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Abstract
Due to their dependence on a task-specific reward function, reinforcement learning agents are ineffective at responding to a
dynamic goal or environment. This paper seeks to overcome this limitation of traditional reinforcement learning through a
task-agnostic, self-organising autonomous agent framework. The proposed algorithm is a hybrid of TMGWR for self-adaptive
learning of sensorimotor maps and value iteration for goal-directed planning. TMGWR has been previously demonstrated
to overcome the problems associated with competing sensorimotor techniques such SOM, GNG, and GWR; these problems
include: difficulty in setting a suitable number of neurons for a task, inflexibility, the inability to cope with non-markovian
environments, challenges with noise, and inappropriate representation of sensory observations and actions together. However,
the binary sensorimotor-link implementation in the original TMGWR enables catastrophic forgetting when the agent expe-
riences changes in the task and it is therefore not suitable for self-adaptive learning. A new sensorimotor-link update rule is
presented in this paper to enable the adaptation of the sensorimotor map to new experiences. This paper has demonstrated that
the TMGWR-based algorithm has better sample efficiency than model-free reinforcement learning and better self-adaptivity
than both themodel-free and the traditional model-based reinforcement learning algorithms.Moreover, the algorithm has been
demonstrated to give the lowest overall computational cost when compared to traditional reinforcement learning algorithms.

Keywords Autonomous agent · Planning · Unsupervised learning · Sensorimotor · Artificial intelligence

1 Introduction

As the scope for robotic applications extends from structured
to unstructured and more complex environments, autonomy
has become a desideratum for most of today’s robots. The
practice of handcrafting robots does not give them the capa-
bility to cope with unforeseen situations. Although several
research contributions have been made towards robot auton-
omy, we are nowhere near the level of autonomy that is
exhibited by animals, even ones at the lowest biological level
of organisation. This is because animals are born with innate
capabilities, both in their body structure and intelligence, to
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survive and develop in their milieus; their behaviours and
sometimes their morphological traits can evolve to adapt to
persistent changes in their habitats. While it can be argued
that highly specialised robots can be developed for any given
environment, current approaches in AI do not give the ability
for the robot to self-adapt to changes in its environment (or
from its simulated world) or to itself (for example through
damage to actuators) and this is a significant gap to overcome
to produce truly autonomous systems.

An autonomous robot, without any need for an external
change of the underlying algorithms, should learn to develop
novel skills to cope with unpredictable situations. The desire
to attain this level of intelligence has been a major motiva-
tion formost sophisticated and popular AI techniques such as
deep learning, reinforcement learning (RL), active learning,
and imitation learning. Some of these methods either depend
on labelled data or require environment-dependent reward
functions, making it difficult for them to cope with unknown
environments (Irpan 2018;Marcus 2018; Dulac-Arnold et al.
2021). For example, the model-free RL (Sutton and Barto
2018; Bozkurt et al. 2021), although one of the most applied
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techniques in autonomous agent research with a number of
impressive results suffer from sample inefficiency, delayed
reward, and the need to design an environment-dependent
reward function (Irpan 2018; Sermanet et al. 2016). More-
over, the model-based RL, although it has been proven to
be sample-efficient and exhibits good generalisation ability,
requires prior knowledge of the environment dynamicswhich
are often not available inmany real-world scenarios (Bozkurt
et al. 2021; Sutton and Barto 2018). These limitations, how-
ever, pose difficulties in applying these methods in unknown
or dynamic environments.

Through interactions with its environment, without any
need for an environment-dependent reward function and/or
predefined transition probabilities as may be required in
the conventional RL algorithms, a truly autonomous agent
should be able to learn a non-task-specific sensorimotor
schema (Tsou 2006; Piaget and Cook 1952; Nguyen et al.
2021), which could later be useful for causal reasoning and
planning towards a desired state leveraging rewards or moti-
vations derivable from the sensorimotor space given desire.
The derivation of the reward signals in the sensorimotor space
can be likened to the activity of dopamine, a brain substrate
that has been proven to cause pleasure, satisfaction, or dissat-
isfaction (Berridge et al. 2009; Liu et al. 2021) in humans and
animals. This is a goodway to avoid the challenge of defining
reward function in the environment space, especially in situ-
ations where the environment is unpredictable, inaccessible,
or completely unknown.

The preceding statement forms the thesis of this research.
This study provides a strategy based on the unsupervised
learning paradigm, specifically, the self-organising map
(SOM) (Kohonen 1990). However, the standard SOM and
its variants have fundamental issues. There is no one self-
organising technique that has addressed the following prob-
lems: difficulty in setting a suitable number of neurons for a
task, inflexibility, the inability to cope with non-markovian
environments, challenges with noise, and inappropriate rep-
resentation of sensory observations and actions together. The
purpose of this research is to design an unsupervised, self-
adaptive autonomous learning framework based on a variant
of self-organising map called temporospatial merge grow
when required (TMGWR) network (Ezenkwu and Starkey
2019b). The key contributions of this research include the fol-
lowing: (1) instead of employing a binary sensorimotor-link
or lateral connections between nodes, this research pro-
vides a strategy that continuously strengthens or weakens
a sensorimotor-link according to how reliable the link is; (2)
an autonomous learning framework that incorporates value
iteration in TMGWR for self-adaptivemodel-based planning
in dynamic contexts has been proposed; and (3) research
demonstrates that the proposed method is more flexible to
changes in the agent environment than RL agents.

As a sensorimotor map learning algorithm, TMGWR
yields a graph model ( or a sensorimotor map) with nodes
representing the sensory abstractions and edges representing
possible affordances from each node. It equips the agent with
some knowledge of theworld, making it possible to planwith
an informed graph search technique which is more sample-
efficient than the model-free RL methods such as Q-learning
(Bozkurt et al. 2021; Sutton and Barto 2018). This paper
demonstrates how the sensorimotor map learnt using the
TMGWR algorithm can be exploited for goal-directedness
using value iteration. The proposedmethod is comparedwith
both the model-free RL (Q-Learning) and the model-based
RL agents in terms of their sample efficiencies and their abil-
ities to self-adapt when there is a change in the world or goal
state.

The results show that both the TMGWR-based agent and
model-based RL agent are far more sample-efficient and
adapt faster to changes in goal states. However, in the change
of environment scenario, the TMGWR-based agent adapts
faster than the model-free RL agent, while the model-based
RLagent completely fails to copewith any change in the envi-
ronment. Although both require environment models to plan,
the difference between the TMGWR-based method and the
conventional model-based RL is that while the model-based
RL requires the prior definition of the environment transi-
tion model, the TMGWR-based method learns this transition
model. This advantage makes the TMGWR-based method
suitable for applications in scenarios where the environment
dynamics are not known a priori.

The remaining part of the paper proceeds as follows:
Section 2 provides background information on some key
concepts. Section 3 presents the conceptual framework of
the proposed method with detailed descriptions of its major
components. Section 4 compares the proposed method and
the RL algorithms. Section 5 explains the experiments. Sec-
tion 6 presents and discusses the results of the experiments,
while Sect. 7 concludes the paper and highlights areas of
future research.

2 Background

In this section, we provide background on machine auton-
omy, RL, sensorimotor map, and value iteration.

2.1 Machine autonomy

There havebeenmanyattempts towards creating autonomous
systems with the target of achieving human-level perfor-
mance in different scenarios. These have led to the devel-
opment of a number of novel state-of-the-art AI techniques
in recent years (Vamvoudakis et al. 2015; Saba et al. 2021).
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However, these methods are not being implemented
against a coherent evaluation framework for assessing the
autonomous agent. In an attempt to provide a reasonable def-
inition of machine autonomy, we previously categorised the
attributes of autonomous agents into low-level and high-level
attributes. This definition builds on a number of other defi-
nitions of the autonomous agent in the literature (Ezenkwu
and Starkey 2019a).

The low-level attributes are must-have attributes for any
autonomous agent as they provide the smallest distinction
between the autonomous agents and other automated agents.
These attributes include learning, context-awareness, actua-
tion, perception, and decision-making. In contrast, the high-
level attributes are advanced attributes of autonomy, which
have proven difficult to achieve using the current AI tech-
niques. They include domain-independence, self-motivation,
self-recoverability, and self-identification of goals.

2.2 Reinforcement learning

RL is a trial-and-error method of learning policies and plan-
ning in Markov decision processes (MDPs) (Belousov et al.
2021). An MDP “consists of states s ∈ S, actions a ∈ A,
a reward function R(s, a) and transition probability, Pa

ss′ , to
each possible next state s′ given any state s and action a”.
The goal of a RL agent is to maximise expected long-term
discounted rewards over a horizon (episodic or continual)
(Szepesvári 2010; Belousov et al. 2021).

Based on an explicitly defined immediate reward of states,
R(s), or state-action pairs, R(s, a), all RL algorithms esti-
mate the value functionswhich give themeasure of how good
each state (or state-action pair) is for a given task. If the pro-
cess converges to the optimal value function then a greedy
policy following the value function will be the best policy for
the task. MDPs can be approached either as model-based or
model-free RL. The model-based approach is suitable only
when the environment dynamics are well known.

Typical examples of themodel-basedmethod are dynamic
programming (Bellman 1952) techniques such as value iter-
ation and policy iteration (Yang et al. 2021); the model-free
method does not require knowledge of environment dynam-
ics to arrive at the optimal policy, e.g., Q-learning (Ge
et al. 2021) and SARSA (Sutton and Barto 2018). Although
model-free methods are more popular than model-based
methods because of their simplicity, the advantages ofmodel-
based methods over them are that model-based methods are
more sample-efficient and have stronger generalisation.

2.3 Sensorimotor maps

According to Piaget, human infants are born with innate
schemas or reflexes which develop into constructed schemas
as they use these reflexes to adapt to their environments

(Huitt and Hummel 2003; Hakimzadeh et al. 2021). This
idea has influenced numerous research works in develop-
mental AI and autonomous systems. Drescher was the first
to formalise Piaget’s sensorimotor schema, describing it as
a tuple of context, action, and result. This is to enable the
prediction of the result if an action is taken in a known
context (Drescher 1991; Guerin and Starkey 2009). With a
chain of regular schemas, composite actions can be gener-
ated and executed to attain a desired state. To improve the
efficiency of Drescher’s schema mechanism, Chaput (Cha-
put 2004) proposed the constructivist learning architecture
(CLA), an unsupervised hierarchical neural implementation
of the schema mechanism.

However, the CLA has a scale-up problem, because it is
limited to binary sensory environments. Hierarchical SOM-
based Encoding (HSOME) (Pierris andDahl 2017; Parisi and
Wermter 2013) is among the works inspired by the CLA.
Although HSOME removes the restriction on the height
of the hierarchy of self-organising maps (SOMs) (Kohonen
1990) that are required for learning, itsmajor limitation is that
“it produces lossless encoding instead of a principle compo-
nent representation” (Pierris and Dahl 2017) of the agent’s
sensory observations.

Due to the preceding limitation and because HSOME
uses the standard SOM which requires that its dimension
is predetermined during design time, the sizes of the SOMs
at different layers should be large enough to represent the
agent’s world properly. This makes HSOME less suitable
for unknown scenarios. Similarly, Toussaint proposed the
CWM (Toussaint 2004), which is a monolithic growing
self-organising neural network designed to couple sensory
observations andmotor signals. Toussaint called this the sen-
sorimotormap (Toussaint 2006). TheCWMuses the growing
variant of SOM to avoid the difficulty that the predetermina-
tion of accurate SOM size could pose to sensorimotor map
learning in unknown environments.

Since sensorimotor map learning has been proven to be
domain-independent or non-task-specific, it meets some of
the requirements of the autonomous agent. Other advantages
of employing sensorimotor maps are that they can provide
data compression by encoding values from a multidimen-
sional vector space into a finite set of values from a discrete
subspace of lower dimension. Additionally, sensorimotor
maps can provide both forward and backward functions for
decision-making as we have demonstrated in this paper.

3 Conceptual framework for the proposed
method

Figure 1a shows our concept of the autonomous learning
agent, which will be referred to as the TMGWR-based agent
for the remainder of this paper. The framework consists of
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(a) (b)

Fig. 1 a Shows the conceptual framework for the autonomous agent. b Presents the sensorimotor map learning module of the architecture

four main modules—the sensorimotor map learning module,
the sensory preprocessor, the motivation estimator, and the
action selector. The agent is equipped with suitable sensors
and actuators which enable it to observe the environment and
react to these observations using the actuators. The observa-
tions or sensory inputs can be preprocessed or transformed
into a form that conveys meaningful or contextual informa-
tion to the agent. The preprocessed sensory observations are
passed on to the sensorimotor map learning module which
enables the agent to develop or refine its mental model of
the scenario. The sensorimotor map learning occurs contin-
ually in an open-ended manner to enable the agent to keep
track of changes in the environment by continuously updating
the sensorimotor map. Themotivation estimator provides the
motivation signal that enables the agent to plan towards a goal
or behave in a given manner in the environment. The action
selector considers the current observation and the agent’s
motivation in selecting the best action using the sensorimotor
map. Execution of this action causes a change in the environ-
ment and the cycle continues. Subsequent sections provide
detailed explanations of the modules.

3.1 Sensorimotor map learning

The TMGWR network was used as the sensorimotor map
learning method. The key features of the method are that:

• the nodes are linked based on their sensorimotor proxim-
ities to one another;

• it uses the temporal context of the Merge Grow Neural
Gas (MNG) Strickert and Hammer 2005 to keep track of
the sensorimotor history;

• the GWR method of adding new nodes is employed to
enable the system to keep track of changes in the envi-
ronment;

• all the hyperparameters are kept constant throughout the
lifetime of the agent to encourage continual learning.

The action map in Fig. 1b learns the codebook vector �a for
each motor activity, while the sensorimotor map learns the
input weight vectors and the possible action vectors linking
them to each other.At each time step, the activated action vec-
tor on the actionmap is associatedwith the sensorimotor-link
from the previous winning node i to the current winning node
j in the sensorimotor map; this action vector is labelled �ai j in
Fig. 1b. In the original TMGWR network, the sensorimotor-
link E[i, j] from node i to j is binary i.e. E[i, j] = 1 if
E[i, j] is a possible transition, otherwise E[i, j] = 0. How-
ever, in this work, the sensorimotor-link is updated according
to Eq. (1)

E[i, j] = E[i, j] + α�E , (1)

where α is the learning rate and �E is given by Eq. (2)

�E = sim(�ai j , �a)I{i � j} − E[i, j]; (2)

sim(�ai j , �a) is a similarity function that compares the
activated action vector, �a at a given time with the action
vector, and �ai j that has already been associated with
the sensorimotor-link from node i to node j. We chose
sim(�ai j , �a) to be a Gaussian function, so that if �ai j � �a,
then sim(�ai j , �a) tends towards 1; otherwise, it will tend
towards 0. The advantage of introducing sim(�ai j , �a) in the
E[i, j] update equation is that it increases the weight of the
sensorimotor-link if the same action vector results in the same
transition all the time and decreases it if the transition is
possible with different action vectors. This is useful during
planning as the agent is more likely to select reliable actions
for each experience in the environment. I{i � j} is an indi-
cator function which returns 1 if the previous winning node i
is not the same as currentwinning node j; otherwise, it returns
0. I{i � j} encourages only actions that result in progress
and penalises those that compromise that progress.
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3.2 Sensory preprocessor

The real world is often characterised by noisy, ambigu-
ous, and/or multidimensional sensor signals. As such, an
autonomous agent requires a preprocessor for extracting rel-
evant information for learning and decision-making. The
TMGWRnetworkhas been shown to inherently handle noisy,
ambiguous, and partially observable environments due to its
recurrent architecture and the GWR technique of expanding
the sensorimotormap.While this has been proven in a 2D fea-
ture space, we argue that advanced preprocessing techniques
could be required to complement the TMGWR network
in a high-dimensional sensor space such as a vision-based
scenario. For instance, a pre-trained convolutional feature
extractor (Yosinski et al. 2014; Razavian et al. 2014) could
be useful in the preprocessor module for feature extraction
when the agent’s observations are image frames. We intend
to investigate the preceding example as well as methods for
relevant feature selection (Wang et al. 2019) as the sensory
preprocessor in our subsequent research.

3.3 Motivation estimator

The motivation estimator assigns a motivation potential to
eachnodeon the sensorimotormap.The computationof these
motivation potentials can be based on intrinsic (Oudeyer et al.
2007; Oudeyer and Kaplan 2009; Schmidhuber 2006) and/or
extrinsic motivation. While intrinsic motivation can enable
an agent to engage in informed exploration of its environ-
ment, extrinsic motivation is useful for goal-directedness. In
this paper, attention has been paid only to the goal-directed
context. However, it would be interesting to examine how
the habituation mechanism that is associated with the tra-
ditional GWR could be leveraged for intrinsic motivation
or informed exploration. The motivation estimator in this
paper is the model-based value iteration. The value iteration
is a dynamic programming technique for solving Markov
Decision Processes (MDPs) (Tamar et al. 2016). It iteratively
updates the value function until convergence following Bell-
man’s equation (Dai and Goldsmith 2007) as shown in Eq. 3
(Sutton and Barto 2018):

Vπ (s) =
∑

a

π(a, s)
∑

s′
pass′ [rass′ + γ Vπ (s′)], (3)

∀s ∈ S, where, Vπ (s) is the value of state s under a policy
π ; π(a, s) is the probability of taking action a while in state
s; pass′ is the transition probability to state s′ when action
a is executed in the state s; rass′ is the expected reward for
the transition; and γ is the discount factor. The model-based
value iteration is possible onlywhen the transition probability
is known. The sensorimotor map learning method tries to
learn the transition model for a given scenario.

We will now discuss how the value iteration is applied in
this paper. Given a goal state, the associated goal node g can
be activated on the sensorimotor map. Equation 4 shows the
update rule for the propagation of the motivation potential,
V (.)with respect to g for each node on the sensorimotor map

V (i) = V (i) + β�V (i),∀i ∈ N , (4)

where N is a set of all nodes in the sensorimotor map and β

is the learning rate. �V is given by Eq. 5

�V (i) = sim(i, g) + γ max{E[i, k]V (k)} − V (i) (5)

∀k ∈ K , where K is a set of all nodes in the sensorimotor
neighbourhood of i ; these are nodes that can be reached from
i due to actions that are possible in i . sim(i, g) is theGaussian
similarity between node i and the goal node g. sim(i, g)
is used as the immediate reward. γ is the discount factor.
Through this iterative update, higher motivation potentials
are propagated to nodes that are closer to g, if they also
provide reliable sensorimotor-links for the agent to reach the
goal state.

This has been summarised in Algorithm 1. The most
expensive parts of the algorithm are the sensorimotor map
learning using TMGWR and the value iteration process.
TMGWR learns to map M data points to N nodes. Unlike
in SOM where the number of nodes is predefined, TMGWR
adds new nodes to minimise the quantisation error. Iterating
through M data points while mapping them to N will cost
O(N×M). In the worst-case scenario, TMGWRwill require
N (= M) nodes to correctly represent M data points. Hence,
the time complexity of TMGWR is O(N 2).

Value iteration sweeps through the entire state space,
while considering all possible actions to converge. In the
worst-case scenario, the time complexity of the goal-directed
algorithm is O(N 2 + N × |A|), where A is the action
set. However, TMGWR uses forgetting strategy to delete
aged sensorimotor-links and redundant nodes. TMGWR
demonstrates to be a more efficient sensorimotor map learn-
ing algorithm than growing neural gas (GNG), grow when
required network (GWR), and time grow neural gas (TGNG)
(Ezenkwu and Starkey 2019b).

3.4 Action selector

The action selector leverages the motivation potentials com-
puted by the motivation estimator to generate a policy that
enables the agent to select actions that can transition the
agent in the direction of increasing motivation potentials.
The selected action vector �ai when node i is the activated
node on the sensorimotor map is given by Eq. 6

�ai = �aikmax , (6)
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Table 1 Differences between TMGWR-based algorithm vs RL algorithms

Attribute Model-free RL agent Model-based RL agent TMGWR-based agent

environment model not required must be provided by the designer learnt from experience

reward function defined in the state-action space defined in the state space defined in the sensorimotor space

Algorithm 1 The motivation estimator for the TMGWR-
based goal-directed agent

1: SM ← T MGW R({x j , a j }Mj=1) � training sensorimotor map SM
using TMGWR

2: g ← SM.Map(xg) � identify the goal node g given a goal state xg
3: Ri = sim(i,g) ∀i ∈ {1,...,SM.nodes.Size()} � compute the

similarity between each node i in the SM and the goal node g
4: ER = [ ] � define an empty array
5: V = [0]× SM.nodes.Size() � initialise the motivation potential of

each node in SM to 0
6: repeat
7: for node in SM.nodes do
8: for k in node.neighbourhood() do
9: ER.add(E[node, k] × R[k]) � multiply the value

of each neighbour of the node with the lateral connectivity between
the neighbour and the node

10: end for
11: V [node] = V [node] + β.(R[node] + γ.max{(ER).V [k] −

V [node]})
12: ER = [ ]
13: end for
14: until Convergence

where kmax = argmaxkV (k),∀k ∈ K . K is a set of all
nodes in the sensorimotor neighbourhood of i and V (k) is
the motivation potential of node k, ∀k ∈ K .

This equation means that the agent selects an action that
will place it in that node in the neighbourhood of the current
node that has the maximum motivation potential. At first
glance, it is possible to think that the agent is short-sighted in
its action selection.However, themotivation potential of each
node is a function of the sensorimotor neighbourhood of the
node. This ensures that the agent’s decisions are influenced
by its long-term satisfaction.

4 Comparing the TMGWR-based algorithm
and the RL algorithms

Table 1 summarises the key differences between the pro-
posed method and the conventional RL algorithms. In the
model-based RL algorithm, the environment dynamics must
be well understood and formulated for the algorithm to
work. This is a huge limitation to the applications of the
model-based RL algorithms in unstructured or unpredictable
real-world environments. Unlike the model-based RL meth-
ods, the model-free RL algorithms do not require knowledge
of environment dynamics to work, and as a result, they are

the most applied RL algorithms in the literature. However,
the absence of environment models in the model-free RL
algorithms results in their high sample complexity and poor
generalisation. The TMGWR-basedmethod does not require
prior design of the environment dynamics, since the agent is
capable of learning it during exploration, and because it uses
the environment model for planning, it exhibits good sample
efficiency and generalisation as the model-based RL.

For an RL agent to learn to plan towards a given goal, a
reward function is formulated to represent the relationships
between the goal and the environment states or state-action
pairs. In the model-based RL methods, reward functions,
R(s), are dependent only on environment states, while in
the model-free RL algorithms, reward functions R(s, a) are
dependent on state-action pairs, i .e., environment states and
actions. Since each of thesemethods require that their reward
functions factor in environment states in addition to goal,
extra environment information is required to formulate suit-
able reward functions for these methods. This will pose some
difficulties in unknown or unstructured environments. How-
ever, given a goal, the TMGWR-based method does not
require that the environment states are well understood for
planning, since the reward values are computed in the senso-
rimotor domain using the Gaussian similarity metric which
depends on the agent’s ownmental model of the environment
and not on the actual environment states. This completely
removes the difficulty of having to understand the environ-
ment to formulate a reward function for a given task.

5 Experiments

5.1 Setup

The environment used in this paper is a 13X17maze (Fig. 2).
Solid areas in the environment represent walls, while empty
areas represent passages. The agent senses the coordinates
of its current location as the sensory observations. Each state
in the environment can afford the agent up to four actions:
move-up, move-down, move-right, and move-left. It moves
one step in the direction of the selected action if there is no
obstacle; otherwise, its state remains unchanged. The same
random policy applies throughout the experiment. During
random exploration, the agent performs a random walk that
chooses a new action with the probability of 30% if no obsta-
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Fig. 2 Maze with agent, i.e., rat (top left corner) and goal, i.e., food
(bottom right corner)

cle is in the direction of the selected action; otherwise, it
selects an arbitrary action from any of the other three actions
at 100%probability. The agent begins its life-cyclewith com-
plete random exploration as described above. This random
exploration reduces according to Eq. 10; each time, the agent
achieves the goal after it has previously attained the goal for
up to five tries. Adaptive or decayed ε-greedy exploration
(Tokic 2010; Maroti 2019) is a well-known method for han-
dling exploration–exploitation dilemma in RL (Sutton and
Barto 2018)

ε = max(ε − 1

10
, εmin); (7)

ε is the probability that the agent will select an action based
on random policy and εmin is the minimum value that ε can
take. In the experiment, ε is initialised to 1 (i.e., 100% ran-
dom exploration) and decreases each time the agent achieves
the goal until it attains the minimum (εmin = 0.1). Each
experiment ran for ten trials.

The experiments compared three types of agent:

• The TMGWR-based agent (the proposed agent)
• Amodel-freeRLagent (in this case, theQ-learning agent)
• The model-based RL agent using value iteration algo-
rithm.

The reward function for themodel-freeRLagent is defined
in Eq. 8. For the model-based RL agent, the reward function
is defined as shown in Eq. 9. These immediate rewards were
treated as hyperparameters and were selected by Bayesian
optimisation (Pelikan et al. 1999; Grosnit et al. 2021) of the
convergence rate (see Sect. 5.3)

r(s, a) =

⎧
⎪⎨

⎪⎩

88, if action a in state s leads to goal

−131, if action a in state s leads to wall

−29, if s action a in state s leads to empty

(8)

r(s) =
{
75, if state s contains goal

−18, if state s is empty.
(9)

While the reward functions for the RL agents are pro-
vided in the environment space, the TMGWR-based agent
when given a goal computes its rewards or motivations in
the sensorimotor space. This gives the method the poten-
tial to overcome the difficulty of designing reward functions
for unknown environments as is the case with the traditional
RL. Given the goal state, the associated goal node, g. can be
determined from the sensorimotormap. The TMGWR-based
agent derives the desirability of having each node activated
based on their proximity to g. This is defined in Eq. 10 as
follows:

r(i) = sim(i, g) , ∀i ∈ N . (10)

The reward function is used to derive themotivation potential
for each node as seen in Eq. 5.

For the model-based RL agent, we defined the transition
dynamics, T (s, a, s′), as a deterministic model. T (s, a, s′) is
the probability of the agent going into s′ if action a is taken
in state s. Throughout the experiment, the transition prob-
ability is hard-coded for a given arrangement of obstacles
in the environment. However, this is not allowed to change
automatically when the environment changes unpredictably

T (s, a, s′) =
{
1, if s’ contains no obstacle

0, if if s’ contains an obstacle.
(11)

5.2 Descriptions of experiments

The TMGWR-based goal-directed agent, the traditional
model-based RL agent, and a model-free RL agent (in this
case, the Q-learning agent) are compared in three scenar-
ios: changing goal state, changing environment, and sample
complexity. While the first scenario illustrates their abilities
to self-adapt when the goal changes, the second demonstrates
their ability to cope when the domain knowledge about the
environment no longer applies, and the third compares their
sample efficiencies. The following sections describe each of
these scenarios in detail.

5.2.1 Scenario II: changing goal state

This scenario investigates the ability of the agents to gener-
alise when the task presents a goal other than the one used
during the agents’ training. The behaviour of each of the
algorithms in the changing goal scenario has been simulated.
Figure 3 shows four selected goal locations,G1, ...,G4. Each
agent is first trained for 1000 iterations with the goal at G1.
After every 1000 iterations, the goal locations change in the
sequence G1 → G2 → G3 → G4 → G1. Each iteration
terminates when the agent visits either the current goal state
or the previous goal state. For instance, if the goal is atG1 and
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Fig. 3 Selected goal locations. G1, ...,G4 are the selected goal loca-
tions, while S is the starting point of the agents. This applies to scenarios
I and II

later moves to G2, then any visit to G1 is a visit to the previ-
ous goal state and any visit to G2 is a visit to the current goal
state. For the RL agent, the previous goal state has the same
reward as any other empty cell in the environment except that
it is also a termination point. The number of times the current
goal state and the previous goal state are visited beginning
at the starting point are recorded separately for each 1000
iterations. We carefully chose the goal locations to reduce
the possibility of any of the agents visiting the current goal
state with the minimum exploration probability, εmin = 0.1
for some consecutive goal states. For example, G1 and G2

are the closest consecutive goal locations, while G3 and G4

are the farthest. While it is likely that the agent can visit G2

instead of G1 due to the minimum exploration probability,
εmin = 0.1, it is less likely that the agent will visitG4 instead
of G3 due to εmin .

5.2.2 Scenario II: changing environment

This scenario examines the abilities of the agents to self-adapt
if there is a slight change in the environment. The agents are
trained on a goal until they learn the optimal path to that
goal; then, an obstacle is introduced along this optimal path.
For fair investigation of the self-adaptivity of the agents, we
assume that the change in the environment is unpredictable
and is not captured for whatever reason in the design of
the agents. For example, the transition model for the model-
based RL agent is modelled for the original environment and
not updated when the environment changes. A self-adaptive
agent will be able to adapt its world model and identify the
best possible alternative to the goal. After the optimal path is
blocked, the number of steps it took the agents to reach the
goal for the first time using an alternative path is recorded.
Figure 4 illustrates the two case studies for this scenario. The
arrows in Fig. 4a, c show the optimal paths to the goals in
the two case studies, while Fig. 4b, d shows the positions of
the obstacles (indicated with red circles), respectively. For
reference purpose, we refer to the two contexts as cases A
and B, respectively.

5.2.3 Scenario III: Computational cost

This scenario evaluates and compares the computational
costs of the algorithms in terms of their sample complex-
ity and amount of CPU time required by each them during
training, self-adaptation, and replanning to cope with change
in the environment.

5.2.4 Sample complexity

This experiment compares the amount of samples each of the
algorithms requires to learn the optimal policy for a given
task. Starting from S, the sample efficiencies of the agents
are investigated considering each of the four goal locations
G1, ...,G4, as shown in Fig. 3.

At each iteration, each agent selects actions at each time
step based on the prevailing policy until the goal is achieved.
Each iteration terminates when the agent successfully visits
the goal position. Initially, the agents are 100% exploratory,
but they become more deterministic as they learn to achieve
the goal. This has been explained in Sect. 5.1.

The convergence rate is a quantity of interest in estimating
the sample complexity of goal-directed agents (Kakade et al.
2003) such as the RL agent. As such, this scenario considers
the convergence rates of the algorithms as a measure of their
sample complexities.

As presented in our previous paper, TMGWR optimises
the sensorimotor map building process using the mini-
mal number of nodes that best represent an environment
(Ezenkwu and Starkey 2019b). Fewer nodes contribute to
efficient convergence during planning, because the agent will
not waste time exploring unnecessary nodes. For the sake of
self-recoverability, when a condition in an agent’s environ-
ment changes, efficient sample complexity is of the essence in
enabling the agent to learn faster and respond to the changes
in real-time.

5.2.5 Time-based comparisons of the algorithms

The times required by each of the algorithms for training, for
self-adaptivity when the goal changes, and for adjustments
to changing environments have been recorded and compared
in this experiment.

The algorithms are run on Python version 3.8 on a 64-bit
Windows 10 computer with Intel(R) Core(TM) i5-4570 CPU
@ 3.20GHz 3.20GHz and 16.0GB (15.9GB usable) RAM.
For evaluating the times required for training the algorithms
until convergence, the environment of Fig. 2 is used for train-
ing each algorithm. The time between the start of the training
and the time the agent consistently follows the optimal path
ten consecutive times is recorded for each algorithm.

To evaluate the times the algorithms self-adapt to a new
goal, the algorithms are trained to learn the optimal path with
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Fig. 4 Changing environments

(a) CASE A: optimal path (b) CASE A: Obstacle’s position on the
optimal path

(c) CASE B: optimal path (d) CASE B: Obstacle’s position on the
optimal path

the goal at G4 as indicated in the environment of Fig. 3, and
then, the goal is repositioned toG3 (also see Fig. 3). The time
it takes the algorithm to adapt to execute the optimal path to
the new goal location is recorded for each algorithm.

Figure 4a, b has been useful in evaluating the response
time of each algorithm to a change in the environment. Fig-
ure 4a demonstrates the optimal path as identified by the
algorithm after training, whereas Fig. 4b shows an obstacle
blocking this optimal path. Using these two configurations,
the time it takes each algorithm to access the goal state
through an alternative path after the initial optimal path is
blocked is recorded and reported for the algorithm.

In each experiment, ten different trials are executed and
results are presented as bar charts.

5.3 Hyperparameters

The hyperparameters for the three methods were selected
by the Bayesian optimisation(Pelikan et al. 1999; Grosnit
et al. 2021) of their convergence rates in attaining the goal
G1 starting from S. The hyperopt library in Python1 was
used with maximum number of evaluations set to 150. The
algorithmswere optimised independently in the environment
of Fig. 2 following the exploration policy described above.

1 http://hyperopt.github.io/hyperopt/

The TMGWR network has been previously optimised in
a similar environment in our previous work (Ezenkwu and
Starkey 2019b). Moreover, in the TMGWR-based agent, the
sensorimotor map learning algorithm is loosely coupled with
the planning algorithm. Due to the following reasons, it is
easy to transfer hyperparameters from the original TMGWR
network to the version applied in this paper by freezing the
hyperparameters that are connected to the sensorimotor map
learning while optimising those for the value iteration and
the sensorimotor-link adaptivity. Table 2 presents the hyper-
parameters used in the paper; γ is the discount factor, β is
the learning rate for the value iteration and the Model-free
RL, α is the learning rate for the sensorimotor-link adapta-
tion equation, and r(s) is the immediate reward for state s
where s can be an empty cell, a cell with wall, or the goal
state.

6 Results and discussion

6.1 Scenario I: changing goal state

Tables 3, 4, and 5 present the responses of the model-free
RL agent, the TMGWR-based agent, and the model-based
RL agent to changes in goals, respectively. As described in
Sect. 5.2.1, this scenario compares the generalisation abili-
ties of the three agents when the goal state changes. Apart
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Table 2 Hyperparameters

Hyperparameter TMGWR-
based agent

Model-free
RL agent

Model-based
RL agent

γ 0.97 0.86 0.94

β 0.80 0.39 0.23

α 0.52 – –

r(s = wall) – −131 –

r(s = empty) – −29 −18

r(s = goal) – 88 75

from the change from G1 to G2 where the model-free RL
agent visited the current goal state up to 89.26% of the time,
it spent over 99% of the time visiting the previous goal states
for the other change in goal states. ForG1 → G2, the model-
free RL agent was likely to encounter the current goal state
with the minimum exploration due to the close proximity
between G1 and G2. Moreover, the model-free RL agent did
not need to relearn every aspect of its model of the task to be
able to attain G2. For example, the value function that can
drive the agent to the bottom of the maze is still useful for
getting it to the G2 with slight update. Contrarily, the other
changes in goal states require that a large part of the agent’s
model of the task is updated. This update is slow due to low
exploration probabilitymaking it spendmore time exploiting
the previous goal state before learning to attain the current
goal. Compared to the model-free RL agent, the TMGWR-
based agent and the model-based RL agent quickly respond
correctly to all changes in goal states. This is because con-
trary to the model-free RL agent, the TMGWR-based and
the model-based RL agents plan with some knowledge of
the environment and are therefore, able to quickly replan
to attain any goal state within the environment. However,
while the TMGWR-based agent replans on the sensorimotor
map using a learnt environment model, the model-based RL
agent replans using a defined environment-dependent tran-
sition model. Short demonstrations of this scenario with the
Model-free RL2, TMGWR-based3, and theModel-based RL
4 agents are available on YouTube for view.

6.2 Scenario II: changing environment

The results of this scenario have been summarised in Table 6
and Fig. 5. In the two cases, the model-free RL agent took a
greater number of steps to reach the goal than the TMGWR-

2 Demonstration: response of the model-free RL agent to change in
goal state: https://www.youtube.com/watch?v=_j0z6B1RFjs
3 Demonstration: response of the TMGWR-based agent to change in
goal state: https://www.youtube.com/watch?v=x9U0r-6Sct0
4 Demonstration: response of model-based RL agent to change in goal
state: https://youtu.be/4GNbxYvJPhM

Table 3 Response of the model-free RL agent to change in goal state
for four selected goal locations, G1, ...,G4

Change of
goal state

%number of vis-
its to previous
goal

% number of vis-
its to current goal

G1 → G2 10.64 ± 16.16 89.36 ± 16.16

G2 → G3 99.40 ± 0.32 0.60 ± 0.32

G3 → G4 99.78 ± 0.04 0.22 ± 0.04

G4 → G1 99.58 ± 0.19 0.42 ± 0.19

Table 4 Response of the TMGWR-based agent to change in goal state
for four selected goal locations, G1, ...,G4

Change of
goal state

% number of visits
to previous goal

% number of vis-
its to current goal

G1 → G2 0 ± 0 100 ± 0

G2 → G3 0 ± 0 100 ± 0

G3 → G4 0 ± 0 100 ± 0

G4 → G1 0 ± 0 100 ± 0

Table 5 Response of the model-based RL agent to change in goal state
for four selected goal locations, G1, ...,G4

Change of
goal state

%number of visits to
previous goal

% number of vis-
its to current goal

G1 → G2 0 ± 0 100 ± 0

G2 → G3 0 ± 0 100 ± 0

G3 → G4 0 ± 0 100 ± 0

G4 → G1 0 ± 0 100 ± 0

based agent after an obstacle is introduced along the optimal
path. This is because the model-free RL agent tries to learn
the optimal path to attaining a specific goal. As such, it has
to relearn its value function if the environment changes in a
way that does not avail it of that path to the goal. Although
they are complementary, for the TMGWR-based agent, the
environment modelling is separate from the planning mech-
anism. While the sensorimotor map learning technique is
responsible for the environment modelling, the value itera-
tion does the planning. The TMGWR algorithm continually
adapts the sensorimotor map to reflect changes in the agent’s
world at every time stamp. This enables the TMGWR-based
agent to keep track of the changes in the environment signif-
icantly more quickly than the model-free RL agent. With the
correct sensorimotor map, a sample-efficient model-based
value iteration algorithmcan help to propagate themotivation
potentials on the sensorimotormap in such away that enables
the agent to desire an alternative path to the current goal.
The model-based RL agent showed the worst performance
in this scenario. This is because it requires an environment-
dependent transition model, and unlike the TMGWR-based
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Table 6 Average number of
steps it took each agent to attain
the goal through an alternative
path after the optimal path was
blocked

Case TMGWR-based agent Model-free RL agent Model-based RL agent

A 112.6 ± 2.0 1212.2 ± 12.9 ∞
B 106.3 ± 1.6 450.4 ± 4.9 ∞

Fig. 5 Average number of steps it took each agent to attain the goal
through an alternative path after the optimal path was blocked. Values
for the model-based Rl agent are not shown in the graph, because they
are ∞ in the two cases

agent, it neither learn its transition model nor adapt it to
changes in the environment unless this changes are known a
priori and are accounted for during the design. Because of
this limitation of the model-based RL agent, it get stuck in
the original path to the goal when the environment changes
in the two cases (see short demonstration for the responses
of the Model-free RL5, TMGWR-based 6 and model-based
RL7agents in the changing environment scenarios)

6.2.1 Scenario III: computational cost

6.2.2 Sample complexity

Figure 6 displays the results of the experiment of scenario
I. The graphs compare the sample efficiencies of the three
methods considering the four goal locations.

The number of steps for each agent to attain the goal loca-
tions are recorded at every 5th iteration. Figure 6 shows
that the TMGWR-based agent and the traditional model-
based RL agent converge to the optimal ε–greedy policy
faster than the model-free RL agent for the four goal loca-
tions.

This advantage of the TMGWR-based agent and the
traditional model-based RL agent is derived from their
model-based attribute. While the model-free RL agent tries

5 Demonstration: response of the model-free RL agent to change in the
environment: https://youtu.be/aRr4Ja9TspQ
6 Demonstration: response of the TMGWR-based agent to change in
the environment: https://youtu.be/-YpxGEjRoXA
7 Demonstration: response of model-based RL agent to change in the
environment: https://www.youtube.com/watch?v=peEYriVEK2k

to learn the decision model for the task without the knowl-
edge of the environment dynamics, the model-based RL
agent uses the transition dynamic defined in Eq. 11 to plan
towards attaining the goal in a more sample-efficient man-
ner.

Similar to the model-based RL agent, the TMGWR-based
agent also shows a sample-efficient planning but using a
learned and self-adaptive transition model of the environ-
ment.

6.2.3 Time-based comparisons of the algorithms

Figure 7 demonstrates how much time is required by each
algorithm for training, for self-adaptivity when goal changes,
and to adjust to changing environments.

Although the model-free RL agent requires a higher num-
ber of explorations during training, Fig. 7a shows that it
requires a minimal amount of training time compared to the
TMGWR-based agent and the traditionalmodel-based agent.
This minimal training time is because the model-free RL
agent is lightweight and involves fewer computations than
the other twomethods, which repetitively utilise the environ-
ment model during planning. The effect of this lack of task
model by the model-free RL is that any change in goal state
requires a complete overwriting of the existing knowledge of
the task that the agent has acquired so far. This demonstrates
why in Fig. 7b the model-free RL agent takes a relatively
long time, when compared to the other two agents, to adapt
in solving the task if the goal changes.

Each step in the TMGWR-based algorithm’s learning
process involves the identification of the best matching
unit, the adaptation of the map in response to the cur-
rent context, the computation of the motivation potentials,
and then value iteration for planning. These computations
slow down the training of the algorithm, although they
will prove to be useful as will be shown later in this
section. The model-based RL equally has a quicker train-
ing time than the TMGWR-based algorithm, because the
environment model and the rewards are hard-coded. There-
fore, unlike in the TMGWR-based agent, model-based RL
does not have to learn any model of the environment or
compute any motivation potentials. The aforesaid makes
it have a faster training time than the TMGWR-based
agent.

However, one disadvantage is that it is rigid and does not
adapt to changes in the environment as can be seen in Fig.

123

https://youtu.be/aRr4Ja9TspQ
https://youtu.be/-YpxGEjRoXA
https://www.youtube.com/watch?v=peEYriVEK2k


26 Page 12 of 14 Advances in Computational Intelligence (2022) 2 :26

(a) Convergence rates of the algorithms with
goal at G1.

(c) Convergence rates of the algorithms with
goal at G3.

(b) Convergence rates of the algorithms with
goal at G2.

(d) Convergence rates of the algorithms with
goal at G4.

Fig. 6 Result of scenario I: sample complexity

7c. Themodel-based RL stays trapped forever when the envi-
ronment dynamics change in a manner not captured by the
experimenter—because of this, no time is recorded for it in
this experiment. While the model-free agent manages to find
an alternative path to the goal after the optimal path has been
blocked, it does that more than three times slower than the
TMGWR-based agent. This is because while model-free RL
needs to relearn every aspect of its knowledge, the TMWGR-
based agent only has to adapt an aspect of its sensorimotor
map that associates with the current experience to correctly
solve the task. Figure 7d summarises the times taken by each
of the algorithms in the three scenarios. The result demon-
strates that the TMGWR-based agent has the lowest average
time. The model-based agent has no value recorded for it,
because it takes infinity to recover from a change in the envi-
ronment.

7 Conclusions

This paper proposes an autonomous agent architecture that
employs the TMGWR network for continuous sensorimo-
tor map learning and uses value iteration to plan to attain
a goal using the sensorimotor map. The proposed method
computes rewards or motivation potentials in the sensorimo-
tor space and learns the transition model of its environment
using theTMGWRnetwork as the sensorimotormap learning
algorithm. For the agent to be goal-directed, value iteration
helps to propagate the motivation potentials associated with
the goal in the sensorimotor space. A modification has been
made to the original TMGWR algorithm to enable the agent
to encode reliability and discourage the selections of actions
that can compromise its progress.

The model-free RL, traditional model-based RL, and the
TMGWR-based agents have been evaluated on the basis
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(a) Times required for training each algorithm.

(b) Time required for each algorithm to adapt
to a new goal state.

(c) Time required for each algorithm to success-
fully respond to a change in the environment.
Note: There is no value for the model-based
agent because it never recovered from a change
in the environment.

(d) Average of the times for the three scenarios.

Fig. 7 Time-based comparisons of the algorithms

of their abilities to self-adapt when the goal changes, to
cope when the domain knowledge about the environment
no longer applies, and their computational efficiencies. Since
the traditional model-based RL requires that the environment
dynamics be hard-coded, it fails to recover from a sudden
change in the environment unlike the TMGWR-based agent
and the model-free RL agent. This is because the sensori-
motor map learning potential of the TMGWR-based agent
enables it to keep track of changes in the environment, while
the model-free agent can also adapt by modifying its state-
action space. On the contrary, the model-free agent does not
always adapt to a change in goal state, often revisiting the
previous goal, whereas TMGWR and model-based RL are
both able to avoid previous goal states and adapt immedi-
ately to the new goal. The experiments demonstrate that only
the TMGWR-based agent has the potential to self-adapt effi-
ciently in dynamic contexts, for both a change in goal or a
change in environment.

Furthermore, the experiments examined the computa-
tional efficiencies of the algorithms—both their sample
complexities and the time-based evaluations of their train-
ing and self-adaptivity, for a change in goal state or a
change in domain knowledge. The results demonstrate that
the TMGWR-based agent has a similar sample complexity to
the traditionalmodel-basedRL agent, and significantly better
sample complexity than the model-free RL agent. However,
the model-free agent has a quicker training time than the
other two algorithms, because it is lightweight and does not
factor in the model of the environment during its learning, an
attribute that impacts its ability to self-adapt and cope effi-
ciently with a change in the environment. The model-based
RL agent cannot adapt at all to a change in the environment,
because it depends on hard-coded domain knowledge and
needs that it be manually modified to suit the current domain
requirements. The experiments demonstrate that only the
TMGWR-based agent has the potential to self-adapt effi-
ciently in dynamic contexts, for both a change in goal or
a change in environment and to do so with the lowest overall
computational cost.
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