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A  B  S  T  R  A  C  T 

The fractional-order theory has been successfully applied to battery modeling and state of charge (SOC) estimation thanks to the rapid development of smart energy 
storage and electric vehicles. The fractional-order model (FOM) has high nonlinearity, which makes it difficult to identify the parameters of the FOM, especially the 
online identification of the order. Aiming at the problem of parameter identification and SOC estimation of the FOM of battery, a multi-time scale fractional-order 
modeling method is proposed in this paper. Then, a multi-time scale parameter identification strategy based on feature separation is proposed, and two sub-filters 
are used to complete the online identification of parameters. Finally, a fractional-order multi-innovation unscented Kalman filtering (FO-MI-UKF) algorithm is 
proposed for SOC estimation to utilize the value of historical information better. Under dynamic stress test (DST) and Beijing bus dynamic stress test conditions 
(BBDST), compared with the single-time scale parameter identification algorithm and the single-innovation SOC estimation algorithm, the root mean square error of 
the estimation results is reduced by 13.3 % and 8.7 %, respectively. The experimental results verify the effectiveness of the modeling method and provide a new 
idea for fractional-order modeling. 
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1. Introduction

1.1. Motivation and challenges 

The increasingly severe energy shortage and environmental pollution are today’s crises [1,2]. Lithium-ion batteries have attracted much attention 
because they can store renewable energy in nature and do not pollute [3–5]. Battery management system (BMS) can ensure the safe operation of the 
battery and effectively improve the performance of the battery by monitoring the state of the battery [6,7]. The high-precision battery model is the 
basis of state estimation [8]. The existing battery models mainly include electrochemical models [9,10], data-driven models [11–13], and equivalent 
circuit models [14–16]. The electro-chemical model considers the internal behavior of the battery, such as solid-liquid diffusion and charge transfer 
[9]. The detailed description of the internal mechanism gives the electrochemical model good voltage estimation performance, but the complex partial 
differential equation limits its application in electric vehicles. The data-driven model does not consider the internal mechanism, is divorced from the 
actual physical meaning, and requires a massive amount of high-quality training data [17]. In contrast, the equivalent circuit model has low 
computational complexity and can meet the accuracy requirements. In other words, it is necessary to build a high-fidelity battery model. 

1.2. Literature review of battery modeling 

The equivalent circuit model (ECM) can be divided into the integer-order model (IOM) and the FOM, which are composed of circuit elements with 
clear physical meaning, simple structure, and acceptable voltage estimation accuracy [14]. The second-order resistance-capacitance (RC) equivalent 
circuit model becomes the mainstream IOM because it integrates computational complexity and model accuracy [18]. Ref. [19] quantifies innovation 
based on time scale to realize the decoupling of complex dynamic behavior inside the battery and high-precision estimation of critical states. The IOM 
can be easily incorporated into the filter to estimate the SOC of the battery, and Ref [20] constructs an adaptive fault diagnosis framework based 
on multi-ECMs fusion, which can control the SOC estimation error within 1 %. In addition, the ECM is easy to implement for on-board applications, 
and Tian et al. [21] verified the effectiveness of ECM through hardware tests several years ago. However, due to its ideal electronic components, the 
IOM cannot accurately describe the nonlinear behavior inside the battery [22]. 

Given the highly nonlinear problem exhibited by the battery, researchers began to use Constant Phase Element (CPE) to replace the ideal 
capacitor [23–27], forming the FOM. Regarding model structure, CPE makes the voltage memory and non-uniformity, which can better fit the telephony 
impedance spectrum of the battery. Suppose there is a difference between the model structure and the actual characteristics of the battery. In that case, 
the perfect parameter identification algorithm will also lead to a loss of accuracy. Regarding model accuracy, existing studies have demonstrated that 
the voltage estimation error of the FOM is smaller than that of the IOM. Under the Federal Urban Driving Schedule (FUDS) and the United States 06  
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Cycle (US06) working conditions, the voltage estimation accuracy of FOM established by Chen et al. [28] is higher than that of the second-order RC 
model. Meanwhile, researchers applied the FOM to the SOC estimation of batteries. The process of SOC estimation is the process in which the 
model terminal voltage tracks the actual terminal voltage, and the open circuit voltage (OCV) and SOC functional relationship couple the two. The 
polarization voltage modeling of the battery directly affects the terminal voltage output of the model, so the high-precision battery model has better 
SOC estimation performance. Chai et al. [26] proposed an adaptive fractional-order volume Kalman filtering algorithm with initial value compensation 
and proved the superiority of the proposed method through experiments. Under the FUDS test, the mean absolute error (MAE) and root mean square 
error (RMSE) of SOC estimation results of the FOM established by Wu et al. [29] are 0.44 % and 0.54 %, respectively. In addition, FOM is widely 
used in state of health (SOH) prediction. Ref. [30] proposed a dual filtering algorithm based on FOM to estimate the SOC and SOH of batteries. FOM 
has proved superior to IOM in both voltage simulation and SOC estimation. 

Challenges and opportunities coexist. The advantages of FOM originate from its nonlinearity and are also limited by it, such as the parameter 
identification problem of FOM. The model’s parameters are affected by temperature, SOC, working conditions, and other factors. Online parameter 
identification can improve the accuracy of the model and state estimation algorithm. The FOM in the above studies identifies the order of the model by 
offline methods. For example, the model parameters are identified by the ant colony algorithm in Ref. [23], and the order of the model is identified by 
the particle swarm optimization algorithm in Ref. [25]. The difficulty of FOM parameter identification lies in identifying the order of CPE, which makes 
it difficult for FOM to update model parameters with working conditions like IOM. Aiming at the problem of low robustness caused by fixed parameters, 
Ref. [25] uses a new parameter identification method. Firstly, the order of the model is obtained by the offline identification, and then the model 
parameters are identified by the recursive least squares method. However, considering that the internal reactions of the battery are affected by factors 
such as input, aging, and temperature, the order of the FOM is not fixed [31–33]. For the order update problem of the FOM, Wang et al. [34] proposed 
a collaborative method of Beetle Antennae Search and Recursive Least Squares to identify the parameters of the FOM. However, Ref. [34] identifies 
the parameters of the FOM online with the order. However, the CPE is a device whose properties are capacitive and resistive, and its capacitance value 
interacts with the order. Suppose the two parameters of a CPE are identified separately. In that case, there must be a deviation between the result and 
the model itself. Therefore, it is necessary to identify parameters and orders simultaneously in the online parameter identification of FOM. 

 The FOM solves the problem of nonlinearity and memory of the ECM in battery modeling but does not consider the multi-time scale effect of internal 
charge carriers in the polarization process [35–37]. Specifically, the time constants corresponding to the transfer and diffusion impedance of the battery 
charge are different, and the battery model parameters have varying frequencies [19,38–40]. An accurate battery model is the premise of accurate SOC 
estimation. At the same time, the multi-time effect will accumulate over time and cause the loss of model accuracy. In Ref. [14], an efficient adaptive multi-
time scale identification strategy was proposed to capture the processes of charge transfer, electric double layer, and diffusion inside the battery. In 
addition, the memory property of the FOM makes it have higher SOC estimation accuracy, and it will consider the influence of historical information 
in the SOC estimation. However, the influence of historical information only exists in estimating the model voltage, which causes the filter 
not to utilize the historical information when estimating the SOC thoroughly and does not conform to the model characteristics [41–43]. 

1.3. Ideas and contributions 

Considering the online parameter identification of FOM and the multi-time scale effect of the battery, a multi-time scale fractional-order modeling 
method is proposed in this paper, and historical information is effectively used to estimate the SOC of the battery. The main contributions of this paper 
are as follows: 

(1) Based on the parameter consistency of CPE in FOM and considering the multi-time scale effect of battery, an online multi-time scale fractional-
order model (MTS-FOM) was established. 

(2) A multi-time scale parameter identification strategy based on feature separation is established, which causes the battery model parameters to
have different change frequencies. It uses two sub-filters to complete the identification. 

(3) A FO-MI-UKF SOC estimation algorithm is proposed, which fully uses historical information and unifies the memory length of the fractional-order
operator with the novel information length, thus enhancing the coupling between SOC estimation and model. 

1.4  Organization of this paper 

The structure of this paper is as follows: Section 2 introduces a multi-time scale fractional-order model, and a full-parameter online identification method 
based on feature separation is proposed. Section 3 is devoted to the implementation of the SOC estimation. Section 4 is devoted to the experimental 
analysis. Section 5 is a conclusion. 

2. Multi-time scale fractional-order model 

2.1. Development of the multi-time scale fractional-order models

The consistency between the model and the battery is the key to evaluating the model’s performance, and it is also an essential factor affecting 
the state estimation. The order of FOM is not fixed, and its parameter variations have different characteristics. In summary, an MTS-FOM is 
established in this paper, as shown in Fig. 1. 



Fig. 1. Multi-time scale fractional-order modeling strategy for batteries 

In Fig. 1, Rohm represents the internal ohmic resistance, Rct and Rdf characterize internal charge transfer and diffusion resistances, respectively; Ucd 
and Udf are the voltages of the two polarization networks. CPEdl and CPEdf are two CPEs with fractional-order characteristics. CPEdl is a double-layer 
capacitance, which order is m. CPEdf is the diffusion capacitance, and its order is n. The fast dynamics represent the high-frequency fast dynamic 
response inside the battery, and the slow dynamics represent the low-frequency slow dynamic response inside the battery. The fast dynamic parameters 
are quite different from the slow dynamic parameters in the change frequency, so the model uses the amount of change in SOC as the discriminant 
condition. Specifically, the parameters in the fast dynamics are updated in response to SOC changes. In contrast, the parameters in the slow dynamics are 
updated after the amount of SOC change exceeds the set point. In addition, OCV is the battery’s open circuit voltage, which considers the influence 
of temperature and hysteresis effects. Uh is the hysteresis voltage, and the value of Uh can be calculated in real-time using the current step function, 
as shown in Eq. (1). 

In Eq. (3), ε is a constant used to adjust the rate of decline, η is the Coulombic efficiency, UH is the maximum hysteresis voltage, QN is the battery’s nominal capacity, Ah  is 
simplified form. The Grunwald-Letnikov (G-L) definition can simplify the derivative calculation and is more suitable for discrete systems [25]. This 
paper reduces the modeling complexity through the principle of short memory and only retains the historical information of a period [29], as shown in Eq. 
(2). 

In Eq. (2), L is the memory length, and αk denotes the order of the system at time k. In general, the order α is a constant value. The 
discretization expressions of Ucd and Udf can be obtained through the discretization definition of the G-L, as shown in Eq. (3). 
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In Eq. (3), Acd, Adf, Bcd, Bdf, Fdf, and Fcd are concise representation, Ik is sampling current. In addition, the SOC of the battery is the predicted  value, and its 
calculation is shown in Eq. (4). 

In Eq. (4), S is the battery SOC. The Ucd, Udf, S, and Uh are taken as the model’s state variables, and the model’s state space expression equation 
 

2.2. Parameter identification mechanism based on feature separation 

2.2.1. Cooperative estimation strategy for SOC and parameters 

 The internal reaction of the power lithium-ion battery includes particle diffusion and migration processes and shows different time-scale impedance 
characteristics [44]. The high-frequency behavior includes the pure resistive characteristics, electric double layer phenomenon, and charge transfer 
process. The specific model parameters include Rohm, Rct, Cdl, and m. The low-frequency manifestation is mainly the diffusion and mass transfer process 
of the reaction product in the active particle, and the specific model parameters include Rdf, Cdf, and n. In summary, the high-frequency parameters of 
the model have small time constants and need to be updated at a faster frequency. Therefore, acccording to the different high and low-frequency 
characteristics, this paper proposes a parameter identification strategy based on feature separation, which can estimate SOC and identify model 
parameters simultaneously, as shown in Fig. 2. 

is constructed as shown in Eq. (5). 
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Eq. (5) shows that the battery’s state at a particular time is related to the historical information of  a period, which reflects the memory characteristics of the battery. 
In addition, the hysteresis voltage is updated in real-time, enhancing the model’s robustness. The terminal voltage output equation of the model is shown in Eq. (6). 
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(6)  



Fig. 2. A framework of parameter identification and state estimation based on feature separation. 

It can be seen from Fig. 2 that two independent filters operate out of sync to estimate the battery SOC and model parameters, respectively. The 
parameter identification filter includes two extended Kalman filters with different time scales. The SOC requires high change frequency and filter 
accuracy, which belongs to fast dynamics, and its time scale is the sampling time. It is worth mentioning that the parameter identification filter  transmits 
the latest parameter identification results to the state estimation filter for SOC estimation, which improves the estimation accuracy and robustness of 
SOC. 

2.2.2. Fast dynamics parameters identification 

The multi-time scale parameter identification strategy based on feature separation aims to improve the model’s voltage accuracy and the 
battery’s SOC estimation accuracy. The fast dynamics parameters of the model include Rohm, Rct, Cdl, and m. We can rewrite the output equation of the 
model, as shown in Eq. (7). 

UL,k = UOCV,k +Uh,k − RohmIk − Ucd,k
⏟̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅⏟

Ufast

− Udf ,k
⏟̅⏞⏞̅⏟

Uslow

(7) 

In Eq. (7), UOCV is obtained by looking up the table of SOC and temperature, and Uh is calculated according to the current iteration. 
However, the parameters in fast dynamics are concentrated in Ufast, and the model’s output cannot be calculated without knowing Udf. In this paper, 
Udf is regarded as a parameter to be identified in fast dynamics, and a high-frequency Kalman filtering is established. The state-space  equation of 
fast dynamics is shown in Eq. (8). 

⎧
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In Eq. (8), wfast and vfast represent observation noise and measurement noise, respectively. ɵfast is the state variable, and ̂  U    L,k+1 is the estimated 
terminal voltage. To obtain the output matrix Cfast of the system, we define the relation shown in Eq. (9). 
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In Eq. (9), hfast is a function of x+, I, and ɵfast, and x+ denotes the posterior estimate of the model state. The difference between the model 
output and the measured terminal voltage is used as feedback correction. The calculation process of the output matrix Cfast is shown in Eq. (10). 

In Eq. (10), θ_
fast represents a prior estimate of the fast dynamics parameter, and x_ represents a prior estimate of the model state. The detailed calculation 

process of the three parts in the second row of the equation is shown in Table 1. 
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Table 1 
Details of the solution of the output matrix Cfast.  

In Table 1, A is the system matrix, and K is the gain. In the last formulation of Table 1, the decomposition of the posterior estimate to the prior estimate of the 
state variable is included. Therefore, in Table 1, K is the gain in the SOC estimation filter. There is an iterative computation logic in the computation of Cfast, 
which only needs to initialize   

Initialization: 
Step 1: Initialization of parameters and error covariance matrix. 
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k ,θfast,k), and θfast,k. The high-frequency Kalman filtering is calculated as follows: 

Prediction and correction: 
Step 2: Predict the core temperature and external thermal resistance of the battery 

θ
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Step 3: Update the Kalman gain and calibrate the state variables 
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fast,k + Kfast,k
(
UL,k− 1 − ÛL,k+1

)

P+
fast,k =

(
E − Kfast,kCfast,k

)
P−

fast,k

(13)



In Eq. (16), θ-    represents a prior estimate of the slow dynamics parameter. The detailed calculation process of Eq. (16) is shown in Table 2. 

Cslow,k =
∂hslow

(
xk
+, Ik, θslow,k

)

∂θslow

⃒
⃒
⃒
⃒

θslow=θ−slow,k

∂hslow
(
xk
+, Ik, θslow,k

)

∂θslow
=

k∂hslow
(
x+, Ik, θslow,k

)

∂θslow
+

k∂hslow
(
x+, Ik, θslow,k

)

∂x−k
dx−k

∂θslow

(16) 

slow 

2.2.3. Slow dynamics parameters identification 
The low-frequency performance is mainly the diffusion and mass transfer process of the reaction product in the active particle, and the 

specific model parameters include Rdf, Cdf, and n. The slow dynamics parameters are contained in an RC link with no feedback correction 
mechanism. The Udf in fast dynamics parameters is updated at high frequency under measurement feedback with high confidence. Therefore, the 
identified Udf is taken as the measured value, and a slow dynamics filter is established. The feedback mechanism of Udf can enhance the coupling of 
model parameters at different time scales. The state space equation for the low-frequency RC link is shown in Eq. (14).. 

⎧
⎪⎪⎨

⎪⎪⎩

θslow,k+1=θslow,k+wslow,k ; θslow=[Rdf Cdf n]Τ

Ûdf ,k+1 =

(

nk −
Tnk

Rdf ,kCdf ,k

)

Udf ,k− 1+
Tnk

Cdf ,k
Ik− 1 −

L∑

j=2
(− 1)j

(
nk

j

)

Udf ,k− j+vslow,k

(14) 

In Eq. (14), wslow and vslow represent observation noise and measurement noise, respectively. Udf is the voltage estimate of the low-frequency RC 
link. We further build the low-frequency Kalman filtering and define the relationship shown in Eq. (15). 

khslow
(
x+, Ik, θslow,k

)
=

(

nk −
Tnk

Rdf ,kCdf ,k

)

Udf ,k− 1 +
Tnk

Cdf ,k
Ik− 1 −

L∑

j=2
( − 1)j

(
nk
j

)

Udf ,k− j (15)   

Table 2 
Details of the solution of the output matrix Cslow.  

(1) The partial derivative of model output concerning slow dynamics parameters 

k∂hslow
(
x+, Ik, θslow,k

∂θslow
= k∂hslow x+, Ik, θslow,k

∂Rdf

k∂hslow x+, Ik, θslow,k
) [ ( ) ( )

∂Cdf

k∂hslow
(
x+ , Ik, θslow,k

)

∂n

]

k∂hslow
(
x+, Ik, θslow,k

)

∂Rdf
= − kTnk− 1 x+(2)

R2
df,k− 1CPEdf,k− 1 

k∂hslow
(
x+, Ik, θslow,k

)

∂CPEdf
= − kTnk− 1 x+(1)

R2
df,k− 1

n
CPEdf,k 1

+
Tnk− 1 Ik

CPE2
df,k− 1 

k∂hslow
(
x+, Ik, θslow,k

)

∂n
=

ln(T)T k− 1

Rdf,k− 1CPEdf,k− 1
kx

−

+(2)+
ln(T)Tnk− 1

CPEdf,k− 1
kIk − x+(2)

(2) The partial derivatives of model outputs concerning model state variables 

k∂hslow
(
x+, Ik, θslow,k

)

∂x−
k

= [ 0 1 0 0 ]

(3) The partial derivatives of model state variables concerning slow dynamics parameters 
dx− ∂x−

k
∂θslow

+
kdθ

k

slow
= ∂x+

−

k

1

k−∂x− dx+
1

dθslow

The right-hand side of the equation is computed as follows: 

∂x−
k

∂θslow
=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0

k∂hslow
(
x+ , Ik, θslow,k

)

∂Rdf

k∂hslow
(
x+ , Ik, θslow,k

)

∂CPEdf

k∂hslow
(
x+, Ik, θslow,k

)

∂n

0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∂x−
k

k∂x+
− 1

= Ak− 1

dx+
k− 1

dθslow
=

d
[
x−

k− 1 + Kk− 1
(
UL,k− 1 − ÛL,k− 1

) ]

dθslow
=

dx−
k− 1

dθslow
− Kk− 1

dÛL,k− 1

dθslow
=

dx−
k− 1

dθslow
− Kk− 1

k
)

∂hslow
(
x+

− 1, Ik− 1, θslow,k− 1

∂θslow

In Eqs. (11)–(13), Pfast denotes the covariance matrix, E is the identity matrix, and Kfast is the Kalman gain. It is important to note that Udf is only a parameter 
in fast dynamics and does not consider the RC loop’s internal relationships. 

The calculation process of output matrix Cslow for the slow dynamics system is shown in Eq. (16). 

In Table 2, the iterative calculation process of the output matrix in the slow dynamics system is derived in detail. It is worth noting that the feedback 
mechanisms of slow dynamics systems differ from those of fast dynamics systems, but they both use the Kalman gain in SOC estimation. The parameter 
identification strategy based on different frequency domain characteristics is more consistent with the actual characteristics of the battery, and the 
model parameters can be updated adaptively in multi-time scales. 



3. Model-based SOC estimation 

3.1. Fractional-order multi-innovation unscented Kalman filtering algorithm 

For the highly nonlinear battery system, the processing method of the nonlinear problem will directly affect the SOC estimation accuracy. The 
unscented Kalman filtering (UKF) can solve the accuracy loss problem of the extended Kalman filtering (EKF) in solving the Jacobian 

matrix, and it is more suitable for battery system state estimation. In addition, the battery system has few observable variables, and the observation 
information should be fully utilized when estimating SOC. 

The fractional-order systems can retain historical information, but the fractional-order unscented Kalman filtering (FOUKF) does not consider 
the impact of historical information during the state correction phase of the SOC. Specifically, the FOUKF will consider the state quantities from k-1 
to k-L when estimating the state at time k. However, the state correction process only considers the Kalman gain and innovation at time k. For 
this problem, this paper establishes the FO-MI-UKF algorithm for estimating the SOC of the battery. The state space expression of the model is given in Eq. (17). 

In Eq. (17), x is the system state variable, u is the system input, and A and B are the system matrix and input matrix, respectively. W is the system observation 
noise, and v is the system measurement noise. We extend a single innovation to a sequence of innovations, as shown in Eq. (18). 

In Eq. (18), EL,k is an innovation sequence with length L. In order to ensure the synchronous use of historical information, the length of innovation is set to 
the memory length of the fractional-order operator. Meanwhile, the single Kalman gain is extended to a Kalman gain sequence, as shown in Eq. (19). 

{
xk+1 = Akxk + Bkuk − Fk + wk
ŷk = h(xk, uk) + vk = UOCV,k + Uh,k − RohmIk − Ucd,k − Udf ,k + vk

(17) 

EL,k =

⎡

⎢
⎢
⎢
⎢
⎣

ek
ek− 1
ek− 2

⋮
ek− L+1

⎤

⎥
⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎢
⎣

yk − Ck x̂ −
k

yk− 1 − Ck− 1 x̂ −
k− 1

yk− 2 − Ck− 2 x̂ −
k− 2

⋮
yk− L+1 − Ck x̂ −

k− L+1

⎤

⎥
⎥
⎥
⎥
⎦

(18)

KL,k =
[
K1,k,K2,k,⋯,KL,k

]
∈ Rn×L (19) 

x̂+
k = x̂ −

k +

L∑

i=1
Fdf ,iKi,kek− i+1 (20) 

In Eq. (19), K corresponds to the Kalman gain of the innovation at each time instant. Then, we can get the status update method of multiple innovations, as 
shown in Eq. (20). 

Table 3. 

In Eq. (20), Fdf is the fractional-order attenuation weight coefficient in Eq. (5), which aims to reduce the weight of the old data. Specifically, the 
historical information close to the sampling moment has a higher weight. In summary, the detailed steps of the FO-MI-UKF algorithm are shown in 



Step 1 Calculate the weight coefficient: λ = a2(n + κ) − n 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

W(m)(0) =
λ

n + λ

W(c)(0) = W(m)(0) +
(
1 − a2 + b

)

W(m)(i) = W(c)(i) =
1

2(n + λ)

Step 2 Initialize the state variables and error covariance matrix: 
{

x̂+
0 = Е[x0]

P0
+ = Е((x0 − x̂+)(x0 − x̂+)

Τ
)

Step 3 Calculate the Sigma sampling point: 
χ0

− = x̂k− 1
+

χi
− = x̂k− 1

+
+
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(n + λ)Pk− 1
+

√ )

i, i = 1,⋯, n

χi
− = x̂k− 1 −

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(n + λ)Pk− 1
+

√ )

i, i = n + 1,⋯, 2n  

Step 4 Update the state process: 

dα x̂k
−
=
∑2n

i=0

(
Wi

(m)f(χi
− , uk− 1)

)

x̂k
−
= dα x̂k

−
−
∑L

j=2

(
Fk− 1 x̂+

k− j
)

Step 5 Update the error covariance process: 

Pxx =
∑2n

i=0
Wi

(c)(f(χi
− , uk− 1) − dα x̂k

−
)(f(χi

− , uk− 1) − dα x̂k
−
)

Τ
+ Qk− 1

Pχx =
∑2n

i=0
Wi

(c)(χi
− − x̂k− 1

+
)(f(χi

− , uk− 1) − dα x̂k
−
)

Τ

P−
k = Pxx +

⃒
⃒F1,k− 1

⃒
⃒Pχx + Pχx

⃒
⃒F1,k− 1

⃒
⃒+
∑L

j=2

(
Fj,k− 1Pk− j

+Fj,k− 1
)
+ Rk− 1

Step 6 Output the posteriori state estimate: 

χi
+ = f(χi

− , uk− 1) −
∑L

j=2

(
Fj,k− 1 x̂+

k− j
)

ŷk =
∑2n

i=0

(
Wi

(m)h(χi
+)
)

Step 7 Update the state measurement: 

Pyy =
∑2n

i=0
Wi

(c) ( h(χi
+) − ŷk

)(
h(χi

+) − ŷk
)Τ
;Pxy =

∑2n

i=0
Wi

(c)(χi
+ − x̂k

−
)(χi

+ − x̂k
−
)

Τ

Kk = Pxy
(
Pyy
)− 1

; x̂+
k = x̂−

k +
∑L

i=1
Fdf,iKi,kek− i+1

Step 8 Update the error covariance matrix: 
Pk

+ = Pk
− + KkPyyKk

Τ 

Step 9 The loop iteratively computes Step 3 to Step 8.  

Table 3 
Detailed steps of the fractional-order multi-innovation unscented Kalman filtering.  



In Step 1, a is the distribution parameter, n is the dimension of the state variable, λ is the adjustment coefficient, and b = 2 for Gaussian distribution. 
The FO-MI-UKF algorithm can accurately estimate the SOC of the battery by cyclic iterative calculation. 

3.2. Overall framework of modeling mechanism and estimation strategy 

In general, after the establishment of the MTS-FOM, the fast dynamics parameters, including Rohm, Rct, Cdl, m, and Udf, are identified by high-
frequency Kalman filtering. In slow dynamics, the Udf of high-frequency estimation is used as feedback, and a low-frequency filter identifies the 
Rdf, Cdf, and n. In addition, the Kalman gain of SOC estimation is used in the parameter identification process, and the high-frequency 
parameters and low-frequency parameters are coupled through Udf. Therefore, the whole parameter identification and SOC estimation process is 
strongly coupled. Fig. 3 shows the modeling and SOC estimation framework of this paper. 

In Fig. 3, the Kalman gain in the FO-MI-UKF algorithm is used to identify the parameters of MTS-FOM, and the parameter identification results 
are used for SOC estimation. The multi-time scale parameter identification strategy based on feature separation is closer to the actual characteristics 
of the battery. In addition, due to the low-frequency update of some model parameters, the proposed method has lower computational complexity than 
the traditional single-time scale parameter identification method. 

Fig. 3. Battery SOC estimation framework based on fractional-order multi-time scale modeling. 

4. Experiments and result analysis

4.1. Experimental platform and design 

An experimental test platform was built and tested to verify the performance of the proposed parameter identification strategy and SOC 
estimation algorithm under dynamic working conditions. The experimental testing platform includes a high-power charging-discharging tester, a 
central control computer, and a temperature control box. In addition, an unused ternary lithium-ion battery is selected as the test sample in this paper. 
Before the start of the test, the battery was charged to the cut-off voltage by constant current and constant voltage. The experimental test platform 
and battery information are shown in Fig. 4.  



In Fig. 4, the temperature control box’s temperature is 25 degrees Celsius. The experiments that were carried out include hybrid pulse power 
characterization (HPPC), DST, and BBDST. The terminal voltage accuracy of the model and SOC estimation accuracy of the battery were verified under 
different working conditions. The current and voltage under different working conditions are shown in Fig. 5. 

Fig. 4. (a): Experimental platform; (b) Characteristic battery parameters. 

Fig. 5. Experimental results: (a-1) Current under HPPC; (a-2) Voltage under HPPC; (b-1) Current under DST; (b-2) Voltage under DST; (c-1) Current under BBDST; (c- 
2) Voltage under BBDST;

4.2. Parameter identification results of the model 

The parameters of the model, the accuracy of the model, and the SOC estimation accuracy of the battery interact with each other, so it is necessary to 
verify the identification effect of the model parameters. The initial values of the parameters are obtained by off-line identification using the genetic 
algorithm under different working conditions. The parameter identification results of MTS-FOM are shown in Fig. 6. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Parameter identification results: (a) HPPC; (b) DST; (c) BBDST. 
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In Fig. 6, (a-1)-(a-7) is the identification result under HPPC, (b-1)-(b- 7) is the identification result under DST, and (c-1)-(c-7) is the identification 

result under BBDST. It can be seen that the order of the model is not fixed in the test, and it will fluctuate in the SOC change. In addition, the time 
constant of the RC link is expressed as the product of capacitance and resistance. It can be seen that the time constant of the fast dynamics parameter 
is smaller than that of slow dynamics. An order of magnitude difference verifies the existence of a time scale difference between model parameters. 

 
4.3. Verification of terminal voltage tracking effect 

 
The voltage estimation effect of the model can reflect the fit degree between the model and the battery, which is directly related to the SOC 

estimation accuracy. The terminal voltage values of batteries under different working conditions are taken as reference, and the estimation accuracy 
of the proposed model is compared with the traditional fractional order model (the EKF algorithm is used to identify parameters without considering 
the time scale effect). The estimated results of terminal voltage are shown in Fig. 7. 

 
 
 

 
 
 
 
 
 

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7.  Terminal voltage estimation results: (a) HPPC; (b) DST; (c) BBDST. 
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(b) Terminal voltage estimation results at DST 
 

Fig. 7. (continued). 
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(c) Terminal voltage estimation results at BBDST 
 

Fig. 7. (continued). 
 

 
 
As seen in Fig. 7, both fractional-order models have good estimation accuracy of the terminal voltage. However, the MTS-FOM can better track the 

nonlinear change of battery voltage. It can be seen from Fig. 7 (b-3) that the MTS-FOM can accurately estimate the battery voltage at the beginning of 
the polarization behavior. At the same time, the FOM has significant errors in the polarization process. The MTS-FOM generally performs better 
voltage estimation under different working conditions, and its maximum error is less than 0.05 V. 

 
4.4. Verification of SOC tracking effect 

 
Based on MTS-FOM, the FO-MI-UKF algorithm, which is more suitable for fractional-order systems, is proposed in this paper. The current integral 

value in the experimental environment is used as the actual SOC, and the SOC estimation performance of different models and algorithms is 
compared. The battery test was carried out after full charge. The estimated SOC results under different working conditions are shown in Fig. 8. 
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Fig. 8. SOC estimation results: (a) HPPC; (b) DST; (c) BBDST. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

 
Fig. 8. (continued). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fig. 8. (continued). 

In Fig. 8, the FOM using the FO-MI-UKF algorithm has better SOC estimation performance; its error is maintained at about 1 %, and its RMSE 
under HPPC, DST, and BBDST working conditions are 0.0041, 0.0071, and 0.0110, respectively. The SOC estimation based on the FO-MI-UKF 
algorithm and the MTS-FOM has the best performance, which can accurately follow the SOC change under different working conditions. The RMSE 
under HPPC, DST, and BBDST working conditions are 0.0028, 0.0061, and 0.0101, respectively. The error analysis of the estimation results is shown in 
Fig. 9. 

Fig. 9. Error analysis of the results: (a) MAE of the terminal voltage prediction error; (b) MAE of the SOC prediction error; (c) RMSE of the terminal 
voltage prediction error; (d) RMSE of the SOC prediction error. 



Fig. 9. Error analysis of the results: (a) MAE of the terminal voltage prediction error; (b) MAE of the SOC prediction error; (c) RMSE of the terminal voltage 
prediction error; (d) RMSE of the SOC prediction error. 

As shown in Fig. 9, the MTS-FOM based on feature separation has the best performance in estimating the terminal voltage and SOC of the battery. 
Meanwhile, the FO-MI-UKF algorithm integrating multi- innovation updates is more suitable for terminal voltage systems with memory 
characteristics. The comparison of other SOC estimation methods with the proposed method is shown in Table 4. 

As seen from Table 4, among the existing SOC estimation methods, the method proposed in this paper has good estimation performance under 
the HPPC, DST, and BBDST working conditions. 

Methods Battery Verification Error of SOC 

Li-Ti battery 2.9 
Ah 

DST RMSE: 0. 52 
% 

Multi-model extended 
Kalman filtering (MM- 
EKF) [45] 

FOM & Adaptive 
fractional-order 
cubature Kalman 
filtering (AFCKF) [26] 

18650type 
lithium-ion 
battery 1.2 Ah 

HPPC RMSE: 2.74 
% 

FOM & Adaptive central 
difference Kalman 
filtering (ACDKF) [46] 

NMC-based 
lithium-ion 
battery 94 Ah 

DST 
New Europe 
Driving Cycle 
(NEDC) 

RMSE(DST): 

Positional encoded- 
attention long short- 
term memory (LSTM) 
[47] 

A123 LiFePO4 
battery 2.3 Ah 

DST 
FUDS 

Proposed Ternary lithium- 
ion battery 70 Ah 

HPPC 
DST 
BBDST 

0. 47 % 
RMSE 
(NEDC): 
0.52 % 
RMSE(DST): 
1.20 % 
RMSE 
(FUDS): 
1.01 % 
RMSE 
(HPPC): 0. 
28 % 
RMSE(DST): 
0. 61 % 
RMSE 
(BBDST): 
1.01 %

Table 4 
Critical performance review of the proposed method with other existing SOC 
methods.  

5. Conclusions

In this paper, the multi-time scale effect of the fractional-order model in parameter identification is studied, and the online parameter identification
of the fractional-order model is realized by the method of feature separation. In addition, an fractional-order multi-innovation unscented Kalman 
filtering algorithm is proposed for the SOC estimation. The main conclusions are as follows. 

(1) The order of fractional-order model will change in application, and it has multi-time scale effect. The traditional single-time-scale fractional-
order model results in the loss of precision in the process of parameter identification.
(2) For the large-capacity commercial ternary lithium-ion battery used in this paper, the parameter identification strategy based on feature 
separation has higher voltage estimation performance in fractional-order modeling. And the accuracy is improved significantly in the case 
of continuous charging and discharging. The terminal voltage estimation results under the DST show that the RMSE of the multi-time 
scale fractional-order model is reduced by 28.6 %.
(3) When using the fractional-order battery model to estimate SOC, the state update method of multi-innovation can improve the SOC estimation 
accuracy. The RMSE estimated of the SOC is reduced by 13.3 % and 8.7 % under DST and BBDST by fractional-order multi-innovation unscented 
Kalman filtering algorithm.
Although the proposed model has certain advantages, the multi-time scale fractional-order model needs to consider the effect of temperature on 
order, which is also our future research direction.
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