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Abstract 
Capacity estimation of lithium-ion batteries is significant to achieving the effective establishment of the prognostics and 
health management (PHM) system of lithium-ion batteries. A capacity estimation model based on the variable activation 
function-long short-term memory (VAF-LSTM) algorithm is proposed to achieve the high-precision lithium-ion battery 
capacity estimation. By re-selecting each activation function, the proposed algorithm avoids the low estimation accuracy 
caused by the fixed activation function of the long short-term memory (LSTM) algorithm, and meanwhile, it can effectively 
speed up the convergence. The algorithm inputs consider two correlation coefficients so that the health factor with the highest 
correlation coefficient is chosen as the network input. The experimental data used for the experimental validation is the 
NASA public battery data under different temperature operating conditions. The validation results show that the estimation 
accuracy of the VAF-LSTM algorithm under different training sets is greatly improved compared with the traditional LSTM 
algorithm and the back propagation (BP) algorithm, and the average estimation accuracy can reach more than 97.5%. The 
improvement of estimation accuracy is also clearly demonstrated under the MAE, MSE, and RMSE. Therefore, the capacity 
estimation model will provide an important reference role in high-precision battery management systems. 

Keywords Lithium-ion battery; Variable activation function; High correlation; Capacity estimation 

 
 

Introduction 

Changes in the structure of today’s world have altered the layout of the international battery industry [1]. Lithium-ion batteries 
have gained traction in applications due to their advantages of high energy density, long cycle life, high safety performance, 
and low cost [2]. In the many applications of lithium-ion batteries, whether it is electric vehicles or power electronic equipment 
[3, 4], it is necessary to carry out a relatively accurate estimation of the various states of lithium-ion batteries [5, 6]. Therefore, 
the establishment of a prognostics and health management (PHM) system is crucial in each application [7], through which to 
predict and intervene in advance to manage the abnormal conditions of the battery system, and to predict the working state 
of the lithium-ion battery in advance through the parameters characterized from the macro-perspective. 

Capacity is a direct parameter that intuitively reflects the degradation of lithium-ion electrical energy storage capacity [8], 
and its accurate estimation of the lithium-ion battery management system and the establishment and design of the PHM 
system are quite crucial [9]. The capacity plays a vital role in the battery’s state of health (SOH) [10–13] and the remaining 
useful life (RUL) [14, 15]. Capacity is a vital indicator to avoid excessive aging of batteries and thus cause safety accidents. 
Accurate estimation of the battery capacity will provide timely warnings before a lithium-ion battery accident occurs [16, 
17], reducing the likelihood of battery accidents [18]. Capacity estimation predicts in advance the permanent decline in 
performance of lithium-ion batteries that occurs with the irreversible degradation of the internal electrochemical components. 

The operating principle of a battery is a typical nonlinear strongly coupled electrochemical system, and the internal has 
complex chemical reactions [19]. Battery research, a more complex cross-disciplinary discipline, needs cybernetic thinking 
for sub-analysis research [20, 21] and the pre- sent study will be for the lithium-ion battery capacity estimation of the battery’s 
usable capacity. Unlike voltage and current measurements, the exact value of the capacity can only be known after a complete 
charge/discharge and cannot be obtained directly from a measuring instrument, as is the case with voltage and current [22]. To 
estimate the current or future capacity during the charging and discharging process, it is necessary to use model-based or data-
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driven methods for capacity estimation. 
The model-based estimation methods contain the equivalent circuit model, the electro-thermal coupling model, and the 

empirical degradation model [23, 24]. The equivalent circuit model has a simple structure [25], but its generalization is poor and 
relies too much on each parameter identification. The electro-thermal coupling model is complex [26, 27], and the accuracy of 
the model is very high because it describes the internal working mechanism of the battery through a series of partial 
differential equations. However, it cannot accurately depict the battery degradation process because of the complexity of the 
actual battery conditions and the variability among individuals [28]. Bian et al. developed an equivalent model to estimate the 
health of lithium-ion batteries, applying a capacity model to define the dependence of the state of charge on the open-circuit 
voltage as the battery ages [29]. The versatility of the equivalent model and its applicability to different chemistries were 
demonstrated. The data-driven method has been applied rapidly with the booming development of computer technology, 
which breaks through the constraints of complex nonlinear systems that are difficult to model by extracting features from easily 
accessible battery operating data [30, 31]. We can estimate the capacity of lithium-ion batteries by obtaining the implied battery 
state information and evolutionary laws directly from the easily accessible battery test and condition monitoring data (voltage, 
current, temperature, etc.). In this case, there is no need to consider the electrochemical reactions and failure mechanisms within 
the lithium-ion battery [32, 33], thus achieving the capacity estimation of lithium-ion batteries. A new hybrid lithium-ion 
battery RUL prediction model was proposed by Chen et al. [34]; by combining the mechanism, the utilization of local features 
can be improved in the case of limited data. In addition, the mechanism can effectively mitigate the effect of battery capacity 
rebound on the model during the charging and discharging cycles of lithium-ion batteries. 

Among the data-driven methods [35], machine learning, data mining, and artificial intelligence have been widely used in 
different application fields [36]. However, in estimating the capacity of lithium batteries, the estimation accuracy of LSTM 
neural networks is not high. Therefore, a fixed activation function might lead to poor accuracy of some estimation results 
by analyzing the traditional LSTM neural network. Different activation functions play roles in different network estimation 
steps, and there are neuron deaths and gradient explosions in some steps. Therefore, this study attempts to select the activation 
function to improve the estimation accuracy. The VAF-LSTM algorithm can also speed up the convergence of LSTM network 
estimation. The data quality of the highly correlated health factors as inputs to the neural network has a relative impact on the 
estimation results, so these three health factors from the article were chosen as alternatives in this study. Other studies 
generally input all the high-correlation health factors or fix a settled health factor as input. This research carried out the front 
selection part in choosing the inputs, not fixing it to a settled health factor but screening it in advance. 

In this research, the traditional easy-to-obtain input data were replaced by the health factors with the highest overall 
relevance as inputs to the neural network [37], combined with Pearson’s correlation coefficient analysis and Spearman’s 
correlation coefficient analysis for effective information extraction. Because the correlation is very high, the factor can better 
characterize the lithium-ion battery capacity degradation trend, the health factor as a neural network input, to obtain the 
neural network model [38]. To achieve high-precision capacity estimation of lithium-ion batteries, analyzing the traditional 
LSTM neural network [39–41] and VAF-LSTM neural network, the proposed algorithm can effectively improve the 
estimation accuracy for lithium-ion batteries. The VAF-LSTM algorithm can effectively improve the estimation accuracy 
and lay the foundation for SOH and RUL parameter estimation in lithium-ion battery PHM systems. 

This paper mainly establishes a high-precision lithium-ion battery capacity estimation model combining the above 
descriptions. The model is built by the proposed VAF-LSTM neural network algorithm, which enhances the estimation 
accuracy of the traditional LSTM neural network algorithm and accelerates the convergence speed of the LSTM neural 
network estimation process. The main contributions of this paper are summarized in the following two points to distinguish 
it from other published studies. 

(1) In this research, the health factors with high correlation are used as inputs to the neural network since data quality impacts 
the estimation results. The high correlation health factor was selected in advance, and instead of fixing a settled health 
factor, the advance health factor screening was carried out, which can effectively avoid the problem of fixing the health 
factor that may cause the estimation error to become larger. 

(2) The capacity estimation model established in this study proposes the VAF-LSTM neural network algorithm by extracting 
data from NASA’s public datasets of ambient, high, and low temperatures and validating the optimization of the 
activation function, which is the core part of the neural network. The selection of different activation 
functions in different situations makes it different from the traditional LSTM neural network, which improves 
the estimation accuracy of various operating environment temperatures and accelerates the convergence 
speed of the estimation process of the LSTM neural network. 

The structure of this study is shown as follows: the second part is the theoretical analysis, which includes the selection of high 
correlation health factors, the description of the algorithmic details of the VAF-LSTM neural network, and the logical 



compendium of this study. The third part is the analysis of the results, which includes the presentation of the data used, the 
results of the correlation coefficients of the health factors, and the analysis of the results of the capacity estimation. The fourth 
part concludes the present study. 

Theoretical analysis 

Selection of high correlation health factors 

As an input to the neural network, the health factor is obtained by processing the easily available data, which includes 
measurable data such as current, voltage, and temperature, and the correlation is analyzed by extracting the required health 
factor from these raw data. 

Three health factors (constant current to constant voltage ratio, constant current time during charging, and equal discharge 
voltage difference (3.9 V–3.5 V) time interval) were selected as alternatives in this study. Instead of entering all the high 
correlation health factors or fixing a particular health factor as an input, the selection of inputs in this study was screened ahead 
of time and not fixed to a particular health factor as an input in this study. 

In this study, two similarity calculations, Spearman’s correlation coefficient and Pearson’s correlation coefficient, will be used for 
the selection of high health factors, instead of using Euclidean distance calculation because of a big difference between the two 
values and what we need is the correlation of the trend. 

The Pearson correlation coefficient between the health factors and the benchmark value of lithium-ion battery capacity 
is the quotient of covariance and standard deviation between the two variables. A mathematical property of the correlation 
coefficient is that it does not change depending on the location and scale of the two variables, which is very consistent with the 
logic of the health factors’ screening. Pearson’s correlation coefficient is defined as a moment, so the probability distribution of 
any two variables is non-zero so the existence of the correlation coefficient is unquestionable. At the same time, the robustness 
of the correlation coefficient will be due to the outliers, thus misrepresenting the accuracy of the coefficient, if the data is 
roughly normal distribution, further carrying out the asymptotic tests. In this research, the study will analyze the Pearson 
correlation coefficient of the various health factors and lithium-ion battery capacity, and the equation for the analysis is shown 
in Eq. (1). 

Equation (1) defines the correlation coefficient of the totality of the two variables, pX,Y is the correlation coefficient between 
the two variables X and Y, cov(X, Y) is the covariance between the two variables, σ stands for the standard deviation of each 
of the two variables, E is the expected value, and μ reflects the collective characteristics of the respective variables. Through 
the calculation of Pearson’s correlation coefficient, the health factor with a higher correlation is selected and then combined 
with the following Spearman’s correlation coefficient, the optimal factor is selected as an input for the capacity estimation 
of lithium- ion batteries, which will effectively discard the health factor with low correlation as an influence that makes the 
final estimation accuracy fail to meet the target requirements. 

Spearman’s correlation coefficient is a non-parametric indicator of the dependence of two variables, and this correlation 
coefficient is obtained by evaluating the correlation of two variables through a monotonic equation. The Spearman’s 
correlation, also known as the rank correlation, replaces the rank of the observed data with an order, which ameliorates the 
large effect of significant outliers on the correlation coefficient since it is based on the calculation of the rank order, and the 
magnitude of the difference between the actual values does not have a direct impact on the results. Therefore, the Spearman 
correlation coefficient is used to select the health factor with the highest correlation as the neural network input, and it is 
shown in Eq. (2). 

(2) 

In Eq. (2), rS is the Spearman’s correlation coefficient, n is are the bits of x and y, respectively, and R(x), R(y) denote their respective 
average bits and the higher the Spearman’s correlation coefficient, the higher the correlation coefficient. It is proved that the 
capacity of lithium-ion batteries will decay with the increase of the number of cycles, but there is a consideration of capacity 
regeneration; therefore, the Spearman’s correlation coefficient and Pearson’s correlation coefficient are combined to obtain the 
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health factor with the largest correlation as an input for the capacity estimation of lithium-ion batteries. 

Variable activation function‑long short‑term memory neural network (VAF‑LSTM) 

As the LSTM algorithm is similar to human memory activity, the brain subconsciously remembers the keywords, recalled at 
a later stage, but also will be only vital memories preserved, the behavior is subconscious activity, and the LSTM neural 
network is the real portrayal of the human brain activity. The traditional LSTM neural network repeating module has four 
network interaction layers interacting differently, divided into three sigmoid layers and one tanh layer, while LSTM contains 
input gates, forgetting gates, output gates, and cell states; each part has its weights and operations for controlling the 
information flow and processing. The most important thing about the traditional LSTM neural network is its gate structure 
and ability to remember them over time. LSTM neural network, as a variant of the RNN, will solve the disadvantage of the 
RNN neural network that is easily affected by short-term memory to a certain extent. 

Although the LSTM neural network can perform the final information processing by learning the long-term dependent 
information, the processing of the long-term dependent information is accompanied by the problem of vanishing or exploding 
gradients. However, the LSTM algorithm is prone to the problem of excessive estimation error during the estimation of 
lithium-ion battery capacity. Therefore, the VAF-LSTM neural network algorithm proposed in this study is to re-select all 
the activation functions used in the LSTM algorithm, and the activation function is a vital part of the neural network brain, 
which is needed to calculate the activation values of each layer, and its importance is self-evident. The traditional activation 
functions used in LSTM neural networks are the sigmoid function and the tanh function, which are used to complete the 
information selection of the four interacting layers. In this study, five activation functions are involved in the activation 
functions’ selection, and their basic information is shown in Table 1. 

The σ function is a commonly used activation function in neural networks, which can activate neurons at frequencies 
ranging from no activation at all (0) to fully saturated activation at the maximum frequency (1). However, saturation will cause 
the gradient of the neural network estimation process to disappear. When the neuron activation is close to 0 or 1, it will be 
close to saturation, and the gradient will be almost 0. This feature will effectively “kill” the gradient, which results in the signal 
transmission absence. At the same time, if the initialization weights are too large, most neurons will saturate, and the network 
will not perform learning activities. The output of the function is not zero centered, which affects the operation of gradient 
descent, resulting in a zig-zag descent. 

The tanh function can compress the value of the input to between [− 1, 1], and similarly, it also has the saturation problem, 
but its output is 0-mean and zero centered, which alleviates the problem of gradient vanishing of the sigmoid function to a certain 
extent. When the activation value of the input is low, the tanh function can directly perform matrix operations, and the training 
is relatively easy, but the gradient vanishing problem of the tanh function still exists, because its principle is also an enlarged 
version of the sigmoid function, which has not solved the problem of vanishing gradient. 

The above two activation functions as the traditional LSTM neural network parts, in the operation of the neural network, will 
cause some problems. Therefore, the object of this study as a typical nonlinear system of the lithium-ion battery system, the 
proposed VAF-LSTM network, is the use of a different activation function to carry out the activation of the neural network of 
each layer. Lithium-ion battery systems in the operation process, the adjustment of the weight of each part is vital, and the role 
of each layer of the net- work needs to achieve its performance. So the VAF-LSTM is proposed for each network layer structure 
of the variable activation function selection, to improve the robustness of the LSTM algorithm to alleviate the gradient explosion 
and disappearance of the problem. 

In the variable activation function selection, in addition to the sigmoid function and the tanh function, the relu function, the 
elu function, and the relu5 function will be utilized again as the selected functions. The percentage of dead neurons in the network 
and the estimated speed of the neural network after each activation function selection will be used as a decision condition to 

Table 1  Basic information about the activation function

Function �(x) tanh(x) elu(x) relu(x) leakyrelu(x)

Expressions 1

1+e−x
ex−e−x

ex+e−x
x, x > 0

𝛼(ex − 1), x < 0

Range 0 ~ 1  − 1 ~ 1 −� ∼ +∞

max(0, x) x, x > 0

bx, x < 0

0 ∼ +∞ −∞ ∼ +∞

complete the establishment of the VAF-LSTM algorithm, which flowchart is shown in Fig. 1. 



Fig. 1 Block diagram of the 
VAF-LSTM neural network 

The activation functions in the algorithm, in addition to the most basic activation functions, include the relu function, the elu 
function, and the leaky relu function, which need to be further explained. The relu function does not have a saturation problem 
when the input is positive, which makes it possible to train the deep network as usual, solving the problem of disappearing 
gradients, and converging more quickly than the two activation functions of the traditional LSTM neural network. The 
convergence is faster than the classic LSTM neural network with two activation functions, but the output of this function is not 
a function with a mean value of 0, and some neurons of this function may never be activated. 

The elu function solves some of the drawbacks of relu, the mean of the output of this function is close to the value of 0, 
and there is no existence of dead neurons; the function has saturated regions in the negative domain, so it is robust in the 
negative region, but because it involves nonlinear inputs; even though the function converges faster during training, it will take 
more time during testing. 

The leaky relu function is an attempt to solve the problem of neuron death in the relu neurons. This function has a little 
positive slope in the negative region, which solves the problem of neuron death in the negative region of the relu function. 
However, the results are inconsistent and lead to inconsistent predictions of the relationship between the positive and negative 
inputs. The graph of activation functions involved in this study is shown in Fig. 2. 

Fig. 2 Curve of each activation function 



Various activation functions have different effects under different inputs of the neural network, and in the training phase 
and testing phase of the neural network, some functions will have gradient explosion, gradient disappearance, neuron death 
problems, and so on in the estimation process. The activation function of the traditional LSTM neural network is fixed as the 
sigmoid function and tanh function, which appear in the above problems; the study introduces different activation functions 
into the conventional neural network structure to form VAF-LSTM neural network, which operation logic is shown in Fig. 
3. 

Fig. 3 Network structure diagram of the 
VAF-LSTM neural network 



As shown in the figure above, in the process of VAF- LSTM neural network estimation, it is necessary to consider the 
location of different activation functions to achieve the significance of activation. Activation function selection is not used as 
a deterministic function, but with a different estimation, the selection of the most appropriate activation function as a medium 
to activate the deep neuron, and the formation of the VAF-LSTM neural network algorithm. Similar to the traditional LSTM 
neural network, the target algorithm also needs the selection of four activation functions that will be analyzed separately.  

The forgetting gate determines what information we will forget from the cell state of the VAF-LSTM. Firstly, a nonlinear 
mapping of the previous state output and the current input is needed for the first variable selection of the activation function, 
which in turn outputs the vector ft (to satisfy the forgetting-gate property and to satisfy the forgetting property of this forgetting 
gate, the activation function chosen must have the ability to forget some of the data). The equation for this vector is shown in 
Eq. (3).  

In the above Eq. (3), ht−1 is the previous state output, xt is the current input, V is the variable activation function, Ft is the 
vector that passes through the forgetting gate, and the weights Wf in the formula are the unshared weights, and the previous 
state output ht−1 and the current input xt correspond to different weights, respectively. bf is the bias term of the forgetting gate. 

The input gate determines the value that will be updated, which continues to select a new activation function that creates a 
new vector of candidate values, which are added to the cell state as supplementary values. The update of the cell state is 
completed by the above two re-selections of the activation function and shown in Eqs. (4) and (5). 

 is the value of the candidate value created, appearing as an intermediate value, it is the value decided to be updated in 
the input gate, the weights Wih, Wix , Wsh, and Wsx in the formula are unshared, and different quantities all correspond to different 
weights, and bi , bS are the corresponding bias terms. The new cell state is computed from the above input gate update as well 
as the vector of candidate values, where the old state of each cell is updated, discarding the information that was decided to be 
discarded to form the new candidate values, and then the decision is made to update the degree of change of each state 
accordingly. The new cell states are calculated as in Eq. (6). 

As shown in the above Eq. (6), the old cell state St−1 is updated to St . The output gate of the VAF-LSTM neural network 
decides what value the whole network outputs, which will be a filtered cell state based on the cell state after filtering. The 
output gate first carries out the selection of the activation function, which acts as a function to decide which part of the cell 
state is outputted, and the other activation function is required to process the cell state again by updating it once again and 
multiplying it by the output of the previous activation function gate, thus obtaining the final result shown in Eqs. (7) and (8). 

(3)ft = V(Wf ×
[

ht−1, xt
]

+ bf )

(4)it = V(Wih × ht−1 +Wix × xt + bi)

(5)
S̃t = V(WSh × ht−1 +WSx × xt + bS)

(6)St = ft × St−1 + it × S̃t

(7)yt = V
(

Wy ×
[

ht−1, xt
]

+ by
)

(8)ht = yt × V(St)



The parameters in the above two formulas are introduced, the yt is the output of the output gate of the VAF-LSTM neural 
network, Wy and by are the weight values corresponding to the output gate output as well as the bias term, and ht is the output 
of the current state, and the final result is obtained by the output of the output gate and the updated value of the cell state. Through 
the above description, the high-precision lithium-ion cell capacity estimation model is formed, and the model is shown in Fig. 
4. 

Fig. 4 High-precision lithium-ion cell capacity estimation model 

After the above theoretical analysis, a high-precision lithium-ion battery capacity estimation model is formed as shown 
in Fig. 4, which can be seen that the model is mainly divided into three parts. The first is the selection of the health factor: 
through the combination of the Pearson correlation coefficient and the Spearman correlation coefficient analysis, the most 
correlated factors are selected as the input to the network for the estimation of the capacity of high-precision lithium-
ion batteries. Secondly, the VAF-LSTM neural network algorithm is used to estimate the capacity of lithium-ion batteries. 
The validation part of this study consists of 14 validation experiments with seven batteries trained at high, low, and room 
temperatures with 60% and 70% of the inputs, respectively, to verify the effectiveness of the proposed algorithm. Finally, 
in the result analysis part, in addition to the capacity error of the lithium-ion battery analyzed, the performance optimization 
of the algorithm is also demonstrated, which can more intuitively display the effectiveness of the VAF-LSTM algorithm in 
improving the accuracy of capacity estimation of lithium-ion batteries, to complete the establishment of the whole model. 

Analysis of estimation results 

Selected data sets 

To verify the estimation validity of the proposed algorithm, the NASA lithium-ion battery dataset is selected here for relevant 
training and validation. The lithium-ion batteries used in the dataset are 18,650-type batteries. In this study, the data of five 
batteries (no. 5, no. 6, no. 7, no. 18, no. 34) at room temperature (24 ℃), no. 31 batteries at higher temperatures (43 ℃), 
and no. 45 batteries at low temperatures (4 ℃) will be selected for the study. 

All four batteries, 5, 6, 7, and 18, were run through different operating profiles (charge, discharge, and impedance) at room 
temperature (24 ℃). The charging phases were all performed in constant current (CC) mode at 1.5 A until the battery voltage 
reached 4.2 V, and then the charging was continued in constant voltage (CV) mode until the charging current dropped to 
20 mA. The discharging phases were performed at a constant current (CC) level of 2 A until the battery voltage dropped 
to 2.7 V, 2.5 V, 2.2 V, and 2.5 V. Battery 34 was operated at the same temperature as the four batteries at room temperature 
as well as during the charging phase, while the discharging phase was carried out at a current of 4 A until the battery voltage 
dropped to 2.2 V, respectively. 

Battery 31 ran through three different operating profiles at a higher temperature (43 ℃). Charging was carried out in 



constant current (CC) mode at 1.5 A until the battery voltage reached 4.2 V, then continued in constant voltage (CV) mode 
until the charging current dropped to 20 mA. The battery discharged at 4 A until the voltage dropped to 2.5 V.  

Battery 45 operated at 4 ℃ and charged in constant current (CC) mode at 1.5 A until the battery voltage reached 4.2 V, 
then continued in constant voltage (CV) mode until the charging current dropped to 20 mA. The discharge stopped at 2 V 
using 1 A. The experiment was carried out until the capacity was reduced to 1.4 Ah (30% fading). 

Batteries 5, 6, and 7 all have 168 cycles, while battery 18 has only 132 cycle data, battery 34 has 196 effective cycles, battery 
31 has 40 effective cycles, and battery 45 has 70 effective cycles. 

Health factor correlation coefficient results and selection 

The available capacities of the seven batteries used in the validation are all decreasing with the general trend of increasing 
the number of cycles. However, the capacity regeneration problem is unavoidable in the process of lithium-ion battery 
cycling, so by analyzing the data of current and voltage, the extraction of the health factor is carried out, and the correlation 
of the health factor needs to correlate with the capacity of the battery. The final selection was chosen among the three health 
factors shown in the following table, and the values of Pearson’s correlation coefficient and Spearman’s for each health factor 
and capacity are shown in Table 2. 

Table 2 The values of Pearson’s 
correlation coefficient and 
Spearman’s for each health 
factor and capacity 

The three health factors in Table 2 are the constant cur- rent to constant voltage ratio, the constant current time during 
charging, and equal discharge voltage difference time interval. Through the analysis of Pearson’s correlation coefficient and 
Spearman’s correlation coefficient, except for battery 45, which has the highest correlation with the constant current constant 
voltage ratio, the rest of the batteries can be selected as the input of the neural network for the capacity estimation of the 
equipotential degradation time. The highest correlation of the health factor is selected as the input of the neural network, 
which will represent the decline of the capacity trend, and the target parameter estimation can be carried out more accurately. 

Analysis of the results of high‑precision capacity estimation 

The final selected health factor was used as neural network input for capacity estimation, all the batteries were subjected to 
two estimation processes, both with 60% as well as 70% as the training set, and the remaining data was analyzed as the test 
results. The results for every battery are shown below. The results for battery 5 are shown in Fig. 5. 

Battery Different cor- Constant current to Constant current Equal discharge voltage dif- 
 relation constant voltage ratio time during charging ference (3.9 V–3.5 V) time 

Pearson’s cor- interval 
relation (A) 
Spearman’s 
correlation (B) 

5 A 0.947 0.941 − 0.998
B 0.947 0.958 − 0.994

6 A 0.939 0.943 − 0.998
B 0.890 0.845 − 0.997

7 A 0.589 0.739 − 0.999
B 0.879 0.914 − 0.999

18 A 0.589 0.739 − 0.999
B 0.879 0.914 − 0.999

31 A 0.617 0.932 − 0.991
B 0.667 0.932 − 0.991

34 A 0.677 0.814 − 0.894
B 0.883 0.864 − 0.912

45 A 0.953 0.953 − 0.915
B 0.934 0.934 − 0.879



Fig. 5 Capacity estimation 
results and error for battery 5; 
a estimation results for the 60% 
data training set; b estimation 
error for the 60% data training 
set; c estimation results for the 
70% data training set; d 
estimation error for the 70% 
data training set 

The capacity estimation and the error curve of battery 5 are shown in Fig. 5. As a vital intermediate value for each state 
estimation of lithium-ion batteries, capacity estimation occupies an important position. The effectiveness of the proposed 
algorithm to estimate the capacity can be macroscopically obtained from Fig. 5(a) and (c). Figure 5(b) demonstrates the results 
of the estimation of the absolute error for the 60% training set, and it can be seen that the estimation error of the VAF-LSTM 
neural network algorithm is the smallest, − 0.0446, and the estimation accuracy reaches 97.5991%, which improved by 
3.9552% compared to the LSTM neural network algorithm. LSTM’s estimation results are not as good as those of the BP 
neural network in this estimation process, but the optimized VAF-LSTM neural network’s estimation accuracy is increased 
by 2.8902% compared to that of the BP neural network, and it achieves more accurate estimation results. Figure 5(d) shows 
the error plot of the training results with 70% of the battery data as the training set, the estimation accuracy of the proposed 
VAF-LSTM algorithm can reach 98.3046%, which is improved by 0.7055% compared to another estimation process, and the 
estimation accuracy is increased by 1.8291% compared to the LSTM neural network in this estimation process, all of which 
proves that the proposed algorithm can improve the estimation accuracy of LSTM algorithm.  

The two estimation results of battery 6 are plotted as shown in Fig. 6, and Fig. 6(a) is the estimation process of battery 6 
with 60% of the data doing training, where the blue curve is the estimation result of the VAF-LSTM neural network 
algorithm. It reflects the strong tracking ability of this algorithm in the process of tracking the true capacity, and its estimation 
accuracy is 97.3936%. The error plot of this estimation process is shown in Fig. 6(b); the estimation error value of the VAF-
LSTM neural network algorithm is − 0.0531, which is reduced by 0.0179 compared to the LSTM neural network algorithm 
and improves the estimation accuracy, and the estimation accuracy of VAF-LSTM neural network improves by 5.5406% 
compared to the estimation accuracy of the traditional BP neural network. Figure 6(c) is the estimation result with 70% as the 
training set, and Fig. 6(d) is the resultant error of this training; by analyzing the two figures, the estimation accuracy of the 
VAF-LSTM neural network can reach 98.6838%, and its oscillatory tendency is flatter than the other two algorithms. 

Fig. 6 Capacity estimation 
results and error for battery 6; 
a estimation results for the 60% 
data training set; b estimation 
error for the 60% data training 
set; c estimation results for the 
70% data training set; d 
estimation error for the 70% 
data training set 



Figure 7 shows the estimation results of the capacity of battery 7 for two-time; Fig. 7(a) and (b) are the capacity estimation 
curves as well as the error curves for the data with a training set of 60%. The neural network achieves an estimation accuracy 
of 97.0287% in this estimation, and its estimation error is not significantly reduced compared to LSTM’s estimation error, 
but its estimation error is less oscillated. VAF-LSTM neural network increases the estimation accuracy by 3.2533% from 
93.7754% to 97.0287% compared to the BP neural network. Figure 7(c) and Fig. 7(d) demonstrates the estimation process for 
the training dataset of 70% of battery 7, and through the oscillation analysis of the error map, it can be seen that the error of the 
VAF-LSTM neural network algorithm is stably concentrated around 0.02, and its estimation accuracy can reach 98.7608%, 
which is an increase of 2.0347% compared to the accuracy of the LSTM neural network algorithm, and 1.8639% compared 
to that of the BP neural network. With 1.8639%, the VAF-LSTM algorithm can improve the estimation accuracy to a certain 
extent when the estimation accuracy is already high enough, which proves the effectiveness of the optimization of the 
algorithm. 

Fig. 7 Capacity estimation 
results and error for battery 7; 
a estimation results for the 60% 
data training set; b estimation 
error for the 60% data training 
set; c estimation results for the 
70% data training set; d 
estimation error for the 70% 
data training set 

In the process of capacity estimation of battery 18, the estimation advantages and disadvantages of the three algorithms can 
be obtained more intuitively by analyzing Fig. 8. In the case of the same vertical coordinates, analyzing the trend of the curve 
in Fig. 8(b) and (d), the conclusion that the larger the number of training sets, the smaller the estimation result error can be 
obtained macroscopically. At the same time, analyzing Fig. 8(b), it can be seen that although the errors of the three algorithms 
are all stable and fluctuating. The error of the VAF-LSTM neural network algorithm is the smallest; meanwhile, the maximum 
estimation errors of the three estimations are all in the final estimation stage, in the process of that capacity estimation, the 
estimation accuracy of VAF-LSTM neural network can reach 98.5233%, the estimation accuracy of LSTM neural network is 
97.6717%, and the estimation accuracy of BP neural network is 96.7199%. With good estimation accuracy of the latter two, 
the VAF-LSTM neural network can also improve the estimation accuracy by 0.8513% and 1.8034%, respectively. As can be 
obtained from Fig. 8(d), in terms of the degree of oscillation of the error curve, the optimized target algorithm has the lowest 
degree of oscillation, with an error value of 0.0195 and an estimation accuracy of 98.9526%, which is improved by 0.8264% 
and 3.3509%, in comparison with the estimation accuracy of 98.1262% for LSTM neural network and 95.6017% for BP 
neural network, respectively, which can effectively improve the accuracy in the process of estimating the capacity of lithium-
ion batteries. 



Fig. 8 Capacity estimation 
results and error for battery 18; 
a estimation results for the 60% 
data training set; b estimation 
error for the 60% data training 
set; c estimation results for the 
70% data training set; d 
estimation error for the 70% 
data training set 

Battery 31 is an experiment done at a higher ambient temperature of 43 ℃; because of the large deviation of the capacity 
value between the first and the second time, the second capacity value is chosen as the benchmark value for error analysis, 
which is 1.8329 Ah. Because there are only 40 sets of data for the valid capacity data, the validation sample of this battery is 
too small, but through the macro-analysis of the two graphs of Fig. 9(a) and (c), it can be obtained that, in addition to the first 
time capacity measurement value, the subsequent capacity measurement is a more obvious capacity decline, so this set of data 
is chosen as the validation in the high-temperature case. Figure 9(b) shows the estimation error of the 60% training set, the 
maximum error of the estimation of VAF-LSTM neural network is 0.0235, and the estimation accuracy can reach 98.7159%, 
which demonstrates the effectiveness of the VAF-LSTM algorithm in estimating the capacity of lithium-ion batteries. Fig. 
9(d) shows the error of another estimation process with the 70% data of the data as the training set, the mini- mum estimation 
error is still VAF-LSTM neural network estimation results, and the estimation error value is 0.0233, compared with another 
estimation process reduced by 0.0033 Ah. Because of the reason that the data is too small, this validation can only prove that 
the VAF-LSTM neural network is better than the traditional LSTM neural network and the traditional BP neural network in 
the estimation of the capacity of lithium-ion battery. 

Fig. 9 Capacity estimation 
results and error for battery 31; 
a estimation results for the 60% 
data training set; b estimation 
error for the 60% data training 
set; c estimation results for the 
70% data training set; d 
estimation error for the 70% 
data training set 



Battery 34 is the capacity data obtained from 2C rate discharge at room temperature, as another experimental validation 
data for estimation; the estimation results are shown in Fig. 10. The analysis of Fig. 10(a) and (c) shows the capacity 
regeneration phenomenon of the battery, and it is more difficult to accurately estimate the capacity regeneration part during 
the prediction stage, and then combined with the analysis of the error map of Fig. 10(b) and (d); it can get that in the 70% 
training set the estimation effect is better than the estimation result of 60%. Figure 10(b) shows the estimation error of each 
algorithm in a 60% training set, the estimation error of the VAF-LSTM neural network algorithm is not clear in the oscillation, 
compared with the LSTM neural network algorithm slowed down the oscillation, and the BP neural network has a larger 
estimation error at the later stage. The estimation error of the VAF-LSTM neural network algorithm has a value of 0.0809 
Ah, and the estimation accuracy is 95.1336% because of oscillations, LSTM has an estimation accuracy of 88.9894%, BP 
neural network has an estimation error of 0.1646 and estimation accuracy of 90.0892%, and the proposed algorithm has the 
highest estimation accuracy. Figure 10(d) demonstrates the estimation results of 70% of data as the training set, the estimation 
error of the VAF-LSTM neural network is reduced by 0.0284 compared to the other estimation, the estimation accuracy 
improved by 1.7070% to 96.8406%, and the estimation accuracy of VAF-LSTM neural network in this estimation is improved 
compared to LSTM neural net- work and BP neural network by 6.0037%. 

Fig. 10 Capacity estimation 
results and error for battery 34; 
a estimation results for the 60% 
data training set; b estimation 
error for the 60% data training 
set; c estimation results for the 
70% data training set; d 
estimation error for the 70% 
data training set 

The data for battery 45 was done at 4 ℃ ambient temperature through different operating curves and its capacity was 
estimated as shown in Fig. 11. By analyzing the curves in Fig. 11(a) and (c), the low-temperature condition will cause the 
capacity not to reach the rated capacity of the battery itself, and the capacity decline will be faster in the early stage, and then 
the capacity decline tends to level off in the later stage. The fluctuation of the capacity estimation error curve in Fig. 11(b) is 
lower than the curve in Fig. 11(d), and the estimation accuracy of the VAF-LSTM neural network in the estimation process 
represented in Fig. 11(b) reaches 96.2246%. In this estimation, the VAF-LSTM neural net- work algorithm improves the 
estimation accuracy of the traditional LSTM neural network algorithm by 2.6604% from 93.5642%. In the estimation process 
shown in Fig. 11(d) where 70% of the data do the training set, the oscillation process is much lower than the other estimation 
process, the estimation accuracy of the VAF-LSTM neural network in this estimation process reaches 97.6251%, and the 
estimation accuracy of the LSTM is 96.5187%, and the estimation accuracy of the BP neural network has not been improved 
in the accuracy of the two estimation processes; the VAF-LSTM neural network can effectively improve the estimation results 
of LSTM neural network. 



Fig. 11 Capacity estimation 
results and error for battery 45; a 
estimation results for the 60% 
data training set; b estimation 
error for the 60% data training 
set; c estimation results for the 
70% data training set; d 
estimation error for the 70% data 
training set

After the validation of the estimation results for different batteries, some common metrics are used for the validation of the 
accuracy of the results. Table 3 shows the MAE, MSE, and RMSE results of the estimation results for each battery under 
different training sets and different algorithms. 

Table 3  Results for each 
indicator for each battery 
estimated under different 
training sets and algorithms

Battery indicators 60% of training sets 70% of training sets

VAF-LSTM LSTM BP VAF-LSTM LSTM BP

5 MAE 0.01798471 0.06193877 0.03631349 0.00786396 0.03060843 0.04205152
MSE 0.00045929 0.00498552 0.00225294 0.00012943 0.00127188 0.00237026
RMSE 0.02143112 0.07060822 0.04746518 0.01137662 0.03566342 0.04868536

6 MAE 0.01821253 0.02344444 0.05559023 0.00705885 0.02232584 0.05533569
MSE 0.00055242 0.00081308 0.00535866 7.4039E-05 0.00109829 0.00448987
RMSE 0.02027026 0.0285146 0.07320287 0.00860458 0.0331404 0.06700648

7 MAE 0.00835155 0.01712628 0.0286743 0.01861298 0.02676161 0.04678798
MSE 0.00010771 0.00043084 0.00110838 0.0005125 0.00093611 0.00320186
RMSE 0.01037823 0.02075664 0.0332923 0.0226385 0.03059593 0.05658498

18 MAE 0.00746305 0.01738383 0.02771333 0.01162767 0.02927889 0.03339686
MSE 7.9633E-05 0.00040701 0.0010646 0.00028874 0.00106028 0.00159324
RMSE 0.00892373 0.02017447 0.03262819 0.01699238 0.03256195 0.03991543

31 MAE 0.00689015 0.01079875 0.01116423 0.01040622 0.02473588 0.02806453
MSE 6.9719E-05 0.00014937 0.00018041 0.00021253 0.00068596 0.00104104
RMSE 0.00834982 0.01222168 0.01343153 0.0145785 0.0261908 0.03226511

34 MAE 0.03141448 0.06836363 0.077926 0.01546587 0.04298936 0.02763492
MSE 0.00133081 0.01213922 0.01220486 0.00037518 0.00343102 0.00156985
RMSE 0.03648024 0.11017812 0.1104756 0.01936956 0.05857492 0.03962132

45 MAE 0.01325801 0.03145963 0.03712652 0.01032346 0.02572154 0.0208174
MSE 0.00024035 0.00130046 0.0016449 0.00016046 0.0010053 0.00056569
RMSE 0.01550312 0.03606196 0.0405574 0.01266736 0.03170649 0.02378433

As shown in Table 3, it demonstrates whether the estimation of the proposed VAF-LSTM algorithm, as well as the LSTM 
algorithm and the BP algorithm in estimating the lithium-ion battery capacity in this study, is accurate or not, which is 
illustrated by three indicators. MAE, MSE, and RMSE are all three indicators where the smaller the value is, the better the 
estimation effect is, and it can be concluded from the data in the table that the estimation effect of the proposed VAF-LSTM 
algorithm is the best; it can effectively improve the estimation accuracy of the traditional LSTM algorithm, and the proposed 
algorithm also has better performance relative to the BP network. 



After the validation of the estimation results of each algorithm, the demonstration of RMSE during the estimation 
process of VAF-LSTM as well as LSTM algorithms is carried out, and it is found that the proposed algorithm effectively 
improves the speed of convergence in each estimation process, as shown in Fig. 12. 

Fig. 12 Comparison of the RMSE for LSTM and the VAF-LSTM networks: a estimated RMSE for 60% training set for battery 5; b estimated 
RMSE for 70% training set for battery 5; c 60% for battery 6; d 70% for battery 6; e 60% for battery 7; f 70% for battery 7; g 60% for battery 18; h 
70% for battery 18; i 60% for battery 31; j 70% for battery 31; k 60% for battery 34; l 70% for battery 34; m 60% for battery 45; n 70% for battery 
45 



Fig. 12 (continued) 

Figure 12 is a comparison of the algorithm RMSE throughout the study of the lithium-ion battery estimation process. 
The index is used to measure the difference between the predicted and the actual value, whose purpose is to evaluate the 
prediction accuracy of the model, under the prediction of both LSTM and VAF-LSTM neural networks. In the analysis of the 
RMSE curve, to determine which prediction accuracy is superior, the index can help us judge the predictive ability of the 
model. This index can find the data points with larger prediction errors so that we can adjust the model as well as improve 
it. Figure 12(a) to (n) shows the RMSE comparison of the estimation process of seven batteries under the LSTM algorithm 
and VAF-LSTM algorithm, the left column is the RMSE values of the training samples of 60%, the right column is the 
RMSE values of the estimation process of the training set of 70% of the capacity data of the batteries, and the rows are the 
estimation process of the seven batteries for two times. In all the estimation processes, it can be seen that the convergence 
speed of the VAF-LSTM algorithm is superior to that of the LSTM algorithm; therefore, we can get the conclusion that the 
proposed algorithm can effectively accelerate the convergence speed of the LSTM algorithm by this index. 

Conclusions 

The lithium-ion battery has gradually become the main-stream energy storage device in the current energy storage market 
under the international background of the increasing global energy and environmental crises. PHM system, as an essential 
part of maintaining the safe and stable operation of lithium-ion batteries, the high-precision estimation of its parameters is 
conducive to the establishment of the PHM system, and the estimation of the capacity as a vital intermediate value, will lay 
the foundation of estimation of each parameter. 



In this study, the capacity of lithium-ion batteries is taken as the target estimation parameter, and the VAF-LSTM neural 
network algorithm is proposed for the capacity estimation of lithium-ion batteries. The study used various high-correlation 
health factors as neural network inputs, which become the primary factors for estimating capacity with high accuracy. In the 
experimental validation part, the data from several batteries at room temperature, high, and low temperatures are selected for 
validation, and relatively accurate estimation results are obtained. VAF-LSTM neural network algorithm, based on the fixed 
function of each activation function of the traditional LSTM neural network, selects the activation functions on demand to 
form a new estimation algorithm. The estimation accuracy of the VAF-LSTM neural network effectively improves the 
estimation accuracy of the traditional LSTM neural network by about 2% in the verification of all the batteries. At the same 
time, its oscillation trend is smoother compared with the traditional BP neural network. The VAF-LSTM algorithm can 
effectively improve the estimation accuracy of the classical LSTM neural network. Moreover, the VAF-LSTM algorithm 
can accelerate the convergence speed of the LSTM algorithm, which completes the engineering needs of high-precision 
estimation of lithium-ion battery capacity. 
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