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ABSTRACT

A novel one-dimensional slug tracking mechanistic model
for unsteady, upward gas-liquid slug flow in inclined pipes is
presented. The model stems from the first principles of mass and
momentum conservation applied to a slug unit cell consisting of
a slug body of liquid and a region of stratified flow containing an
elongated bubble and a liquid film. The slug body front and rear
are treated as surfaces of discontinuity where mass and momen-
tum balances or “jump laws” are prescribed. The former is com-
monly applied in mechanistic models for slug flow, whereas the
latter is typically overlooked, thereby leading to the assumption
of a continuous pressure profile at these points or to the adoption
of a pressure drop due to the fluid acceleration on a heuristic
basis. Our analysis shows that this pressure change arises for-
mally from the momentum jump law at the slug body front. The
flow is assumed to be isothermal, the gas is compressible, the
pressure drop in the elongated bubble region is accounted for,
the film thickness is considered uniform, and weight effects in the
pressure from the interface level are included. Besides specifying
momentum jump laws at both borders of the slug body, another
novel feature of the present model is that we avoid adopting the
quasi-steady approximation for the elongated bubble-liquid film
region, and thus the unsteady terms in the mass and momentum

balances are kept. The present model requires empirical corre-
lations for the slug body length and the elongated bubble nose
velocity. The non-linear equations are discretized and solved si-
multaneously for all the slug unit cells filling the pipe. Time-
space variation of the slug body and film lengths, liquid holdup
and void fraction, and pressures, among other quantities, can
be predicted, and model performance is evaluated by comparing
with data in the literature.

INTRODUCTION
Depending on the geometric features of the pipeline convey-

ing a mixture of liquid (oil and water) and gas, the fluids prop-
erties, and their flow rates, the slug flow pattern — characterized
by an alternate distribution of gas- and liquid-dominant phases —
may prevail. In an oil-and-gas production system, the reliability
of separation and pumping equipment downstream of the pipe is
known to be strongly affected by the size and dynamics of slug
bodies. Because the presence of slug flow entails the possibil-
ity of flow assurance issues, including the costs of operational
interruption, the development and improvement of tools for the
accurate modeling of slug flow continues to be of interest to the
industry. In particular, models capable of predicting the transient
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behavior of the slug units as they travel along the pipe may prove
useful especially in conditions where the conduit’s vibrational
motions are significant, as in the presence of resonance, or if the
maximum slug length and not only the average is sought.

Mechanistic models have the advantage of enforcing mass,
momentum, and energy conservation laws in one dimension.
They also include some empirically-based relationships for clo-
sure. Among the various mechanistic models for steady slug flow
proposed in the literature, we list here the works due to [1–4].
Comprehensive reviews have been presented by [5, 6].

To model variations of slug length and frequency as the
slug unit travels along a pipe, as well as slug formation, dissipa-
tion, and bubble overtaking, unsteady slug flow approaches are
needed. Models for unsteady slug flow can be classified in three
categories, namely, “slug capturing” models, which are based
upon the two-fluid model for segregated flows and are effective
at describing slug formation, but are commonly very computa-
tionally demanding [7, 8]; “slug tracking” models, which draw
significantly from the mechanistic models developed for steady
slug flow and can be considered the extension of this approach to
the unsteady situation (see literature survey in [9]), and the “hy-
brid models”, which combine both approaches (see the review
in [10]).

Here, we focus on the slug tracking. The works that use
this approach that are more relevant to us are those by Nydal
and Banerjee [11], Al-safran et al. [12], Ujang et al. [13], Rosa
et al. [9], and the very recent one by Grigoleto et al. [14]. By
comparing against experimental data, the performance of the var-
ious models is evaluated and regarded as satisfactory, in gen-
eral. Nonetheless, in all these models, with the exception of [11],
the so-called quasi-steady or quasi-equilibrium approximation is
adopted. This approximation consists on significantly simplify-
ing the system of equations by dropping some of the unsteady
terms in the mass and momentum balances as well as momen-
tum fluxes in the latter. In [12, 13] the steady momentum equa-
tions of [2,15] with constant film thickness are used for the liquid
film and elongated bubble regions of a slug flow unit and also the
steady version of the momentum balance is applied to the slug
body or liquid slug. In [9, 14], the rate of change of momentum
in the slug body — but not in the film or elongated bubble — as
well as momentum fluxes are considered. Specifically, in [14],
a term accounting for momentum fluxes is included as an ad-
ditional pressure difference modeling the head loss caused by
liquid recirculation in the elongated bubble wake.

The work that has the closest similarities with the present
effort is that by [11]. They consider unsteady mass balances for
the slug body, the liquid film — of uniform film thickness — and
elongated bubble regions, whilst applying unsteady momentum
balances to the first two regions. On the other hand, their ap-
proach differs with ours in that they assume a uniform pressure
in the gas bubble region, enabling them to discard the gas mo-
mentum equation, and do not describe spatial variations in the

liquid film velocity.
In this paper, we formulate a one-dimensional mechanistic

model for slug tracking in horizontal or inclined pipes (upward
flow) applied to unsteady gas-liquid flow. It is based on integral
mass and momentum balances where the unsteady terms and mo-
mentum fluxes are kept in all regions of the flow and in both mass
and momentum balances. Specifically, the main novelties in the
model are the following. First, no quasi-equilibrium assumption
is made in the description of the stratified region of the slug flow.
Even though the liquid film thickness in the stratified region of
the slug unit is assumed uniform, preserving unsteadiness in the
mass conservation equations for the liquid film and elongated
bubble regions leads to axially varying in-situ velocities in the
fluids. We are not aware that this result has been presented in
the literature on mechanistic modeling of slug flow. Second, the
transitions between the slug body and stratified regions are mod-
eled as surfaces of discontinuity where not only mass but also
momentum balances are imposed; this results in pressure jumps
at these locations. Third, the numerical solution is fully implicit.

The article is organized as follows. In the next section, the
model formulation is described. This is followed by the numeri-
cal treatment and the model applications with preliminary results
and discussion. We then conclude with some final remarks.

MODEL FORMULATION
We model the slug flow in a pipeline as a sequence of slug

unit cells. A sketch of a typical slug unit cell is shown in Fig. 1.
The unit cell of gas-liquid slug flow denoted with index j is
bounded between positions x j+1 and x j; the elongated bubble-
liquid film combined region is limited by positions x j+1 and y j,
and the film thickness is assumed to be uniform; the liquid slug,
which in this work — and as in the case of [9,11] — is considered
without small bubbles, falls between positions y j and x j. These
positions are measured with respect to the pipe inlet. The liq-
uid slug length, a function of time, is denoted by ls and is given
by x j − y j. The film length l f is given by y j − x j+1 and may
also change with time. The flow along the pipeline is assumed
isothermal. The gas density is assumed to be a function of gas
pressure and computed with the ideal gas law. In the derivations
that follow, we consider the liquid and gas densities, ρ

j
l and ρ

j
g ,

respectively, to be uniform within slug unit cell j and they can
be a function of time. They may change from one unit cell to the
other due to spatial pressure changes. The liquid and gas viscosi-
ties are assumed constant and denoted by µl and µg, respectively.
The length of the entire unite cell is lu = l f + ls. The unit cell is
considered to be contained in a straight pipe element whose axis
is inclined at angle θ with respect to the horizontal direction. The
pipe has a circular cross section with area A and diameter D as-
sumed invariant along the pipeline. The acceleration of gravity
points downward and is perpendicular to the horizontal direction.
Here, we confine ourselves to the case of a straight pipe, so that
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FIGURE 1. SKETCH OF A TYPICAL SLUG FLOW UNIT CELL.
TWO-PHASE GAS-LIQUID SLUG FLOW IS MODELED AS A SE-
QUENCE OF UNIT CELLS.

θ is uniform.
The position of a unit cell at any time t is tracked by the

following relations

ẏ j =
dy j

dt
= u j

t , (1)

where u j
t is the translational velocity of the elongated bubble nose

in unit cell j and

ẋ j =
dx j

dt
. (2)

The integral mass and momentum balances that follow are writ-
ten using the formulae for a control volume and for a surface of
discontinuity exhibiting arbitrary motion presented in [16] and
extended here for two-phase gas-liquid flow.

Mass balances
Mass balance for the slug body belonging to slug unit cell j

with no gas in it, in a pipe of constant cross-sectional area, yields
a liquid velocity, u j

ls, that does not change from the slug front to
its tail, and that is thus a function of time only. Integral mass
balances over expanding or contracting control volumes encom-
passing the liquid film and the elongated bubble regions lead to
the following one-dimensional conservation statements. For the

liquid film, we can write

d
dt

(
ρ

j
l α

j
f l j

f A
)
=ρ

j
l α

j
f A
(

u j
f e− ẋ j+1

)
−ρ

j
l α

j
f A
(

u j
f o−u j

t

)
. (3)

Here, α
j
f is the holdup of the liquid film, which has constant

thickness; u j
f o and u j

f e denote the axial film velocities at positions

y j and x j+1, respectively. Substitution of dl j
f /dt = u j

t − ẋ j+1 re-
sults in

d
dt

(
ρ

j
l α

j
f

)
=

ρ
j

l α
j
f

l j
f

(
u j

f e−u j
f o

)
. (4)

Consider a control volume of arbitrary length z within the liquid
film of slug unit j (Fig. 1), having the same thickness as the film,
with 0 6 z 6 l j

f and such that, if z = 0, this plane moves as x j+1

and, if z = l j
f , this plane moves as y j. For this control volume,

we can write the mass balance:

z
d
dt

(
ρ

j
l α

j
f

)
= ρ

j
l α

j
f

(
u j

f e−u j
f

)
, (5)

where u j
f is the film velocity at z. Eliminating the time derivatives

between (4) and (5) yields

u j
f = (1− z/l j

f )u
j
f e +(z/l j

f )u
j
f o, (6)

which upon integration over the entire film length leads to the
average velocity in the film

u j
f =

(
u j

f o +u j
f e

)
/2. (7)

For the gas in the elongated bubble,

d
dt

(
ρ

j
gα

j
g
)
=

ρ
j

gα
j
g

l j
f

(
u j

ge−u j
go
)
, (8)

where α
j
g, u j

go, and u j
ge are analogous to α

j
f , u j

f o, and u j
f e used in

the liquid film — α
j
g denotes the void fraction. Proceeding in an

similar manner as in the case of the liquid film results in

u j
g = (1− z/l j

f )u
j
ge +(z/l j

f )u
j
go, (9)
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and

u j
g =

(
u j

go +u j
ge
)
/2. (10)

Eqs. (6), (7), (9), and (10) seem to be new. Both u j
f and u j

g will
appear in the momentum equations, so the relations for these av-
erages, which do not seem as an obvious result to us, will prove
useful. When the time derivatives in (4) and (8) vanish, we re-
cover the classical result for a film of uniform thickness, namely,
u j

f o = u j
f e = u j

f and the velocity is uniform in the film. Analogous
conclusions can be drawn for the gas bubble.

At position x j, consider a surface of discontinuity. We can
write the liquid and gas mass balances, respectively,

ρ
j−1

l α
j−1
f

(
u j−1

f e − ẋ j
)
= ρ

j
l

(
u j

ls− ẋ j
)
, (11)

u j−1
ge = ẋ j. (12)

whilst, at position y j,

ρ
j

l

(
u j

ls−u j
t

)
= ρ

j
l α

j
f

(
u j

f o−u j
t

)
, (13)

u j
t = u j

ge, (14)

Note that (12) and (14) hold because there is no gas in the slug
bodies.

Finally, the geometric constraint is

α
j
f +α

j
g = 1. (15)

Momentum balances
One-dimensional expressions for momentum conservation

can be obtained from integral linear momentum balances over
expanding or contracting control volumes including the slug
body, the liquid film or the elongated bubble regions. For the
liquid slug body, we can write

d
dt

(
ρ

j
l u j

ls

)
=

(
P j

sy−P j
sx

)
l j
s

− τ
j

s
πD
A
−ρ

j
l gsinθ , (16)

where P j
sx and P j

sy are the pressure at x j and y j on the side
of the slug body, respectively. Specifically, this pressure cor-
responds to the pipe axis. Also, τ

j
s is the shear stress at the

wall, and g is the acceleration of gravity. In writing (16), we
started with the rate of change of momentum in the slug body,
d(ρ j

l u j
lsl

j
s A)/dt = l j

s Ad(ρ j
l u j

ls)/dt + ρ
j

l u j
lsAdl j

s/dt. After using

dl j
s/dt = ẋ j− u j

t , the last term cancels the momentum fluxes in
the momentum balance. Then, by dividing the resulting expres-
sion with l j

s A, we obtain (16).
For the liquid film, momentum conservation can be written

as

d
dt

(
ρ

j
l α

j
f u j

f

)
=−

ρ
j

l α
j
f

l j
f

(
u j

t − ẋ j+1
)

u j
f

+
ρ

j
l α

j
f

l j
f

(
u j

f e− ẋ j+1
)

u j
f e−

ρ
j

l α
j
f

l j
f

(
u j

f o−u j
t

)
u j

f o

+
α

j
f

(
P j

e −P j
o

)
l j

f

− τ
j
f

S j
f

A
+ τ

j
i

S j
i

A
−ρ

j
f α

j
f gsinθ . (17)

In the starting point leading to equation (17), we write the mo-
mentum conservation with the rate of change of momentum in
the control volume as d(ρ j

l α
j
f u j

f l j
f A)/dt in the left-hand side,

which is expanded as l j
f Ad(ρ j

l α
j
f u j

f )/dt +ρ
j

l α
j
f u j

f Adl j
f /dt. The

latter is moved to the right-hand side; dividing by l j
f A yields (17).

Similarly, for the elongated gas bubble, the momentum con-
servation can be written as

d
dt

(
ρ

j
gα

j
gu j

g
)
=−

ρ
j

gα
j
g

l j
f

(
u j

t − ẋ j+1
)

u j
g

+
α

j
g

(
P j

e −P j
o

)
l j

f

− τ
j
g

S j
g

A
− τ

j
i

S j
i

A
−ρ

j
gα

j
ggsinθ . (18)

In these expressions, P j
o and P j

e denote the pressure on faces y j

and x j+1 on the side of the elongated bubble-film combined re-
gion, respectively. Specifically, this pressure corresponds to the
elongated bubble-film interface at the associated axial location.
Moreover, τ is the average shear stress, S is the perimeter, and
their subscripts f , g, i refer to the liquid film, elongated bubble,
and bubble-film interface, respectively. The average velocities
u j

f and u j
g are given by (7) and (10), respectively.

In the same manner as we did for mass conservation in (11)-
(14), we can write momentum balances at x j and y j — treated
as surfaces of discontinuity (e.g., see section 5.18 in [16]). At
position x j,

P j−1
e +ρ

j−1
l α

j−1
f

(
u j−1

f e − ẋ j
)

u j−1
f e +ρ

j−1
g α

j−1
g
(
u j−1

ge − ẋ j)u j−1
ge

+
(

ρ
j−1

l α
j−1
f ξ

j−1
f −ρ

j−1
g α

j−1
g ξ

j−1
g

)
gcosθ

= P j
sx +ρ

j
l

(
u j

ls− ẋ j
)

u j
ls. (19)
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At position y j,

P j
sy +ρ

j
l

(
u j

ls−u j
t

)
u j

ls = P j
o +ρ

j
l α

j
f

(
u j

f o−u j
t

)
u j

f o+

ρ
j

gα
j
g

(
u j

go−u j
t

)
u j

go +
(

ρ
j

l α
j
f ξ

j
f −ρ

j
gα

j
gξ

j
g

)
gcosθ , (20)

where

α
j
f Aξ

j
f =

∫
A f

(h f −ζ )dA, α
j
gAξ

j
g =

∫
Ag

(ζ −h f )dA. (21)

Here, ζ is the coordinate of a point at a given cross section mea-
sured from the lowermost point in the cross section and h f is
the film thickness. These integrals bring into the model the hy-
drostatic effect of the film level accounting for gradual pressure
variations in the direction orthogonal to the pipe’s axis. Eqs.
(19) and (20) can be simplified by making use of (11)-(14). The
pressure difference arising in (19) bear some resemblance to the
acceleration pressure gradient usually introduced in the literature
in a somewhat heuristic manner (e.g., see [1]). Here, it appears as
a “jump law” from a formal momentum balance across a surface
of discontinuity at x j.

The average shear stresses at the wall and at the interface
needed in (17) and (18) are computed by integration of the local
shear stresses, which in turn are determined from the local fluid
velocities given in (6) and (9) using suitable closures (see next
sub-section). The wall shear stress in the slug body is evaluated
with the same closure relationship in terms of velocity u j

ls and
the liquid properties.

The gas density at the elongated bubble of slug unit cell j is
computed with the average pressure (P j

o +P j
e )/2.

Closure and geometric relationships
To provide closure to the system of equations formed by the

conservation equations, we invoke some relationships from the
literature obtained by fitting experimental data. In addition, we
use a few geometric relationships describing the stratified elon-
gated bubble-film region. The expressions we include are well
known; hence we do not reproduce them here.

For the shear stresses, we use the relationships in [2] which
are written in terms of the Fanning friction factor. These fac-
tors are determined by means of the Blasius formula for smooth
pipes (see [17]) for the stresses at the wall. For the interfacial
friction factor, we use the value of 0.014 [2, 18]. For the bubble
nose translational velocity, we apply the correlation used by [12]
based on a result of [19], which includes a wake function describ-
ing the effect of accelerating the nose of a bubble. Finally, for the
length of the liquid slug body, we use the correlation given in [4].

The geometric relationships describing the elongated
bubble-film cross section can be readily derived by considering a

circular cross section containing a gas-liquid stratified configura-
tion with a flat interface and the liquid at the bottom. We can then
establish relations between the angle subtended by the gas-liquid
interface and the gas and film wetted perimeters, Sg and S f , in-
terface length Si, film thickness, h f , and liquid holdup and void
fraction, α f and αg. They can be found, for instance, in [6,9,13].
The integrals in (21) are evaluated based on this configuration.

NUMERICAL ASPECTS
For a slug unit cell, the proposed model contains 20 un-

knowns, namely, {Psx, ẋ, x, uls, Psy, ut , y, Po, u f o, ugo, u f , ug,
ρg, Pe, u f e, uge, α f , αg, l f , ls}. The model comprises 20 equa-
tions per slug unit cell; these are expressions (1), (2), (4), (7),
(8), (10), (11), (12), (13), (14), (15), (16), (17), (18), (19), (20),
the equation for the bubble nose translational velocity, the equa-
tion of state for the gas density, and relations l j

s = x j − y j and
l j

f = y j− x j+1.
The ordinary differential equations in time are discretized

with a first order implicit backward Euler scheme. For example,
for the mass conservation equation in the elongated gas bubble,
Eq. (8), we obtain

(
ρ

j(n+1)
g α

j(n+1)
g −ρ

j(n)
g α

j(n)
g

)
−∆t

ρ
j(n+1)

g α
j(n+1)

g

l j(n+1)
f

(
u j(n+1)

ge −u j(n+1)
go

)
= 0, (22)

where ∆t is the time step and n and n + 1 are the time lev-
els. The values at time level n + 1 are unknown whilst those
at level n are known. The variables in the expressions in the
model that are not differential equations are considered at time
level n+ 1. Accordingly, unit cells’ external and internal bor-
ders are advanced with x j(n+1) = x j(n)+∆tẋ j(n+1) and y j(n+1) =

y j(n) + ∆tu j(n+1)
t . Lengths are then determined with l j(n+1)

s =

x j(n+1) − y j(n+1) and l j(n+1)
f = y j(n+1) − x j+1(n+1). Regarding

the average shear stresses, they are obtained by numerical inte-
gration using sixteen-point standard Gauss-Legendre quadrature
(e.g., see [20, 21]).

A fully-implicit solution of the resulting non-linear system
of equations is sought using the non-linear solver available in
Matlab®. This package applies an algorithm based on the New-
ton method. We provide a vector of residuals to the solver, where
each residual consists of the left-hand side of an algebraic equa-
tion from the model when this equation is written in such a way
that the right-hand side is equal to zero, as in Eq. (22). The resid-
uals are nondimensionalized using as scales the liquid density,
the gas density at the outlet pressure, the mixture velocity at the
inlet, jl + jg, as the velocity scale, the product of the liquid den-
sity times the square of the inlet mixture velocity as the pressure
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scale, and 10D as the length scale. The vector of results from the
previous time step is given to the non-linear solver as the initial
guessed values. These are passed to the solver nondimensional-
ized using the aforementioned scales. They are converted back
to dimensional form in order to compute the residuals.

The Jacobian is computed numerically using finite differ-
ences with a tolerance of ≈ 10−6. Because this is a one-
dimensional model, we arrange the vector of residuals and the
vector of guessed values such that the Jacobian matrix is block-
diagonal. We take advantage of this fact by providing to the
solver a sparsity pattern consisting of an array of ones, indicating
the elements in the Jacobian that are nonzero. This significantly
reduces the computational time (e.g., see [22]).

As boundary conditions, at the pipe exit we impose a con-
stant pressure, whilst at the inlet we use the inlet superficial ve-
locities jl and jg and the fluids properties to generate a slug unit
cell using our model without the unsteady terms. This is sup-
plemented, for closure, with the expression relating the liquid
superficial velocity with the amount of liquid in a unit cell pass-
ing through a fix pipe cross section (Eq. 5 in [2]). Once the tail of
the elongated bubble reaches the pipe inlet, a new slug unit cell
is created as just described. Once the entering slug unit has been
created, it evolves based on the model for unsteady flow pre-
sented here (unsteady approach of first slug unit). An alternative,
following [14], is to consider this slug unit as steady until its bub-
ble nose touches the inlet. This can be achieved here by dropping
the terms in the equations modeling the rate of change of mass
and momentum in the various control volumes. When we apply
this, we do it only for the first slug unit (steady approach). Equa-
tions (11)-(12) are enforced at the tail of the entering elongated
bubble-film region (position x(Nu+1)), setting u(Nu+1)

ls = jl + jg,
where Nu refers to the slug unit entering the pipe.

For the slug unit cell exiting the pipe, once its slug body
front reaches this position, its length will start to gradually de-
crease. When the nose of the following elongated bubble touches
the exit, the magnitudes of its translational velocity ut and pres-
sure Po are set to remain fixed and the elongated bubble-film re-
gion will continue to move as if the pipe length were extended.
Note that [9] “froze” the attributes of the leading slug unit cell
once its slug body front reaches the pipe exit. On the other
hand, [14] instantaneously removed the elongated bubble and liq-
uid film following a slug body that has just left the pipe.

Initially, the pipe is filled with liquid flowing steadily with
velocity jl . The liquid-only section of the pipe preceding the first
slug unit is modeled by splitting it into control volumes or cells,
typically of length 8D. We assume that the borders of these cells,
with no loss of generality, move with the translational velocity of
the first elongated bubble — including the first slug body front.
The border of the liquid-only cell coinciding with the exit has ẋ=
0. Then, this cell’s length decreases; when it reaches a threshold
(2D), this cell merges with the following one. The liquid-only

Run jl (ms−1) jg (ms−1) D (mm)

1 0.20 0.15 38

2 0.73 0.15 38

3 0.73 0.44 38

4 0.73 0.73 38

5 0.73 0.44 67

6 0.73 1.17 67

TABLE 1. EXPERIMENTAL RUNS FOR HORIZONTAL SLUG
FLOW OF GAS AND LIQUID IN A PIPE. EXTRACTED FROM [23].

cells are modeled with a momentum equation similar to that of
the slug body, Eq. (16). The liquid in these cells move with the
velocity of the liquid in the first slug body, u(1)ls . The pressure
is continuous across the cell’s borders shared by two liquid-only
cells.

In the runs of our program, the maximum absolute value
of the residuals after convergence in a time step was typically
smaller than or about 10−7. We used a time step ∆t = 2×10−3 s.
Results computed with a smaller time step of ∆t = 5×10−4 s
showed no significant differences with those obtained with the
higher time step for selected cases. Note that Rosa et al. [9]
adopted a time step of 10−3 s and Grigoleto et al. [14] used
10−4 s.

APPLICATION AND DISCUSSION
We first compare predictions from the proposed model with

experimental measurements of the liquid holdup and pressure
gradients taken from the comprehensive work of Hernandez-
Perez [23] on gas-liquid two-phase flow in pipes. We extracted
data for horizontal slug flows in pipes 6 m in length with di-
ameters D = 38 and 67 mm. Table 1 contains the superficial
velocities for each data point or run. He used water and air
for the liquid and gas phases, respectively (ρl = 1000 kg m−3,
µl = 10−3 kgm−1 s−1, and µg = 1.8× 10−5 kgm−1 s−1). The
temperature was 20 oC and the pipe discharged to the atmo-
sphere. The holdup and pressure sensors were located toward
the pipe exit.

In the simulations, the liquid is assumed incompressible so
that its density is constant throughout the pipeline. The outlet
pressure was set to 101.3 kPa. We did not impose the restriction
of evolving the first slug unit cell entering the pipe as steady — of
course, after its generation based on the steady slug flow model.
To have several slug units inside the pipe at a given time and to
diminish inlet and outlet effects, we conducted the simulations
with a pipe length of 20 m — the exception is Run 6 in which
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Run Liquid holdup

Experiment [23] Model Correlation 1 [25]

1 0.686 0.803 0.567

2 0.912 0.892 0.824

3 0.850 0.746 0.620

4 0.669 0.648 0.496

5 0.805 0.762 0.620

6 0.699 0.567 0.380

TABLE 2. EXPERIMENTAL VERSUS PREDICTED VALUES OF
LIQUID HOLDUP FOR THE RUNS IN TABLE 1.

case we used a pipe length of 45 m because of the large size of
each slug unit. We use the results obtained after 60 s of simu-
lated physical time to avoid initial, strongly transient effects. As
shown in Fig. 3 below, steady state is effectively attained well be-
fore 60 s. We are first interested in the slug unit liquid holdup and
the pressure gradient. The liquid holdup for the entire slug unit
is determined as a length-weighted average of the film holdup
and the slug body holdup (equal to one). The pressure gradient
is estimated by the difference between the pressures from cor-
responding locations in two consecutive slug unit cells, divided
by the axial distance separating them. The sets of values for the
holdup and pressure gradient computed in this manner are then
averaged for the entire pipeline, excluding the contributions from
the entering and exiting slug units, yielding the values reported
here in Tables 2 and 3.

In the comparison, we include predictions from the correla-
tions by Garcia et al. [24–26], which were obtained by fitting a
large experimental database. From these works, we choose the
correlations developed for the slug flow pattern. A correlation
for the liquid holdup is given in [25] and labeled here as Cor-
relation 1. References [24, 26] provide formulas for estimating
the pressure drop; these are denoted here as Correlations 2 and
3, respectively.

From the results in Table 2, we find that the proposed model
predicts the experimental liquid holdup of [23] with an average
of the absolute value of the relative errors (AAVRE) of 9.8%,
which is satisfactory. This AAVRE is defined as in equation
(15) of [24]. On the other hand, values from Correlation 1 re-
sult in a higher average error AAVRE of 24.7%. Since the corre-
lations represent fittings of experimental data, we also compare
our model directly with the correlation. The relative difference
between predictions from our model with those from Correlation
1 turns out to be large, with an AAVRE of 28.8%. Overall, pre-
dictions from our model are in between the experimental values
and those from the correlation for the holdup — closer to the for-

Run Pressure gradient (kPa m−1)

Experiment Model Correlation 2 Correlation 3
[23] [24] [26]

1 0.180 0.024 0.031 0.030

2 0.276 0.196 0.227 0.219

3 0.416 0.239 0.281 0.273

4 0.286 0.295 0.332 0.369

5 0.425 0.118 0.138 0.135

6 0.302 0.178 0.199 0.239

TABLE 3. EXPERIMENTAL VERSUS PREDICTED PRESSURE
GRADIENTS FOR THE RUNS IN TABLE 1.

mer. Regarding the pressure gradients (Table 3), Correlation 2
(Correlation 3) predicts the experimental measurements with an
AAVRE of 41.9% (42.8%), whilst our model results in a slightly
larger average error of 45.8%. These are unsatisfactory. On the
other hand, the AAVRE between our model and Correlation 2
(Correlation 3) is 14.5% (16.7%) which is fairly good.

To perhaps improve the predictive capabilities of the model,
we may consider modifying the net momentum flux in Eq. (19)
with the inclusion of a head loss factor such as that applied
by [14]. This considers the effect of the recirculation zone in
the slug body near its front associated with the sudden expansion
experienced by the liquid moving from the film to the slug body
(with respect to a moving frame). Similarly, we may affect the
momentum flux in (20) with a factor that accounts for the fact
that the liquid does not suffer a sudden contraction moving into
the film region, as imposed by the uniform film thickness approx-
imation, but a gradual one resulting from the smooth profile of
the bubble nose.

Other ways to improve the model include testing alternative
friction factor correlations for the wall shear stress, especially in
the slug body, and for the interfacial shear stress. Also, consid-
ering aerated slug bodies may affect the pressure gradient. In
addition, trying other means for estimating the slug body length
of the incoming slug unit — for instance, by introducing the slug
frequency — and the wake effect in the bubble nose translational
velocity may be promising.

Local liquid holdup spatio-temporal history observed with
the steady and unsteady approaches for the first entering slug
unit is shown in Figures 2(a) and 2(b) for the conditions of Run
3 in Table 1. In both cases, the liquid holdup history shows that
propagation of the slug flow pattern to the outlet, located at the
20 m mark from the inlet, is achieved in about 12 s. Overall,
no significant differences are observed for the holdup evolution
between the two approaches. This spatio-temporal evolution is
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FIGURE 2. SPATIO-TEMPORAL EVOLUTION OF THE LOCAL
LIQUID HOLDUP: (A) STEADY STATE APPROACH FOR THE
FIRST SLUG UNIT; (B) UNSTEADY APPROACH. RESULTS ARE
FOR RUN 3 OF TABLE 1.

closely related to the pattern observed in Fig. 3(a), where the
pressure fluctuation associated with the first slug unit reaches the
outlet at 12 s.

As shown in Fig. 3 (also for Run 3), near the start of the
simulations, for t = 0.1 s (regardless of the treatment of the first
slug unit), the pressure distribution in the fluid along the pipe axis
has a constant gradient, spanning from about 110 kPa at the inlet
to the atmospheric level at the outlet. During the first few sec-
onds of the simulation, fluctuations of the pressure field develop
very differently between the steady and unsteady approaches for
the first slug unit. Figure 3(b) illustrates the occurrence of three
pressure peaks with the maximum pressure at the inlet observed
during the unsteady simulation: about 135 kPa at 0.5 s, 118 kPa
at 2.8 s, and 110 kPa at 6.4 s. These relatively large peaks do
not occur in Fig. 3(a). Pressure peaks in Fig. 3(b) are followed
by the respective troughs, and the amplitude in general quickly
decays.

The reason for the differences in the pressure behavior is re-
lated to the fact that, at the initial instant, there is a difference in
the velocity of the fluid inside the pipe (liquid superficial veloc-
ity, jl) and the velocity of the liquid in the incoming slug body
just outside the pipe inlet (mixture velocity, jl + jg). This “jump”
in the velocity is smoothed out for t > 0. With the steady ap-
proach for the first entering slug unit, the effect of this veloc-
ity difference on the gas dynamics of the bubble is significantly
damped in comparison to the unsteady approach.

Beyond the 15 s of the simulation shown in Fig. 3, the pres-
sure fluctuations in the unsteady simulation demonstrate average
values and fluctuation amplitudes similar to the steady approach
at all spatial instances. After 15 s, the inlet and outlet pressures
oscillate around 105.75 kPa and 101 kPa respectively for both
cases. Oscillation amplitudes for the steady approach are about
150 Pa and 350 Pa for the inlet and outlet pressure respectively,
and about 300-350 Pa for both inlet and outlet pressure for the
unsteady approach. The time history of pressure fluctuations in

FIGURE 3. SPATIO-TEMPORAL EVOLUTION OF THE PRES-
SURE DISTRIBUTION: (A) STEADY STATE APPROACH FOR THE
FIRST SLUG UNIT; (B) UNSTEADY APPROACH. RESULTS ARE
FOR RUN 3 OF TABLE 1.

the unsteady case appears to be more complex for both inlet and
outlet.

It would be useful in future work to obtain information from
tracking selected slug units from the time they are inserted to the
time they leave the pipe. Comparing the attributes of the first
slug unit with those of a slug unit entering the pipe after that one
has left may be revealing.

CONCLUDING REMARKS
In this work, we proposed a mechanistic model for unsteady

gas-liquid slug flow in horizontal or inclined pipes (upward flow)
with the slug tracking approach. The model is based on the mass
and momentum conservation principles applied not only to the
control volumes comprised within a typical slug-flow unit but
also to the surfaces modeling the slug fronts and tails. At these
locations, momentum balances result in jump laws for the pres-
sure. Moreover, mass balances for transient conditions lead to
non-uniform axial fluid velocity distributions for the liquid film
and elongated bubble regions even in the case of a uniform film
thickness.

Comparing with experimental data for horizontal slug flow,
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model predictions of the slug unit liquid holdup are fairly good,
contrasting with predictions of the pressure gradient, which
yielded significant discrepancies, similar to those obtained from
two correlations fitting a large experimental database. Compar-
ing the model with the empirical correlations resulted in large
differences for the liquid holdup; however, for the pressure gra-
dient the performance of the proposed model is satisfactory.

There are several ways that the model’s predictive capabili-
ties could be improved or modified. One way includes modifying
the momentum fluxes with factors that consider the actual config-
uration of the slug body front and tail regions. Another option is
to apply alternative correlations in the model, for instance, for the
friction factors, both for the wall and interfacial shear stresses.

In future work, we may include in the model the effects of a
swarm of small gas bubbles traveling within the slug body. We
also intend to model the random insertion process of slug units
employing a random distribution of the slug body length as well
as the associated process of merging of consecutive slug units.
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NOMENCLATURE
A Pipe cross sectional area.
AAVRE Average of the absolute value of the relative errors.
α Liquid holdup or void fraction in the elongated bubble-film

region.
D Pipe diameter.
g Acceleration of gravity.
h Thickness.
j Superficial velocity.
l Length.
µ Phase viscosity.
Nu Slug unit entering the pipe.
P Pressure.
ρ Phase density.
S Perimeter.
σ Interfacial tension.
t Time.
τ Shear stress.
u Local phase velocity.
u Average phase velocity.
x Slug body front position.
ẋ Slug body front velocity.
y Elongated bubble nose position.
ẏ Bubble nose translational velocity.

z Axial coordinate within the elongated bubble-film region’.
θ Pipe axis inclination angle with respect to the vertical.
ζ Spatial coordinate at a cross section.
Subscripts
e Elongated bubble-film region tail.
f Liquid film.
g Gas.
l Liquid.
o Elongated bubble nose.
s Slug body.
sx Inside the slug body, at position x.
sy Inside the slug body, at position y.
u Unit cell.
Superscripts
j Unit cell index.
m Iteration index.
n Time level.
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