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Abstract—The ability to learn the sensorimotor maps of
unknown environments without supervision is a vital capability of
any autonomous agent, be it biological or artificial. An accurate
sensorimotor map should be able to encode the agent’s world and
equip it with the capability to anticipate or predict the results
of its actions. However, to design a robust autonomous learning
technique for an unknown, dynamic, partially observable or noisy
environment remains a daunting task. This paper proposes a
Temporospatial Merge Grow When Required (TMGWR) net-
work for continuous self-organisation of an agent’s sensorimotor
awareness in noisy environments. TMGWR is an adaptive neural
algorithm that learns the sensorimotor map of an agent’s world
using a time series self-organising strategy and the Grow When
Required (GWR) algorithm. The algorithm is compared with
GNG, GWR and TGNG in terms of their disambiguation perfor-
mance, sensorial representation accuracy and sensorimotor-link
error, a new metric that is developed in this paper to evaluate
how well a sensorimotor map represents causality in the agent’s
world. The outcomes of the experiments show that TMGWR
is more efficient and suitable for sensorimotor map learning in
noisy environments than the competing algorithms.

Index Terms—autonomous agent, sensorimotor awareness, dy-
namic environment, unsupervised learning, causality

I. INTRODUCTION

Learning in human infants, especially at the sensorimotor
stage as presented in Piaget’s constructivist epistemology [1],
has become a source of inspiration in autonomous systems
research. Through an unsupervised exploration of its envi-
ronment, a human infant improves its innate primitive model
of the world to a sophisticated sensorimotor representation
of its environment, which can be later applied in non-trivial
and complex skill-demanding tasks. This idea has been built
upon in the context of machine autonomy in recent times.
An autonomous agent must first explore its environment and
build a sensorimotor model of the environment to enable it to
predict the effects of its actions as well as to plan in order to
succeed in this environment. The aforesaid has revived inter-
ests in unsupervised learning as a possible approach towards
autonomous learning [2],[3]. Unsupervised learning has been
useful in data compression and dimensionality reduction [4]
due to its ability to extract principal features from unlabelled
multidimensional sensory observations. Leveraging on this
potential, unsupervised techniques have been used to confine
continuous space observations and/or actions to a finite space
[5],[6],[7],[8], hence simplifying an agent’s world for real-time

exploitation. Yet, traditional unsupervised learning methods
are unable to provide an agent with the right behaviour
information since the sensory information is not mapped to
specific outputs or actions as the case may be [9], [10]. Due
to this limitation, these methods are often combined, to act as
vector quantisation techniques, with supervised learning [7] or
reinforcement learning algorithms [11].

Self-organising Map (SOM) [12] is a very influential un-
supervised learning technique. It is a neurophysiologically-
motivated neural architecture that learns the topographic map
that best represents a set of observations. A unique feature
of SOM is the topological ordering of the neurons such that
the spatial location of each neuron in the map represents a
specific cluster of the input patterns and its neighbourhoods.
The performance of SOM largely depends on its dimension,
always predefined to suit the task at hand. This is a limitation
in cases where there is no prior knowledge of the change in the
dynamic distribution of the sensory inputs. Researchers have
developed several variants of SOM that allow the variation of
the dimension of the network based on certain criteria. Popular
examples of this are Growing Neural Gas (GNG) [13], Grow
When Required (GWR) network [14] and Grow Cell Structure
(GCS) [15]. The advantage of these kinds of network over the
standard SOM is that the correct number of nodes is not to
be decided a priori; as such, they are suitable in situations
where the distribution of observations is not known. The key
difference amongst these algorithms is in their mechanisms for
deciding when to add a new node. All the same, each of them
create edges among nodes based on their sensory proximity;
that is, if the nodes are close neighbours on the map. The edges
created based on sensorial proximities do not enable the map
to represent causality. Owing to this, Butz, Reif and Herbort
have investigated the possibility of linking nodes on the map
based on their sensorimotor proximities [16]. This implies that
a directed edge is connected from one node to another if there
is an action that can cause the agent’s experience to change
from the former to the later. With this, the agent is able to
develop a model for causal reasoning and planning in the
environment.

The technique proposed in this paper is among a few grow-
ing self-organising neural architectures that learn a topological
map of neurons with linked edges representing possible transi-
tions between neurons. Toussaint [17], [18] called such map a



sensorimotor map because it couples sensory prototypes with
motor signals. Toussaint employed GNG in the design of his
Connectionist World Model (CWM) [18]. The CWM is able to
learn a growing neural model for different observations in the
agent’s environment as well as the implications of its actions
by encoding motor knowledge in the lateral connectivity be-
tween nodes. In GNG, the base algorithm for CWM, edges are
created between nodes on the basis of their sensory proximi-
ties. The implication of using the original GNG in developing
the sensorimotor map of an agent is that it can create a lot of
unnecessary nodes and links, which may not properly represent
the dimensionality of the agent’s environment. Butz, Reif and
Herbort proposed the Time Growing Neural Gas (TGNG) [16].
TGNG, unlike in GNG, provides directed links between nodes
based on their sensorimotor proximities. However, both GNG
and TGNG are only suitable for Markovian environments and
their performances are very much affected if the environment
is noisy or partially observable. This informs our proposal of
the Temporospatial Merge Grow When Required (TMGWR)
network. TMGWR network is an adaptive neural architecture
that learns the topological map and the sensorimotor links
[16] between neurons using a time series self-organising
strategy [19]. TMGWR network connects nodes based on their
sensorimotor proximities, as is in TGNG, such that these edges
can encode the transition possibilities as well as the motor
signals that can cause transitions between nodes. Unlike in
GNG and TGNG, the TMGWR network takes advantage of the
GWR network to enable it to expand the size of the network
following the dynamic distribution of the input vectors. The
decision to add a node is made based on how well the map is
able to represent each instance in the environment.

The remainder of the paper is organised as follows —
section II presents a review of related work in sensorimotor
map learning. The metrics for evaluating and comparing self-
organising methods are discussed in section III. Section IV
presents a detailed explanation of TMGWR network. Exper-
iments conducted for this paper as well as the results are
described in section V while section VI concludes the paper.

II. REVIEW OF RELATED WORKS

Chaput [20] proposed a sensorimotor schema mechanism
called constructivist learning architecture (CLA). CLA is a
neural network implementation of the Drescher’s schema
mechanism [21]. Schema, according to Piaget, is a framework
for organising and representing some features of the world [1].
Drescher defined a schema as a triple comprising an agent’s
perception, action and expectations. CLA is realised using
hierarchies of SOMs [12] to help a robot to develop schemas
starting from sets of primitive items and actions to complex
sensorimotor schemas and goal-directed composite actions.
The author implemented a technique called harvesting, a very
important step in CLA algorithm, for selecting relevant items
for each schema before passing them on to the next layer of
SOM. The implementation of harvesting in CLA limits it to a
binary sensory environment and therefore CLA has a scale-up

issue and cannot be implemented as a real-world autonomous
agent.

Toussaint [17],[18] demonstrates that a self-organising neu-
ral network is able to couple sensory and motor signals
together. Toussaint used GNG to avoid the problem associated
with predefined fixed size SOM. The neural architecture is
named sensorimotor map because it integrates sensory and
motor signal in a map. Nodes in the sensorimotor map rep-
resent the sensory inputs while the lateral connections among
the nodes encode motor signals that have regularly resulted
in the same transitions. The lateral connections strengths are
modulated by the motor activations in a Hebbian-like fashion.
Unlike GNG used in Toussaint’s approach, Butz et al [16]
proposed the TGNG, a variant of GNG that connects nodes
on the cognitive map based on their sensorimotor proximities
instead of sensory proximities. This implies that two nodes
are connected if an action can cause a change from one node
to another.

Mohan, Morasso and Metta [22] built on Toussaint senso-
rimotor map [18] in developing a mechanism that allows a
GNOSYS robot to learn ‘when’ to optimize ‘what constraint’
while realising a spatial goal and to be able to push a ball
intelligently to the corners of a table while avoiding traps in
arbitrary positions on the table. A key contribution of the paper
is in the design of a bifurcation parameter, which measures the
anticipatory ability of the model. Based on the value of the
bifurcation parameter the agent decides whether to explore or
exploit its environment. Furthermore, the paper proposes three
simple rules for distribution of received end reward among
contributing neurons in a high dimensional sensorimotor map.

Kubisch [23] also proposed a GNG-based algorithm, the
Growing Multi-Expert Structure (GMES). Unlike in the tra-
ditional GNG, in GMES a winner node is the node with the
minimum prediction error. In addition, a new node is added
in GMES when the learning capacity of the winning node
is exhausted unlike in GNG in which a new node is added
at a constant number of intervals. However, in the paper
GMES was not used to learn the sensorimotor map of the
environment. The algorithm was employed for unsupervised
learning of continuous sensory state spaces in open-ended
reinforcement learning tasks. The experiment conducted in the
paper is a physically simulated pendulum.

Mici, Parisi and Wermter [24] used hierarchy of GWR
networks for sensorimotor learning and prediction of visually
demonstrated arm movements in order to reproduce them in
synchrony with the human demonstrator. However, this was
applied in an imitative learning scenario, which is in contrast to
our ideal environment for a completely autonomous agent. An
interesting finding in the paper is that a learning architecture
based on GWR network is able to learn in a noisy environment
with faulty visual sensor when provided with incomplete data
sequence.

Although these works have yielded good performances in
the diverse experiments conducted in the papers, yet, they
are not suitable for applications in high noise or ambiguous
sensor space. Each of the preceding algorithms assumes that



the environment is Markovian; so the current state is enough
for the agent to make decision about the next state. This is
not always the case in some real-world applications especially
when the agent’s world is partially observable or has a lot
of indistinguishable features. In such a case, some previous
history is required to enable the agent to disambiguate similar
stimuli since a sequence of the current and one or more of
its preceding states are used to classify each sensory input.
Variants of SOM have been developed to handle temporal
sequence processing [25]. Some of the most used temporal
processing unsupervised methods are Recursive SOM (Rec-
SOM) [26], Temporal Kohonen Map (TKM) [27], Recurrent
Self-Organising Map (RSOM) [27], SOM for structured data
(SOM-SD) [28], Merge Grow Neural Gas [29], Merge SOM
(MSOM) and Merge Neural Gas (MNG) [19]. In contrast to
the basic SOM, these methods use a sequence of previous best
matching units in deciding what the current best matching unit
will be. This makes them suitable for unsupervised clustering
of time series data such as speech signals [30], patterns from
stock time-series [31], human behavioural patterns [32] and
as well as robot’s experiences [33][34]. Even though these
temporal self-organising neural networks have proven suitable
for time-series and noisy datasets, they suffer some of the
limitations of their base algorithms. For example, RecSOM,
TKM, RSOM, SOM-SD, MSOM and MNG are based on
the standard SOM, as such they require that the number of
nodes are correctly chosen beforehand, causing them to be less
suitable for unknown environments. MGNG is based on GNG,
hence its neurons grow at constant time rate, independent of
the distribution of the instances in the dataset, making it likely
for MGNG to underfit or overfit the environment depending
on the maximum number of nodes specified during design.
Furthermore, none of these techniques can represent causality
since their nodes are linked by sensorial proximity and not
sensorimotor proximity.

A new kind of temporal sequence unsupervised model,
Topological Temporal Hebbian Self-Organizing Map
(T2HSOM) has been applied as a gaze planner in word
recognition [35]. T2HSOM is a modification of Temporal
Hebbian Self-Organizing Map (THSOM) [25]. Unlike
THSOM, which clusters input vectors based on their space
similarity only, the T2HSOM tries to optimise topological
clustering based on both space similarity and co-occurrence
of input vectors in similar sequences. However, like the
other temporal processing techniques, T2HSOM does not
incorporate actions between observations. Graziano, Koutnı́k
and Schmidhuber [36] modified T2HSOM by incorporating
a transition-map in the temporal activation component,
hence making explicit the use of the action taken between
observations. The algorithm is called Temporal Network for
Transitions (TNT). Experiments show that TNT learns a good
representation of different sizes of maze under conditions
of high-noise and stochastic actions. However, THSOM,
T2HSOM and TNT are built on SOM and thus require that
the number of nodes is correctly selected to make them
suitable for the environment of interest. Another limitation of

TNT is that its learning parameters decrease with the age of
the network. This is a huge disadvantage for an autonomous
learning agent, as it does not encourage continual and
open-ended learning, which is a key attribute for autonomy.

Pierris and Dahl proposed the Hierarchical SOM-based
Encoding (HSOME) [37],[38],[39]. HSOME builds on CLA
[20] but unlike in CLA, there is no limit to the height of
the hierarchy of SOMs. The algorithms has demonstrated the
ability to encode and reproduce sequential data as well as
identify hidden states. However, a major limitation of HSOME
is that “it produces a lossless encoding instead of a principle
component representation” [37], [39] of the observations in the
agent’s world. This requires that the map is large enough to fit
the sequences of observations. Meanwhile, HSOME consists
of SOMs, hence, the correct number of nodes is to be decided
at the design time. This imposes limitation to the scalability
of the method.

Recently, efforts have been made to develop a sensorimotor
model of a partially observable environment using a recurrent
deep neural network [9]. The authors presented an algo-
rithm called a Recurrent Sensorimotor Encoder (Recurrent-
SM-encoder) for compact representation of the agent world
using sensorimotor prediction and memory. Results in the
paper underscore the importance of memory in sensorimotor
learning and prediction. Although proposed for their future
work, the authors did not realise a sensorimotor map or
a graph representation of the environment with nodes and
edges representing observations and actions respectively. The
preceding forms the thesis of our research.

We propose an unsupervised recurrent growing sensorimo-
tor map learning technique for continuous self-organisation
of an agent’s sensorimotor awareness in partially observable
environments. The algorithm is called Temporospatial Merge
Grow When Required (TMGWR) Network. The key features
of the algorithm are I. the nodes on the sensorimotor map
are linked based on their sensorimotor proximity II. in similar
way as Merge Neural Gas (MNG) [19] it employs the recursive
temporal context approach as a way of keeping track of the
sensorimotor history. III. it uses the GWR network architecture
to enable the map to grow in respect to changes in the
environment IV. all the learning parameters are kept constant
so as to be able to handle learning in continuously changing
environments. Section IV presents a detailed explanation of
TMGWR.

III. METRICS FOR QUANTIFYING GOODNESS OF
SENSORIMOTOR MAP

The base algorithm for sensorimotor map construction as
presented in this paper is the self-organising neural network.
Quantisation error is a basic metric for evaluating the goodness
of SOM and its variants in representing a given set of data
points. However, the quantisation error “can only be used
to compare maps to each other” and not as a stand-alone
assessment of quality because the reported value is usually
in the scale of the input data [40]. Likewise, it does not
seem plausible to compare the performance of non-recurrent



self-organising algorithms with the recurrent types using the
quantisation error as a metric. This is because while the non-
recurrent self-organising methods such as the SOM, GNG,
TGNG and GWR optimise the quantisation error directly the
time series techniques such as TMGWR, MSOM, MNG and
so on have an additional component representing history in
the cost function; as such, the non-recurrent techniques would
have an unfair advantage over these recurrent techniques when
they are compared using quantisation error. In this paper, the
sensorial and the sensorimotor representation accuracies of the
algorithms are evaluated using the purity and the sensorimotor-
link error respectively.

A. Sensorial representation metric

Metrics such as the quantisation error, topographic error,
purity and so on can be used in quantifying the goodness of
a sensorimotor map in terms of how well it represents the
spatial distribution of the sensory observations in the agent’s
environment. In this paper, purity is used for this purpose.
Manning, Raghavan and Schutze defined purity as “a measure
of the extent to which clusters contain a single state” [41]. In
the context of this paper, purity measures the ability of each
node in the sensorimotor map to represent a known state in
the agent’s world. This is given as equation 1:

purity =

∑
n∈N maxs∈S |n ∩ s|

M
X100% (1)

N is the set of nodes that make up the sensorimotor map, S
is the set of world states in the agent’s environment, while M
is the total number of observations made by the agent while
learning in the environment.

B. Sensorimotor representation metric

To the best of our knowledge, there is no metric that is
able to evaluate how well a sensorimotor map represents
causality in the agent’s world. We define a new metric, called
sensorimotor-link error (SE), suitable for quantifying how well
different maps represent causality. SE is the ratio of number of
impossible transitions to the total number of transitions learnt
by the Map. This is summarised in equation 2. E is a set of
connections learnt by the map; |E| is the number of transitions
in E. I{.} is an indicator function that returns 1 when the
argument evaluates to true, otherwise 0. Ei

[
~w
{1}
t−1, ~w

{1}
t

]
is

the ith transition from node ~w
{1}
t−1 to ~w

{1}
t .

SE =

∑|E|
i=1 I{Ei[~w

{1}
t−1, ~w

{1}
t ] /∈ H}+ τ

|E|+ τ
(2)

H is a set of all possible transitions while τ is a sufficiently
small positive number. τ is useful for implementation as it
prevents division by zero if no transition has been learnt.
Throughout the paper τ is set to 0.0001.

IV. TEMPOROSPATIAL MERGE GROW WHEN REQUIRED
NETWORK

TMGWR is a self-organising neural network that learns a
set of spatial prototypes or neurons, N that best represent
sequences of sensory observations. The neurons are connected
by a set of edges E representing the change of state due to a
given action or motor signal. Each neuron n ∈ N consists of
a weight vector ~wn for abstracting observation in the current
time step and a context vector ~cn representing all the past time
steps of a sequence. Both ~wn and ~cn have the same dimension
as the input space.

The sensorimotor map is initialised with two neurons. The
agent acts randomly in the environment and generates a
sequence of observations ~x1, ..., ~xt. At each time step t, the
distance, dn(t) of each neuron n from the current observation
~xt and the global context ~Cg [19] is computed as follows:

dn(t) = α‖~xt − ~wn‖2 + (1− α)‖~Cg − ~cn‖
2
, ∀n ∈ N (3)

The parameter α ∈ (0, 1) helps to decide the importance of
current observation over history. ~Cg is a linear combination of
the weight and context vectors of the winning node l in the
previous time step t− 1.

~Cg = β ~wl + (1− β)~cl (4)

where, the parameter β ∈ (0, 1) controls the effect of the
recent past over history.

If the similarity ξ(t) of the weight of the winning node l at
time t, and the current observation ~xt is less than the activity
threshold θ, then a new node r is created with the weight ~wr

initialised to ~xt while the value of its context vector ~cr is set
to ~Cg calculated at the time t. The similarity function ξ(t) is
a Gaussian kernel.

ξ(t) = exp

(
−‖~xt − ~wl(t)‖2

2ω2

)
(5)

where, ω determines the shape of the Gaussian.
Meanwhile, if ξ(t) > θ then the winning unit l is updated

as follows:

~wl(t) = ~wl(t) + εb(~xt − ~wl(t)) (6)

~cl(t) = ~cl(t) + εb(~Cg(t)− ~cl(t)) (7)

In order to maintain topological ordering of nodes on the
map, each neuron i in the topological neighbourhood of l is
updated as follows:

~wi(t) = ~wi(t) + Ω(l, i)εn(~xt − ~wi(t)) (8)

~ci(t) = ~ci(t) + Ω(l, i)εn(~xt − ~ci(t)) (9)

where, εb and εn are adaptation rates for the winning node and
nodes in its topological neighbourhood respectively. Ω(l, i) is
the neighbourhood function for computing the similarity of



each neuron i from the winning neuron in the topological space
[36].

Ω(l, i) =

{
exp

(
−‖~xt−~wi(t)‖2

2ω2

)
, ‖~xt − ~wi(t)‖ < φ

0, otherwise
(10)

φ is the topological neighbourhood cut-off parameter. A di-
rected edge is created from the immediate past winning node
lt−1 to the current winning node lt if such edge does not
exist. The age of the new edge is initialised to 0. However,
if the edge already exists, its age is reset to 0 while the ages
of all edges that emanate from lt−1 are increased by 1. The
graph is pruned by deleting old edges and removing nodes that
do not have neighbours. The TMGWR algorithm is shown in
Algorithm 1.

Algorithm 1 TMGWR

1: create a set N of two nodes
2: define an empty transition set E
3: set the weight vectors of the two nodes to the initial

sensation ~xt−1 and the context vectors ~ct−1 = ~0
4: initialise the global temporal context ~Cg = ~0
5: while not terminated do
6: select action at
7: ~xt = ACT (~xt−1, at)
8: compute dn(t) ∀n ∈ N according to equation (3)
9: identify the winning node l = argminn∈Ndn(t)

10: Compute ξ(t) according to equation (5)
11: if ξ(t) < activity threshold, θ then
12: add a new node r to N
13: set the weight vector ~wr(t) to ~xt
14: set the context vector ~cr(t) to ~Cg

15: use r as the winning node i.e. set l to r
16: else
17: update ~wl(t) and ~cl(t) according to equations
18: (6) and (7)
19: update neighbours of l according to equations
20: (9) and (10)
21: end if
22: update ~Cg according to equation (4)
23: if the directed edge (lt−1,lt)) /∈ E then
24: create it and initialise its age to 0
25: else
26: reset its age to 0 and increase the age of every
27: other edges starting from lt−1
28: end if
29: remove old edges and lonely nodes
30: end while

V. EXPERIMENTS

A. Setup

Fig. 1 shows the environments used for the experiments
in this paper. Both environments are two-dimensional mazes.
The sensor values to the agent are 2D coordinates of locations
within the maze. Solid areas represent walls, while empty

areas are passages in the mazes. There are four possible
actions available to the agent: up, down, right and left. Each
action moves the agent by 1 unit in the desired direction if
there is no wall in the direction of the intended movement,
otherwise the agent’s state remains unchanged. Exploration
of the environment is performed with a random walk that
changes its direction with a probability of 10% if no wall is
in the agent’s current direction, otherwise, the agent chooses
any of the other three directions with 100% probability. The
length of the random walk in all cases is 20,000 time steps
during which the agent learns the topology of the maze
online. Experiment V-B1 uses the environment of Fig. 1a
while experiments V-B2 and V-B3 are run in the environment
of Fig. 1b. In each of the experiments, the performance of
TMGWR is compared with those of GNG, TGNG and GWR
both in noiseless and noisy scenarios. In noisy settings, the
agent’s actions in the environment result in noisy observations
with 20% probability. The observations are corrupted with
Gaussian noise (ε ∼ N (0, σ2)). The noise level ranges from
σ2 = 0 to σ2 = 4

3 at an interval of 1
6 . The hyperparameters

used throughout the experiments are presented in Table I. The
newly introduced parameters in the table, such as the ones
specific to TGNG and GNG, are defined as follows – λ is
the constant rate of adding nodes; µ is the error weighting
parameter; δ is the error reducing factor for the two nodes
with highest amount of errors; ρ is the error reducing factor
for all nodes while Tmax is the maximum age of each edge in
the map . For each algorithm, the hyperparameters were tuned
by Bayesian optimisation of purity measure with maximum
number of evaluations set to 150. The algorithms were opti-
mised independently in the environment of Fig. 1b following
the exploration policy described above. The maximum number
of nodes, Nmax any algorithm can grow up to is set to 300.
This is necessary to ensure that none of the algorithms overfits
the environment too much. Furthermore, the motivation part
of TGNG is ignored throughout the experiment so that the
same exploration policy is employed for all the algorithms in
different scenarios. Ten trials of each experiment were run,
with the boxplots of the algorithms’ performances reported.

(a) (b)

Fig. 1: Agent Environments. (a) 7 X 7 maze (b) 15 X 15 maze



TABLE I: Hyperparameters

Parameter Value
GWR GNG TGNG TMGWR

εb 0.5090 0.7923 0.8376 0.55194

εn 0.0944 0.1144 0 0.8999

λ 68

α 0.9501

µ 0.6535

δ 0.4832

θ 0.6716 0.6001 0.4135

β 0.800

ρ 0.9185

ω 1

Tmax 25 21 51 17

φ 0.6002

B. Results

1) Sensorimotor Map Building: This experiment shows
that an autonomous agent can use the TMGWR to learn the
sensorimotor map of either noiseless or noisy environments
with minimum number of nodes. The agent explores the
environment of Fig. 1a by choosing actions for 20,000 time
steps following the exploration policy that has been described
in section V-A. Using the outcomes of these actions, the
agent learns the sensorimotor map of the environment in
the sensorimotor space. The map learnt with TMGWR is
compared with those by GWR, GNG and TGNG in the same
scenario. Fig. 2 shows the best maps obtained for each of the
algorithms after five runs in each case. The experiments were
run both in noiseless and noisy scenarios – at a noise level of
σ2 = 1

6 . GWR and GNG, nodes are linked by undirected edges
indicating that the links are based on sensorial proximities
and not sensorimotor proximities as is the case with TGNG
and TMGWR. In the two scenarios, GWR shows a better
spatial representation of the environment than the GNG but
worse than TGNG and TMGWR. However, its sensorimotor
representation is poor because nodes are linked based on
their sensory proximity. GNG shows the worst representation
of the environment in both scenarios. This is because it is
least sensitive to the dynamic distribution of the sensory
input when compared to other methods. Moreover, it has too
many nodes causing it to overfit the environments. TGNG
under-represented the environment in the noiseless scenario
because it creates lesser number of nodes and sensorimotor
links than it required to represent the environment properly.
In the noisy case, TGNG add extra few nodes and it is able
to show a better spatial representation of the environment
than in the noiseless case. Meanwhile, TGNG established
some incorrect sensorimotor links in both scenarios. TMGWR
proved to represent the environment better than others in the
two scenarios, then followed by TGNG. The sensorimotor
maps due to TMGWR represent the environment with 100%
accuracy both in the noiseless and noisy cases. Fig. 3 shows
the number of nodes each of the algorithms use in building

(a) GWR (σ2 = 0)
Number of nodes = 37 (b) GWR

(
σ2 =

1

6

)
Number of nodes = 41

(c) GNG (σ2 = 0)
Number of nodes = 54 (d) GNG

(
σ2 =

1

6

)
Number of nodes = 216

(e) TGNG (σ2 = 0)
Number of nodes = 37 (f) TGNG

(
σ2 =

1

6

)
Number of nodes = 42

(g) TMGWR (σ2 = 0)
Number of nodes = 40

(h) TMGWR
(
σ2 =

1

6

)
Number of nodes = 40

Fig. 2: Sensorimotor maps for environment of Fig. 1a. Maps
on the left side represent the performances of the algorithms
in noiseless scenario while maps on the right side show the
performances of the algorithms in noisy scenario. Blue con-
nections in maps due to TGNG, show incorrect sensorimotor
links

sensorimotor map at different noise levels. The result shows
that algorithms that add nodes based on error such as GWR,
TGNG and TMGWR, do better than ones that add nodes at
constant time rate such as GNG. Moreover, TMGWR used the
minimum number of nodes as the noise level increases. Unlike
in GWR and TGNG, TMGWR uses history of observations
and the observation at the current time step while building the
sensorimotor map and this helps it to figure out the underlying



states of noisy observations and map them to the right nodes
instead of creating an extra node for them due to noise.
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Fig. 3: Number of nodes created by each algorithm at different
noise levels in the environment of Fig. 1a

2) Quantifying Goodness of the Map: The two metrics
presented in section III were used to measure and compare the
goodness of maps due to the algorithms. The performances of
the algorithms at different noise levels are reported in Fig. 4
and Fig. 5. At each noise level, the agent builds a map, using
each of the algorithms, while exploring the environment. After
20,000 time steps, the sensory and sensorimotor qualities of
the map are evaluated. Fig. 4 presents the percentage accuracy
in identifying correct nodes for the agent’s observations while
Fig. 5 shows the amount of error each algorithm made after
creating edges between the nodes. From the result in Fig.
4, TGNG and TMGWR performed better than the other two
algorithms with TMGWR leading TGNG. Meanwhile, in Fig.
5 TMGWR exhibits a better and more robust sensorimotor
behaviour even at high noise scenarios. The result shows
that the sensorimotor behaviour of TGNG is largely affected
by noise. Despite its excellent performance in a noiseless
scenario, TGNG performed worst than all the other algorithms
as the noise level increases. It creates a number of incorrect
paths or links at a high level of noise despite being able
to abstract the sensory observations to a good extent. The
better performance of TMGWR in this experiment can be
attributed to its temporal nature which makes it suitable in
non-Markovian environments.

3) Disambiguation of noisy observations: This experiment
is to evaluate the ability of a pre-trained sensorimotor map
in identifying the underlying-states from noisy observations
due to newly generated random walks. The algorithms were
first trained in the environment at σ2 = 1

3 noise level.
The sensorimotor maps due to the algorithms are used after
training to identify observations at different levels of Gaussian
noise while the agent performs random walks. At each noise
level, the purity of the map due to each of the algorithms
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Fig. 4: Percentage accuracies of the algorithms at different
noise levels in the environment of Fig. 1b
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Fig. 5: Sensorimotor-link errors of the algorithms at different
noise levels in the environment of Fig. 1b

is computed and reported in Fig. 6. TMGWR shows better
disambiguation potential than other algorithms. This is because
it uses both memory and its growing mechanism to keep
track of the changes in the environment. TMGWR network is
therefore more suitable for partially observable and changing
environment than the other three algorithms. Moreover, the
result shows that growing self-organising neural techniques
that use how much error the map makes in representing
observations, as a strategy for deciding when to add an extra
node or not, show better resistance to noise than the ones
that add nodes at constant time rate. For example, TMGWR,
TGNG and GWR performed better than GNG as the level of
noise is increased.
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Fig. 6: Disambiguation performances of the algorithms at
different noise levels in the environment of Fig. 1b

VI. CONCLUSION

The paper presents a Temporospatial Merge Grow When
Required (TMGWR) network for sensorimotor map learning
of an unknown, noisy or partially observable environment.
In order to learn the sensorimotor map of any given envi-
ronment, TMGWR develops the sensorial and sensorimotor
representations of the environment during explorations. This
map can later be used for autonomous decision-making or a
goal-directed planning in the environment. The algorithm has
been compared with GNG, GWR and TGNG on the basis
of their disambiguation abilities, sensorial and sensorimotor
representation accuracies. Sensorimotor-link error has been
formulated in this paper for evaluating how well a senso-
rimotor map learning algorithm can represent causality in
its environment. Based on the experiments presented in the
paper, it has been shown that TMGWR is more efficient and
suitable for sensorimotor map learning in noisy and partially
observable environments than the competing algorithms.

TMGWR recruits additional nodes using the same mecha-
nism that is applied in GWR algorithm. Moreover, TMGWR
learns to represent the environment in a recurrent manner
making it able to keep track of changes in the environment.
In this paper we did not leverage the habituation mechanism
in the traditional GWR algorithm. This could be useful for
an informed exploration of a large environment. We plan
to investigate how the use of the habituation mechanism or
similar intrinsic motivations can help TMGWR learn effi-
ciently in large environments. Instead of the agent engaging in
random explorations of its environment, intrinsic motivation
can enable it to pay more attention to interesting aspects
of the environment. Besides, this paper has not examined
goal-directed planning on the sensorimotor map learnt with
the TMGWR network. Future work will investigate goal-
directed planning based on TMGWR in a high-dimensional
noisy environment such as in a vision-based environment.

The performance of the TMGWR-based approach in goal-
directed tasks will be compared against those of traditional
reinforcement learning algorithms.
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J. Nachtwei, M. Ivanović, and L. Fodor, “Time-series
mining in a psychological domain,” in Proceedings of the
Fifth Balkan Conference in Informatics. ACM, 2012,
pp. 58–63.

[33] R. Gopalapillai, D. Gupta, and T. S. B. Sudarshan,
“Experimentation and analysis of time series data for
rescue robotics,” in Recent Advances in Intelligent In-
formatics, S. M. Thampi, A. Abraham, S. K. Pal, and
J. M. C. Rodriguez, Eds. Cham: Springer International
Publishing, 2014, pp. 443–453.

[34] P. Sebastiani and M. Ramoni, “Bayesian clustering by
dynamics of european school population,” in Proceedings
of the ISBA2000 Conference, 2000.

[35] M. Ferro, D. Ognibene, G. Pezzulo, and V. Pirrelli,
“Reading as active sensing: a computational model of
gaze planning during word recognition,” Frontiers in
Neurorobotics, vol. 4, p. 6, 2010.

[36] V. Graziano, J. Koutnı́k, and J. Schmidhuber, “Unsuper-
vised modeling of partially observable environments,” in
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2011,
pp. 503–515.

[37] G. Pierris and T. S. Dahl, “Humanoid tactile gesture
production using a hierarchical som-based encoding,”
IEEE Transactions on Autonomous Mental Development,
vol. 6, no. 2, pp. 153–167, 2014.

[38] ——, “Learning robot control using a hierarchical som-
based encoding,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 9, no. 1, pp. 30–43, 2017.

[39] ——, “A developmental perspective on humanoid skill
learning using a hierarchical som-based encoding,” in
2014 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2014, pp. 708–715.

[40] G. T. Breard, “Evaluating self-organizing map quality
measures as convergence criteria,” 2017.

[41] C. Manning, P. Raghavan, and H. Schütze, “Introduction
to information retrieval,” Natural Language Engineering,
vol. 16, no. 1, pp. 100–103, 2010.


	coversheet_template
	EZENKWU 2021 Unsupervised temporospatial neural (AAM)

