and use the title as the expected output.

– Hybrid approaches use the above datasets created for paraphrasing and
mask-filling for fine-tuning.

– Med-mask-filling (cm-p) strategies use datasets created using Algorithm 1.

The dataset was curated from PubMed articles with the primary goal of
introducing domain-specific medical vocabulary to language models pre-trained 
on public domain data. The lack of availability of a larger spoken corpus in med-
ical conversations has led us to use a written corpus, although we acknowledge 
the differences between written and spoken language in specialist domains. After 
pre-processing, we obtain a dataset with title and abstract pairs (see Table 3). 
This extraction method can be generalised to any medical domain by using 
domain-specific search queries in the PubMed search engine.

Medical Vocabulary (M) is a set of domain-specific medical terms extracted 
from the PubMed articles using the ScispaCy [16] models. This medical dictionary 
for masking contains 4231 medical terms related to the gastrointestinal area.

4.2 Experiment Setup

To compare the different self-supervision strategies we experiment with two pre-
trained language models, T5 (T5-small) [19] and BART (BART-base) [9]. Two 
additional variants of the PubMed dataset were created to support self-
supervision strategies: masking and paraphrasing. The hyper-parameters for fine-
tuning were kept constant across all strategies as: optimiser is AdamW [11]; loss is 
cross-entropy; learning rate is 2e−5; and batch size is 16. The PubMed dataset 
was split 90/10 as training and validation sets and the fine-tuning was early-
stopped between 10–40 epochs based on minimal validation loss. All strategies 
were evaluated across four commercial ASR transcriptions of the GCD dataset

Table 1. Summary of the GCD dataset

Feature Value

No. of audio files 7

Mean length of an audio file 4 min 49 s

Mean no. of utterances in a file 47

Mean no. of words in an utterance 93



Table 2. Examples from the GCD dataset

Gold Reference Transcription Output

So do you have any ideas as to
what might be the cause of
your symptoms at the moment?

So do you have any ideas as to what
might be the cause of your
symptoms at the moment?

Have you noticed any changes
in your weight?

Do you noticed any changes in your
wit?

Okay have you noticed any
mucus in your bowel motions?

Okay have you noticed any mucus in
your bible Moshe?

Table 3. PubMed gastrointestinal dataset pre-processed for self-supervision strategies

Task Input Output

Summarisation Helicobacter pylori is a worldwide
infection. It is estimated that
approximately 50% of the general
population is affected, but this
percentage varies considerably between
countries. . . . This study confirms
relatively high prevalence of H. pylori
seropositivity among Italian healthy
adults and points to sex, age, BMI and
sociocultural class as persisting
determinant features of H. pylori
infection.

Determinants of
Helicobacter pylori
seroprevalence
among Italian
blood donors.

Paraphrasing Determinants of seroprevalence of
Helicobacter pylori among Italian
blood donors.

Mask-filling Determinants <mask> <mask> pylori
<mask> among Italian blood donors.

Paraphrasing-to-
masking

Determinants <mask> <mask> pylori
<mask> among Italian blood donors.

Masking-to-
paraphrasing

Determinants of seroprevalence of
Helicobacter pylori among Italian
blood donors.

Med-mask-filling Determinants <mask> <mask>
<mask> <mask> among Italian
<mask> donors.

Med-mask-filling
(cm-25)

Determinants of <mask> pylori
<mask> among Italian blood donors.

Med-mask-filling
(cm-25*)

Determinants of <mask> pylori
<mask> among Italian blood donors



generated using Amazon Web Services (AWS) Transcribe, Google Speech-to-
text, Microsoft Speech-to-text, and IBM Watson. For med-mask-filling masking 
percentage (p) is considered as 25% denoted by cm − 25.

Language models were implemented using Python Hugging Face and PyTorch 
frameworks while maintaining all default hyper-parameters from the base models. 
For the summarisation task, the encoder input and decoder output sequence 
lengths were set to 1024 and 128, respectively; for paraphrasing and mask-filling 
tasks, both encoder input and decoder sequence lengths were set to 512. Our 
model implementation and the reproducible code are available in GitHub2 and 
the fine-tuned model variants and PubMed datasets are publicly available in 
Huggingface3.

4.3 Performance Metric

Word Error Rate (WER) was selected to measure the performance of clinical 
dialogue error correction. WER has been used as a performance metric in ASR 
systems [2,3] and in post-ASR error correction [8,12]. Given a language model 
output and a reference text, where N refers to the number of words in the 
reference text and SUB, DEL and INS  refer to the number of substitutions, 
deletions, and insertions operations needed to transform the reference text to 
the language model output, WER is calculated as in Eq. 1.

WER =
SUB + DEL + INS

N
(1)

Lower WER scores are desirable as they indicate higher accuracy in speech 
recognition systems, reflecting a smaller number of word-level errors in the 
transcriptions.

4.4 Results

Table 4 presents a comparison of WER scores from commercial ASR systems and 
language models where we applied different self-supervision strategies. The WER 
of commercial ASR transcription against reference text is considered the baseline 
against which we want to improve. The best performing self-supervision strategy 
for each language model is highlighted in bold text. Overall, the best performing 
strategy is med-mask-filling with the BART model, and it has reduced WER 
by 10.27% of Microsoft, 12.13 % of IBM and 16.01% of Google transcriptions. 
In the case of AWS, while both med-mask-filling and mask-filling did lead to 
improvements, the degree of enhancement was not as substantial when compared 
to the other ASR systems.

Apart from the missed transcription of clinical terms, different ASR systems 
introduce different types of errors when generating transcripts from the audio. 
For example, Google ASR drops many words from the ASR output based on low

2 https://github.com/gayaninan/clinical-error-correction.
3 https://huggingface.co/gayanin.
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Table 4. Comparison of self-supervision strategies for clinical dialogue error correction

Model Self-supervision GCD Dataset WER (%)

Strategy AWS Transcribe Microsoft IBM Watson Google

Baseline (Commercial ASR) 33.02 29.03 44.28 47.78

T5

Summarisation 63.39 66.89 69.44 73.80

Paraphrasing 48.87 47.24 54.52 57.97

Mask-filling 38.83 35.86 45.16 46.87

Masking-to-paraphrasing 43.28 50.89 40.41 47.56

Paraphrasing-to-masking 39.79 46.36 34.42 45.89

Med-mask-filling 56.39 51.23 58.79 61.61

Med-mask-filling (cm-25) 48.08 47.08 55.09 57.89

Med-mask-filling (cm-25*) 46.10 43.03 52.23 53.06

BART

Summarisation 76.61 77.03 78.10 75.56

Paraphrasing 43.31 37.46 47.51 49.48

Mask-filling 32.38 26.38 38.92 40.43

Masking-to-paraphrasing 46.43 41.45 49.24 51.15

Paraphrasing-to-masking 32.77 26.82 39.45 40.97

Med-mask-filling 32.53 26.05 38.91 40.13

Med-mask-filling (cm-25) 32.61 26.48 39.28 40.69

Med-mask-filling (cm-25*) 32.75 26.61 39.43 40.90

transcription confidence. Accordingly, we observe increased deletion operations 
required to convert the reference to the ASR output (in WER calculation).

We also observed that various ASR systems introduced distinct types of errors 
while generating transcripts. To investigate this further, in Fig. 3, we analysed the 
INS, DEL, and SUB operation counts for the language models that achieved 
the best performance for each self-supervision strategy. Google ASR tends to drop 
several words from the ASR output due to low transcription confidence. As a 
result, we noticed that there is an increased number of deletion operations 
required to transform the reference text into the ASR output during the 
calculation of WER.

In addition to that, summarisation resulted in the highest WER scores due 
to the length difference between generated and reference text, which makes it an 
unsuitable strategy for error correction. Intuitively, mask filling is more similar to 
error correction than paraphrasing, which is evidenced in the results. Accordingly, 
we use mask-filling in a domain-specific approach with additional emphasis given 
to correcting clinical terms (by masking clinical terms).

Comparing BART and T5, our results showed that BART is more suitable for 
clinical dialogue error correction. BART and T5 are both language models pre-
trained for de-noising. To create noise, T5 masked 15% of words in a sequence, 
each word replaced by a mask [19] whereas BART used text infilling where zero 
or more consecutive words are replaced by a single mask [9]. Accordingly, BART 
had learned to predict the number of words masked in addition to predicting



Fig. 3. INS, DEL, SUB operation counts for the best performing models for each self-
supervision strategy

masked words. This is advantageous when performing clinical dialogue error 
correction where clinical terms can be erroneously transcribed into one or more 
commonly occurring words.

5 Conclusion

In this paper, we introduce a novel strategy of self-supervision for the task of 
clinical dialogue error correction utilizing language models. Our method addresses 
the challenge of sparse real-world clinical dialogue data by incorporating clinical 
data from the public domain. Our findings reveal that the proposed med-mask-
filling strategy effectively reduces transcription errors when benchmarked against 
prevalent commercial ASR systems. The results underline the criticality of not 
only choosing the right self-supervision strategy but also understanding the 
impacts of varying error types generated by ASR systems. Moving forward, our 
focus will be on refining the GCD dataset and researching ways to continue the 
reduction of transcription errors. An in-depth analysis of language model outputs 
indicates an opportunity for further narrowing the domain-specific vocabulary 
gap, suggesting that the integration of knowledge graph representations is a 
promising path to explore.
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Kousha, John Thomson and Jill Ferbrache, who helped to curate the IBD clinic role-
playing dialogues.
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