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Abstract: The accurate state of health (SOH) estimation of lithium-ion batteries (LIBs) is crucial 

for the operation and maintenance of new energy electric vehicles. To address this current problem, 

an improved hybrid neural network model for SOH prediction based on a sparrow search algorithm 

(SSA) optimized convolutional bi-directional long short-term memory neural network (CNN-Bi-

LSTM) is proposed. Firstly, by analyzing the battery aging data, several feature indicators with 

highly correlated battery life degradation are constructed. Secondly, the CNN-Bi-LSTM model 

is used to extract the battery aging data features and the latent timing laws. Finally, the SSA 

optimizes the parameters to improve the model accuracy. Experimental results based on the 

NASA-Pcoe battery dataset show that the SSA-CNN-Bi-LSTM model outperforms other 

models, and the root-mean-square errors of the SOH prediction results are all less than 0.6%. It 

indicates that the proposed SSA-CNN-Bi-LSTM model is capable of predicting SOH 

accurately and with high precision. 
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1. Introduction 

In recent years, the massive consumption of traditional fossil energy has led to serious air 

pollution and the greenhouse effect, and the problem of energy shortage is becoming more and 

more serious [1, 2]. To effectively alleviate environmental pollution and solve the energy crisis, 

energy development is gradually transformed in the green direction [3-5]. New energy electric 

vehicles with zero road emissions and low energy consumption have gradually come into 

Revised Manuscript (Clean Version including Abstract) Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://www2.cloud.editorialmanager.com/electacta/viewRCResults.aspx?pdf=1&docID=124642&rev=1&fileID=2925425&msid=39cd9599-2949-4cbb-ba4f-11d48b78fd0f
https://www2.cloud.editorialmanager.com/electacta/viewRCResults.aspx?pdf=1&docID=124642&rev=1&fileID=2925425&msid=39cd9599-2949-4cbb-ba4f-11d48b78fd0f


people's view and have become an important direction for the development of the automobile 

industry today. 

Compared with other energy storage devices, LIBs are widely used for its high safety, low 

self-discharge rate, no memory effect, long cycle life, low pollution, high energy density, good 

stability, and many other advantages [5, 6]. LIBs are gradually becoming the main source of 

energy supply for the new generation of new energy vehicles [7, 8]. During the use of batteries, 

complex chemical reactions occur within the battery, leading to aging of the diaphragm, and 

depletion of the electrode material and electrolyte solution [9, 10]. Figure 1 shows the principle 

of the aging mechanism of LIBs. With time accumulation, the stability and safety of the battery 

will be reduced, thus leading to the occurrence of safety accidents, and greatly restricting the 

development of LIBs [11-14]. The SOH of LIBs changes during the actual charging and 

discharging cycles of the battery, and its capacity decreases leading to a gradual degradation of 

performance [15, 16]. If the battery reaches the capacity failure threshold and safety measures 

such as replacement or maintenance are not taken in time, it may cause serious safety accidents 

[17, 18]. Therefore, the research on capacity degradation and SOH prediction during the use of 

LIBs is becoming a hot spot in the field of battery measurement and control research at home 

and abroad. 
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Figure 1.  Aging mechanism of lithium-ion batteries 

Indicators affecting the aging of LIBs can be categorized into external and internal 

indicators, such as the electrochemical properties of the battery, the manufacturing process, and 

operating environmental conditions [19-21]. The most visual manifestation of the battery aging 

process is the decline of available energy and power performance, and reflected in the internal 
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battery is the decrease of battery capacity and the increase of internal resistance [22-24]. The 

SOH prediction is usually to analyze and summarize the data of LIBs usage conditions and 

historical health status and use relevant algorithms to explore the intrinsic law of battery life 

decline, to predict the future decline trajectory of the battery [25-28]. Currently, the prediction 

methods for SOH of LIBs are mainly divided into based on mechanism model methods and 

based on data-driven methods. 

The prediction method based on the mechanism model is to simulate the electrochemical 

mechanism between the materials inside the battery, thus indirectly simulating the battery 

charging, discharging, and aging behaviors to give the form of performance degradation [29-

31]. Then, the SOH estimates are predicted by determining the optimal parameters of the model 

based on the changes in the properties of the electrode materials. T.R. Ashwin et al. [32] 

developed a pseudo-two-dimensional (P2D) electrochemical lithium-ion battery model based 

on electrochemical theory. The growth of the solid electrolyte interface (SEI) layer is estimated 

at different cutoff voltages and charging current rates, and the main reason for the capacity 

degradation of the battery is the generation of SEI film at the electrolyte boundary, and the 

prediction of SOH of the battery is realized. Allam et al. [33] developed an empirical model for 

internal resistance growth based on electrochemical impedance spectroscopy test data 

combined with SOH prediction of batteries using the Particle Filter (PF) algorithm. The data-

driven approach is directly extracted from the decline history data of LIBs that can characterize 

the battery degradation health indicators, and combined with intelligent algorithms to deeply 

explore the battery's life decay behavior, and realize the SOH of LIBs [34-39]. Long et al. [40] 

implemented SOH prediction of LIBs using an AR model optimized by particle swarm 

optimization (PSO) algorithm. Qin et al. [41] used a deep belief network (DBN) to train the 

historical capacity data of the battery and the discharge capacity data of the battery in each cycle 

to capture the decreasing trend of the discharge capacity of the battery and predict the SOH of 

the battery. 

The degradation information of LIBs belongs to time series, and the Long Short Term 

Memory (LSTM) neural network, as one based on data-driven, can effectively improve the 

temporal analysis of lithium battery data [19, 42-44]. Tuo Ji et al. [45] developed an LSTM 

model of battery capacity to realize SOH estimation over the whole life cycle of LIBs at 
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different temperatures and under different operating conditions. To achieve parallel processing 

of time series data and to improve the model computational accuracy and running speed [46, 

47]. Yu Guo et al. [48] proposed an SOH estimation method based on the Bi-LSTM model. 

This method solves the problem of unidirectional data transfer of LSTM and realizes the 

bidirectional propagation of past information and future information, but the feature extraction 

ability of input data is weak [49-51]. Due to the strong ability of CNN to extract high-

dimensional features of the input data [52, 53], Shuo Sun et al. [54] proposed a CNN-Bi-LSTM 

fused SOH prediction model, and selected the isobaric discharge time as the health factor to 

train the battery capacity degradation model. However, the structural parameters of the model 

are subjectively set by humans, leading to poor model prediction accuracy [55-59]. Li Cao et 

al. [60] compared SSA with other swarm intelligence algorithms and found that the optimal and 

average solutions of SSA are higher than other swarm intelligence algorithms and the late 

convergence speed is accelerated. Thus, SSA has more high-performance global parameter 

search capability than other algorithms. 

Combining the shortcomings in the above studies, this paper proposes a high-precision 

prediction method for the SOH of LIBs using the SSA to optimize the CNN-Bi-LSTM hybrid 

neural network model. The main contributions of this article are as follows:  

(1) To explore the relationship between capacity and battery SOH through the NASA-

Pcoe battery dataset, several feature indicators strongly correlated with battery aging are 

extracted from LIBs charge/discharge curves. Pearson correlation analysis is used to quantify 

the degree of association between the characteristic indicators and capacity decline, and the 

features with high correlation are retained, which helps to improve the SOH estimation 

accuracy.  

(2) Aiming at the current problem of low accuracy of SOH prediction for LIBs, a hybrid 

neural network model combining CNN and Bi-LSTM is constructed for SOH prediction of 

LIBs. The model utilizes CNN to quickly extract sequence relationships between battery data, 

and Bi-LSTM can simultaneously capture spatial feature relationships between data dimensions, 

thus increasing the generalization ability of the model.  

(3) To solve the issue of low accuracy of model structure parameters due to human 

subjective settings, SSA is used to optimize the initial parameters of the model network 
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structure to achieve a high-precision estimation of SOH for LIBs and effectively extend the 

battery service life. 

(4) The SSA-CNN-Bi-LSTM model inputs the extracted feature indicators and the actual 

battery capacity, and the trained model performs SOH prediction. The capacity data output from 

the model prediction is subjected to SOH analysis, and the accuracy and robustness of the model 

are verified by comparing it with other single models. 

In the rest of this article, the experimental battery dataset and feature indicators analysis 

are described in Section 2. The basic principles and structure of the proposed SSA-CNN-Bi-

LSTM model for SOH prediction of LIBs are presented in Section 3. The method is 

experimentally validated and analyzed for SOH prediction effectiveness and accuracy in 

Section 4. Finally, this study is summarized and prospected in Section 5. 

2 Experimental data and multi-feature indicators analysis 

In this section, the data of LIBs charging and discharging process are analyzed and multi-

feature indicators are extracted. Then, the degree of correlation between the extracted feature 

indicators and the battery capacity is analyzed and evaluated using Pearson correlation analysis 

to further verify the validity of the proposed feature indicators. 

2.1 Experimental data description 

The study uses the NASA battery public dataset published by the NASA Ames Centre of 

Excellence for Prediction database. Select one of the datasets containing four 2Ah rated 18650 

LIBs and the batteries are numbered B5, B6, B7, and B18. This group of batteries in the external 

environment and the measurement method is the same, each of the work environments of the 

battery and charging and discharging stage of the voltage and current operating data as shown 

in Table 1. 

Table 1. Operating conditions for the aging process of LIBs 

Battery 
Temperature 

(℃) 

Charging process Discharging process 

Current (A) 

Cutoff 

voltage

（V） 

Current

（A） 

Cutoff 

voltage

（V） 

B5 24 1.5 4.2 2 2.7 

B6 24 1.5 4.2 2 2.5 

B7 24 1.5 4.2 2 2.2 

B18 24 1.5 4.2 2 2.5 
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Under the environment temperature of 24℃ for the battery cycle aging test, the battery 

charging process is firstly charged with constant current (CC) for a while, and then charged 

with constant voltage (CV). The specific charging method is as follows: first charge with a CC 

of 1.5A until the voltage reaches the charging cut-off voltage of 4.2V; then charge with a CV 

of 4.2V until the current drops to the cut-off current of 20mA. During the battery discharge 

process, the battery is discharged in CC mode at a current of 2A until the battery voltage drops 

to the corresponding cut-off voltage. During each charge/discharge process, parameters such as 

temperature, voltage, and current are monitored and recorded. SOH is usually defined as a 

percentage reflecting capacity degradation, characterizing the degree of decline of LIBs, as 

shown in Equation (1). 

𝑆𝑂𝐻 =
𝐶𝑎𝑔𝑒𝑑

𝐶𝑟𝑎𝑡𝑒𝑑
× 100% 

(1) 

In Equation (1), 𝐶𝑎𝑔𝑒𝑑  and 𝐶𝑟𝑎𝑡𝑒𝑑  denote the current actual available capacity and the 

factory-rated capacity of the LIBs, respectively. If the actual available capacity of the current 

battery accounts for a larger share, the higher the SOH prediction value of the LIBs, indicating 

that the current battery is in a better SOH.  

With the increasing number of battery charge/discharge cycles, the active material inside 

the battery will be gradually lost, which leads to the continuous decay of the battery cycle life 

and capacity. The complete capacity decay curves of the four numbered LIBs selected for the 

experiment are shown in Figure 2. 
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Figure 2. Capacity degradation curves of different batteries 

From the graph in Figure 2, it can be seen that with the increase in the number of cycles, 

the decay process of the capacity of LIBs is nonlinear, showing the phenomenon of global 

decline and partial regeneration changes. The transient regeneration phenomenon in the 

capacity decay process will affect the estimation of the capacity value, indicating that the 
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battery aging process is very complicated. LIBs numbered B5, B6, B7, and B18 reflect different 

initial capacities and health states. The battery cycle life ends when the decay drops below 80% 

of the rated capacity. 

2.2 Multi-feature indicators extraction 

Due to the complexity of the chemical reaction process inside the lithium-ion battery, it is 

not possible to carry out intuitive and clear measurement descriptions and calculations. Thus, 

it is necessary to pre-process the raw experimental data to extract the health feature indicators 

that can characterize the aging of LIBs.The FI extraction flowchart is shown in Figure 3. 
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Figure 3. The flowchart of FI extraction 

By analyzing the original LIBs charge/discharge data, relevant voltage, current, and other 

data are extracted. The relevant feature parameters are screened out as feature indicators. Then, 

the relationship between FI and actual capacity recession is established and the correlation 

analysis is performed, followed by verifying the degree of correlation. Finally, the new FI is 

used to estimate the battery capacity, and compared with the actual capacity for analysis. Taking 

the B5 battery group as an example, the voltage and current curves of the battery during 

charging and discharging are shown in Figure 4(a) and (b). 
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(a)  (b)  

Figure 4. Charge and discharge stages of the B5 battery with voltage and current change curves. 

(a) Charge current and voltage; (b) discharge voltage. 

With the increase in the number of cyclic charging and discharging, the active material 

inside the battery is continuously consumed, and this leads to regular changes in the voltage 
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and current curves during the charging and discharging of the battery. Thus, in this study, the 

feature indicators of the internal and external health of the battery will be selected from the 

charging and discharging curves. 

FI1: Constant current charging time (CCCT) 

Figure 5 shows the comparison of battery capacity and CCCT trend with the number of 

cycles, the CCCT of LIBs after 160 cycles is significantly lower than the CCCT after 40 cycles, 

and the battery capacity corresponding to the number of cycles is also decreasing.  
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Figure 5. Trend plot of capacity and CCCT of B5 battery with the number of cycles 

The decline trends of CCCT and battery capacity are more similar, and the maximum 

available capacity of the battery will affect the charging time in constant current charging mode. 

As the maximum available battery capacity decreases, the CCCT will become shorter, 

indicating an obvious positive correlation link between the both. Thus, CCCT can be used as a 

feature factor for estimating SOH. The CCCT of the battery is extracted from the current profile 

during constant-current charging as the first feature indicator and is denoted as 𝐹𝐼1(𝐶𝐶𝐶𝑇), as 

shown in Equation (2). 

{
𝐹𝐼1(𝐶𝐶𝐶𝑇) = {CCCT1, CCCT2, CCCT3,⋯CCCT𝑖}

CCCT𝑖 = 𝑡𝑖,𝑗 − 𝑡𝑖,0
 

(2) 

In the above Equation (2), 𝑖 denotes the total number of charging cycles. 𝑡𝑖,𝑗 is the time 

corresponding to the end of the constant current charging process; 𝑡𝑖,0 is the time corresponding 

to the initial constant current charging.  

FI2: Constant voltage charging time (CVCT) 

According to the charging voltage curve in Figure 4(a), it can be observed that the CVCT 

is gradually prolonged with the deepening of battery aging. From the comparison graph of 

battery capacity and CVCT trend with the number of cycles in Figure 6, it can be seen that the 

CVCT of a battery cycled 130 times has a significant prolongation trend than that of a battery 

cycled 40 times.  
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Figure 6. Trend plot of capacity and CVCT of B5 battery with the number of cycles 

The CVCT and capacity decline show opposite trends. The maximum available capacity 

of the battery will affect the voltage situation in the constant voltage charging mode, with the 

decline of the maximum available capacity of the battery, the time taken to reach the specified 

voltage will rise, and there is an obvious negative correlation between the both. It indicates that 

CVCT can well express the trend of battery SOH decline. Thus, CVCT can be chosen as the 

characterization factor for SOH estimation, denoted as 𝐹𝐼2(𝐶𝑉𝐶𝑇), as shown in Equation (3). 

{
𝐹𝐼2(𝐶𝑉𝐶𝑇) = {CVCT1, CVCT2, CVCT3,⋯CVCT𝑖}

CVCT𝑘 = 𝑡𝑘,𝑗 − 𝑡𝑖,0
 

(3) 

In the above Equation (3), 𝑘 denotes the total number of charging cycles. 𝑡𝑘,𝑗 is the time 

corresponding to the end of the CV charging process; 𝑡𝑖,0 is the time corresponding to the initial 

CV charging. 

FI3: Equal voltage drop time (EVDT) 

From Figure 4(b), the discharge duration of the LIBs voltage drop from 3.5V to 2.8V is 

selected to plot the trend of B5 battery capacity and EVDT with the number of cycles, as shown 

in Figure 7. As can be seen in Figure 6, the greater the degree of aging of the battery, the shorter 

the time interval of equal voltage drop. The EVDT of LIBs with 160 cycles has a significant 

trend of decreasing compared to the EVDT with 40 cycles. 
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Figure 7. Trend plot of capacity and EVDT of B5 battery with the number of cycles 
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Both the EVDT and the battery capacity degradation curves show a decreasing trend with 

the charging and discharging cycles, and the similarity is very high. It shows that the maximum 

available capacity of the battery will affect the time taken for the equal voltage drop. As the 

maximum usable capacity of the battery decreases, the time taken for isovolts to drop will 

decrease, with a clear positive correlation between the two. It shows that EVDT can well 

characterize the SOH decline trend. Thus, EVDT can be chosen as the feature indicator for 

estimating SOH, denoted as 𝐹𝐼3(𝐸𝑉𝐷𝑇). The mathematical expression of EVDT for the decline 

from 3.5V to 2.8V is shown in Equation (4). 

{
𝐹𝐼3(𝐸𝑉𝐷𝑇) = {EVDT1, EVDT2, EVDT3, ⋯ EVDT𝑖}

EVDT𝑖 = 𝑡3.5 − 𝑡2.8
 

(4) 

In the Equation (4), 𝑡3.5  is the time corresponding to the voltage of 3.5V during the 

discharge process; 𝑡2.8 is the time corresponding to the voltage drop to 2.8V. The 𝐹𝐼3EVDT is the 

equal voltage drop discharge time series, where 𝑖  denotes the number of cycles of the total 

discharge process. 

2.3 Feature indicators correlation analysis 

The analysis of the battery aging process and the comparative graphs of the feature 

indicators and the battery capacity decline trend show the degree of correlation between each 

feature factor and capacity. To further quantify the degree of correlation between the feature 

indicators and capacity, this paper uses the Pearson correlation coefficient to measure the degree 

of correlation between each feature factor and battery capacity. Its calculation formula is shown 

in Equation (5). 

r =
∑ (𝑥𝑖 − �̅�)𝑛

𝑖=1 (𝑦𝑖 − �̅�)

√∑ (𝑥𝑖 − �̅�)2(𝑦𝑖 − �̅�)2𝑛
𝑖=1

 
(5) 

In the Equation (5), n denotes is the number of variables; 𝑥𝑖 and 𝑦𝑖 are the mean values of 

variables 𝑥 and 𝑦 respectively, where the value of r ranges from -1 to 1. When |𝑟| is closer to 1, 

it indicates that the correlation between the both is higher.  

According to Equation (5), the Pearson correlation coefficient values of CCCT, CVCT, 

and EVDT corresponding to each battery are calculated. Then, the degree of correlation 

between the features and FI with the battery capacity is evaluated based on the correlation 

coefficients, as shown in Table 2. 

Table 2. Pearson correlation coefficients between each FI and battery capacity  

Battery 𝐹𝐼1(𝐶𝐶𝐶𝑇) 𝐹𝐼2(𝐶𝑉𝐶𝑇) 𝐹𝐼3(𝐸𝑉𝐷𝑇) 
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B5 0.9950 -0.9977 0.9872 

B6 0.9901 -0.9998 0.9701 

B7 0.9949 -0.9954 0.9990 

B18 0.9727 -0.9981 0.9969 

When the absolute value of the Pearson correlation coefficient reaches above 0.7, the two 

variables are considered to be strongly correlated. As can be seen from Table 2, the absolute 

values of correlation coefficients of FIs and battery capacity selected in this paper are above 

0.7. 𝐹𝐼1(𝐶𝐶𝐶𝑇) is positively and strongly correlated with battery capacity. 𝐹𝐼2(𝐶𝑉𝐶𝑇) is negatively 

and strongly correlated with battery capacity. 𝐹𝐼3(𝐸𝑉𝐷𝑇) is positively and strongly correlated with 

battery capacity. It shows that the FIs selected in this paper are strongly correlated with the 

battery capacity and can be used in the problem of estimating and predicting the battery SOH. 

3. Theoretical Analysis 

In this section, the SOH estimation of LIBs based on the SSA-CNN-Bi-LSTM model is 

constructed and the fundamentals and structures of the three main components: bi-directional 

long short-term memory networks, convolutional neural networks, and sparrow search 

algorithms are presented respectively. 

3.1 Long Short-Term Memory Networks 

LSTM is a kind of recurrent neural network with a special "gate" structure. A special "gate" 

structure can control the type and amount of feature information. The LSTM network achieves 

the function of filtering redundant information through the subtle use of "gate" logic control 

units, which to some extent overcomes the disadvantages of easy gradient disappearance and 

explosion. The LSTM consists of input gates, output gates, and forgetting gates. The structure 

of an LSTM unit is shown in Figure 8. 

tanh

Xk-1 Xk

hk

Ck-1

hk-1

fk ik OkA

hk-1

σ σ 

tanh

σ 

Xk+1

A

hk+1

Ck

hk

Forgate 

gate

Input gate Output gate

Ck

Previous 

layer

Current 

layer

Future 

layer

Ck+1

hk+1

Output

 

Figure 8. The internal structure of the LSTM 
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The first step of the LSTM network's iteration of information is to go through the forgetting 

gate 𝑓𝑘. The forgetting gate will judge and decide how much information from the state of 𝐶𝑘−1 

in the previous k-1 moments is retained to the information of 𝐶𝑘 in the current k moments. By 

passing the input 𝑋𝑘  of the current moment and the previous hidden layer state ℎ
𝑘−1

  to the 

activation function 𝜎 for processing, an element value between 0 and 1 is obtained for 𝑓𝑘. The 

specific information retention calculation formula is shown in Equation (6). 

𝑓𝑘 = 𝜎 (𝑊𝑓[ℎ𝑘−1
, 𝑋𝑘] + 𝑏𝑓) (6) 

When the value of 𝑓𝑘 is 1, it means that the information is completely saved; when the 

value of 𝑓𝑘 is 0, it means that the information is completely forgotten. In the next step, the 

output of the forgetting gate to the input gate 𝑖𝑘. The input gate will update the unit state. By 

passing the input 𝑋𝑘  at the current moment and the hidden layer state ℎ
𝑘−1

  at the previous 

moment to the 𝜎 function and 𝑡𝑎𝑛ℎ function, 𝐶�̃� and 𝑖𝑘 are generated with the update of the cell 

state to get the update state 𝐶𝑘 formula as shown in Equation (7). 

{

𝑖𝑘 = 𝜎(𝑊𝑖[ℎ𝑘−1
, 𝑋𝑘] + 𝑏𝑖)

𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑘−1
, 𝑋𝑘] + 𝑏𝑐)

𝐶𝑘 = 𝑓𝑘 ∙ 𝐶𝑘−1 + 𝐶𝑘 ∙̃ 𝑖𝑘

 (7) 

Finally, the output gate 𝑂𝑘 determines the information that can be output from the memory 

cell. By connecting the input 𝑋𝑘 of the current moment and the previous hidden layer state ℎ
𝑘−1

 

horizontally and passing it to the 𝜎 function, and then multiplying the outputs of the generated 

new unit state after passing it to the 𝑡𝑎𝑛ℎ function to activate it, to decide the information that 

the hidden state ℎ
𝑘
 carries, and also to obtain the output formula of the current moment, as 

shown in Equation (8). 

{
𝑂𝑘 = 𝜎(𝑊𝑜[ℎ𝑘−1

, 𝑋𝑘] + 𝑏𝑜)

ℎ
𝑘
= 𝑂𝑘 ∙ 𝑡𝑎𝑛ℎ(𝐶𝑘)

 (8) 

In the above Equations (6)-(8), 𝑊 and 𝑏 denote the weight matrix and the bias term of 

the forgetting gate, respectively. 

3.2 Bi-directional Long Short-Term Memory Networks 

Bi-LSTM is a variant structure of LSTM, and it can be very good to process the data of 

long time series from both positive and negative directions to infer more information. In Bi-
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LSTM network contains the input layer, unidirectional LSTM with two opposite directions, a 

splicing layer, and the output layer as shown in Figure 9. 
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Figure 9. The internal structure of the Bi-LSTM 

During network training, LSTM can only save and use the historical information of the 

aging process to predict the next moment output. However, Bi-LSTM can not only trace the 

historical information of the battery aging process but also consider future aging information. 

According to the principle of LSTM operation, Bi-LSTM first inputs the data forward to the 

forward LSTM layer and gets the output of the forward LSTM layer. Then, reverse the data into 

the reverse LSTM layer, get the reverse output, and then reverse the output again to get the 

output of the reverse LSTM layer. Finally, the output of the forward LSTM layer and the output 

of the reverse LSTM layer are linearly fused to get the final output. The specific formula is 

shown in Equation (9). 

{
 
 

 
 ℎ

𝑘

⃗⃗⃗⃗ 
= 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (ℎ

𝑘−1
,

⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 
𝑋𝑘
⃗⃗ ⃗⃗  )

ℎ
𝑘

⃖⃗⃗⃗⃗
= 𝐿𝑆𝑇𝑀⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (ℎ

𝑘−1
,

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗
𝑋𝑘
⃖⃗ ⃗⃗⃗)

 ℎ
𝑘
= 𝑊𝑘 ∙ ℎ

𝑘

⃗⃗⃗⃗ 
+ 𝑉𝑘 ∙ ℎ

𝑘

⃖⃗⃗⃗⃗
+ 𝑏𝑘

 (9) 

In the Equation (9), ℎ
𝑘

⃗⃗⃗⃗ 
 denotes the output result of the forward LSTM layer at moment 𝑘; 

ℎ
𝑘

⃖⃗⃗⃗⃗
  denotes the output result of the reverse LSTM layer at moment 𝑘 ; ℎ

𝑘
  denotes the output 

result of the state of the Bi-LSTM layer at moment 𝑘; 𝑊𝑘 is the forward output weight; 𝑉𝑘 is 

the reverse output weight; 𝑏𝑘 is the bias terms of the output state of the Bi-LSTM layer. 

3.3 Convolutional Neural Network 

CNN is a special feed-forward deep neural network with powerful feature extraction 

capability to mine more abstract and advanced deep features from the input data. CNN is mainly 

composed of input and output layers and multiple hidden layers, where the hidden layers can 
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be divided into convolutional, pooling, and fully connected layers, and its structure is shown in 

Figure 10. 

Input layer

Feature extraction

Convolution layer Pooling layer Full-connected layer Output layer

 
   

 

Figure 10.  The architecture of the CNN estimation model 

As a core layer of the CNN architecture, the convolutional layer contains multiple 

convolutional kernels within it. The convolutional layer extracts feature information from the 

input layer data (current, voltage, and temperature of the battery) by performing a linear, shift-

invariant operation. Meanwhile, the convolutional kernel reduces the number of parameters and 

computations by locally weighting the input signal, which makes the CNN computation faster. 

The output ℎ
𝑖
 operation formula of the convolutional layer is shown in Equation (10).  

ℎ
𝑖
= 𝑓(𝜔 × 𝑥𝑖:𝑖+𝑔−1 + 𝑏) (10) (10) 

In the Equation (10), 𝑓 denotes the activation function; 𝑥𝑖:𝑖+𝑔−1 is denoted as the feature 

vector from 𝑖 to 𝑖 + 𝑔 − 1, in which 𝑔 is the size of the convolution kernel; 𝜔 is the weight of 

the convolution kernel; and 𝑏 is the bias parameter. The above operation yields the eigenvector 

matrix 𝐺. 

The pooling layer performs a downsampling maximum pooling operation without 

compromising the recognition results, extracting the maximum value from each region to 

preserve the features. The pooling layer has feature invariance. By downsampling the feature 

data of the input convolutional layer, feature vectors of smaller dimensions are obtained by 

downsampling the input feature data without changing the features. So that the input feature 

data is downsampled without changing the characteristics, resulting in feature vectors with 

smaller dimensions. 

The fully connected layer is the last step of the hidden layer located in the CNN. The 

features obtained through the above convolutional and pooling layers are integrated and then 
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the feature data is fed into the fully connected layer for classification and regression. Lastly, the 

prediction results are output through the output layer. 

3.4 Sparrow Search Algorithm Optimization 

SSA is an emerging intelligent optimization algorithm based on sparrow foraging and anti-

enemy behaviors. The algorithm makes full use of the individual searching ability and mutual 

cooperation ability in the sparrow population and classifies the sparrow population into three 

types: discoverers, followers, and vigilantes. The flowchart of SSA for parameters (number of 

iterations, learning rate, number of hidden nodes in bidirectional LSTM layer, etc.) optimization 

of the CNN-Bi-LSTM hybrid neural model is shown in Figure 11. 
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Figure 11. Flow chart of global parameter optimization of the SSA 

Using SSA to simulate the process of sparrow flock foraging, a mathematical model is 

established in a D-dimensional space and the optimal solutions of some parameters are obtained 

within a certain range. Assuming a population consisting of 𝑛 sparrows, the location 𝑋 and the 

fitness value 𝐹𝑥 of the sparrow population are expressed as shown in Equation (11).  

{
 
 
 
 

 
 
 
 

𝑋 = [

𝑥1
1 𝑥1

2

𝑥2
1 𝑥2

2

⋯ 𝑥1
𝐷

⋯ 𝑥2
𝐷

⋯ ⋯
𝑥1
𝑛 𝑥2

𝑛
⋯ ⋯
⋯ 𝑥𝑛

𝐷

]

𝐹𝑥 =

[
 
 
 
𝑓([𝑥1

1 𝑥1
2 ⋯ 𝑥1

𝐷])

𝑓([𝑥2
1 𝑥2

2 ⋯ 𝑥2
𝐷])

⋯ ⋯ ⋯ ⋯

𝑓([𝑥𝑛
1 𝑥2

𝑛 ⋯ 𝑥𝑛
𝐷])]

 
 
 
 (11) 

In the Equation (11), D is denoted as the dimension of the parameter problem variable to 

be optimized; 𝑥𝑛
𝐷 is the position of the nth sparrow in the Dth dimension; and 𝑓 denotes the 

fitness function of an individual sparrow, where 𝑓([𝑥𝑛
1 𝑥2

𝑛 ⋯ 𝑥𝑛
𝐷]) in the nth row denotes 

the degree value of the nth sparrow. 
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In the foraging process of sparrows, discoverers with higher fitness values are prioritized 

to obtain food and gain a larger foraging range. In each iteration, the sparrow as a finder gets 

the position updated as shown in Equation (12).  

𝑋𝑖,𝑧
𝑡+1 = {

𝑋𝑖,𝑧
𝑡 ∙ 𝑒𝑥𝑝 (

𝑖

𝛼 ∙ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) , 𝑅2 < 𝑆𝑇

𝑋𝑖,𝑧
𝑡 + 𝑄 ∙ 𝐿, 𝑅2 ≥ 𝑆𝑇

 (12) 

In the Equation (12), 𝑅2 ∈ [0,1]  and 𝑆𝑇 ∈ [0.5,1.0]  represent the alarm value and alert 

threshold, respectively; when 𝑅2 < 𝑆𝑇  represents that when no natural enemy is posing a 

danger in the surrounding area, the discoverer can conduct an extended search; when 𝑅2 ≥ 𝑆𝑇 

represents that a discoverer in the population has discovered a natural enemy, and all the 

sparrows need to fly to the safe area quickly to take shelter. 𝑋𝑖,𝑧
𝑡  denotes the value of the z-th 

dimension of the ith sparrow at the t-th iteration; 𝑒𝑥𝑝 (
𝑖

𝛼∙𝑖𝑡𝑒𝑟𝑚𝑎𝑥
)  denotes the exponential 

function with e as the base, where 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 is a constant, which denotes the maximal number of 

iterations.  is a random number with a range of values from 0 to 1; L and Q represent the random 

numbers and matrices which obey the normal distribution, respectively.  

The follower moves in the direction of the discoverer pursuing the physical object to obtain 

the corresponding food, and its position is updated as shown in Equation (13). 

𝑋𝑖,𝑧
𝑡+1 = {

𝑋𝑝
𝑡+1 + |𝑋𝑖,𝑧

𝑡 − 𝑋𝑝
𝑡+1| ∙ 𝐴𝑇(𝐴𝐴𝑇)𝑇 ∙ 𝐿, 𝑖 ≤ 𝑛

2⁄

𝑄 ∙ 𝑒𝑥𝑝(
𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 − 𝑋𝑖,𝑧
𝑡

𝛼 ∙ 𝑖𝑡𝑒𝑟𝑚𝑎𝑥
) , 𝑖 > 𝑛

2⁄
 (13) 

In above Equation (13), 𝑋𝑝 and 𝑋𝑤𝑜𝑟𝑠𝑡 represent the optimal foraging position of the finder 

and the worst position in the foraging environment, respectively; 𝐴 is a unit matrix; when 𝑖 >

𝑛
2⁄ , it indicates that the sparrow in the follower role has a low fitness value, has a poor position 

for obtaining food, and needs to change the foraging range; on the contrary, when 𝑖 ≤ 𝑛
2⁄ , it 

indicates that the sparrow in the follower role has a superior foraging position.  

During the foraging process of a sparrow population, the vigilantes in the population will 

immediately perform vigilance behavior when they find predators around them. The position 

of the vigilant is also updated as the number of iterations changes, and the formula for a position 

update is shown in Equation (14).  

𝑋𝑖,𝑧
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛾 ∙ |𝑋𝑖,𝑧

𝑡 −𝑋𝑏𝑒𝑠𝑡
𝑡 | ∙ 𝐴𝑇(𝐴𝐴𝑇)𝑇 ∙ 𝐿, 𝑓

𝑖
> 𝑓

𝑔

𝑋𝑖,𝑧
𝑡 + 𝐾(

|𝑋𝑖,𝑧
𝑡 − 𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 |

(𝑓
𝑖
− 𝑓

𝑤
) + 𝜀

) , 𝑓
𝑖
= 𝑓

𝑔

 (14) 
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In the Equation (14), 𝑓𝑔 and 𝑓𝑤 are the global optimal fitness value and the worst fitness 

value, respectively; 𝑋𝑏𝑒𝑠𝑡 denotes the optimal position in the foraging environment, where 𝛾 is 

the step control parameter; 𝐾 is the direction of controlling the sparrow's movement, with a 

range of -1 to 1; 𝜀 is the correction constant. When 𝑓𝑖 > 𝑓𝑔, it indicates that the sparrow is at the 

edge of the population and is very vulnerable to predator attack; when 𝑓𝑖 = 𝑓𝑔, it indicates that 

the sparrow discovers the predator at this time, realizes the danger of being preyed upon, and 

makes a vigilant behavior to approach other sparrows.  

The optimal values of the model structural parameters after the SSA optimization search are 

shown in Table 3. 

Table 3. Table of optimal parameters of the CNN-Bi-LSTM model after SSA optimization 

Model structure Parameter settings 

CNN Conv, Maxpooling, Relu 

CNN convolution core size 3 

Bi-LSTM layers 2 

Batch size 28 

Learning rate 0.01 

Maximum number of iterations 1000 

Activation function Relu 

3.5 Lithium-ion battery based on SSA optimized hybrid neural network model 

Bi-LSTM can effectively extract historical useful information from the data in both 

directions, and CNN is more capable of deep feature extraction from the input data. Thus, a 

CNN-Bi-LSTM hybrid neural network model is proposed for SOH prediction of LIBs based on 

the fusion of prediction ideas and the advantages of the two kinds of models.  
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Figure 12. The flowchart of the proposed SOH estimation model 

Since the parameters of the CNN-Bi-LSTM model are subjectively set by human beings, 

it is easy to fall into problems such as local optimal solutions, resulting in poor model accuracy. 

Different model parameters have a great impact on the battery SOH assessment results. To 

further improve the established SOH prediction model, SSA is used to optimize the model 

parameters and improve the model accuracy. The overall flow of the SSA-CNN-Bi-LSTM 

model for SOH prediction is shown in Figure 12. 

Before SOH prediction, the NASA experimental dataset is first processed to extract the 

currents, voltages, temperatures, and calculated battery capacities from the charge/discharge 

cycles. Then, the data is feature extracted and analyzed into training and test sets. In the 

hyperparameter optimization step, the SSA algorithm is used to search for the optimal 

parameters of the CNN-Bi-LSTM model and then the model is trained. Thus the accurate SSA-

CNN-Bi-LSTM model is formed and the SOH of the battery is estimated using the model. 

Finally, the proposed model is compared with other models used for SOH estimation. 

4. Results and analysis of SOH prediction  
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To better validate the performance of the SSA-CNN-Bi-LSTM model for SOH estimation 

of LIBs, the error evaluation metrics such as maximum error (ME), mean absolute error (MAE), 

root mean square error (RMSE), and mean absolute percentage error (MAPE) are used to 

further compute and analyze the experimental results as shown in Equation (15). 

{
 
 
 
 

 
 
 
 

𝐸𝑘 = 𝑆𝑂𝐻𝑟𝑒𝑎𝑙 − 𝑆𝑂𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡

𝑀𝐸 = max (|𝐸𝑘|)

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐸𝑘|

𝑛

𝑖=1

RMSE = √
1

𝑛
∑ 𝐸𝑘

2
𝑛

𝑖=1

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐸𝑘

𝑆𝑂𝐻𝑟𝑒𝑎𝑙
| × 100%

𝑛

𝑖=1

 (15) 

In Equation (15)， 𝑆𝑂𝐻𝑟𝑒𝑎𝑙  denotes the real value of SOH. 𝑆𝑂𝐻𝑝𝑟𝑒𝑑𝑖𝑐𝑡  denotes the 

predicted value of SOH. 𝑛 denotes the number of data to be predicted in the experiment. In 

particular, for the indicators RMSE, MAE, and MAPE, if their numerical values are closer to 

0, it means that the prediction accuracy is more accurate.  

To verify the effectiveness and superiority of the proposed SSA-CNN-Bi-LSTM model 

for SOH prediction of LIBs, other common neural network models will be added for 

comparison, including the LSTM model, Bi-LSTM model, and CNN-Bi-LSTM model. After 

adding feature metrics and battery capacity to the corresponding data for each of the above 

battery models, the former 70% of the data was used as the model training set and the latter 30% 

of the data was used as the model test set for SOH prediction. The prediction results of battery 

B5 are shown in Figure 13.  
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(a)  (b) 

Figure 13. The SOH estimation results with different methods for battery B5. (a) SOH prediction 

results; (b) SOH prediction error. 

The SOH prediction process for the B5 battery is shown in Figure 13, taking the 116th 

cycle as the prediction starting point for estimating the SOH of the LIBs. From Figure 13, it 
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can be seen that although the LSTM model tends to estimate a certain true value when 

performing SOH prediction, the maximum estimation error reaches 3.31%, which cannot 

accurately pre-estimate the SOH operation of LIBs to the final stage. The maximum estimation 

error of the Bi-LSTM model is 2.72%. Compared to the LSTM model, the maximum estimation 

error is reduced by 0.59%. However, as the number of cycles increases, the Bi-LSTM model 

predictions deviate from the true value and have an obvious delay, which is less desirable. The 

maximum estimation error of the CNN-Bi-LSTM model is 1.12%. Compared with the Bi-

LSTM model, the maximum estimation error of the CNN-Bi-LSTM model is reduced by 1.6%, 

and its prediction performance is significantly improved, but the prediction accuracy is still not 

high enough. The maximum estimation error of the SSA-CNN-Bi-LSTM model is 0.75%, and 

the prediction curve gradually fits the real value. Compared with the other three models, the 

prediction accuracy is significantly improved and the prediction accuracy is better.  
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(a)  (b) 

Figure 14. The SOH estimation results with different methods for battery B6. (a) SOH prediction 

results; (b) SOH prediction error. 

As can be visualized in Figure 14, the SSA-CNN-Bi-LSTM model is very close to the true 

value when predicting the battery SOH in the B6 battery, and the estimation is better than the 

other three comparative models. Taking the 117th cycle as the prediction starting point for 

estimating the SOH of LIBs, the estimation oscillations of the LSTM model and the Bi-LSTM 

model are large, and the maximum estimation errors reach 3.67% and 1.22%, respectively. The 

CNN-Bi-LSTM model is more stable in the middle and early stages of estimation and has a 

maximum estimation error of 0.39%. Compared with the Bi-LSTM model, the maximum 

estimation error of the CNN-Bi-LSTM model is reduced by 0.83%. However, as the number of 

cycles increases, the predicted values of the CNN-Bi-LSTM model gradually deviate from the 

true values, and the measurement accuracy is still not high enough. The maximum estimation 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



accuracy of the proposed SSA-CNN-BiLSTM model reaches 0.16% at this time, with 

significantly better fitting and smaller error fluctuations, which greatly improves the estimation 

accuracy of SOH for LIBs. 
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(a) (b) 

Figure 15. The SOH estimation results with different methods for battery B7. (a) SOH prediction 

results; (b) SOH prediction error. 

As shown in Figure 15, the SOH prediction process for the B7 battery uses the 115th cycle 

as the prediction starting point for predicting the SOH of the lithium-ion battery. The LSTM 

model and Bi-LSTM model predicted the starting point of the oscillation at the 115th cycle with 

a maximum error of 2.65% and 2.18%, respectively. The results of the CNN-Bi-LSTM model 

are less oscillating compared to the LSTM model and the Bi-LSTM model, with a maximum 

estimation error of 1.10%. Compared to the Bi-LSTM model, the maximum estimation error of 

the CNN-Bi-LSTM model is reduced by 0.35%. The SSA-CNN-Bi-LSTM model estimation 

error is estimated to be stable, oscillating within a certain region and closer to the true value 

curve, and its maximum estimation error is only 0.21%. As shown comprehensively, the SSA-

CNN-Bi-LSTM model outperforms the LSTM model, the Bi-LSTM model, and the CNN-Bi-

LSTM model in the case of the B7 battery, and it can more accurately estimate the SOH of the 

LIBs. 
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(a)   (b) 

Figure 16. The SOH estimation results with different methods for battery B18. (a) SOH prediction 

results; (b) SOH prediction error. 
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As shown in Figure 16, it can be intuitively obtained that the SOH prediction process of 

the B18 battery takes the 89th cycle as the starting point of prediction. The maximum error of 

the LSTM model reaches 1.68% and the estimation is unsatisfactory. The maximum error of 

the estimation of the Bi-LSTM model reaches 1.02%. Compared with the LSTM model, the 

Bi-LSTM model reduces the maximum estimation error by 0.66% and the estimation results 

are significantly improved, but there are violent oscillations in the range of the true value, which 

are unstable. Compared with the Bi-LSTM model, the results of the CNN-Bi-LSTM model do 

not have violent oscillation, the maximum estimation error decreases from 1.02% to 0.63%, 

and the maximum estimation error decreases by 0.39%. The prediction performance of the 

CNN-Bi-LSTM model is significantly improved, but the prediction accuracy is still not high 

enough. Compared with the CNN-Bi-LSTM model, the maximum estimation error of the SSA-

CNN-Bi-LSTM model decreases from 0.63% to 0.23%, and the maximum estimation error 

decreases by 0.4%, and the error oscillations are very small, and the prediction curves are 

gradually fitted to the real values, and the model's estimation accuracy values are higher. It can 

be obtained that the SSA-CNN-Bi-LSTM model outperforms LSTM, Bi-LSTM, and CNN-Bi-

LSTM models in estimating the SOH of LIBs under B18 batteries, and effectively improves 

the estimation accuracy of SOH of LIBs.  

To visualize the SOH estimation error of each modeling method and illustrate the 

advantages of the SSA-CNN-Bi-LSTM model. Based on the experimental results, the 

estimation error of SOH estimation at each cycle is plotted using ME, MAPE, RMSE, and 

RMSE as the evaluation indexes, as shown in Figure 17. 
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(d) 

Figure 17. Comparison of the results of the error in SOH prediction values for the four batteries. (a) 

ME; (b) MAE; (c) RMSE; (d)MAPE 

The result plots in Figure 17 show the comparison results of the estimation performance 

evaluation metrics of the four models on the B5, B6, B07, and B18 battery number sets. As can 

be seen from the result plots, under the same conditions, the estimation performance of the 

SSA-CNN-Bi-LSTM model is significantly better than that of the CNN-Bi-LSTM model, the 

Bi-LSTM model, and the LSTM model, with better fitting and varying degrees of decreases in 

MAPE, MAE, and RMSE. Among these four cells, the maximum MAPE, MAE, and RMSE of 

the SSA-CNN-Bi-LSTM model are 0.6437%, 0.4431, and 0.4675%, respectively. Compared 

with the CNN-Bi-LSTM model, the MAPE, MAE, and RMSE of the SSA-CNN-Bi-LSTM 

model decreased by an average of 0.5733%, 0.4015%, and 0.4179%, respectively. Compared 

with the Bi-LSTM model, the MAPE, MAE, and RMSE of the SSA-CNN-Bi-LSTM model 

decreased by 0.8026%, 0.5394%, and 0.7041% on average, respectively. Compared with the 

LSTM model, the MAPE, MAE, and RMSE of the SSA-CNN-Bi-LSTM model decreased by 

2.5736%, 2.293%, and 2.6715% on average, respectively. The fusion of the CNN model with 

the Bi-LSTM model optimizes and improves the accuracy of the algorithm, and the 

incorporation of SSA improves the prediction of the model. This advantage increases the 

possibility of applying the proposed method in practice. 

5. Conclusions 

To address the problem of accurate estimation of SOH for LIBs, this article proposes the 

prediction of SOH for lithium batteries based on the SSA to optimize the hybrid neural network 

model CNN-Bi-LSTM. In the SSA-CNN-Bi-LSTM model, CNN is used to extract the intrinsic 

features of the input data, Bi-LSTM is used to capture the relationship between the feature 

indicators and SOH in both directions, and SSA is used to optimize the structural parameters of 
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the hybrid model to achieve the accurate SOH estimation of LIBs. Experimental validation 

results with different models of battery datasets with different models show that the proposed 

SSA-CNN-Bi-LSTM model outperforms the LSTM model, the Bi-LSTM model, and the CNN-

Bi-LSTM model, with the MAE lower than 0.5%, the MAPE lower than 0.7%, and the RMSE 

lower than 0.5%, and it can predict the SOH of LIBs more accurately. 

Future research will further consider uncertainties such as battery aging degree, 

charge/discharge multiplier, and environmental temperature, and combine them with the 

mechanism model to establish a more accurate SOH estimation model for LIBs. 
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