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Abstract: Precious estimation of state-of-charge has become a more important status to the lithium-ion 

batteries of electronic vehicles. Basically, a three-layer genetic algorithm based on feed forward 

backpropagation neural network model is established. Specifically, an adaptive genetic method that 

makes the and change and self-correct with the degree of adaptation F is proposed to 

improve the stability and accuracy. Then, the momentum volume and the inertial 

volume are introduced to the first and the second weight of the topology in 

weighting correction process of backpropagation to help reduce the convergence time and 

improve the matching of the system with the increase in data volume. Finally, a further 

performance comparison of variable algorithms based on the backpropagation neural network is made 

under different working conditions at variable temperatures with large data volumes to prove the 

effectiveness of the proposed methods. The experimental results showed that the maximum error 

reached 0.9%, 1.2% and 0.3% under BBDST at 35°C, 25°C and 0°C over 500000 data, similarly, it 

reached 0.18%, 0.1% and 0.69% under DST at 15°C, 25°C and 35°C over 200000 data.
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1. Introduction 

With the development of renewable energy utilization and energy storage system 

technology, the new energy vehicle has become an efficient way to alleviate the 

environmental pollution caused by gasoline[1, 2]. The lithium-ion batteries have become the 

best choice for vehicle power for their advantages such as large storage capacity, no memory 

effect, lightweight, low self-discharge rate, stable discharge voltage, environmental 

friendliness, etc[3, 4]. To avoid the potential safety hazards of lithium-ion vehicles, the battery 

management system (BMS) can monitor and control the state of the batteries during driving[5, 

6]. The state of charge (SOC) plays a significant role in BMS, which can directly reflect the 

remaining power of the battery[7, 8].

For SOC estimation, it is defined as the ratio of the remaining capacity to the maximum 

available capacity of the battery. The accurate estimation of SOC is the basis for the safe and 

stable operation of lithium batteries. The electrochemical reaction process of power batteries

is complex and is affected by temperature, humidity, aging, and many other factors[9, 10]. Based 

on the internal structure of batteries, traditional methods for SOC estimation include the 

Open-circuit voltage (OCV) method and the Ampere-hour (Ah) integral method[11, 12]. These

methods need to clarify the electrochemical reaction inside the batteries, the characteristics of 

electrochemical material, and the failure mechanism in depth, to establish the physical failure 

model of the batteries[13, 14]. A scheme based on OCV-Ah optimized with Extended Kalman 

filter (EKF) is proposed to achieve the process of parameter identification[15], which is 



particularly important for neural network models based on voltage and current as inputs. In 

the modeling process, many assumptions and empirical parameters are applied. The model 

accuracy is limited, the expression of the model is a multi-parameter partial differential 

equation system, and the solution process is very cumbersome. For the batteries in the actual 

working state, it is obvious that this method is difficult to meet the actual need[16, 17].

With the development of deep learning, using the neural network to estimate the SOC 

estimation of lithium-ion batteries is an increasing trend with its simple structure[18-20].

Correspondingly, an adaptive Kalman estimator based on GA-optimized extreme learning 

machine (ELM) has been constructed, showing both the root mean square error and the mean 

absolute error to be less than 1.2%[21], and combining filters and machine learning in this way 

can overcome the insensitivity to nonlinear non-Gaussian systems in conventional filtering in 

a relatively short time. Different from the GA, the differential evolution (DE) algorithm 

implements population perturbations by selecting particle differential information randomly[22, 

23]. Then, a new modified DE algorithm enhances population diversity through a muli-angle 

searching strategy, which is presently one of the most powerful swarm intelligence 

optimization algorithms[24]. Then, a combined PSO and Least Squares Support Vector 

Machine (LSSVM) model (PSO-LSSVM) is constructed to estimate the SOC during non-

constant current (CC) discharging with the maximum relative error standing at only 2.1%[25, 

26], and with the help of particle optimization feature can effectively help the network to jump 

out of the local optimum, while LSSVM can achieve higher accuracy prediction, such a 

combination is to merge the advantages of the two, to improve the network adaptive ability. 

The Beetle Antennae search algorithm (BAS) is an intelligent single-unit search algorithm 



proposed, and it optimized recurrent ELM to solve the modeling accuracy problem, which 

simulates the search of an aspen when it seeks food with high precision[27, 28].

Traditional algorithms for experiments and applications of the external conditions, such as 

the ampere-time integration method and the accuracy of the measurement equipment related 

to the measurement of the existence of errors, are more demanding than the current method 

for SOC estimation. Second, in the case of non-linear, non-Gaussian systems, the Kalman 

filter approach is computationally demanding and unstable. To increase prediction 

performance, select an appropriate optimization strategy from the variety of neural network 

algorithms available. Each neural network algorithm has unique properties, prediction content, 

while the second basic BP network is unable to satisfy the demands of high-precision 

prediction because of its poor accuracy. The selection, crossover, and mutation operations in 

traditional GA also have the problem of empirically taking values in the interval, which has a 

greater impact on the stability and matching of the network.

To solve the problem and improve the performance mentioned before, a novel genetic 

weight-directed algorithm feed forward backpropagation neural network (GWD-FFBPNN) is 

established in this paper. Particularly, an adaptive genetic algorithm that makes the and 

change and self-correct with the degree of adaptation F in the optimization process is 

proposed to improve the stability and accuracy of the three-layer GA-FFBPNN. Then, the 

inertial volume from the output layer to the hidden layer and the momentum volume  

from the hidden layer to the input layer are introduced in the weighting correction 

process of backpropagation, which can help to reduce the convergence time and improve the 

GWD-FFBPNN 



system is verified under DST, and BBDST working conditions, using mean absolute error 

(MAE), and the goodness of fit ( ), root mean square error of prediction (RMSEP), and a 

further comparison with other algorithms is completed.

2. A novel GWD-FFBP modeling and mathematical analysis  

2.1 Genetic algorithm based on backpropagation neural network 

The typical multi-layer perception network is a three-layer hierarchical neural network, 

including the input layer, the hidden layer, and the output layer[29, 30]. According to the 

prediction content of lithium-ion batteries, the current and voltage are set as input layers, and

the SOC is set as the output layer, in this way, a three-layer FFBPNN can be confirmed 

according to the Equation (1).

H m n (1)

H, n, and m represent the number of the hidden layer, the input layer, and the output layer, 

respectively. Parameter is set as 3 to build the FFBPNN with a framework of 2-5-1 pattern.

The topology and its neuron can be observed in Figure 1.
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Figure 1. The topology and neurons of the FFBPNN

(1) Feed forward propagation

In Figure 1, a random neuron is the jth neuron from mth layer with n inputs is 



selected to analyze. The input is , its corresponding variable weight 

matrix is and the represents the deviation, then the linear input 

in summation is , and , and the

f(*) is an activation function[31]. The input of the network can be analyzed as shown in 

Equation (2).
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Then the output of the system can be observed in Equation (3).
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The sigmoid function is smooth and easy to derive, and its derivative function with 

concerning x can be expressed in terms of itself, which can be observed in Equation (4).
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(2) Error backpropagation

Gradient descent is an implementation of backward propagation of error that causes the 

weight of each training sample to vary along a negative gradient until E is minimized[32, 33].

According to the network structure in Figure 1, the nodes of the input layer, the implicit layer 

and the output layer are set as  the connection weight of the ith neuron in 

the input layer to the jth neuron in the hidden layer is , similarly, the connection weight of 

the jth neuron in the hidden layer to the kth neuron in the output layer is . The specific 

steps of error backpropagation are in Table 1.

Table 1. Specific steps of error backpropagation

Step 1. Confirming the output of the hidden layer and the output layer nodes, as shown in Equation (5).
The and are the deviation of the hidden layer and the output layer, respectively, which is 

similar with the with opposite direction.
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Step 2. Calculating the error by the Equation (6). According to the neural network model established in 
Figure 1, the values of m and n can be determined as 1 and 2, and the means the expected 

output, and is the actual output of the system.
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Step 3. Calculation of the error function and the partial derivatives of the output layer and the hidden 
layer nodes are shown in Equation (7), where the represents the result of the output layer's 
derivation of the connection weights with the help of intermediate variables.
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Step 4. Using the gradient descent principle, let the connection weights be corrected according to the 
learning rate [28], and is the learning rate for the next weight update. The is also the output 

of the implicit layer during the next weight update. The connection weights of the nodes in the 
output and hidden layers are updated into Equation (8).
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Step 5. Let m=m+1, until the error is less than the expected value, the neural network learning is 
finished.

According to the principle of survival of the fittest, the approximate solutions can be 

produced generation by generation after the emergence of the primary population with genetic 

[34, 35]. Based on the

fitness size of the individual to confirm the selection, and with the help of genetic operators to 

finish the crossover and mutation to produce the new decompositions[36, 37].

In this article, the adaptation function and the objective function need to be converted, and 

the reciprocal of the sum of errors is designed as the fitness function, which is show as below:
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The genetic algorithm specifies that the fitness function is non-negative and always evolves 

in the direction of the maximum value of the fitness function[38, 39], Moreover, according to the



regulation of the roulette wheel selection, the higher the chance of individuals with high 

adaptation to enter the next generation. The selection probability of the ith individual is
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where means the fitness of a certain individual, k is the coefficient, n means the number of 

individuals, and means the probability of selection. In this way, the diversity of individuals 

in the population is guaranteed.

In this paper, a new calculation of mutation is proposed, which will be finished in the last 

step and then the new population will be generated to start the next iteration, and it is shown 

in Equation (11). Mutation process of the jth gene of individual is as below:
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where and are the upper and lower bound of gene , using a random number r in 

the interval [0,1] to determine the final model, g means the number of current iterations, and 

the is the maximum of iterations. Similar to the , the crossover probability takes 

values in the range of (0.0001,0.1).     

Problems that have arisen in the use of the traditional GA-FFBPNN to predict the SOC of 

lithium-ion batteries include the following three points:

(1) The computation of the traditional GA-FFBPNN for estimating the SOC of lithium-ion 

batteries becomes larger as the data set and the size of the neural network increase, and the 

training time increases.

(2) Empirical taking in the corresponding interval leads to increased uncertainty, and the



traditional GA-FFBPNN have a strong dependency on the initial weight threshold setting,

which can influence the accuracy and the stability of the system.

(3) The number of the hidden layer in the topology is determined empirically for a given 

interval, which is not based on evidence and is subject to uncertainty.

2.2 A novel GWD-FFBP strategy 

Analysis findings showed that the classic GWD-FFBPNN has a problem with low 

matching, which causes slow convergence, and a loss of stability and accuracy due to the 

sheer number of data. Therefore, an adaptive genetic method that makes the and change 

and self-correct with the degree of adaptation F is proposed to improve the stability and 

accuracy of the three-layer GWD-FFBPNN. Then, the inertial volume and the 

momentum volume are introduced to the first and the second weight of the topology 

in weighting correction process of backpropagation to help reduce the convergence time and 

improve the matching of the system with complex working conditions at variable 

temperatures. The flowchart of the novel GWD-FFBPNN is shown in Figure 2.
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Figure 2. The flow chart of the novel GWD-FFBPNN

2.2.1 A novel adaptive genetic cross and mutation operation. 

The network based on threshold training characteristics and initial weights indicates that 

the genetic approach can assist traditional FFBPNN in avoiding local minima. Among the 

parameters of the genetic algorithm, the choice of and is crucial to the behavior and

performance of the genetic algorithm, which can influence the behavior and performance if

the value is fixed. To address this problem, this paper proposes an adaptive genetic algorithm 

that makes the and change and self-correct with the degree of adaptation F in the 

optimization process. Adaptive adjustment is based on
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where the and take the value of the upper bound and lower bound of the interval

[0.4,0.99], respectively. is the larger value of fitness among the two individuals in the 

crossover, represent the maximum and mean value of fitness of all individuals 

in the population, respectively. In this way, when the F of most individuals in the population 

tends to be locally optimal or concentrated, the value of the and automatically increase, 

and relatively, when the F of individuals in the population is distributed, the self-corrects 

to a smaller value.

Similarly, the self-correction is achieved by combining the and the fitness of individuals 

in the population, which is divided into two intervals by comparing the magnitude of the 

variant individual fitness with the ,
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where the f means the fitness of a certain individual, and the and take the value 

of the upper bound and lower bound of the interval [0.0001,0.1]. In this way, the probability 

of variation is adaptively adjusted by linking the maximum and minimum values of the 

interval to the fitness value of the population individuals.

2.2.2 Modified weighting correction strategy 

In genetic algorithms, the crossover function and variogram are taken within a given 

interval. The empirical values are unclear when input data volume and topology vary, and a 

mismatch will cause the network to mature too quickly or become unstable. Simultaneously, 

matching is required to rectify the weight that the adaptive genetic algorithm optimized.

Therefore, the paper proposed a kind of adaptive method which can be observed in Figure 3,



and a more detailed illustration follows.
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(1) Introduce the inertial volume

As analyzed by the backpropagation process of the FFBPNN, the error values are fed back 

to the output layer, the hidden layer, and the input layer in turn to help each layer 

continuously update its own weights and thresholds. However, it would take a lot of time and 

would not work with the adaptive adjustment genetic algorithm to alter each layer 

successively. To improve the adaptive matching, this paper introduced inertial volume in 

weighting correction process from the output layer to the hidden layer, which are described as:
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where denotes the increment in connection weights that should be corrected at 

moment t+1 from the output layer to the hidden layer. The µ is inertia coefficient, which is set 

as a random variable within [0.1,0.99], and the upper bounds of its interval are taken from the 

maximum of the and the , respectively, in this way, the excellent dynamic 

characteristics at time t+1 will be achieved by adding the inertial characteristics at time t.

From the expression, it is clear that the correction increments at moment t+1 is further 

increased when the connection weight increment is larger at moment t.



(2) Introduce the momentum volume 

To address the fact that operations limited to the negative gradient direction during error 

feedback prevent the network from stabilizing quickly when the amount of data becomes 

large, momentum volume are introduced in the weight corrections of the implicit and input 

layers and are related to the previous time.

1 1 1

1

( 1) ( )

( 1) [(1 ) ] ( )
( 1) ( )

ji ji ji

ji ji
ji ji

W m W m W

E E
w t w t

w t w t

(15)

In Equation (15), denotes the increment in connection weights that should be 

corrected at moment t+1 from the hidden layer to the input layer. The is momentum

coefficient, which is set as a random variable within [0.1,0.99], and the upper bounds of its 

interval are taken from the maximum of the and the , respectively. It can be 

observed that the weight is adjusted according to the gradient values at both t-1 and t moment. 

Hence, the introduction of the momentum volume correlates the preceding t-1 and 

following moments t+1 of the weight increments to achieve dynamic self-correction.

3. Experimental testing and analysis 

3.1 Test platform establishment 

In the experiment, the 3.7V/100 Ah ternary battery is set as the test object, and the Neware 

battery test equipment is the CT-4016-5V100A-NTFA, and the constant temperature box is 

the DGBELL BTT-331C. The experimental platform of the target lithium-ion battery test 

equipment is observed in Figure 4. The parameters of the tested battery are shown in Table 1.

The parameter setting of the novel GWD-FFBPNN proposed during the experiment is 

displayed in Table 2.
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Figure 4. The experimental platform establishment

Table 1. The specification of 3.7V/100Ah lithium-ion battery

Cell nominal capacity (Ah) 100 Peak discharge current 3C

Cell nominal capacity (V) 3.7 Maximum load current 2C

Charge cut-off voltage (V) 4.5 0.05 Internal resistance (m ) 0.5-1

Discharge cut-off voltage (V) 2.75 0.05 Working temperature ( ) -20-60

Standard charge current 1C Dimension: 1*w*h (mm) 148*27*93

Table 2. The novel GWD-FFBP parameter settings

The maximum number of iterations 50 Number of training samples >1000

Number of variables 31 Number of testing samples >1000

Generation gap 0.92 Original learning rate 0.1

Cross-probability 0.43 Training method Gradient descent

Mutation probability, migration probability 0.02,0.4 Population size 40



3.2 Determination of the hidden layers number by traversal method 

Generally, the parameter setting is critical for the number of hidden layers in the topology 

can be determined according to Equation (1), and the range of parameters will affect the 

training effect of the network directly. The iterative approach is used to determine the optimal 

values for different temperatures and different working conditions, and the traversal results 

are shown in Figure 4.

  
(a) Traversal results of under BBDST at 0°C (b) Traversal results of under BBDST at 25 C 

  
(c) Traversal results of under BBDST at 35°C (d) Traversal results of under DST at 15°C 

  
(e) Traversal results of under DST at 25°C (f) Traversal results of under DST at 35°C 

Figure 4. Traverse results of at different operating conditions and different temperatures

In Figure 4, the value of the parameter under different working conditions at variable 

temperatures are confirmed through traversal in corresponding internal [1,9]. For BBDST 

working condition, the traversal value is determined as 2.95,2.76,2.54 at 0°C, 25°C, and 35 C,
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respectively from Figure 4 (a)(b)(c), so it is taken the corresponding integer to be 3. Similarly, 

for DST working condition, the traversal value of is 2.6,3.74,3.56 at 15 C, 25 C, and 35 C

in Figure 4 (d)(e)(f), then the value is taken the corresponding integer to be 3 and 4. The 

values for the other neural networks can be determined in the same way.

3.3 Analysis of BBDST working condition 

The performance verification of the novel GWD-FFBPNN is completed at various 

temperatures includes 35 C, 25°C and 0°C under the BBDST working conditions, comparing 

with the neural networks of the traditional GA-FFBP, DE-FFBP and PSO-FFBP. The details 

are shown in Figure 5.

(a-1) Training results (a-2) Test results

(a-3) Error curve of test (a-4) Fitness curve

Figure 5 (a). Results curves under BBDST at 35°C

In Figure 5 (a-1), the training data set is close to 300,000, which is 60% of total data, and 

the training result curves show that the three different optimization algorithms acting on BP 

neural networks with high accuracy and stability for large training sets compared to the 
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SOC_Ref. However, for predictions with data volumes close to 200,000, which is 40% of 

total data, the three algorithms show large differences in Figure 5 (a-2) and (a-3). It can be 

concluded from Figure 5 (a-2) that the four algorithms basically overlap in the resultant 

curves in the pre-test period, but as the amount of data increases, the errors of GA-FFBP and 

PSO-FFBP are getting larger, which is reflected in the fact that they deviate further from the 

SOC_Ref, whereas the GWD-FFBP always stays close to the SOC_Ref, which reflects its 

good stability and accuracy. The maximum error of the novel GWD-FFBP reached to 0.009, 

which achieved a high precision compared to 0.107 and 0.116 of the PSO-FFBP and the 

traditional GA-FFBP, respectively. In the error curves, GA-FFBP has the largest error 

maximum, but the fluctuations and peaks of its error curves are smaller, and the overall curves 

are smoother, while the jaggedness of the error curves of PSO-FFBP is more obvious. In 

comparison, GWD-FFBP has the smallest error and the smoothest curve without obvious 

peaks and jaggedness. The fitness of a neural network is presented in its inverse form , the 

greater the fitness, the smaller the value in the graph Figure 5 (a-4), which reached to 6.15E-5.

In addition to this, the verification at 25°C is presented in Figure 5 (b).

(b-1) Training results (b-2) Test results
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(b-3) Error curve of test (b-4) Fitness curve

Figure 5 (b). Results curves under BBDST at 25°C

Compared to the test data at 35°C under BBDST, the 25°C test training data is significantly 

higher at over 350,000, and the ratio of training data and test data is 5:2. The training results 

of each network are stable and highly accurate in the training of huge amount of data, which 

is reflected in the fact that they all coincide with the SOC_Ref curve in Figure 5 (b-1), and 

their result curves largely overlap with the reference SOC_Ref. Test volumes up to 120,000 

show that the DE, the traditional GA and the PSO algorithm has increasing errors with 

increasing data volumes of 0.0437, 0.0831 and 0.0792 respectively compared to the novel 

GWD-FFBP error value of 0.0122 from Figure 5 (b-2) and (b-3). The characteristics of the 

test result curves of each algorithm are different, in which GA-FFBP deviates the furthest 

from the SOC_Ref, but the error curve is smoother without obvious gears and peaks. PSO-

FFBP has a larger error and the error curve has obvious regular fluctuations, with poor 

stability and matching. The GWD-FFBP not only has the smallest error, but also has a 

smoother error curve, which is a smooth arc with a downward trend near the 0 straight line.

The is shown in Figure 5 (b-4), which reached at 3.31E-5. Other than that, the verification 

of the novel GWD-FFBP at 0°C is presented in Figure 5 (c).
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(c-1) Training results (c-2) Test results

(c-3) Error curve of test (c-4) Fitness curve

Figure 5 (c). Results curves under BBDST at 0°C

Figure 5. Verification results at variable temperature under BBDST

When the temperature dropped, the dataset which included over 280,000 training data

was modified for use in experiments at 0°C until the SOC value reached 0.410. As can be 

observed from Figure 5(c-1) the training results roughly match the SOC_Ref curve and do not 

differ considerably between networks. Nonetheless, it is evident from the result plot Figure 

5(c-2) for test data above 140,000 that the result curves differ significantly, and the ratio of 

training data and test data is 2:1. While GWD-FFBP is still close to the SOC_Ref curve and 

corresponds with it, indicating a high accuracy, DE-FFBP has the highest inaccuracy among 

them, which is shown in the furthest distance from the SOC_Ref. The erroneous results in 

Figure 5(c-3) also show this. As can be seen from the figure, the maximum error of DE-FFBP 

reaches 0.197, which is nearly 66 times higher than the 0.003 of GWD-FFBP. The second 

PSO-FFBP has a smaller error of 0.054, which is 18 times that of the GWD-FFBP. In this 
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experimental setting, although the error curve of GWD-FFBP is a curve that coincides with a 

straight line of 0, it has obvious regular fluctuations. And from Figure 5(c-3), the novel

GWD-FFBP has a maximum error of 0.003, which is more accurate than the errors of 0.197, 

0.109 and 0.054 for the DE, GA and PSO algorithms. The is shown in Figure 5(c-4), which 

reached at 8.63E-6. Further error comparison of different algorithms based on FFBPNN are 

recorded in the form of the chart column in the Figure 6.

(a) The MAE comparison results (b) The MSE comparison results

(c) The RMSEP comparison results (d) The Max Err comparison results

Figure 6. Error comparison results of MAE, MSE, RMSEP and Max Err under BBDST

In Figure 6, the MAE, MSE, RMESP, and the maximum error of the novel GWD-FFBP are 

all minimal compared with the GA, DE and the PSO algorithms, which indicates that the 

novel GWD-FFBP overcomes the shortcomings of the traditional algorithms and provides 

high precision and stability over large data volumes and at different temperatures.

3.4 Analysis of DST working conditions 

The performance verification of the novel GWD-FFBP is completed at various 
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temperatures includes 15°C, 25°C and 35°C under the DST working conditions, comparing 

with the neural networks of the traditional GA-FFBP and DE-FFBP. The details are shown in 

Figure 7.

(a-1) Training results (a-2) Test results

(a-3) Error curve of test (a-4) Fitness curve

Figure 7 (a). Results curves under DST at 15°C

Overall data volume exceeds 210,000, with training and testing data ratio closed to 2:1. In 

Figure 7(a-1), the training for the novel GWD-FFBP, DE-FFBP, and the traditional GA-FFBP, 

and the results all showed high accuracy and stability. In a test environment close to room 

temperature 15°C, the training results of the DE-FFBP are not significantly different from 

other algorithms under DST, but in a test of 1/3, the performance is poor, showing a greater 

distance from the SOC_Ref curve. From the error curve in Figure 7(a-3) it can be further 

analyzed that the three BP-based optimization algorithms have predictions larger than 

SOC_Ref, with the curve above SOC_Ref, where the DE algorithm has the greatest error, 

reaching 0.085, which is 4.7 times of that of the GWD. The GA and GWD have similar errors, 
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divided into 0.020 and 0.018. The error curve of the GWD-FFBP is also accompanied by a 

clearly regular gear, while the other two algorithms are smoother. The is shown in Figure 7

(a-4), which reached at 1.201E-6. Apart from this, the verification at 25°C under DST is 

completed in Figure 7 (b).

(b-1) Training results (b-2) Test results

(b-3) Error curve of test (b-4) Fitness curve

Figure 7 (b). Results curves under DST at 25°C

Over 160,000 data were used as training terms for the networks, which accounts for the 

total 72%, and the training results for the novel GWD-FFBP, GA, and the DE largely 

overlapped with the reference SOC_Ref in the Figure 7(b-1). The training results of the three 

optimization algorithms were smoother in the DST test environment at room temperature of 

25°C, but the gap was more noticeable in 28% test of all data. From the test curve of Figure 7 

(b-2), it can be further analyzed that the test result curves of GA and DE are located on the 

upper and lower sides of the SOC_Ref, respectively, whereas the GWD-FFBP basically 

overlaps with it. In Figure 7(b-3), the maximum error of GA at 0.0176, which is 17times than 
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that of the GWD, showing an upward trend, while the DE algorithm's maximum error reaches 

0.0248, which is 24 times than that of the improved method with a marked downward trend 

and more noticeable fluctuations. GWD-FFBP's error curve is basically a straight line that 

overlaps with a 0 line, with a maximum error of 0.001. The is shown in Figure 7(b-4), 

which reached at 6.14E-6. Apart from this, the verification at 35°C under DST is completed in 

Figure 7 (c).

(c-1) Training results (c-2) Test results

(c-3) Error curve of test (c-4) Fitness curve

Figure 7 (c). Results curves under DST at 35°C

Figure 7. Verification results at variable temperature under DST

During the DST operation, the data volume at 35°C exceeds 23,000, of which the training 

and test data ratio is 18:5. From Figure 7(c-1), you can see a small difference between the 

algorithms. In Figure 7(c-2), the DE algorithm has the greatest deviation. In Figure 7(c-3) the 

maximum error of DE reached 0.013 and GA's maximum error was 0.012, respectively 1.88 

and 1.73 times GWD-FFBP max error of 0.0069, and the error curve of GWD had no 
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noticeable fluctuations and peak values, and was a flat ascending curve. The stability and 

accuracy of the GWD-FFBP remain at high temperatures. The reached at 7.38E-6 in Figure

7(c-4). Further error comparison of different algorithms based on FFBPNN are recorded in 

the form of the chart column in the Figure 8.

(a) The MAE comparison results (b) The MSE comparison results

(c) The RMSEP comparison results (d) The Max Err comparison results

Figure 8. Error comparison results of MAE, MSE, RMSEP and Max Err under DST

From Figure 8 (a), the MAE of the novel GWD-FFBP is 0.029%, 0.011% and 0.009% at 

15°C, 25°C, and 35°C, respectively, which performances a better accuracy compared with 

GA-FFBP and DE-FFBP. Meanwhile, the value of the MSE and the RMSEP of the novel 

GWD-FFBP are also lower than the GA-FFBP and the DE-FFBP at variable temperatures in 

Figure 8 (b) and (c). Furthermore, the maximum error of the novel GWD-FFBP is recorded as 

0.008,0.005, and 0.003 at 15°C, 25°C and 35°C in Figure 8 (d), which are all lower than other 

neural networks include the GA-FFBP and the DE-FFBP. The test times for different 

temperatures at different operating conditions are collected in Table 3.
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Table 3. The time consumption summary

T(s)
BBDST DST

35 25 0 15 25 35

GWD-FFBP 1017 986 1212 596 432 284

GA-FFBP 1023 946 1243 526 482 293

DE-FFBP 1215 983 1198 684 491 299

PSO-FFBP 1301 991 1610 549 512 303

It is evident from Table 3 that the test temperature, test circumstances, and data volume all 

affect test time. At 35°C, the performance of various algorithms changes under the two 

circumstances. While the DST condition has more than 180,000 and 50,000 respectively in 

volume of training and testing data, the test times are all within 6 minutes, with PSO-FFBP 

having the longest test time of 303s. The BBDST condition has more than 300,000 training 

data, while the training data is more than 200,000, and the time is more than 16 minutes for 

all of them. Among them, the test time is the shortest for GWD-FFBP and GA-FFBP, which 

are 1017s and 1023s, respectively. Similarly, under BBDST conditions, the shortest test time 

for GA-FFBP at 25°C is 946s. GWD-FFBP and PAO-FFBP have test times that are closer 

together, at 986s and 991s. The GWD-FFBP and PSO-FFBP test timings under DST 

conditions are 432s and 512s, respectively, for the shortest and longest test times. Even 

though GWD-FFBP's test time is not the quickest when compared to the other algorithms, it 

performs better in the shorter amount of time at 0°C and 15°C.

4. Conclusion 

In this research, to achieve high-precision SOC estimation of lithium-ion batteries at 

variable temperatures under complex working conditions, a novel genetic weight-directed 

feed forward backpropagation neural network is established. To reduce uncertainty in 



experience values of the parameter, the hidden layer is determined through traversal method. 

Specially, an adaptive genetic method that makes the and change and self-correct with 

the degree of adaptation F is proposed to improve the stability and accuracy of the three-layer 

GWD-FFBPNN at variable temperatures. Then, the inertial volume and the 

momentum volume  are introduced to help reduce the convergence time and improve 

the matching of the system with the increase in data volume. Finally, a further performance 

comparison of the novel GWD-FFBP, DE-FFBP, GA-FFBP and the PSO-FFBP is completed and the 

maximum error of the novel GWD-FFBP reached 0.9%, 1.2% and 0.3% under BBDST at 35°C, 25°C

and 0°C over 500000 data, similarly, it reached 0.18%, 0.1% and 0.69% under DST at 15°C, 25°C and 

35°C over 200000 data. The inability to prevent the impact of the battery's temperature on the 

forecast findings and the neglect to take into account additional real-world energy storage 

scenarios and battery types are two of the work's drawbacks. As the data increased, no 

consideration was given to whether different test instruments affected on the predicted results, 

while the difference in temperature between on-board batteries and those in energy storage 

power stations requires further comparison and study. Future work can focus on the following 

parts:

(1) Research on SOC estimation of series-parallel battery systems.

(2) Research on SOC estimation to meet higher real-time requirements.

(3) Research on SOC estimation under more types of batteries.
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