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ABSTRACT
This paper introduces two enhanced model order reduction techniques designed for 
scenarios involving frequency-weighted and frequency-limited-interval Gramians in 
the continuous-time domain. The primary objective is to address the instability issue 
identified in existing approaches in the continuous-time domain, as formulated by 
Enns for frequency-weighted scenarios and by Gawronski & Juang for frequency-
limited-interval scenarios. Despite numerous solutions proposed in the literature to 
mitigate this problem, a persistent challenge remains the high approximation error 
between the original and reduced-order systems. To overcome this limitation, the 
proposed improved techniques focus on ensuring stability in reduced-order models 
while simultaneously minimizing the approximation error between the original and 
reduced systems. Furthermore, these enhanced techniques provide a computationally 
straightforward, a priori error-bound formula. Numerical findings underscore the 
correctness and efficiency of the proposed techniques in reducing the approximation 
error while maintaining stability, thereby substantiating their efficacy.

KEYWORDS
Reduced-order model; frequency limited-interval; frequency-weights; Gramians; 
error-bound.

1. Introduction

1.1. Motivation & Encouragement

Large systems like nuclear reactors, autonomous systems, sensor systems, filters, 
biomedical systems, chemical systems, data imaging, power networks, etc., become 
complex due to several system parameters and modeling equations. The intricate de-
sign, modeling, and analysis of this large-scale dynamical system are complex. There-
fore, it is preferable to design or simulate a mathematical model before constructing the 
complete hardware of the dynamical systems. This practical approach is useful
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for analyzing some crucial parameters of the desired system, including input-output 
behavior, stability, passivity, etc. However, the problem arises when we have to design 
the mathematical model of complex, large dynamical systems (Cai & Chang, 2023; 
Du et al., 2021; Jin, Xiao, Song, & Qi, 2023; Li & Jiang, 2023). The reason behind 
this challenge is the need for more computational resources (Li & Jiang, 2022; Li, 
Jiang, & Mu, 2021). So, model order-reduction (MOR) is an algorithm used to extract 
reduced-order models (ROMs) from high order systems in order to facilitate ease in 
designing, optimization, simulation, and analysis of large-scale complex dynamical sys-
tems (Burohman, Besselink, Scherpen, & Camlibel, 2023; Ren & Wang, 2023). MOR 
captures the primal features of the original system while performing the reduction 
process (Abbasi, Mahmood, Khaliq, & Imran, 2022; Imran, 2022). The main task of 
MOR is to construct stable ROMs with less approximation error between the approxi-
mated and original mathematical model of the dynamical system (Imran, 2023; Imran 
& Imran, 2022a, 2022b).

1.2. Literature Review

In the MOR process, Balanced Truncation (BT) is the most common strategy to capit-
ulate the low-order model from the high-order model. It not only ensures the stability of 
ROM but also provides error-bound. In BT, the least controllable and observable states 
are discarded, and the most significant observable and controllable states are used to 
consider the low-order approximation of the original system (Hamdani, Imran, & 
Imran, 2022; Schröder & Voigt, 2023). Generally, BT performs the reduction process by 
using the full frequency range to compute the system’s response. However, in some 
applications like filter and controller reduction, it is preferred to consider frequency-
response approximation error over a certain frequency band of interest as sometimes the 
reduction error (approximation error) is more significant in a particular range of 
frequency. It builds the concept of frequency weights in the MOR process (Ghafoor & 
Imran, 2017, 2021; Liang, Chen, He, & Chen, 2019; Toor et al., 2019).
Enns technique (Enns, 1984) upgraded the BT strategy and presented a frequency-
weighted model-reduction scenario. However, this technique only ensures the stability 
for single-sided frequency-weights (input or output), and it may not yield stable ROMs 
in case of both-sided frequency-weights (inputs and outputs) because of some input-
output related symmetric matrices that are not conserved to be positive-definite or 
semi-positive definite. So, many frequency-weighted model-reduction techniques have 
been presented in literature to modify symmetric matrices in order to create stable 
ROMs for both-sided frequency-weights (Ghafoor & Sreeram, 2007; Imran, Ghafoor, & 
Sreeram, 2014; Lin & Chiu, 1990; Sreeram, 2004; Varga & Anderson, 2003; Wang, 
Sreeram, & Liu, 1999).

From the existing work, we have considered (Batool, Imran, Imran, & Ahmad, 2022; 
Imran et al., 2014; Wang et al., 1999) for comparison with our proposed work; however, 
these proposed techniques eventuate in high approximation error between original and 
ROMs with complex error-bound for some dynamic systems. Wang et al. (Wang et al., 
1999) suggested absolute function to modify symmetric matrices for developing stable 
ROMs. However, Wang et al. (Wang et al., 1999) method eventuates in high 
approximation error between original and ROM with complex error-bound for some 
dynamic systems because of large variations in some eigenvalues of original systems as 
it does not affect all the eigenvalues equally. Imran et al. (Imran et al., 2014) intro-
duced a method to subtract the least negative eigenvalue from all eigenvalues to ensure
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positive-definite or semi-definiteness of symmetric matrices for creating stable ROMs, 
but it leads to large approximation error due to nullification of the last eigenvalue. 
Later, Sammana et al. (Batool et al., 2022) achieved stability by multiplying consecu-
tive negative-eigenvalues to make symmetric matrices positive-definite or semi-positive 
definite. However, Sammana et al. (Batool et al., 2022) method also creates a large 
approximation error between original and ROM with complex error-bound because it 
does not affect all the eigenvalues equally.
Gawronski et al. (Gawronski & Juang, 1990) presented the concept of frequency 
limited-interval scenario in MOR procedure that simplified the MOR algorithm and 
considered the approximation in required frequency-range instead of constructing 
frequency-weights. So, for this technique, the controllability and observability of 
Gramians are defined for frequency limited interval. However, the frequency limited-
interval also capitulates unstable ROMs like frequency-weighted scenario for original 
stable system because input-output related symmetric matrices are not conserved to be 
positive-definite or semi-positive definite. Moreover, it does not compute error bound. 
So, to solve the stability issue in frequency limited-interval scenario Gugercin et al.
(Gugercin & Antoulas, 2004) used absolute function of negative-eigenvalues to en-sure 
the positive or semi-positive definiteness of symmetric matrices to achieve stable 
ROMS, and Ghafoor et al.(Ghafoor & Sreeram, 2008) developed stable ROMs by trun-
cating all negative-eigenvalues and retaining only positive eigenvalues. But (Ghafoor & 
Sreeram, 2008; Gugercin & Antoulas, 2004) techniques do not affect all negative-
eigenvalues equally, which lead to large approximation error in some systems. Imran et 
al.. (Ghafoor & Imran, 2015) guaranteed the stable ROMs in the desired frequency 
range by applying the frequency-weighted technique (Imran et al., 2014) in frequency 
limited-interval scenario. Later, Sammana et al. (Batool et al., 2022) introduced an 
algorithm that combines four different operations to create stable ROMs: power of total 
negative-eigenvalues, inverse power of total negative-eigenvalues, absolute and addition 
of consecutive eigenvalues. Sammana et al. (Batool et al., 2022) algorithm increases the 
overall computational complexity of the method that eventuates in large approximation 
error with complex error-bound. So, stability is achieved by existing techniques (Batool 
et al., 2022; Ghafoor & Imran, 2015; Ghafoor & Sreeram, 2008; Gugercin & Antoulas, 
2004) but at the cost of large approximation error and complex error-bound.

1.3. Main Contribution & Paper Organization

In this research, the development of effective MOR techniques for linear time-invariant 
(LTI) systems has been a continual pursuit in the control systems community. Address-
ing the limitations of existing approaches, our work introduces two innovative MOR 
methods specifically designed for frequency-weighted and frequency-limited interval 
scenarios in the continuous-time domain. The primary motivation is to offer stability 
assurances for ROMs by ensuring the positive-definiteness or semi-positive definiteness 
of symmetric matrices. These methods present a departure from traditional techniques 
by providing equal impact on all negative eigenvalues, avoiding eigenvalue truncation, 
and simplifying error-bound computations. The subsequent description highlights the 
distinctive features of our proposed techniques.

• Two novel and enhanced MOR techniques are tailored for frequency-weighted 
and frequency-limited interval scenarios in LTI systems within the continuous
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time domain.
• Assurance of positive-definiteness or semi-positive definiteness of symmetric ma-

trices, ensuring the stability of ROMs in the proposed methods.
• Equal impact on all negative eigenvalues without any eigenvalue truncation, dis-

tinguishing the proposed methods from previous approaches (Ghafoor & Imran, 
2015; Ghafoor & Sreeram, 2007, 2008; Gugercin & Antoulas, 2004; Imran et al., 
2014; Wang et al., 1999).
• Simplified error-bound computation is in contrast to (Batool, Imran, ELAHI, 

MAQBOOL, & GILANI, 2021; Batool et al., 2022), as the proposed techniques
offer a computationally straightforward approach with a more easily calculable 
frequency response a priori error-bound formula for both frequency-weighted and 
frequency-limited interval scenarios.

Numerical results and simulations are presented and compared with existing stability-
preserving MOR techniques (Batool et al., 2022; Enns, 1984; Imran et al., 2014; Wang 
et al., 1999) for frequency-weighted scenario and (Batool et al., 2021; Gawronski & 
Juang, 1990; Ghafoor & Imran, 2015; Ghafoor & Sreeram, 2007; Gugercin & Antoulas, 
2004) for frequency limited-interval scenario.
Furthermore, Section 2 provides a theoretical foundation, exploring the intricacies of 
frequency-weighted and frequency-limited interval scenarios. In Section 3, we detail our 
main result, ensuring positive-definiteness or semi-positive definiteness of symmetric 
matrices, overcoming stability challenges in ROMs, and surpassing the limitations of 
current methods. Section 4 shifts to practical validation through numerical simula-
tions, substantiating the computational simplicity and superior performance of our 
proposed techniques compared to existing methods. The paper concludes in Section 5, 
summarizing key findings and charting future research directions in MOR for LTI 
systems.

2. Preliminaries

Consider the following transfer function of a LTI continuous-time system be given as:

Go(s) = Co(sI − Ao)−1Bo + Do (1)

where {Ao ∈Rn×n, Bo ∈Rn×m, Co ∈Rp×n, Do ∈Rp×m} n, m and p represent original 
system order, number of inputs and outputs of the system respectively. The main task 
of MOR is to find as:

Gz(s) = Cz(sI −Az)−1Bz +Dz (2)

which is the approximated model of original system using full frequency-range,
where {Az ∈Rz×z,Bz ∈Rz×m, Cz ∈Rp×z, Dz ∈Rp×m} and z is the order of ROM.
Let Pco and QbO are the controllability and observability Gramians respectively, which
are presented below as:

Pco =

∫ ∞
−∞

eAotBoB
T 

o

eAo
T tdt (3)
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Qbo =

∫ ∞
−∞

eAo
T tCT 

o
Coe

Aotdt (4)

The above defined Gramians are the solution of following Lyapunov equations:

AoP co + PcoAo
T + BoBo

T = 0 (5)

Ao
T Qbo + QboAo + Co

TCo = 0 (6)

A non-singular transformation matrix T is used to obtain a balanced system from
dynamic system by converting observability and controllability Gramians into equal
and diagonal matrices:

T TQboT = T−1PcoT
−T = Σ = diag{σ1, σ2, . . . , σn} (7)

where σs ≥ σs+1, s = 1, 2, 3, . . . , n − 1, σz > σz+1 and formulate the Hankel Singular 
Values (HSV) of Σ that are used to measure the robustness of the observable and con-
trollable state (Imran et al., 2014). The ROM is constructed by applying the following 
transformation over the original system as:[

A11 A12

A21 A22

]
Ât = T −1AoT = , B̂t = T −1Bo =

[
B1

B2

]
(8)[ ]

Ĉt = CoT = C1 C2 , D̂t = Do (9)

where A11∈Rz×z. The ROM is obtained as: Gz(s) = C1(sI − A11)
−1B1 + Do.

2.1. Frequency-Weighted Model-Reduction Scenario

Consider the transfer function of the stable input-weights for continuous-time system 
be given as (Enns, 1984):

Vu(s) = Cu(sI − Au)−1Bu + Du (10)

where {Au ∈ Rnu×nu , Bu ∈ Rnu×mu , Cu ∈ Rpu×nu , Du ∈ Rpu×mu } and transfer function 
of the stable output-weights is presented as:

Wq(s) = Cq(sI − Aq)−1Bq + Dq (11)

where {Aq ∈ Rnq×nq , Bq ∈ Rnq×mq , Cq ∈ Rpq×nq , Dq ∈ Rpq×mq }. The augmented systems 
are created below

Go(s)Vu(s) = Cx(sI − Ax)−1Bx + Dx (12)

Wq(s)Go(s) = Cy(sI − Ay)−1By + Dy (13)
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where

[
Ax Bx
Cx Dx

]
=


BoDu

0 AAo BoC

u 
u

Bu
DoDu


 ,

[
Ay By
Cy Dy

]
=


BqDo

0 AAq Bq 
o

Co Bo
Cq DqCo DqDo


Co DoCu

Let the Gramians be defined as:

Px =

[
Pe P12

P T12 Pv

]
, Qy =

[
Qw QT12

Q12 Qe

]
(14)

satisfying the following Lyapunov equations:

AxPx + PxA
T
x +BxB

T
x = 0 (15)

ATyQy +QyAy + CTy Cy = 0 (16)

By expanding the 1st and 4th block of the equations (15) and (16) respectively, compute

(17)AoPe + PeAoT + Xw = 0 
Ao

T Qe + QeAo + Yw = 0 (18)

where

Xw = BoCuP
T
12 + P12Cu

T B
T 
o

+ BoDuDu
T Bo

T (19)

oYw = CT BTq Q1
T
2 + Q12BqCo + Co

T D
q
T DqCo (20)

By eigenvalue-decomposition of Xw and Yw we have the following

Xw = UwSwU
w
T = Uwdiag[Sw1 , Sw2 ]U

T
w (21)

Bw = UwS1
w
/2 = Uwdiag[S1

w
/
1

2, S1
w
/
2

2] (22)

Yw = VwRwVw
T = Vwdiag[Rw1 , Rw2 ]Vw

T (23)

Cw = R w
1
w
/2Vw

T = diag[R1/
1

2
, R1

w
/
2

2]Vw
T (24)

where

Sw1
=diag(s1,s2.....,sj), Sw2

= diag(sj+1, sj+2......, sn)

Rw1
=diag(r1,r2........, rt), Rw2

= diag(rt+1, rt+2....., rn)

where j and t represent number of positive eigenvalues of Xw and Yw, respectively.
Let the contragredient matrix T be obtained as:

T TQyT = T−1PxT
−T = Σ (25)

where Σ formulates the HSV which are arranged in the descending order. By computing 
transformation and partitioning the original system, the ROMs are obtained in a 
similar way as in equations (8) and (9).
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Remark 1. Since in Enns technique (Enns, 1984), Xw ≥ 0 and Yw ≥ 0 are not always 
guaranteed. So, in case of double sided frequency-weights the ROM may not remain 
stable (Wang et al., 1999).

2.2. Frequency-Limited Model-Reduction Scenario

Let controllability PGj and observability QGj Gramians are defined for frequency 
limited-interval as PGj = P (ω2) − P (ω1) and QGj = Q(ω2) − Q(ω1) respectively. The 
Gramians are expressed using Parseval’s relationship as:

PGj
=

1

2π

∫ ω2

ω1

(jωI −Ao)−1BoB
T
o(−jωI−ATo )−1dω (26)

QGj
=

1

2π

∫ ω2

ω1

(−jωI −ATo )−1CTo Co(jωI−Ao)−1dω (27)

These Gramians satisfy the following Lyapunov equations:

AoPGj
+ PGj

ATo +Xg = 0 (28)

AToQGj
+QGj

Ao + Yg = 0 (29)

where

Xg=(So(ω2)−So(ω1))BoBo
T+BoB

T
o (S∗o(ω2)−S∗o(ω1))

Yg=(S∗o(ω2)−S∗o(ω1))CTo Co+CTo Co(So(ω2)−So(ω1))

So(ω)=
j

2π
ln((jωI +Ao)(−jωI +Ao)

−1)

Eigenvalue-decomposition of Xg and Yg yield

Xg = U

[
Sj1 0
0 Sj2

]
UT , Yg = V

[
Rj1 0
0 Rj2

]
V T (30)

Sj1=diag(s1, ....., sj) ≥ 0, Sj2=diag(sj+1, ..., sn)<0

Rj1=diag(r1, ....., rt) ≥ 0, Rj2=diag(rt+1, ...., rn)<0

j ≤ n and t ≤ n represent positive eigenvalues of Xg and Yg matrices respectively.
S∗o(ω) is the conjugate transpose of So(ω). The contragredient matrix Tj is obtained
as:

T Tj QGj
Tj = T−1

j PGj
T−Tj = Σ (31)

The ROM Gz(s) = Cz(sI −Az)−1Bz +D is derived after computing the transformation 
and partitioning the original system in a similar way as in equations (8) and (9).
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Remark 2. In Gawronski et al. technique (Gawronski & Juang, 1990), the symmetric 
matrices Xg ≥ 0 and Yg ≥ 0 are not always guaranteed that lead to yield unstable ROMs 
(Gugercin & Antoulas, 2004).

3. Main Results

Although the primary frequency-weighted and frequency limited-interval MOR sce-
narios for continuous-time systems proposed by Enns (Enns, 1984) and Gawronski et al.
(Gawronski & Juang, 1990) respectively compute lowest approximation error, at the 
cost of unstable ROMs. The reason behind this instability issue is the symmetric 
matrices XZ ∈ {Xw, Xg}, YZ ∈ {Yw, Yg} which are not conserved to be positive or semi-
positive definite. So, we have applied the two proposed improved techniques on 
frequency-weighted and frequency limited-interval Gramians-based model-reduction 
scenarios to compute approximation error with easily calculable a priori error bound in 
comparison with existing stability conserving techniques. In first technique, the neg-
ative eigenvalue is subtracted from the sine function of negative eigenvalue to produce 
stable ROMs. In second technique, we have used exponential of inverse of negative 
eigenvalue and order of system-matrix (Ao) as power function (n) to compute stable 
ROMs. The proposed improved techniques yield stable ROMs with low approximation 
error by building some variations in the matrices {XZ , YZ} to ensure the positive/semi-
positive definiteness of input/output related symmetric matrices respectively. More-
over, we have presented numerical simulations at different Reduced-Orders (ROs) to 
show the efficacy of both techniques. The response of both techniques is different at 
same ROM of desired system.

3.1. Proposed Techniques

Let a new controllability PZk and observability QZk Gramians respectively, are calcu-
lated by solving the following Lyapunov equations:

(32)AoPZk + PZk
Ao
T + BZk

BZ
T
k 

= 0 
Ao
T QZk + QZk

Ao + CZ
T
k
CZk = 0 (33)

where k = 1, 2. For indefinite symmetric matrices XZ and YZ the new input, output
related matrices are defined as BZk

and CZk
respectively:

BZ1
=

{
UZ1

S
1/2
Z1

UZ2
(sin(SZ2

)− SZ2
)1/2

(34)

BZ2
=

{
UZ1

S
1/2
Z1

UZ2
((exp(1/SZ2

))n)1/2
(35)

CZ1
=

{
R

1/2
Z1
V T
Z1

(sin(RZ2
)−RZ2

)1/2V T
Z2

(36)

CZ2
=

{
R

1/2
Z1
V T
Z1

((exp(1/RZ2
))n)1/2V T

Z2

(37)
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where n is the order of the system matrix Ao and the terms UZ1
, UZ2

, SZ1
, SZ2

,
VZ1

, VZ2
, RZ1

and RZ2
are attained from the eigenvalue-decomposition of symmetric

matrices,

XZ = [UZ SZ U
T
Z ] = [UZ1

UZ2
]

[
SZ1

0
0 SZ2

] [
UTZ1

UTZ2

]
YZ = [Vz RZ V

T
Z ] = [VZ1

VZ2
]

[
RZ1

0
0 RZ2

] [
V T
Z1

V T
Z2

]
SZ1

= diag(s1, ....., sj), SZ2
= diag(sj+1, sj+2....., sn),

RZ1
= diag(r1, ........, rt), RZ2

= diag(rt+1, rt+2....., rn).

where j and t are the indexes of the positive eigenvalues.

Remark 3. When XZ > 0 and YZ > 0, BZk
= SZk

S
1/2
Zk

and CZk
= R

1/2
Zk
V T
Zk

.

Let a contragradient transformation matrix TZk
is derived as

T TZk
QZk

TZk
= T−1

Zk
PZk

T−TZk
= diag(σ1, σ2 · · ·σn) (38)

where σs ≥ σs+1, s = 1, 2, 3, ......., n−1, σz > σz+1. A ROM Gz(s) = C1(sI−A11)−1B1

is attained by applying the following transformation

T
Z
−
k

1AoTZk =

[
A11 A12

A21 A22

]
T
Z
−
k

1Bo =

[
B1

B2

]
CoTZk =

[
C1 C2

]
DZk = Do

Remark 4. The incorporation of non-linear terms (i.e., sin(.) and exp(.)) in BZk and 
CZk serves a precise and controlled purpose in our stability preservation strategies for 
LTI systems. These non-linear elements are strategically introduced to address the 
instability associated with indefinite matrices, specifically in XZ and YZ . By utilizing 
these non-linear terms, our approach ensures that each element of XZ and YZ becomes 
positive or semi-positive definite, thereby achieving stability in ROMs. This strategic 
incorporation serves as a transformative measure, effectively converting these matrices 
into positive or semi-positive definite forms, facilitating the attainment of a stable and 
linear system representation.

Remark 5. Since XZ ≤ BZk
BZ
T
k 
, YZ ≤ CZ

T
k
CZk , PZk > 0 and QZk > 0. Hence, the 

realization (Ao, BZk , CZk ) is minimal and stable ROM is guaranteed.

3.2. Error Bounds

Theorem 3.1. The following error bound holds for the proposed improved 
model-reduction techniques for frequency-weighted scenario,

||Wq(s)(Go(s) − Gz(s))Vu(s)‖∞ ≤ 2‖Wq(s)LZk ‖∞‖KZk Vu(s)‖∞ ∑n
s=z+1

σs
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[
CZk

Co

]
= rank [CZk ] are satis-if the rank conditions rank [BZk

Bo] = rank [BZk ] and rank 

fied, where

LZ1 =

{
(39)

LZ2 =

{
CVZ1

RZ
−

1

1/2

CVZ2 (sin(RZ2 ) − RZ2 )
−1/2

CVZ1
RZ
−

1

1/2

CVZ2 ((exp(1/RZ2 )
n)−1/2

(40)

KZ1 =

{
S
−1/2
Z1

UT
Z1
B

(sin(SZ2 ) − (SZ2 )
−1/2UT

Z2
B

(41)

KZ2 =

{
S
−1/2
Z1

UT
Z1
B

((exp(1/SZ2 )
n)−1/2UT

Z2
B

(42)

Proof. As the rank [BZk Bo]=rank [BZk ] and rank
[
CZk

Co

]
= rank [CZk ] holds. By

substituting B1 = BZ1
KZk , C1 = LZk

CZ1 , B = BZk
KZk and C = LZk

CZk , respec-
tively, computes:

‖Wq(s)(Go(s)−Gz(s))Vu(s)‖∞ =‖Wq(s)(Co(sI −Ao)
−1Bo−C1(sI −A11)

−1B1)Vu(s)‖∞
= ‖Wq(s)(LZk

CZk (sI − Ao)
−1BZk

KZk − LZk
CZ1 (sI − A11)

−1BZ1
KZk )Vu(s)‖∞ 

= ‖Wq(s)LZk (CZk (sI − Ao)
−1BZk − CZ1 (sI − A11)

−1BZ1 )KZk Vu(s)‖∞
≤ ‖Wq(s)LZk ‖∞‖(CZk (sI − Ao)

−1BZk − CZ1 (sI − A11)
−1BZ1 )‖∞‖KZk Vu(s)‖∞

If {A11, BZ1 , CZ1 , Do} is the ROM, which is attained by splitting a balanced realization 
{Ao, BZk , CZk , Do}, we have from (Wang et al., 1999), (Imran et al., 2014),
‖(CZk (sI − Ao)

−1BZk − CZ1 (sI − A11)
−1BZ1 )‖∞ ≤ 2 ∑n

i=r+1 σs. Therefore,

‖Wq(s)(Go(s) − Gz(s))Vu(s)‖∞ ≤ 2‖Wq(s)LZk ‖∞‖KZk Vi(s)‖∞ ∑n
s=z+1

σs

Remark 6. When input frequency-weight Vu(s) and output frequency-weight Wq(s)
become unity then the error bound expression reduced to ‖(Go(s) − Gz(s))‖∞ ≤
2‖LZk

‖∞‖KZk
‖∞
∑n

s=z+1σs; consequently, expression holds for frequency-limited
model-reduction scenario.

Remark 7. Two choices of KZk ∈ {KZ1 ; KZ2 } and LZk ∈ {LZ1 ; LZ2 } form basis to 
derive error bounds for each proposed technique.

3.3. Algorithmic Framework

To facilitate clarity and comprehension, the algorithmic framework is described in 
Algorithm 1. The proposed Algorithms 1 aim to achieve stable and linear ROMs for LTI 
systems in the continuous-time domain. The process involves integrating nonlin-ear 
treatments strategically to address challenges associated with indefinite matrices, 
particularly in the cases of Bo and Co. The algorithms focus on transforming these 
matrices into positive or semi-positive definite forms, ensuring stability in the ROMs 
while preserving the inherent linearity crucial for LTI system realization.
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Algorithm 1 Computation of ROM

1: procedure computeROM(Go(s), Vu(s), Wq(s), ω1, ω2)
2: Inputs:
3: . Original transfer function
4:

5:

Go(s)
Vu(s), Wq(s) 
ω1, ω2

. Weights
. Frequency 

interval6:

7: . Reduced Order Model
8:

9:

Output:
Gz(s)

Main Steps:
for each frequency ω in [ω1, ω2] do

10: ← performEigenvalueDecomposi-XZ , Xg, YZ , Yg
tion(Go(s), Vu(s), Wq(s), ω)

11: ← computeBCMatrices(XZ , Xg, YZ , Yg)
12:

13:

← solveEquations(32, 33) 
solveTransformationMatrix(38)

14:

BZk , CZk 

PZk , QZk 

TZk ←
Gz(s) ← partitionBalancedRealization(TZk , BZk , CZk )

15:

16:

storeROM(Gz(s)) 
end for

17: end procedure

18: function performEigenvalueDecomposition(Go(s), Vu(s), Wq(s), ω)
19: return XZ , Xg, YZ , Yg
20: end function

21: function computeBCMatrices(XZ , Xg, YZ , Yg)
22: return BZk , CZk

23: end function

24: function solveEquations(equations)
25: return PZk , QZk

26: end function

27: function solveTransformationMatrix(equation (38))
28: return TZk

29: end function

30: function partitionBalancedRealization(TZk , BZk , CZk )
31: return Gz(s)
32: end function

33: procedure storeROM(Gz(s))
34: store(Gz(s))
35: end procedure

11



4. Numerical Simulations

In this section, we showcase the effectiveness of the proposed improved model-reduction 
techniques through simulations of high-order systems. The numerical examples pre-
sented here serve as a comprehensive illustration of the performance of our techniques, 
emphasizing their practical applicability.
The following simulations demonstrate the ability of our techniques to handle high-
order systems while maintaining a high level of accuracy. To quantify the performance, 
we have considered numeric values representing the approximation error up to five dig-
its precision, providing a nuanced understanding of the proposed techniques’ efficacy.

4.1. Frequency-Weighted Model-Reduction Scenario

Example 1: Consider a 6th order original stable system (Imran et al., 2014) with 
following stable input-output frequency weights

Ai =

[
−2.25 −0

0 −0.05

]
, Bi =

[
2 0.5

0.2 0.3

]
Ci =

[
1.3 0.5
0.1 0.1

]
, Di =

[
0 0
0 0

]

Ao =

[
−4.2 0

0 −0.025

]
, Bo =

[
1 0.5

0.2 0.3

]
Co =

[
1.3 0.5
0.4 0.7

]
, Do =

[
0 0
0 0

]
The comparison of the approximation error and error bounds for different ROs is

Table 1. Error and Error Bounds Comparison for Example 1

RO Enns (1984) Wang et al. (1999) Imran et al. (2014) (Batool et al., 2022) Proposed-I Proposed-II

Error Error Bound Error Bound Error Bound Error Bound Error Bound

1 unstable 2462.8 6718.1 2724.4 30109 2604.3 3.7928e+05 2362.6 35378 2028.4 93130

2 12.742 136.68 2662.5 123.14 6768 137.81 1.492e+05 136.46 14152 129.69 41295

3 5.9973 39.9 718.24 225.28 3733.8 40.849 54607 36.545 3248.7 16.501 8103

4 0.24849 16.811 287.91 141.42 1745.5 22.858 19184 11.034 1317 4.89 3241.6

5 .079136 5.8769 68.684 9.417 415.71 13.678 4398.3 3.7963 302.23 1.7825 765.42

shown in Table 1. It can be noticed from Table 1 that the 1st order model built by 
Enns technique (Enns, 1984) gives unstable ROM as the pole is located at s = 0.0164; 
whereas, the Wang et al. (Wang et al., 1999), Imran et al., (Imran et al., 2014), Sam-
mana et al. (Batool et al., 2022) and the proposed methods build stable ROMs. The 
proposed improved techniques capitulate low approximation error as compared to ex-
isting stability-conserving techniques.

Example 2: Consider a hospital building model sparse system with 48th states 
(Chahlaoui & Van Dooren, 2002). The reduction of the given model is performed at 
different ROs to describe the efficacy of the proposed techniques. The model-reduction
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is done using the following stable input/output weights respectively,

Vu(s) = (0.6)/(s+ 0.6),Wq(s) = (s+ 3.201)/(s+ 0.0006)

Table 2 illustrates the corresponding results of the given model at ROs where the 
approximation error is significant, and it can be noticed from the given table that the 
stable ROMs built by the proposed techniques capitulate low approximation error in 
comparison with existing stability conserving techniques.

Table 2. Error and Error Bounds Comparison for Example 2

RO Enns (1984) Wang et al. (1999) Imran et al. (2014) Sammana et al. (2022) Proposed-I Proposed-II

Error Error Bound Error Bound Error Bound Error Bound Error Bound

5 0.0009 22.81 218.3 1.411 1365 6317.8 24302 0.143 3928 0.063 55.45

7 7.681e−5 7.896 134.4 9.597 1228 590.3 19235 5.257 2409 5.187 34.01

11 0.0001 15.57 60.59 2.398 9839.9 8.3519 11698 2.241 1085 2.234 15.31

21 1.363e−5 1.020 4.985 14.92 5299.3 2.5243 37287 0.635 890.2 0.631 1.256

22 2.42e−6 0.045 3.450 0.255 4926.8 0.17607 3249 0.028 617.2 0.028 0.871

23 8.88e−6 0.177 2.443 4.206 4559.4 0.27169 28168 0.076 436.8 0.0760 0.616

25 3.46e−6 0.215 1.017 2.954 3866.1 1.3695 2076 0.084 182.1 0.084 0.257

26 2.015e−7 0.0006 0.603 0.031 3550.2 0.040544 17711 0.0004 107.7 0.0003 0.152

28 1.16e−7 0.001 0.324 0.015 2997.3 0.045317 12535 0.0007 58.09 0.0007 0.081

31 1.10e−7 0.017 0.160 25.08 2267.3 0.27742 73492 0.009 28.51 0.009 0.040

32 4.03e−8 0.001 0.125 0.976 2044.9 0.038688 58817 0.0006 22.29 0.0006 0.031

33 1.76e−7 0.005 0.100 20.21 1830.8 73.807 48355 0.002 17.87 0.002 0.025

34 2.33e−8 0.001 0.075 0.013 1618.3 0.067925 38027 0.0006 13.48 0.0006 0.019

35 4.15e−8 0.007 0.061 7.754 1429.9 0.15128 29784 0.002 11.06 0.002 0.015

36 1.38e−8 0.0003 0.048 0.3655 1248.7 0.11549 21578 0.0001 8.682 0.0001 0.0122

38 2.01e−8 0.0002 0.025 0.004 902.4 0.0038687 74719 0.0001 4.610 0.0001 0.0065

39 5.38e−8 0.0049 0.015 0.585 759.1 0.27275 47582 0.0021 2.728 0.0021 0.0038

4.2. Frequency-Limited Model-Reduction Scenario

Example 3: Consider an example of a high-pass stable Chebyshev type-2 filter (Toor, 
Imran, Ghafoor, Zeeshan, & Rauf, 2018) of 8th order with desired frequency-interval [ω1, 
ω2] = [5, 11]rad/s. The comparison of the error function singular values σ[G8(s) − 
G1(s)] is shown in Fig. 1, where G8(s) is original order stable system and
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G1(s) is the 1st order ROM that is derived using (Batool et al., 2021; Ghafoor & Imran, 
2015; Ghafoor & Sreeram, 2008; Gugercin & Antoulas, 2004) and proposed techniques 
respectively. In the desired frequency range [ω1, ω2] = [5, 11]rad/s, a close-up view of 
the error plot is illustrated in Fig. 2 to show the efficacy of the results of the proposed 
technique. It can be noted that the proposed techniques capitulate compara-ble 
approximation error as compared to Gawronski et al. (Gawronski & Juang, 1990) 
technique and compute low approximation error as compared to stability preservation 
techniques (Batool et al., 2021; Ghafoor & Imran, 2015; Ghafoor & Sreeram, 2008) 
within the desired frequency range.
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Figure 1. Frequency reponse error comparison σ[G8(s) − G1(s)]

Example 4: Consider an example of a high-pass stable Chebyshev type-2 filter (Toor et 
al., 2018) of 50th order with desired frequency-interval [ω1, ω2] = [9, 20]rad/s. The 
comparison of the error function singular values σ[G50(s) − G3(s)] is shown in Fig. 3, 
where G50(s) is original order stable system and G3(s) is the 3rd order ROM that is 
derived using (Batool et al., 2021; Ghafoor & Imran, 2015; Ghafoor & Sreeram, 2008; 
Gugercin & Antoulas, 2004) and proposed techniques respectively. In the de-sired 
frequency range [ω1, ω2] = [9, 20]rad/s, a close-up view of the error plot is illustrated in 
Fig. 4 to show the efficacy of the results of the proposed technique. It can be noted that 
the proposed techniques capitulate comparable approximation error as compared to 
Gawronski et al. (Gawronski & Juang, 1990) technique and compute low approximation 
error as compared to stability preservation techniques (Batool et al., 2021; Ghafoor 
& Imran, 2015; Ghafoor & Sreeram, 2008) within the desired frequency range.

Example 5: Consider an example of a high-pass stable Chebyshev type-2 filter (Toor et 
al., 2018) of 20th order with desired frequency-interval [ω1, ω2] = [1, 9]rad/s. The 
comparison of the error function singular values σ[G20(s) − G5(s)] is shown in Fig. 5, 
where G20(s) is original order stable system and G5(s) is the 5th order ROM that is 
derived using (Batool et al., 2021; Ghafoor & Imran, 2015; Ghafoor & Sreeram, 
2008; Gugercin & Antoulas, 2004) and proposed techniques respectively. In the de-
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Figure 2. Close-up view of σ[G8(s)−G1(s)] in [ω1, ω2] = [5, 11]
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Figure 3. Frequency reponse error comparison σ[G50(s) − G3(s)]

sired frequency range [ω1, ω2] = [1, 9]rad/s, a close-up view of the error plot is illus-
trated in Fig. 6 to show the efficacy of the results of the proposed technique. It can be 
noted that the proposed techniques capitulate comparable approximation error as 
compared to Gawronski et al. (Gawronski & Juang, 1990) technique and compute low 
approximation error as compared to stability preservation techniques (Batool et al., 
2021; Ghafoor & Imran, 2015; Ghafoor & Sreeram, 2008) within the desired frequency
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Figure 4. Close-up view of σ[G50(s)−G3(s)] in [ω1, ω2] = [9, 20]
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Figure 5. Frequency reponse error comparison σ[G20(s) − G5(s)]

Analysis & Discussion:

The efficacy of the proposed improved model-reduction techniques is evident in Tables 1 
and 2, where the resulting ROMs exhibit notably lower approximation errors in 
comparison to established stability-conserving model-reduction techniques designed
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Figure 6. Close-up view of σ[G20(s) − G5(s)] in [ω1, ω2] = [1, 9]

for frequency-weighted scenarios (Batool et al., 2022; Imran et al., 2014; Wang et al., 
1999). Additionally, the proposed techniques provide computationally straightforward 
a priori error bounds.

A comparative analysis between the results of the technique proposed by Enns (Enns, 
1984) and our improved techniques reveals that while the Enns technique yields the 
least approximation error, it comes at the expense of producing unstable ROMs—an 
undesirable outcome. This emphasizes the significance of the proposed techniques in 
achieving a balance between low approximation error and stability.
The visual representation of the results in Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 5, and Fig. 6 
further supports the superiority of the proposed techniques. These figures illus-trate 
that proposed techniques consistently yield lower approximation errors compared to 
existing stability-conserving model-reduction techniques designed for frequency-
limited-interval scenarios (Batool et al., 2021; Ghafoor & Imran, 2015; Ghafoor & 
Sreeram, 2008; Gugercin & Antoulas, 2004).
In summary, the results presented in this study underscore the effectiveness of the 
proposed improved techniques in achieving a favorable trade-off between low approx-
imation error and stability, positioning them as promising advancements in the field of 
MOR for both frequency-weighted and frequency-limited-interval scenarios.

5. Conclusions

In conclusion, this paper introduces state-of-the-art advancements in model order re-
duction, specifically addressing scenarios involving frequency-weighted and frequency-
limited interval Gramians in the continuous-time domain. The novel techniques put 
forth herein not only establish stable Reduced Order Models but also exhibit signif-
icantly lower approximation error when compared to prevalent stability-conserving 
methodologies. Moreover, the inclusion of easily computable a priori error bounds fur-
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ther enhances the practical utility of the proposed techniques. The simulation results 
presented in this study showcase the effectiveness of the proposed approaches, demon-
strating their utility and competitiveness in comparison to existing model-reduction 
techniques. As a promising avenue for future research, the application of these im-
proved techniques to discrete-time systems and bilinear systems holds potential for 
expanding the scope of their applicability and advancing the state of the art in model 
order reduction methodologies.
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