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A B S T R A C T

A significant amount of previous research into feature selection has been aimed at developing methods that
can derive variables that are relevant to an entire dataset. Although these approaches have revealed substantial
improvements in classification accuracy, they have failed to address the problem of explainability of outputs.
This paper seeks to address this problem of identifying explainable features using a class-specific feature
selection method based on genetic algorithms and the one-vs-all strategy. Our proposed method finds relevant
features for each class in the dataset and uses these features to enable more accurate classification, and also
interpretation of the outputs. The results of our experiments demonstrate that the proposed method provides
descriptive insights into prediction outputs, and also outperforms popular global feature selection techniques
in the classifications of high dimensional and noisy datasets. Since there are no known challenging benchmark
datasets for evaluating class-specific feature selection algorithms, this paper also recommends an approach for
combining disparate datasets for this purpose.
. Introduction

The aims of feature selection are to identify a subset of high-
imensional features that can improve the predictive accuracy of a
lassifier, minimise computation time (Pourpanah et al., 2019) and/or
nable the interpretability of the result (Pourpanah et al., 2019). The
xplainability of prediction outputs is vital for the real-world applica-
ion of machine learning in domains such as medicine, aerospace and
inance where rationales for a model’s decisions are desiderata for a
ser’s trust (Došilović et al., 2018). Even though global feature selec-
ion methods have demonstrated that they can improve the predictive
ower of classification algorithms, they are limited in the number of
nsights and level of understanding that they can provide a human
nspector with. These methods seek to derive relevant features for an
ntire dataset. This is problematic because these features cannot be
inked to any specific prediction output, and therefore they cannot
rovide transparency to the process. A possible solution to this issue
s to employ a class-specific or local feature selection technique. In
his method, relevant features are identified for each class in a dataset,
aking it possible for a human inspector to interpret the rationale

or each predicted class by linking the decision back to those features
dentified for the class. This process of associating a set of attributes to a
rediction outcome is an explainable AI (XAI) technique called feature
ttribution (Janzing et al., 2020; Liu & Avci, 2019).
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E-mail addresses: chineduezenkwu@uniuyo.edu.ng (C.P. Ezenkwu), uduakidio@aksu.edu.ng (U.I. Akpan), blissustephen@gmail.com (B.U.-A. Stephen).

1 https://community.fico.com/s/explainable-machine-learning-challenge.

In this paper, we present a class-specific feature selection method
based on a metaheuristic optimisation technique (Glover & Kochen-
berger, 2006; Talbi, 2009) and the one-vs-all (Rifkin & Klautau, 2004)
strategy. Due to the exponential amount of time required to find
the best subset of features in a high-dimensional dataset, a feature
selection problem can be described as an NP-hard problem (Žerovnik,
2015). Metaheuristic algorithms such as genetic algorithms (GA) (Whit-
ley, 1994), simulated annealing (Van Laarhoven & Aarts, 1987), tabu
search (Glover, 1989), particle swarm optimisation (Kennedy & Eber-
hart, 1995) and so on, are generally identified as the most plausible
techniques for combinatorial optimisation problems (Yagiura & Ibaraki,
2001). Although a number of different metaheuristic algorithms can be
suitable for a feature selection problem, this paper adopts GA because
it is intuitive and naturally copes very well with discrete optimisation
tasks. The one-vs-all strategy transforms a multiclass problem into
multiple binary classification problems, making it possible to select the
relevant features for a specific class using GA. With a few of these
selected features, it is easier to realise the decision rules for each class
using an intuitive or whitebox algorithm such as the decision tree.

In the existing literature, a feature selection technique is often
evaluated on the basis of its accuracy with respect to the identified
relevant features (Chandrashekar & Sahin, 2014; Tang & He, 2016).
We argue that this evaluation metric is not sufficient for class-specific
https://doi.org/10.1016/j.mlwa.2021.100142
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feature selection tasks. In addition to prediction performance, a class-
specific feature selection method requires some domain knowledge
for the interpretation of the feature attributions. To the best of our
knowledge, there are no challenging benchmark datasets for a class-
specific feature selection problem. For example, the FICO community
hosts an anonymised Home Equity Line of Credit (HELOC) dataset for
its explainable machine learning challenge.1 This dataset has twenty
three well-defined credit behaviour features from a credit bureau. How-
ever, the dataset is not appropriate for a class-specific feature selection
challenge because it is a binary class dataset. In a two-class problem,
every useful feature is expected to contribute unique information to the
classification problem (Zhang et al., 2019) and must have a minimum
branching factor of two for the two classes. We agree that global
relevant features are adequate for explaining either class in a binary
class dataset. For example, if age is an important variable for offering
university admission, then age is likely to be an important factor for
denying selection. The only difference between the two classes are the
decision rules that apply to them based on this variable. As a result of
the aforementioned observation, this paper also presents an approach
for combining disparate datasets for more challenging class-specific
feature selection problems.

The remainder of this paper proceeds as follows: Section 2 presents
background information; Section 3 reviews related papers while the
proposed method is explained in Section 4. Experiments and results
are presented in Section 5 and Section 6 respectively, and Section 7
concludes the paper.

2. Background information

2.1. Feature selection methods

These are generally categorised as filter, wrapper and embedded
methods (Gnana et al., 2016; Pereira et al., 2018). This section reviews
these methods.

2.1.1. Filter methods
Filter methods generally use variable ranking techniques as criteria

for feature ordering and selection for classification or regression tasks.
Feature relevancy in filter methods is generally based on the correlation
between predictor variables and targets. Features which are indepen-
dent of the class values are irrelevant (Law et al., 2004) and should be
discarded.

One of the most popular criteria for scoring feature relevance in
filter-based feature selection methods is the Pearson correlation coef-
ficient (Battiti, 1994; Guyon & Elisseeff, 2003) presented in Eq. (1).

𝑅(𝑖) =
𝑐𝑜𝑣(𝑥𝑖, 𝑌 )

√

𝑣𝑎𝑟(𝑥𝑖) ∗ 𝑣𝑎𝑟(𝑌 )
(1)

where 𝑥𝑖 is the 𝑖th feature, 𝑌 is the class label, 𝑐𝑜𝑣() is the covariance
and 𝑣𝑎𝑟() is the variance. This criterion can only detect the linear
dependence between the variable and the target.

An information theoretic ranking criterion such as mutual infor-
mation (MI) also serves as a measure of dependency between two
variables (Battiti, 1994; Guyon & Elisseeff, 2003; Lazar et al., 2012;
Zhang et al., 2019). The MI between X and Y is given by:

𝐼(𝑌 ,𝑋) = 𝐻(𝑌 ) −𝐻(𝑌 |𝑋) (2)

where 𝐻(𝑌 ) is Shannon’s entropy, defined as follows:

𝐻(𝑌 ) = −
∑

𝑦
𝑝(𝑦)𝑙𝑜𝑔(𝑝(𝑦)) (3)

and 𝐻(𝑌 |𝑋) is the conditional entropy of output 𝑌 given that a variable
𝑋 is observed. 𝐻(𝑌 |𝑋) is defined in Eq. (4).

𝐻(𝑌 |𝑋) = −
∑∑

𝑝(𝑥, 𝑦)𝑙𝑜𝑔(𝑝(𝑦|𝑥)) (4)

𝑥 𝑦

2

Eq. (2) shows that if Y and X are independent, then MI will be zero
otherwise MI is greater than zero.

Other common filter-based feature selection methods including re-
lief (Kira & Rendell, 1992) and reliefF (Kononenko, 1994) which are
based on nearest neighbours. ReliefF is the multiclass variant of the
relief algorithm.

2.1.2. Wrapper methods
Wrapper methods use a search technique in identifying a subset

of features that will optimise the performance measure of a certain
classifier. This performance measure or objective function is depen-
dent on the type of problem. For example, a regression evaluation
criterion can be R-squared while classification evaluation criteria can
be accuracy, recall, precision, f1-score and so on. Common search
algorithms used for wrapper feature selection include the branch and
bound method (Kohavi et al., 1997; Narendra & Fukunaga, 1977) and
several metaheuristic algorithms. In addition to the heuristic search
algorithms, some wrapper feature selection methods are based on
sequential selection algorithms such as the sequential forward selec-
tion (SFS), sequential backward selection (SBS), sequential forward
floating Selection (SFFS) and sequential backward floating selection
(SBFS) (Chandrashekar & Sahin, 2014; Dunne et al., 2002; Ferri et al.,
1994; Somol et al., 1999). These methods iteratively add or remove
features until a termination criterion is met.

2.1.3. Embedded methods
While filter methods are independent of any induction algorithm,

wrapper methods use a classifier to evaluate the quality of feature
subsets. Moreover, wrapper methods do not ‘‘incorporate knowledge
about the specific structure a classification or regression function and
can therefore be combined with any learning machine" (Lal et al.,
2006). Embedded methods differ from these two methods because they
seek to incorporate a feature selection capacity in a learning algorithm.

For example, Guyon et al. present an embedded method that uses
the weights of a classifier for feature ranking (Guyon & Elisseeff, 2003;
Guyon et al., 2002). Weight 𝑤𝑗 is defined as follows:

𝑤𝑗 =
𝜇𝑗 (+) − 𝜇𝑗 (−)
𝜎𝑗 (+) + 𝜎𝑗 (−)

(5)

where 𝜇𝑗 and 𝜎𝑗 are the mean and standard deviation of the samples
in class (+) and class (-). Large positive 𝑤𝑗 values indicate strong
correlation with class (+) whereas large negative 𝑤𝑗 values indicate
strong correlation with class (-).

The feature ranking presented in Eq. (5) can be used to design a
classifier as follows:

𝐷(𝐱) = 𝐰.(𝐱 − 𝜇) (6)

where 𝐰 is the rank of the features or weight, defined in Eq. (5) and 𝜇
is the mean of the data - 𝜇 = (𝜇(+) + 𝜇(−))∕2.

Several embedded methods involve a change in the objective func-
tion of a classifier in order to learn the feature ranking using the
model weight vector (Guyon & Elisseeff, 2003; Guyon et al., 2002). For
example, the support vector machine (SVM) (Suthaharan, 2016) cost
function was modified to perform recursive feature elimination (RFE).
This method is known as the SVM-RFE method (Boser et al., 1992;
Guyon et al., 2002; Mundra & Rajapakse, 2009). A similar technique
has been developed for a multilayer neural network (Setiono & Liu,
1997).

2.2. Genetic algorithms

GA is a metaheuristic search technique based on Charles Darwin’s
principle of natural selection (Genlin, 2004; Thengade & Dondal, 2012).
As is typical with all population-based algorithms, GA starts with a
randomly generated population of candidate solutions which iteratively
improve from one generation to the next. The selection of individuals
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into the next generation depends on a fitness or objective function. In
addition to selection, GA employs other biologically inspired operators
such as mutation and crossover for generating high-quality individuals.
There are several ways of applying these operators depending on
whether we have a real-valued (Corcoran & Sen, 1994; Wu et al., 2007)
or a binary-valued (Cao et al., 2005; Pampara et al., 2006) optimisation
problem. In this paper, feature selection is considered to be a binary
optimisation problem. Algorithm 1 summarises GA procedure.

Algorithm 1: Genetic Algorithm pseudocode
START;
Generate initial population;
Compute fitness;
while Termination Criterion := FALSE do

Selection;
Crossover;
Mutation;
Compute fitness;

end

2.3. One-vs-all strategy

In multiclass classification, one-vs-all (ova) strategy involves train-
ing a single classifier for each class, with the samples of that class
labelled as 1 and all other samples as 0 (Bishop, 2006). Given a dataset
{𝑋𝑖, 𝑦𝑖}𝑁𝑖=1 and a classifier 𝐹 , where 𝑦𝑖 ∈ {1,… , 𝐾}, one-vs-all strategy
aims to train a list of binary classifiers 𝐹𝑘 ∀𝑘 ∈ {1,… , 𝐾} such that for
each 𝑘 the dataset is transformed to {𝑋𝑖, 𝑧𝑘𝑖 }

𝑁
𝑖=1 where 𝑧𝑘𝑖 = 1 if 𝑦𝑖 = 𝑘

and 𝑧𝑘𝑖 = 0 otherwise. To predict a new input vector 𝐱, 𝑘 of the classifier
𝐹𝑘 that gives the highest confidence score is reported.

3. Related work

Using GA as the feature selection technique, Maleki et al. im-
proved the performance of a k-Nearest Neighbours (kNN) algorithm
in detecting the early stages of lung cancer from 99.80% to 100%
accuracy (Maleki et al., 2020). Li et al. present a feature selection
method that combines feature weighted kNN and the real-valued GA
algorithm in ranking features in a high dimensional dataset (Li et al.,
2020). A new variant of GA named as the binary chaotic genetic algo-
rithm (BCGA) showed an improvement over traditional GA in feature
selection tasks using AMIGOS (A Dataset for Affect, Personality and
Mood Research on Individuals and Groups) and two healthcare datasets
having large feature space (Tahir et al., 2020).

Paniri et al. have proposed a multi-label feature selection method
using swarm intelligence ant colony optimisation (ACO)
(Paniri et al., 2020). The method has shown a better performance over
five state-of-the-art feature selection algorithms in nine well-known
datasets using the multi-level kNN (ML-kNN) classifier. ACO has also
been applied as a feature selection method in financial crisis predic-
tion (Uthayakumar et al., 2020), in breast cancer detection (Saranya &
Sasikala, 2020) and in the assessment of humorous speeches by TED
speakers (Adi et al., 2020).

Further examples of metaheuristic techniques have also been ap-
plied to feature selection problems. For example, the hyper learning
binary dragonfly algorithm (HLBDA), a dragonfly-based method, has
demonstrated an improved performance in the classification of twenty-
one datasets from the University of California Irvine (UCI) reposi-
tory (Dua & Graff, 2017) and Arizona State University, together with a
coronavirus disease (COVID-19) dataset as presented by Too and Mir-
jalili (2020). Simulated annealing has been used as a feature selection
method in flash-flood hazard assessment (Hosseini et al., 2020) while
the particle swarm optimisation(PSO) technique (Khan, 2020) and a
hybrid method using PSO and the flower pollination algorithm (Tawhid
3

& Ibrahim, 2020) have been used as feature selection techniques for
software effort prediction and on popular UCI datasets respectively.

Gao et al. propose the dynamic change of selected feature with
the class (DCSF) method (Gao et al., 2018), a feature selection tech-
nique based on class-specific mutual information variation. Unlike the
traditional feature selection methods, DCSF considers the dynamic
change of selected features with the class. However, instead of a set
of relevant features for each class, DCSF yields global features for the
entire dataset.

Although these methods have performed well in different areas of
their applications, none of them have considered a class-specific feature
selection task, making their outcomes more difficult to interpret by a
human inspector. While to the best of our knowledge, no metaheuristic
algorithm has been applied to class-specific feature selection, there
are a limited number of non-metaheuristic algorithms aimed at class-
specific feature selection tasks (Ruan et al., 2020; Yuan et al., 2020).
A number of these works measured the performance of the proposed
methods in terms of their prediction accuracies. As a result, some
popular datasets published on the UCI repository (Dua & Graff, 2017)
have been used for evaluating these methods. We argue that since these
datasets are not designed for class-specific feature selection tasks, they
are not suitable for evaluating class-specific feature selection methods.

The work in this paper is entailed by these limitations. This pa-
per proposes a metaheuristic class-specific feature selection technique
based on GA. In order to address the difficulties imposed by the lack
of benchmark datasets for evaluating class-specific feature selection
methods, this paper also presents an approach for combining well-
known datasets for more challenging class-specific feature selection
tasks.

4. Methodology

We define class-specific feature selection in the context of a mul-
ticlass supervised classification task. Given a dataset {𝑋𝑖, 𝑦𝑖}𝑁𝑖=1 and a
binary classifier 𝐹 , where 𝑦𝑖 ∈ {1,… , 𝐾} and 𝑋𝑖 ∈ 𝑅𝑑 ; and 𝑑 ≥ 2,
a class-specific feature selection algorithm  seeks to identify any set
of features 𝑘 ⊆ {𝑓𝑗}𝑑𝑗=1 (where {𝑓𝑗}𝑑𝑗=1 is a set of all 𝑑 features) for
ach class 𝑘 such that the performance score of the 𝑘th class classifier
𝑘 is maximised for each 𝑘 using {𝑋𝑘

𝑖 , 𝑧
𝑘
𝑖 }

𝑁
𝑖=1 where each feature in 𝑋𝑘

elongs to 𝑘 and 𝑧𝑘𝑖 = 1 if 𝑦𝑖 = 𝑘 and 0 otherwise.
Mathematically,

∗
𝑘 = argmax

𝑘⊆{𝑓𝑗}𝑑𝑗=1

1
𝑁

𝑁
∑

𝑖=1
I(𝐹𝑘(𝑋𝑘

𝑖 ) ∶= 𝑧𝑘𝑖 ) (7)

𝑘 ∈ {1,… , 𝐾}, where I(.) is an indicator function that returns a 1
when 𝐹𝑘 is correct and 0 otherwise and ∶= is a comparison operator.

While the one-vs-all strategy converts any multiclass classification
problem to multiple binary classification tasks, GA searches for the
relevant features for each binary classification task so that the selected
features are capable of describing the class of interest for each of the
binary classification tasks.

Next, we summarise the steps for the proposed GA-based class-
specific feature selection algorithm as follows:

Step I: One-Vs-All process – For each class 𝑘 ∈ {1,… , 𝐾}, {𝑋𝑖, 𝑧𝑘𝑖 }
𝑁
𝑖=1

← 𝑶𝒏𝒆𝑽 𝒔𝑨𝒍𝒍({𝑋𝑖, 𝑦𝑖}𝑁𝑖=1) where OneVsAll() is a function that trans-
forms the multiclass dataset {𝑋𝑖, 𝑦𝑖}𝑁𝑖=1 into a binary class dataset
{𝑋𝑖, 𝑧𝑘𝑖 }

𝑁
𝑖=1 such that 𝑧𝑘𝑖 = 1 if 𝑦𝑖 = 𝑘 and 0 otherwise.

The result of this process is a set of all the 𝐾 binary class datasets,
D = {(𝑋𝑖, 𝑧𝑘𝑖 )

𝑁
𝑖=1}

𝐾
𝑘=1.

Note that the one-vs-all strategy often lead to a class imbalance
problem when used with long multiclass datasets. Due to this, we apply
random oversampling of the minority class before the feature selection
step.

Step II: Feature selection for each class – For each {𝑋𝑖, 𝑧𝑘𝑖 }
𝑁
𝑖=1 ∈ D

do the following:
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Table 1
Experimental datasets.

Dataset Dimension Number
of classes

Citation of relevant paper(s)

Ionosphere 351 by 34 2 Sigillito et al. (1989)
Glass identification 214 by 10 7 Evett and Ernest (1987)
Dermatology 366 by 33 6 Güvenir et al. (1998)
Isolet 7797 by 617 26 Fanty and Cole (1991), Dietterich and Bakiri

(1991)
Ionosphere+glass 565 by 44 9 Ionosphere ⨁ glass identification datasets using

the method described in Fig. 2
Statlog heart 270 by 13 2 Brown (2004)
Landsat satellite 6435 by 36 6 Cheng et al. (2018)
Semeion handwritten digit 1593 by 256 10 Buscema (1998)
Soybean 35 by 47 4 Michalski (1980)
Splice-junction gene 3175 by 60 3 Noordewier et al. (1991)
a
I
w
c
b

d
m

Table 2
Hyperparameters for the SVM.

Regulariser C Kernel Decision
function shape

Learning rate 𝛾

1.0 Linear One-vs-rest 1
𝑁𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

Table 3
Hyperparameters for the Random Forest RF.

Number of
trees in the
forest

Maximum
depth

Minimum
samples split

Split
measurement
criterion

100 2 2 Gini

Table 4
Hyperparameters for the GA.

Fitness
function

Population
size

Crossover
probability

Mutation
probability

Tournament
size

Accuracy 200 0.5 0.2 3

A: Generate initial population – A population  of 𝑀 candidate solu-
tions, in which each solution is a list of 𝑑 binary values i.e. {0, 1}𝑑 , is
generated. The values 0 and 1 indicate if a feature in the corresponding
position is selected or not. 1 means that the feature is selected while 0
means otherwise.

B: Compute fitness – For each candidate solution 𝑐 ∈  , a binary
classifier 𝐹 𝑐

𝑘 is trained on {𝑋𝑖, 𝑧𝑘𝑖 }
𝑁
𝑖=1 and the performance score(fitness)

 𝑐
𝑘 is calculated.

C: Selection – A set 𝑄 of fittest individuals are selected based on
their fitness scores,  𝑐

𝑘 .
D: Crossover – The candidate solutions in 𝑄 are selected in pairs and

recombined to generate new population of candidate solutions (Hol-
land, 1975).

E: Mutation – With a small probability an arbitrary bit in a candidate
solution is flipped so as to avoid local minima as well as to maintain
genetic diversity from one generation to another.

F: Termination – If the change in the average performance scores
between generations is above a threshold (1.0×10−6 in this case) return
to 𝐵, otherwise terminate.

For clarity and brevity, the method proposed in this paper has been
referred to throughout as GA-ova, an acronym for one-vs-all genetic
algorithms.

5. Experiments

5.1. Descriptions

The aims of our experiments are to evaluate the predictive power of

a classifier when combined with GA-ova, and to also assess the ability d

4

Fig. 1. GA-ova learning curve on the glass identification data using SVM with the
maximum of five selected features.

of the method to select relevant features for each class in a dataset.
To demonstrate that GA-ova is able to improve the predictive power of
a classifier, its performances on different datasets are compared with
MI, RFE, DCSF and a GA-based method without one-vs-all technique.
The performance of each feature selection algorithm is evaluated using
SVM and Random Forest (RF) as classifiers. Fig. 1 shows the learning
curve of the GA-ova on the glass identification dataset using SVM with
the maximum of five selected features. The average fitness score of the
population converges to the maximum fitness score at the 80th epoch.

5.2. Experimental datasets

Due to computing and time constraints, we evaluate the perfor-
mance accuracy of GA-ova using only ten different datasets. To evaluate
the ability of GA-ova to select relevant features for each class, we
combined two disparate datasets using the approach illustrated in
Fig. 2. In Fig. 2 two datasets, (𝑋𝐴, 𝑦𝐴) and (𝑋𝐵 , 𝑦𝐵), are combined with

Gaussian noise of 0 mean and standard deviation of 1 i.e. 𝜖∼ (0, 1).
t is expected that an effective class-specific feature selection method
ill successfully attribute variables in the 𝑑 part of the features if any

lass in 𝑦𝐴 is predicted and for any class in 𝑦𝐵 the selected features will
elong in the 𝑘 part of the features.

Table 1 summarises the datasets used in the experiments. All the
atasets except the ionosphere+glass dataset are published on the UCI
achine learning repository (Dua & Graff, 2017). The ionosphere+glass

ataset is synthesised following the approach presented in Fig. 2. The
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.

Table 5
Performance accuracies of different feature selection algorithms on the datasets in Table 1. In each row, the value of the best performing technique is presented in bold typeface

Dataset Max. no
of features

Accuracy % (Mean ± Standard error)

GA MI RFE F-test DCSF GA-ova

SVM RF SVM RF SVM RF SVM RF SVM RF SVM RF

1 80.17 ± 1.32 81.20 ± 0.56 75.57 ± 0.94 76.63 ± 1.32 77.00 ± 1.02 83.4 ± 0.59 76.3 ± 2.03 76.93 ± 1.86 66.40 ± 1.89 81.90 ± 1.15 84.07 ± 0.68 81.13 ± 0.64
Ionosphere 3 89.07 ± 1.18 89.63 ± 0.41 79.63 ± 0.83 82.87 ± 0.98 88.30 ± 1.55 89.80 ± 1.00 82.00 ± 0.26 89.00 ± 1.769 81.90 ± 1.97 84.40 ± 1.17 90.63 ± 0.91 90.07 ± 0.19

5 90.10 ± 0.23 90.30 ± 1.03 80.13 ± 1.42 85.67 ± 0.97 85.53 ± 1.39 91.37 ± 0.60 82.43 ± 2.71 89.13 ± 1.72 80.10 ± 1.92 86.20 ± 1.14 88.67 ± 0.41 90.67 ± 0.90

1 52.57 ± 0.90 58.07 ± 0.97 48.27 ± 0.97 54.00 ± 0.87 52.73 ± 0.79 58.00 ± 1.02 44.10 ± 0.95 45.67 ± 0.83 39.33 ± 0.88 40.00 ± 2.00 56.87 ± 0.83 59.70 ± 0.87
Glass 3 65.13 ± 0.10 64.1 ± 0.75 51.07 ± 0.97 62.60 ± 0.81 60.97 ± 0.97 66.73 ± 0.85 55.20 ± 1.02 63.73 ± 0.92 45.00 ± 1.15 53.33 ± 1.53 58.03 ± 0.61 59.83 ± 0.79
Identification 5 64.97 ± 1.13 63.97 ± 0.83 54.00 ± 0.87 65.1 ± 1.02 68.7 ± 0.64 63.83 ± 0.92 59.63 ± 0.92 62.5 ± 0.87 49.00 ± 1.15 55.00 ± 2.00 61.1 ± 0.87 70.73 ± 0.79

1 50.67 ± 0.53 50.13 ± 0.53 51.20 ± 1.15 50.87 ± 0.88 25.60 ± 1.15 49.60 ± 1.15 49.60 ± 1.13 49.60 ± 0.00 45.40 ± 1.14 45.4 ± 0.93 81.00 ± 1.14 85.10 ± 1.91
Dermatology 3 81.27 ± 0.27 78.80 ± 2.20 63.6 ± 1.15 76.23 ± 0.90 72.70 ± 1.15 66.90 ± 1.15 49.60 ± 1.14 50.13 ± 0.27 61.30 ± 1.13 59.70 ± 0.00 94.77 ± 0.23 93.13 ± 0.53

5 91.43 ± 0.27 88.47 ± 0.83 76.37 ± 1.18 76.00 ± 1.15 90.90 ± 1.15 76.00 ± 1.15 53.70 ± 1.16 54.50 ± 0.00 78.20 ± 1.12 63.90 ± 1.15 95.00 ± 0.49 94.20 ± 1.15

1 9.00 ± 0.87 22.83 ± 0.99 9.03 ± 0.99 9.20 ± 1.02 10.30 ± 0.94 7.80 ± 0.87 11.10 ± 0.87 11.73 ± 0.85 10.10 ± 0.00 7.80 ± 0.00 29.70 ± 0.81 37.70 ± 0.64
Isolet 3 28.10 ± 0.84 22.83 ± 0.85 19.10 ± 0.87 16.70 ± 0.53 29.87 ± 0.97 23.17 ± 1.05 16.00 ± 1.02 18.97 ± 0.97 26.60 ± 0.00 18.30 ± 0.00 61.93 ± 0.99 62.20 ± 1.02

5 44.77 ± 0.89 38.03 ± 0.99 20.93 ± 0.85 16.87 ± 0.97 44.93 ± 0.92 30.17 ± 0.89 26.97 ± 0.97 21.10 ± 0.87 28.30 ± 0.00 23.5 ± 0.00 68.63 ± 0.79 66.50 ± 0.87

Ionosphere 1 52.13 ± 0.34 51.83 ± 0.85 50.17 ± 0.89 46.30 ± 0.95 48.40 ± 1.77 51.5 ± 0.52 50.03 ± 0.99 49.97 ± 1.59 64.03 ± 1.13 56.10 ± 1.16 51.87 ± 0.82 62.70 ± 0.75
+ 3 60.23 ± 0.99 62.00 ± 0.87 51.20 ± 0.95 52.23 ± 0.92 59.83 ± 1.59 53.87 ± 1.35 51.50 ± 1.29 59.23 ± 0.92 64.03 ± 1.13 55.00 ± 1.13 68.87 ± 0.89 72.10 ± 1.02
Glass 5 67.13 ± 0.99 69.17 ± 1.04 58.10 ± 1.02 63.10 ± 0.87 67.17 ± 1.68 63.00 ± 0.87 58.23 ± 0.92 62.70 ± 0.75 66.84 ± 1.15 56.60 ± 1.14 71.03 ± 0.92 73.27 ± 2.04

1 57.83 ± 0.62 77.81 ± 0.23 78.91 ± 1.10 66.13 ± 0.73 67.82 ± 1.03 77.70 ± 1.03 71.10 ± 1.13 71.10 ± 1.12 75.61 ± 0.94 76.70 ± 0.93 57.80 ± 1.14 59.82 ± 1.01
Statlog 3 72.97 ± 0.07 77.80 ± 1.01 79.53 ± 1.11 71.12 ± 0.70 75.64 ± 0.95 78.90 ± 1.15 79.53 ± 0.86 77.72 ± 0.58 76.70 ± 1.15 78.91 ± 0.67 80.00 ± 0.27 76.45 ± 0.98
heart 5 79.27 ± 0.34 77.83 ± 0.36 79.27 ± 0.98 83.85 ± 1.01 81.13 ± 1.00 77.82 ± 0.45 79.27 ± 0.78 85.61 ± 0.23 75.60 ± 0.88 74.43 ± 1.02 78.91 ± 0.59 81.82 ± 0.45

1 55.12 ± 0.65 51.52 ± 0.59 55.83 ± 0.14 50.34 ± 1.08 51.35 ± 0.82 51.56 ± 0.61 55.80 ± 0.43 50.00 ± 0.39 55.82 ± 0.96 50.34 ± 0.83 71.13 ± 0.23 69.62 ± 0.84
Landsat 3 77.80 ± 0.23 71.23 ± 0.34 76.15 ± 0.67 76.23 ± 0.52 77.02 ± 0.24 52.37 ± 0.85 76.12 ± 0.15 64.82 ± 0.97 76.32 ± 0.65 52.47 ± 0.86 77.02 ± 0.69 76.30 ± 1.02
satellite 5 80.1 ± 0.52 70.4 ± 0.41 77.34 ± 0.55 77.32 ± 0.47 79.91 ± 0.23 67.90 ± 0.91 77.42 ± 0.67 65.52 ± 0.52 78.14 ± 0.12 52.43 ± 0.20 83.13 ± 0.79 79.71 ± 0.23

Semeion 1 17.91 ± 0.12 17.32 ± 0.23 17.54 ± 0.39 17.40 ± 0.72 18.72 ± 0.34 16.71 ± 0.36 15.63 ± 0.23 15.12 ± 0.25 17.54 ± 0.20 17.42 ± 0.05 27.80 ± 0.51 20.93 ± 0.34
handwritten 3 25.72 ± 0.23 28.50 ± 0.15 25.32 ± 0.38 24.42 ± 0.49 40.32 ± 0.17 31.72 ± 0.55 29.81 ± 0.72 29.01 ± 0.37 36.81 ± 0.12 35.00 ± 0.24 39.51 ± 0.23 31.71 ± 0.24
digit 5 43.71 ± 0.34 39.72 ± 0.41 36.51 ± 0.45 34.24 ± 0.17 46.41 ± 0.21 31.62 ± 0.47 30.04 ± 0.43 33.82 ± 0.68 40.31 ± 0.23 35.42 ± 0.33 45.12 ± 0.34 39.71 ± 0.59

1 68.51 ± 0.46 68.75 ± 0.29 87.51 ± 0.23 87.50 ± 0.56 68.92 ± 0.36 68.81 ± 0.37 50.10 ± 0.45 51.23 ± 0.34 87.53 ± 0.19 87.52 ± 0.26 100.00 ± 0.00 62.52 ± 0.54
Soybean 3 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 93.81 ± 0.23 93.81 ± 0.23 87.53 ± 0.19 87.53 ± 0.19 100.00 ± 0.00 100.00 ± 0.00

5 100.00 ± 0.00 100.00 ± 0.00 93.83 ± 0.13 100.00 ± 0.00 100.00 ± 0.00 68.83 ± 0.62 93.81 ± 0.23 93.81 ± 0.23 87.53 ± 0.19 87.53 ± 0.19 100.00 ± 0.00 93.80 ± 0.84

1 54.52 ± 0.34 57.13 ± 0.23 62.83 ± 0.45 61.43 ± 0.44 63.12 ± 0.34 62.83 ± 0.24 62.83 ± 0.23 62.83 ± 0.23 62.80 ± 0.85 62.80 ± 0.85 57.92 ± 0.32 64.12 ± 0.35
Splice-junction 3 67.92 ± 0.24 74.23 ± 0.36 76.11 ± 0.31 73.21 ± 0.67 76.35 ± 0.40 77.13 ± 0.45 77.18 ± 0.34 77.10 ± 0.32 72.12 ± 0.37 65.13 ± 0.49 77.10 ± 0.32 78.53 ± 0.12
gene 5 72.30 ± 0.23 78.59 ± 0.23 83.78 ± 0.95 86.82 ± 0.49 87.23 ± 0.34 85.61 ± 0.38 87.23 ± 0.36 86.73 ± 1.02 72.83 ± 0.19 71.42 ± 0.29 87.41 ± 0.71 78.59 ± 0.67
Fig. 2. Combining disparate dataset for class-specific feature selection evaluation.

only data cleaning process we applied to each of the datasets was to
remove rows that contain empty or null values.

5.3. Hyperparameters

In this section, we present the hyperparameters used during the
experiments. Tables 2–4 are the hyperparameters for the SVM, RF and
GA respectively. To justify the comparisons of the competing feature
5

selection methods, these hyperparameters are the same for all the
methods in which the corresponding algorithm is applicable.

6. Results and discussions

6.1. Classification performance

The performances of the different feature selection techniques were
evaluated using the datasets presented in Table 1 with SVM and the
Random Forest classifiers. Figs. 3–4 and Table 5 demonstrate the results
of the experiment. In each row in Table 5, the value of the best
performing technique is presented in bold typeface. Fig. 5 presents the
average classification performance of the feature selection algorithms
across all datasets.

From the results of the experiment, it can be inferred that GA-
ova does not produce a better performance than the global feature
selection techniques in certain situations. For example, Figs. 3(a) and
3(b) presents the comparative performances of the different methods in
the classification of the ionosphere dataset. As described in Table 1, the
ionosphere dataset is a binary-class dataset, and as such, the one-vs-all
strategy in GA-ova makes little or no difference to the performance of
the method. The same situation applies to the Statlog heart dataset in
Figs. 4(a) and 4(b)

Similarly, from Figs. 3(c) and 3(d), the performances of GA-ova on
the glass-identification dataset do not stand out amongst those of other
methods. Although this dataset is a multiclass dataset of 7 classes, it
consists of only 10 features. We can conclude that problems involving
fewer features do not pose an adequate challenge to the global feature
selection methods. While it is important to provide the definition of
fewer features in this context, this is beyond the scope of this paper.

However, the GA-ova method has been shown to perform sub-
stantially better than other methods in Figs. 3(e)–3(j), 4(c)–4(d) and
4(h)–4(i). Figs. 3(g) and 3(h) show the performances of all the methods
on the isolet dataset, which from Table 1 consists of 26 classes and
617 features. While the classification of this dataset poses a significant
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Fig. 3. Performance accuracies of different feature selection algorithms on the datasets in Table 1.
difficulty to the other methods, GA-ova demonstrated a remarkable
performance on the dataset especially when the maximum number
of selected features is three or more. From Figs. 3(i) and 3(j) GA-
ova performed better than the other methods. As already described
in Section 5.2, the ionosphere+glass dataset consists of disparate data
with some Gaussian noise. GA-ova has been demonstrated to have
higher classification accuracy than the other methods on this dataset.
This is because unlike the global feature selection algorithms, GA-ova,
6

a local feature selection method, identifies features which are relevant
for each of the classes in the dataset. With the one-vs-all strategy, GA-
ova did relatively well in discarding features that are likely to add some
noise in the prediction of any of the classes.

6.1.1. Friedman statistical hypothesis tests
The Friedman test is a nonparametric equivalent of repeated mea-

sures analysis of variance (ANOVA) for comparing more than two
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Fig. 4. Performance accuracies of different feature selection algorithms on the datasets in Table 1.
samples that are related. It gives a significant result, if at least one of
the samples is different from the other samples (Zimmerman & Zumbo,
1993).

Fail to Reject H0: Paired distribution of performance scores across
datasets are equal.

Reject H0: Paired distribution of performance scores across datasets
are not equal.
7

For the performance scores of the feature selection algorithms
due to SVM and Random Forest, Friedman test gives p-values of
5.5856e−08 and 1.6894e−05 respectively.

These small values of p indicate that at least one set of performance
scores has a different distribution.

6.2. Identification of class-specific features

In addition to improving the predictive power of a classifier, another
key potential of GA-ova is its capacity to select class-specific features for
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Fig. 5. Average performance of the feature selection algorithms across all datasets.
he interpretability of prediction outcomes. This potential is currently
acking in global feature selection methods as shown in Table 6. Table 6
resents the selected set of five features due to each feature selection
ethod when applied to the ionosphere+glass dataset using SVM. As

llustrated in Section 5.2, the ionosphere+glass dataset consists of dis-
arate datasets with some Gaussian noise. The first part of the dataset
onsists of features f1 to f34 relevant for classes 1 and 2, while features
35 to f44 present some Gaussian noise to these classes. The second
art of the dataset contains features f35 to f44 with classes 3–5,7–9
nd features f1 to f34 are noise to these classes.

From Table 6, it can be observed that for each class in the iono-
phere+glass dataset GA-ova performed fairly well in selecting features
rom the parts of features that belong to the original dataset. With the
xception of class 8, GA-ova was able to select at least 60% of the
eatures for each class from the parts of features that are associated with
he class. However, we observed that some of the odd features that GA-
va associated to some of the classes, even though they are noise, have
ome descriptive characteristics and are useful for the classification of
he associated classes. For example, Fig. 6 demonstrates that the odd
eature f39 that is attributed to class 1 (i.e. data points in red) can
ontribute effectively to the classification of that class. From the Figure,
39 is able to identify substantial members of other classes (i.e. data
oints in blues). Combining f39 and the other features can provide a
ore powerful descriptor for classifying class 1. For example, Fig. 7

hows that the combination of f39 and f3 is able to separate out some
lass 1 data points from the cluster in the lower left corner of Fig. 6.
n Fig. 8, a decision tree is used to demonstrate the interactions of the
eatures selected for class 1 (f3,f7,f8,f18 and f39) in distinguishing this
lass from others. It can be seen that only f39 is sufficient for classifying
51 members of other classes correctly.

. Conclusions

This paper presents a class-specific feature selection method based
n GA and the one-vs-all strategy. A major limitation of global feature
election algorithms is that they search for a set of features that
ill optimise the predictive power of a learning algorithm. While

hese methods have shown a substantial improvement in the predictive
owers of classifiers, they are not capable of addressing the problem
f explainability of prediction outcomes. This paper is intended to
evelop a method that identifies relevant features for each class in
dataset. It shows that our proposed method outperforms popular

lobal feature selection techniques in classifying high dimensional and
oisy datasets. This paper also recommended a strategy for combining
isparate datasets for evaluating class-specific feature selection tasks.
8

Fig. 6. The distribution of class 1 and other classes with respect to f39 in the
ionosphere+glass dataset. Class 1 is in red while others is represented in blue. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 7. The distribution of class 1 and other classes due to the interaction of f3 and
f39 in the ionosphere+glass dataset. Class 1 is in red while others are represented in
blue. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)
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Table 6
A set of five features selected by each method from the ionosphere+glass
dataset using SVM.

Feature selection
technique

Class Selected features

GA All f7,f8,f22,f37,f41
MI All f1,f36,f37,f39,f41
RFE All f35,f36,f37,f38,f40
F-test All f36,f37,f38,f39,f41
DCSF All f43,f7,f25,f13,f31
GA-ova Class 1 f3,f7,f8,f18,f39

Class 2 f1,f5,f8,f24,f39
Class 3 f36,f37,f38,f41
Class 4 f13,f16,f37,f40, f41
Class 5 f4,8,f17,f37, f38
Class 7 f10,f37, f39, f40
Class 8 f2,f12, f14, f36, f42
Class 9 f28,f36, f37, f40, f41

Fig. 8. A decision tree showing the interactions of the selected features for the
prediction of class 1.
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