
OCHEI, L.C. and EJIOFOR, C.I. 2018. Evaluating the effect of locking on multitenancy isolation for components of
cloud-hosted services. Advances in science, technology and engineering systems journal, 3(3), pages 92-99. Available

from: https://doi.org/10.25046/aj030312

Evaluating the effect of locking on multitenancy
isolation for components of cloud-hosted

services.

OCHEI, L.C., EJIOFOR, C. I.

2018

This document was downloaded from
https://openair.rgu.ac.uk

https://doi.org/10.25046/aj030312

www.astesj.com 92

Evaluating the effect of Locking on Multitenancy Isolation for Components of Cloud-hosted Services

Laud Charles Ochei*,1, Christopher Ifeanyichukwu Ejiofor2

1School of Computing and Digital Media, Robert Gordon University, United Kingdom
2Department of Computer Science, University of Port Harcourt, Nigeria, christopher.ejiofor@uniport.edu.ng

ARTICLE INFO ABSTRACT

Article history:

Received: 13 April, 2018

Accepted: 11 May, 2018

Online: 31 May, 2018

 Multitenancy isolation is a way of ensuring that the performance, stored data volume and access

privileges required by one tenant and/or component does not affect other tenants and/or components.

One of the conditions that can influence the varying degrees of isolation is when locking is enabled

for a process or component that is being shared. Although the concept of locking has been extensively

studied in database management, there is little or no research on how locking affects multitenancy

isolation and its implications for optimizing the deployment of components of a cloud-hosted service

in response to workload changes. This paper applies COMITRE (Component-based approach to

Multitenancy Isolation through Request Re-routing) to evaluate the impact of enabling locking for a

shared process or component of a cloud-hosted application. Results show that locking has a

significant effect on the performance and resource consumption of tenants especially for operations

that interact directly with the local file system of the platform used on the cloud infrastructure. We

also present recommendations for achieving the required degree of multitenancy isolation when

locking is enabled for three software processes: continuous integration, version control, and bug

tracking.

Keywords:

Multitenancy

Tenant Isolation

Locking

Cloud-hosted Service

Cloud Patterns

Software Process

Bug Tracking

1. Introduction

Multitenancy (that is, an architectural practice of using a single

instance of a service to serve multiple tenants) is a notable feature

in many cloud-hosted services. Multiple users are usually

expected to access a shared functionality or resource and so there

is need to ensure that processes and data associated with a

particular tenant and/or component does not affect others [1]. We

refer to this concept as multitenancy isolation. Multitenancy

isolation is a way of ensuring that the performance, stored data

volume ad access privileges required by one tenant and/or

component does not affect other tenants and/or components [1][2].

There are different or varying degrees of multitenancy isolation.

For example, a higher degree of isolation would be imposed on a

component that cannot be shared due to strict regulations than for

a component that can be shared with minimal reconfiguration. A

high degree of isolation implies that there is little or no

interference between tenants when they are accessing a shared

functionality/process or component of a cloud-hosted service, and

vice versa. We can achieve a high degree of isolation by

duplicating a component (and its supporting resources)

exclusively for one tenant.

One of the conditions that can influence the degree of isolation is

when locking is enabled for the functionality/process or

component that is being shared. Locking is a well-known concept

used in database management to prevent data from being

corrupted or invalidated when multiple users try to read or write

to the database [3]. Any single user can only modify items in the

database to which they have applied a lock that gives them

exclusive access to the record until the lock is released. The

concept of locking in database management is closely related to

multitenancy isolation in the sense that both of them are used to

prevent multiple users from performing conflicting operations on

a shared process or component and can also be implemented at

different or varying degrees. Despite this similarity, there is little

or no research on how locking affects multitenancy isolation and

its implications for optimizing the deployment for components of

a cloud-hosted service in response to workload changes.

ASTESJ

ISSN: 2415-6698

*Corresponding Author: Laud Charles Ochei, Robert Gordon University

E-mail : l.c.ochei@rgu.ac.uk

Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com

Special Issue on Multidisciplinary Sciences and Engineering

http://www.astesj.com/
http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com 93

Motivated by this problem, this paper applies COMITRE

(Component-based approach to Multitenancy Isolation through

Request Re-routing) to evaluate the impact of enabling locking for

a shared process or component of a cloud-hosted application. This

paper addresses the following research question: “How can we

evaluate the required degree of multitenancy isolation when

locking is enabled on a shared process or component of a cloud-

hosted service?” To the best of our knowledge, this study is the

first to apply an approach for implementing the required degree of

multitenancy isolation for a shared process or component of a

cloud-hosted service when locking is enabled and to analyse its

impact on the performance and resource consumption of tenants.

In this study, we implemented multitenancy isolation based on

three multitenancy patterns (i.e., shared component, tenant-

isolated component, and dedicated component) to analyse the

effect of the different degrees of isolation on performance and

resource consumption of tenants when one of the tenants is

exposed to high workload. The experiments were conducted using

a cloud-hosted continuous integration system using Hudson as a

case study deployed on a UEC private cloud. The results showed

that when locking is enabled, it can have a significant effect on the

performance and resource consumption of tenants especially for

operations that interact directly with the local file system of the

operating system or platform used on the cloud infrastructure.

The main contributions of the paper are:

1. Applying the COMITRE approach to empirically evaluate the
required degree of multitenancy isolation for cloud-hosted
software services when locking is enabled.

2. Presenting how locking is used in three different software
processes (i.e., continuous integration, version control and bug
tracking) to achieve multitenancy isolation, and its implication for
optimal deployment of components.

3. Presenting recommendations and best practice guidelines for
achieving multitenancy isolation when locking is enabled.

The rest of the paper is organised as follows: Section two

discusses the relevance locking to multitenancy isolation for

cloud-hosted services. Section three is the methodology, and

Section four presents the results and discussion. The

recommendations and limitations of the study are detailed in

Section five and six respectively. Section seven concludes the

paper with future work.

2. Relevance of Locking on Multitenancy Isolation for

Cloud-Hosted Services

Multitenancy is an important cloud computing property where a

single instance of an application is provided to multiple tenants,

and so would have to be isolated from each other whenever there

are workload changes. Just as multiple tenants can be isolated,

multiple components being accessed by a tenant can also be

isolated. We define “Multitenancy isolation” in this case as a way

of ensuring that the required performance, stored data volume and

access privileges of one component does not affect other

components of a cloud-hosted application being accessed by

tenants.

When a component of a cloud-hosted application receives a high

workload and there is little or no possibility of a significant

influence on other tenants, we say that there is a high degree of

isolation and vice versa. The varying degrees of multitenancy

isolation, can be captured in three main cloud deployment patterns:

(i) dedicated component, where components cannot be shared,

although a component can be associated with either one

tenant/resource or group of tenants/resources; (ii) tenant-isolated

component, where components can be shared by a tenant or

resource instance and their isolation is guaranteed; and (iii)shared

component, where components can be shared with a tenant or

resource instance and are unaware of other components.

Assuming that there is a requirement for a high degree of isolation

between components, then components have to be duplicated for

each tenant which leads to high resource consumption and running

cost. A low degree of isolation may also be required, in which case,

it might reduce resource consumption, and running cost, but there

is a possibility of interference when workload changes and the

application does not scale well.

Most of the widely used Global Software Development processes

like continuous integration (for example, Hudson), version control

(for example, with Subversion) and bug tracking (for example,

with Bugzilla) implement some form of locking whether at the

database level or filesystem level. In continuous integration for

instance, locking can be used to block builds with either upstream

or downstream dependencies from starting if an

upstream/downstream project is in the middle of a build or in the

build queue. Again, locking operations are also used in version

control systems (e.g., subversion) and bug tacking systems (e.g.,

bugzilla) [3] [4] [5].

There are several research work on multitenancy isolation such as

[6], [7] and [8]. However, none of these works have focused on

the effect of locking on multitenancy isolation for components of

a cloud-hosted service.

3. Evaluation

In the following, we present the experimental setup and the case

study we have used in this study.

3.1. Applying COMITRE to Implement Multitenant Isolation

We applied COMITRE to evaluate multitenancy Isolation in a

Version Control system. Fig. 1 shows the structure of COMITRE.

It captures the essential properties required for the successful

implementation of multitenancy isolation, while leaving large

degrees of freedom to cloud deployment architects depending on

the required degree of isolation between tenants. The actual

implementation of the COMITRE is anchored on shifting the task

of routing a request from the server to a separate component (e.g.,

Java class or plugin) at the application level of the cloud-hosted

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com 94

GSD tool. The full explanation of COMITRE plus the step-by-

step procedure and the algorithm that implements it is given in [9].

Fig. 1. COMITRE Architecture

We used a case study to evaluate the effect of tenant isolation at

the data level during automated build verification/testing process

for an application that logs every operation into a database in

response to a specific event such as detecting changes in a file. To

achieve this, we used Hudson’s Files Found Trigger plugin, which

polls one or more directories and starts a build if certain files are

found in those directories [10]. Multitenancy isolation was

implemented by modifying Hudson. This involved introducing a

Java class into the plugin that accepts a filename as argument.

During execution, the plugin is loaded into a separate class loader

to avoid conflict with Hudson’s core functionality [11].

To simulate multitenancy isolation at the data level when locking

is enabled, we configured the data handling component in a way

that isolates the data of different tenants (see Fig. 2). This is

related to the concept of (i) locking is used in version control

systems (e.g., Subversion) process to prevent clashes between

multiple tenants operating on the same working copy of a file; and

(ii) database isolation level which is used to control the degree of

locking that occurs when multiple tenants or programs are

attempting to access a database used by a cloud-hosted application.

Most bugs/issue tracking applications (e.g., Bugzilla, ITracker,

JIRA) use a database to store bugs [12]. Therefore, a tenant that

first accesses an application component locks (or blocks) it from

other tenants until the transaction commits.

3.2 Experimental Design and Statistical Analysis

A set of four tenants (T1, T2, T3, and T4) are configured into three

groups to access an application component deployed using three

different types of multitenancy patterns (i.e., shared component,

tenant-isolated component, and dedicated component). Each

pattern is regarded as a group in this experiment. We also created

two different scenarios for all the tenants (see section 4.3 for

details of the two scenarios). In addition, we also created a

treatment for configuring T1 (see section 4.2 for details of the

treatment). For each group, one of the four tenants (i.e., T1) is

configured to experience a demanding deployment condition (e.g.,

large instant loads) while accessing the application component.

Performance metrics (e.g., response times) and systems resource

consumption (e.g., CPU) of each tenant are measured before the

treatment (pre-test) and after the treatment (post-test) was

introduced.

Based on this information, we adopt the Repeated Measures

Design and Two-way Repeated Measures (within between)

ANOVA for the experimental design and statistical analysis

respectively. Experiments using repeated measures design make

measurements using only one group of subjects, where tests on

each subject are repeated more than once after different treatments

[13]. The aim of the experiment is to evaluate the effect of locking

on multitenancy isolation for components of cloud-hosted

services. The hypothesis we are testing is that the performance

and system’s resource utilization experienced by tenants

accessing an application component deployed using each

multitenancy pattern changes significantly from the pre-test to the

post test.

3.3 Experimental Setup and Procedure

The experimental setup consists of a private cloud setup using

Ubuntu Enterprise Cloud (UEC). UEC is an open-source private

cloud software that comes with Eucalyptus. The private cloud

consists of six physical machines- one headnode and five sub-

nodes. We used the typical minimal Eucalyptus configuration

where all user-facing and back-end controlling components

(Cloud Controller(CLC), Walrus Storage Controller, Cloud

Controller (CC), and Storage Controller (SC)) are grouped on the

first machine, and the Node Controller (NC) components are

installed on the second physical machine. In our experiment, we

installed NCs on all the other machines in order to achieve

scalability for this configuration.

We use a remote client machine to access the GSD tool running

on the instance via its public IP address. Apache JMeter is used as

a load balancer as well as a load generator to generate workload

(i.e., requests) to the instance and monitor responses. A file is

pushed to a Hudson repository to trigger a build process that

executes an Apache JMeter test plan configured for each tenant.

Each instance is installed with SAR tool (from Red Hat sysstat

package) and Linux du command to monitor and collect system

activity information. Every tenant executes its own JMeter test

plan which represents the different configurations of the

multitenancy patterns.

To simulate multitenancy at the data level using JMeter, we use

the JMeter Beanshell sampler to invoke a custom Java class that

runs a query that sets the database transaction isolation level to

SERIALIZABLE (i.e., the highest isolation level). To measure the

effect of tenant isolation, we introduce a tenant that experiences a

demanding deployment condition. We configured tenant 1 to

simulate a large instant load by: (i) increasing the number of the

requests using the thread count and loop count; (ii) increasing the

size of the requests by attaching a large file to it; (iii) increasing

the speed at which the requests are sent by reducing the ramp-up

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com 95

period by onetenth, so that all the requests are sent ten times faster;

and (iv) creating a heavy load burst by adding the Synchronous

Timer to the Samplers in order to add delays between requests,

such that a certain number of the request are fired at the same time.

This treatment type is similar to unpredictable (i.e., sudden

increase) workload and aggressive load.

Each tenant request is treated as a transaction composed of the 2

types of request: HTTP request and JDBC request. HTTP request

triggers a build process while JDBC request logs data into the

database which represents an application component that is being

shared by the different tenants. Transaction controller was

introduced to group all the samplers in order to get a total metrics

(e.g., response) for carrying out the two requests. Figure 5 shows

the experimental setup used to configure the test plan for the

different tenants in Apache JMeter.

The initial setup values for experiment are as follows: (1) No of

threads = 10 for tenant 1 (i.e., the tenant experiencing high load),

and 5 for all other tenants; (2) Thread Loop count = 2; (3) Loop

controller count = 10 for HTTP requests of tenant 1, and 5 for all

other tenants; 200 for JDBC requests of tenant 1, and 100 for all

other tenants; (4) Ramp-up period of 6 seconds for tenant 1 and

60 seconds for all other tenants; and (5) Estimated total number of

expected requests = 250 for HTTP requests and 2500 for JDBC

requests. This means that in each case the tenant experiencing high

load receives two times the number of requests received by each

of the other tenants. In addition, the requests are sent 10 times

faster to simulate an aggressive load.

We performed 10 iterations for each run and used the values

reported by JMeter and System activity report (SAR). The

following system metrics were collected and analysed:

(i) CPU Usage: The %user values (i.e., the percentage of CPU
time spent) reported by SAR were used to compute the CPU
usage.

(ii) System load: We used the one-minute system load average
reported by SAR.

(iii) Memory usage: We used the kbmemused (i.e., the amount
of used memory in kilobytes) recorded by SAR.

(iv) Disk I/O: The disks input/output volume reported by SAR
was recorded.

(v) Latency: The 90% latency reported by JMeter.

(vi) Throughput: We used the average throughput reported by
JMeter.

(vii) Error %: The percentage of request with errors reported by
JMeter.

4 Results

In this section, we discuss how the experimental results were

analysed. We first performed A two-way (within-between)

ANOVA to determine if the groups had significantly different

changes from Pre-test to Post-test. Thereafter, we carried out

planned comparisons involving the following: (i) a one-way

ANOVA followed by Scheffe post hoc tests to determine which

groups showed statistically significant changes relative to the

other groups. The Dependent variable used in the one-way

ANOVA test was determined by subtracting the Pre-test from

Post-test values.

Fig. 2. Multitenancy Data Isolation Architecture

 (ii) a paired sample test to determine if the subjects within any

particular group changed significantly from pre-test to posttest

measured at 95% confidence interval. This would give an

indication as to whether or not the workload created by one tenant

has affected the performance and resource utilization of other

tenants. We used the “Select Cases” feature in SPSS to select the

three tenants (i.e., the T2,T3,T4 that did not experience large

instant loads) for each pattern.

Table 1 summarizes the effect of Tenant 1 (i.e., the tenant that

experiences high load) on the other three tenants (T2, T2, T4). The

key used in constructing the table is as follows: YES - represents

a significant change in the metrics from pretest to post -test. NO -

represents some level of change which cannot be regarded as

significant; no significant influence on the tenants. The symbol “-”

implies that the standard error of the difference is zero and hence

no correlation and t-test statistics can be produced. This means

that the difference between the pre-test and post-test values are

nearly constant with no chance of variability. In the following, we

present a brief discussion the findings of the study based on the

estimate of the marginal means of change and paired sample test

for scenario 1 and scenario 2.

(1) Response times and Error%: The paired sample test result

shows that the response times of tenants changed significantly

only for the dedicated pattern. A further analysis of the EMMC

showed that the dedicated pattern had a much larger magnitude of

change than all the other patterns. The Error% showed that there

was no significant change in the tenants within any of the patterns;

there was either no significant difference or no variability.

(2) Throughput: The results of the paired sample test showed that

the tenants within all the patterns changed significantly from pre-

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com 96

test to post-test. The shared component showed the smallest

magnitude of change based on the plots of the EMMC.

(3) CPU: The plots of the EMMC showed that the shared

component had the largest magnitude of change. The other two

patterns were nearly the same. The paired sample test showed that

shared component was the only pattern that changed significantly.

(4) Memory: The plot of the EMMC showed that the shared

component changed showed the smallest magnitude of changed.

We noticed an interesting trend in the sense that magnitude of

change decreased steadily from the shared component to the

dedicated component. The paired sample test showed that tenants

deployed based on all the patterns changed significantly.

(5) Disk I/O: The paired sample test showed that there was no

significant change between the tenants deployed based on the

shared pattern. The plots of the Estimated Marginal Means of

changed (EMMC) confirmed that the shared component changed

the least.

Fig. 3. Changes in response time

(6) System Load: The paired sample test showed that there was

no significant influence on the system load for all the patterns.

This means that even when locking is enabled the system load is

not likely to change much.

5 Discussion

(1) CPU: The results showed that the CPU did not change

significantly, except for the shared component. This implies that

apart from the shared component, the degree of isolation was high.

Therefore, we can say that although locking for enabled, there

appears to be little or no influence in terms of resource

consumption. This is understandable because Hudson, like many

builders, do not consume much CPU.

(2) System Load: As the results show, the system load of the

tenants showed either a nearly constant magnitude of change or

no chance of variability. This means that even when locking is

enabled, there may be no significant change in the system load as

long as the size of the processor is large enough to cope of the

number of piled-up requests.

(3) Memory: Builders are well known to consume a lot of memory,

especially when handling difficult and complex builds. As the

results showed, there was a significant difference between the

tenants for all the patterns when locking was enabled. Overall, this

means that there was a low degree of isolation between the tenants.

In terms of the magnitude of change, the plots of EMMC showed

the largest magnitude of change while dedicated component was

the smallest. This implies that while the shared component is not

recommended to minimize performance, but it may be used

optimize the memory usage. On the other hand, the dedicated

component can be used to avoid performance interference.

(4) Disk I/O: Compilers and builders generally consume a lot of

disk I/O and it interacts directly with the operating system or the

filesystem of the cloud platform used. As shown in the paired

sample test result, tenants deployed based on shared component

did not change significantly, implying a high degree of isolation.

Therefore, when locking is enabled on an application component

that is shared while carrying out I/O intensive builds, then the

shared component would be recommended. The plots of the

EMMC, confirms this position in the sense that the shared

component showed the smallest magnitude of change out of the

three patterns.

Table I. Paired Samples Test Analysis of Multitenancy Isolation When Locking is enabled

Pattern Response

times

Error% Throughput CPU Memory Disk I/O System

Load

Shared No No Yes Yes Yes No -

Tenant-

isolated

No - Yes No Yes Yes -

Dedicated Yes - Yes No Yes - -

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com 97

(5) Response times and Error%: The results show that the

dedicated component had the largest magnitude of change for

response times, while the reverse was the case for error% which

had the largest magnitude of change for the shared component.

This means that the shared component would not be

recommended for preventing performance interference. It also

shows that there would be a high possibility of requests timing out

for tenants deployed based on shared component than for other

tenants. A possible explanation for this is that requests can be

delayed or blocked while trying to gain access to the shared

application component.

Fig. 4. Changes in error%

Fig. 5. Changes in throughput

Fig. 6. Changes in CPU

Fig. 7. Changes in memory

Fig. 8. Changes in disk I/O

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com 98

Fig. 9. Changes in system load

6. Recommendations and Limitations

The experimental results show that locking could have a

significant effect on multitenancy isolation. Running a complete

integration build in a slow network environment could take a lot

of time and resources. To achieve the required degree of isolation,

we recommend splitting the integration build into different stages

and implement separate multitenancy patterns for each phase. For

example, we could (i) creating a commit build that compiles and

verifies the absence of critical errors when each developer

commits changes to the main development stream based; and (ii)

creating a secondary build(s) to run slower and less important tests.

This study assumes that a small number of tenants send multiple

requests to an application component deployed on a private cloud.

The number of requests sent to the application component

configured within Hudson was within the limit of the UEC private

cloud used. Therefore, the results of this study should not be

generalized to large public clouds.

7. Application of Locking on Cloud-hosted Software

Development Tools and Associated Processes

A well-managed locking strategy is required to deal with real-time

tightly synchronized/consistency-critical cloud applications such

as such graph processing, financial applications, and real-time

enterprise analysis applications. These cloud-hosted applications

rely heavily on key software development processes such as

continuous integration, version control and bug/issue tracking to

build, test, and release software faster and more reliably.

Lock management in a multitenant cloud-hosted application is

essential because if an architect misses placing a lock where

required, then safety is violated. In contrast, if an architect inserts

unneeded locks in a cloud-hosted application, then the

performance of the system suffers due to the unnecessary

synchronizations [14]. In the following, we discuss how locking

is used in three important types of software development

processes, and some recommendations to follow regarding

achieving the required degree of multitenancy isolation.

7.1. Locking in Continuous Integration process

Locking is a very important operation in a typical continuous

integration process. For example, in Hudson, it is used to block

builds dependencies from starting if an upstream or downstream

project is in the build queue. One implication of this is that if there

is a presence of piled-up requests/builds on the queue, then the

system load is likely to be affected. This was not the case in the

experiments and so the system load was nearly constant with no

chance of variability.

We recommend that in order to optimize resources that support a

cloud-hosted service while at the same time guaranteeing

multitenancy isolation, the architect should avoid certain

operations lock processes for a long time, especially when there is

either limited resources or frequent workload changes. Such

operations include carrying out difficult and complex builds (i.e.,

builds that have many interdependencies with other programs or

systems), and (ii) running a large number of builds concurrently.

7.2. Locking in Version Control process

Locking (similar to the “reserved checkouts” mechanism) is used

internally in version control process (e.g., in Subversion) to

achieve mutual exclusion between users to avoid clashing

commits or to prevent clashes between multiple tenants operating

on the same working copy. A Version control system can be setup

to use a database as its backend. For example, it is common for

architects to setup subversion to store data in a Berkeley DB

database environment. When this is the case, locking can be used

internally by the Berkeley DB to prevent classes between multiple

processes and programs trying to access the database.

With respect to multitenancy isolation, when multiple tenants are

accessing a shared version control repository, it implies a shared

component is being used for deployment. Under this situation, it

is possible for fatal errors or interruptions to occur which can

prevent a process from having the chance to remove the locks it

has placed in the database. While implementing dedicated

component deployment would be an obvious solution to avoid

such interferences, one would have to go a step further when

working with networked repository. This could involve putting in

place an off-site backup strategy, and shutting down server

programs (e.g., Apache HTTP server) from accessing or

attempting to access the repository.

When using a version control system such as subversion that

implements locking, fetching large data remotely and finalizing a

commit operation can lead to unacceptably slow response times

and can even cause tenants request to time out. Therefore, having

the repository together with the working copy located on your

machine is beneficial. It is also important to note that file locking

http://www.astesj.com/

L.C. Ochei et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 3, 92-99 (2018)

www.astesj.com 99

along with data compression are some of the operations that could

consume resources, especially when accessing a shared repository

from a client with a slow network and low bandwidth.

7.3. Locking in Bug tracking process

A bug tracking system is used to keep track of reported software

bugs in software development projects. A major component of a

bug tracking system is the storage component that records facts

about known bugs. Depending on the type of storage component

used to store bugs, locking can be used to prevent multiple tenants

trying to access the bug data store.

Most bug and issue tracking systems (e.g., Bugzilla and JIRA) use

a database to store bugs. Enabling locking on the bug database,

for example, can also increase resource consumption (e.g., CPU,

memory), especially when running long transactions, running

complex transactions concurrently or transferring large bug

attachments across a slow network connection.

8. Conclusion and Future Work

In this paper, we have presented the effect of locking on

multitenancy isolation for components of a cloud-hosted service

to contribute to literature on multitenancy isolation and cloud

deployment of application components. The study revealed that

when locking is enabled for components of a cloud-hosted service,

it can have a significant impact on the performance and resource

consumption of tenants especially for operations that interact

directly with the local file system (e.g., FAT, NTFS, GoogleFS,

HFS+) of the platform on which the service is hosted. One option

we have recommended is to split a software process (e.g., a long

build process) into separate phases and then implement different

degrees of isolation for each phase.

We plan to apply our approach to implementing multitenancy

isolation for a cloud-hosted service in a distributed scenario where

locking is enabled for all or some of the components at different

of the cloud stack. For example, in distributed bug tracking some

bug trackers like Fossil and Veracity are either designed to use (or

integrated with) distributed VC or CI systems, thus allowing bugs

to be created automatically and inserted to the database at varying

frequencies.

References

[1] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns. Springer, 2014.

[2] E. Bauer and R. Adams, Reliability and availability of cloud computing. John
Wiley & Sons, 2012.

[3] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato, Version control with
subversion. O’Reilly, 2004.

[4] M. Moser and T. O’Brien. The Hudson book. Oracle, Inc., USA. Online:
accessed in November, 2017 from http://www.eclipse.org/hudson/the-
hudsonbook/book-hudson.pdf.

[5] Bugzilla.org. The bugzilla guide. The Mozilla Foundation. [Online: accessed
in November, 2017 from http://www.bugzilla.org/docs/.

[6] R. Krebs, C. Momm, and S. Kounev, “Architectural concerns in multi-tenant
saas applications.” CLOSER, vol. 12, pp. 426–431, 2012.

[7] S. Strauch, V. Andrikopoulos, F. Leymann, D. Muhler, “Esbmt: Enabling
multi-tenancy in enterprise service buses,” CloudCom, vol. 12, pp. 456–463,
2012.

[8] S. Walraven, T. Monheim, E. Truyen, and W. Joosen, “Towards
performance isolation in multi-tenant saas applications,” in Proceedings of
the 7th Workshop on Middleware for Next Generation Internet Computing.
ACM, 2012, p. 6.

[9] L. C. Ochei, J. Bass, and A. Petrovski, “Evaluating degrees of multitenancy
isolation: A case study of cloud-hosted gsd tools,” in 2015 International
Conference on Cloud and Autonomic Computing (ICCAC). IEEE, 2015, pp.
101–112.

[10] Hudson. Apache software foundation. [Online: accessed in January 2017
from http://wiki.hudsonci.org//display/HUDSON/Files+Found+Trigger].

[11] L. C. Ochei, A. Petrovski, and J. Bass, “Evaluating degrees of isolation
between tenants enabled by multitenancy patterns for cloud-hosted version
control systems (vcs),” International Journal of Intelligent Computing
Research, vol. 6, Issue 3, pp. 601 – 612, 2015.

[12] Serrano, N. and Ciordia, I., 2005. Bugzilla, ITracker, and other bug
trackers. IEEE software, 22(2), pp.11-13.

[13] Verma, J.P., 2015. Repeated measures design for empirical researchers. John
Wiley & Sons.

[14] Demirbas, M., Tasci, S. and Kulkarni, S., 2012, July. Maestro: A cloud
computing framework with automated locking. In Computers and
Communications (ISCC), 2012 IEEE Symposium on (pp. 000833-000838).
IEEE.

http://www.astesj.com/

	OCHEI 2018 Evaluating the effect.pdf
	ASTESJ_030312.pdf
	Special Issue on Multidisciplinary Sciences and Engineering
	2. Relevance of Locking on Multitenancy Isolation for Cloud-Hosted Services
	3. Evaluation
	3.1. Applying COMITRE to Implement Multitenant Isolation

	3.2 Experimental Design and Statistical Analysis
	3.3 Experimental Setup and Procedure
	4 Results
	5 Discussion
	6. Recommendations and Limitations
	7. Application of Locking on Cloud-hosted Software Development Tools and Associated Processes
	7.1. Locking in Continuous Integration process
	7.2. Locking in Version Control process
	7.3. Locking in Bug tracking process

	8. Conclusion and Future Work

