LAZULI, A.R.S.C., RAMALINGAM, V. and NEPPOLIAN, B. 2024. Promoting nitrogen photofixation for the synthesis of ammonia using oxygen-vacant Fe₂O₃/ZrO₂ visible light photocatalyst with straddling heterojunction and enhanced charge transfer. *Journal of cleaner production* [online], 451, article number 142095. Available from: <u>https://doi.org/10.1016/j.jclepro.2024.142095</u>

Promoting nitrogen photofixation for the synthesis of ammonia using oxygen-vacant Fe₂O₃/ZrO₂ visible light photocatalyst with straddling heterojunction and enhanced charge transfer.

LAZULI, A.R.S.C., RAMALINGAM, V. and NEPPOLIAN, B.

2024

Supplementary materials are appended after the main text of this document.

This document was downloaded from https://openair.rgu.ac.uk

2 Promoting nitrogen photofixation for the synthesis of ammonia using oxygen-vacant Fe₂O₃/ZrO₂ visible light photocatalyst with straddling heterojunction and enhanced 3 charge transfer 4 Stesho Crystalin Lazuli A. R.,^a Vinoth Ramalingam^b and Neppolian. B^a* 5 6 ^aEnergy and Environmental Remediation Lab, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India. 7 8 ^bSchool of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ, United Kingdom. 9 *Corresponding author: neppolib@srmist.edu.in 10 11 Abstract Photocatalytic nitrogen (N₂) fixation is a promising and environmentally friendly 12 alternative approach to the energy-intensive Haber-Bosch process to produce green ammonia

13 (NH₃) with zero carbon emissions. However, the unique setbacks rest on developing an active 14 photocatalyst with an accelerated charge transfer that could efficiently adsorb and activate the 15 chemically inert N₂ into useful NH₃. Herein, an oxygen-vacant Fe₂O₃/ZrO₂ photocatalyst with 16 straddling heterojunction was successfully synthesised by the hydrothermal method followed 17 by calcination at 450°C. The addition of oxygen vacancy-inducing ferromagnetic material on 18 ZrO₂ increased the adsorption and activation of N₂, broadened the solar absorption window 19 20 (680 nm extending to 910 nm). It also accelerated light-induced charge separation of the photocatalyst thereby greatly enhancing the production of NH₃ (1.301 mmol h⁻¹ g⁻¹) with about 21 22 a 7-fold increase in comparison to ZrO₂ at ambient conditions under sunlight irradiation. This work therefore sheds light on the effect of oxygen vacancies and the flow of charge carriers in 23 the effective photofixation of N₂ to NH₃ synthesis through a sustainable route. 24

Keywords: oxygen vacancy; Fe₂O₃/ZrO₂; Type I heterojunction; ferromagnetic; photocatalytic
 nitrogen reduction

27 **1. Introduction**

1

About 78% of the earth's atmosphere, is an inexhaustible source of free nitrogen (N₂). However, owing to the high bond dissociation energy of N₂ (~ 941 kJ mol⁻¹), it is considered an inert gas as it cannot be easily activated(Bo et al., 2021; Cheng et al., 2019; Han et al., 2020).

The ability to convert the N₂ in the atmosphere to ammonia (NH₃) could lead to a breakthrough 31 in the production of carbon-neutral ammonia. The synthesis of ammonia is prevalent globally 32 due to its demand in various industrial sectors like pharmaceuticals, chemicals, fertilisers, etc. 33 The traditional Haber-Bosch process is an energy-intensive industrial N₂ fixation process 34 employed for decades to produce NH₃(Chen et al., 2021). The anthropogenic carbon dioxide 35 emissions (340 Mt eq/yr) and depletion of fossil fuels (2.5 EJ energy consumption/yr) lead to 36 an urgent global warming mitigation by reducing the environmental impacts of the Haber-37 Bosch process(Huang et al., 2023a; Liu et al., 2023; Shi et al., 2019; Wei et al., 2022; Zhang et 38 39 al., 2019. Photocatalytic fixation of solar-driven nitrogen is an ideal pathway to produce ammonia under ambient conditions without using a fossil fuel-based energy system that 40 motivates the transition towards cleaner and more efficient energy utilisation(Ahmad et al., 41 2023; Babakr et al., 2022; Han et al., 2020; Liu et al., 2022; Tao et al., 2019; Urgesa et al., 42 2023; Vu et al., 2019; Wang et al., 2022). Since solar energy is a readily available, efficient and 43 renewable source of energy, advanced oxidation processes (AOP) have been employed for the 44 reduction of N₂ photocatalytically. Therefore, the development of efficient photocatalysts that 45 are profoundly light-responsive with adequate charge separation efficiency for the activation 46 of electron-hole pairs is a pressing priority(Abdollahi et al., 2021). 47

Several unique setbacks in the photofixation of N₂ are mainly due to dinitrogen's huge 48 chemical energy barrier. The photocatalytic conversion of nitrogen to ammonia requires free 49 electrons as it is a 6-electron process. However, photoexcited electron-hole pairs of the 50 photocatalyst recombine quickly due to the short electron lifetime(Amiri et al., 2020). 51 Therefore, a promising photocatalyst for the photofixation of nitrogen should possess good 52 charge carrier mobility, a low recombination rate, and active sites to adsorb nitrogen. Typically, 53 semiconductor photocatalysts with narrow bandgaps enhance the visible-light harnessing 54 efficiency and, therefore, are a research hotspot(Abdollahi et al., 2022; Najafidoust et al., 55 2022). Additionally, engineering vacancies on the photocatalyst is a prevalent method to design 56 57 efficient photocatalysts due to their ability to act as active sites. Oxygen vacancies act as an active site to adsorb nitrogen and other photoelectrons on the photocatalyst. The free electrons 58 present in the oxygen-vacant sites are injected into the π^* anti-bonding electrons of dinitrogen, 59 activating it. A new energy-deficient band is generated with an increase in the number of 60 oxygen-vacant sites below the conduction band, producing a new absorption peak that extends 61 to the visible region (400 - 700 nm)(AR et al., 2023; Chen et al., 2021; Kumar et al., 2020; 62 63 Shen et al., 2022; Shi et al., 2019).

Zirconium oxide (ZrO₂) has recently received significant consideration as a 64 semiconductor photocatalyst due to its high dielectric constant, ion exchange, exceptional 65 chemical, electrical, and optical properties, high thermal stability, and photostable, non-toxic 66 and redox properties(Ananchenko et al., 2022; Boffito et al., 2013; Das et al., 2019; Mou et al., 67 2019; Neppolian et al., 2011, 2010). Notably, ZrO₂ is a polymorph that can exist as tetragonal 68 (t-ZrO₂), cubic (c-ZrO₂), and monoclinic ZrO₂ (m-ZrO₂) among which, m-ZrO₂ has less 69 70 symmetrical lattice structure making it a more versatile surface for photocatalytic activity(Keramidas and White, 1974; Matta et al., 1999). Additionally, the surface sites of m-71 72 ZrO₂ consist of oxygen vacant sites, surface hydroxyl groups, lewis acid sites, and unsaturated coordinative Zr-O pairs. It is well known that bandgap plays a pivotal role in the selection of a 73 suitable photocatalyst(Singh et al., 2020). The large bandgap of ZrO₂ limited its photocatalytic 74 activity to the ultraviolet region (5% of the solar radiation spectrum). Therefore, the addition 75 of metal oxides or transition metals to ZrO₂ broadens its optical window range to the visible 76 region enhancing its sunlight absorption capability. Doping of pure metals like Er, Ce, Mg, Co, 77 and Fe in ZrO₂ has already been reported to lower the rate of recombination of the light-excited 78 electron-hole charge carriers and reduce their bandgap(Reddy et al., 2019). It is also evident 79 from theoretical calculations that the adsorption energy of nitrogen to ZrO₂ is much lower than 80 that of hydrogen which effectively suppresses the hydrogen evolution reaction thereby 81 promoting the photofixation of nitrogen(Mou et al., 2019; Tao et al., 2019). AR et al. 82 constructed Ni-incorporated ZrO₂/Bi₂O₃ with oxygen-vacant active sites that enhanced the 83 absorption window to the visible spectrum and photoreduction of N₂ with a yield of 9668.2 84 µmol/h g due to the formation of p-n heterojunction(AR et al., 2023). H Mou et al. fabricated 85 g-C₃N₄/ZrO₂ lamellar composites in their amorphous form by one-step pyrolysis with an 86 87 optimum ammonium yield of 1446 µmol/h L at 400 nm(Mou et al., 2019). J. Song et al. synthesised a hierarchically structured electrocatalyst made of g-C₃N₄ encapsulated ZrO₂ 88 decorated with CdS QDs (g-C₃N₄@CdS@ZrO₂) that synergistically enhances NRR with an 89 NH₃ yield of 6.32 x 10⁻¹⁰ mol/s cm(Song et al., 2021). Recently, R Fu et al. crafted a Ru-loaded 90 ZrO_{2-x} photocatalyst with a Schottky barrier that generated an ammonia rate of 3256 µg/h g at 91 400 nm(Fu et al., 2023). 92

Herein, Fe₂O₃ is incorporated with ZrO₂ to efficiently narrow the bandgap of ZrO₂ (~5.0
eV), thereby allowing a flow of electron-hole separation. Fe improves light absorption and
photogenerated electron transmission efficiency, enhancing its photocatalytic activity. Ideally,
biological nitrogen fixation uses nitrogenase ferroprotein with iron as one of the cofactors for

the conversion of atmospheric N₂ to NH₃. Oftentimes, oxygen-vacant sites are created during 97 the synthesis of the photocatalyst and tend to recombine with the oxygen present in the 98 atmosphere on exposure to air which can be overcome by the introduction of heteroatoms. In 99 this regard, Fe was chosen as the cocatalyst. Oxygen-vacant sites induced by Fe can alter the 100 electron density locally on the adsorbed N₂, thereby lowering the activation energy and 101 102 enabling the generation of NH₃ through hydrogenation(Curatti et al., 2007; Di et al., 2019; Gao et al., 2017; Hu et al., 2023; Shen et al., 2022; Wang et al., 2014). In the present study, 103 Fe₂O₃/ZrO₂ was synthesized using the hydrothermal method at 170 °C followed by calcination 104 105 at 450°C. The photocatalyst retained its phase purity and showed superior photofixation of N₂ over bare samples (Fe₂O₃ and ZrO₂) under identical conditions. Furthermore, the influence of 106 ferromaterial (Fe₂O₃) on ZrO₂ improving the charge transfer and oxygen vacancies formed as 107 a result of the heterojunction has been discussed. Orthogonal tests were performed to optimise 108 the nitrogen fixation conditions. This work is designed to efficiently photofix nitrogen at 109 110 ambient pressure and temperature.

111 **2.** Materials and methods

112 2.1 Materials

Chemicals such as ferric nitrate (SRL, 98%), citric acid monohydrate (SRL, 99.5%),
zirconium tetraisopropoxide isopropanol (Sigma Aldrich, 70%), sodium hydroxide (SRL,
97%), nitric acid (SRL, 72%), and isopropyl alcohol (SRL, 99%), sodium potassium tartrate
(SRL, 99%), Nessler's reagent (SRL) were purchased and used without further purification.
Distilled water with 18.2 MΩ was used for all the synthesis.

118 2.2 Fabrication of Fe₂O₃/ZrO₂

For the fabrication of Fe_2O_3/ZrO_2 , 2M solutions of ferric nitrate and zirconium (IV) isopropoxide were stirred for 20 h in cold conditions separately and then mixed dropwise with vigorous stirring at alkaline conditions (pH = 13). The solution is sonicated for 60 min and then transferred to a Teflon-lined autoclave. (Temperature: 170 °C; Time: 15 h). The obtained product was washed repeatedly and dried at 80 °C overnight. The product calcined at 450°C for 1 h was labelled Fe_2O_3/ZrO_2 (FZ)(AR et al., 2023).

The unary materials were also prepared by the same hydrothermal method using their respective precursors (ferric nitrate solution for Fe₂O₃ and zirconium (IV) isoproposide solution for ZrO₂).

128 **2.3** Characterisations

X-ray diffraction (XRD, PANalytical) with Cu K α radiator of λ = 1.5406 A was used to 129 determine the crystal configuration of the photocatalyst. Scanning electron microscope (SEM, 130 Zeus's Sigma 500) and High-resolution transmission electron microscope (HRTEM, FEI 131 Technai G2 F20) were used to detect the surface morphology and structure analysis of the 132 photocatalysts. Fourier-transform infrared spectroscopy (FTIR, IRTracer-100) and X-ray 133 photoelectron spectroscopy (XPS, Physical Electronics) were used to confirm the elemental 134 135 confirmation and detect the chemical state of the catalyst surface. Electron spin resonance (ESR, Bruner A300 PLUS) was used to measure the vacancies generated by the catalyst. An 136 ultraviolet-visible diffuse reflectance spectrophotometer (UVDRS, SHIMADZU, UV 3600 137 PLUS) was used to measure the light absorbance and bandgap of the catalyst. The 138 139 photoluminescence (PL, Agilent fluorescence spectrophotometer) of the catalyst was analysed using a fluorescence chromatograph with an excitation wavelength of 380 nm. A lux meter was 140 141 used to measure the intensity of the sunlight. For electrochemical measurements, a 3-electrode system was used. Ag/AgCl electrode was used as a reference electrode, a platinum wire was 142 used as the counter electrode and the GC electrode deposited with the catalyst was used as the 143 working electrode. 144

145 **2.4 Nitrogen photofixation test**

The photocatalytic nitrogen fixation tests were performed using a 100 mL Kjeldahl 146 147 reactor under solar irradiation (65500 lux) at Chennai, India between 10 am and 2 pm. 148 Typically, 50 mL of deionised water was dispersed with 40 mg/L of the as-synthesised photocatalyst and then bubbled with N₂ for half an hour under constant stirring (500 rpm) in 149 150 the dark. To estimate the amount of ammonia generated, 3 mL of the aliquot was withdrawn initially before light irradiation and then withdrawn every 1 h after irradiation. The 151 152 concentration of ammonia in the aliquot was analysed using Nessler's method and quantified using a UV spectrometer. 153

154 **3. Results and discussion**

155 The phase structures and crystallinity of the as-synthesized compounds were analysed 156 using an X-ray diffractometer. The XRD patterns (Fig. 1a) exhibit diffraction peaks of Fe₂O₃, 157 ZrO₂, and Fe₂O₃/ZrO₂ (FZ). For the unary materials, it can be noted that all the diffraction peaks 158 of Fe₂O₃ are indexed to the rhombohedral phase of α -Fe₂O₃ (JCPDS no. 13-0534)(Abbasi et 159 al., 2016) and the diffraction planes of ZrO₂ to the monoclinic phase of ZrO₂ (JCPDS no. 01-

0750)(Yu et al., 2023). The intense peaks at approximately 23.8°, 27.8°, 29.8°, 34.7°, 40.5°, 160 43.8°, 50.1°, 53.6°, 55.1°, 59.8°, 62.6°, and 65.4° 2 are designated to (110), (-111), (111), (020), 161 (102), (211), (-221), (122), (130), (131), (311), and (-231) planes, respectively, indicating the 162 formation of ZrO₂ in its monoclinic phase (m-ZrO₂). The strong peaks at 24.0°, 33.2°, 35.6°, 163 40.8°, 49.5°, 54.1°, 57.5°, 62.4°, and 64.1° 20 (degree) belong to the reflections of (012), (104), 164 (110), (113), (024), (116), (018), (214), and (300), respectively belonging to the pure 165 rhombohedral phase of α-Fe₂O₃. The fabricated binary FZ photocatalyst possesses the 166 diffraction peaks of Fe₂O₃ and ZrO₂, confirming the successful introduction of Fe₂O₃ in ZrO₂. 167 The atoms present in m-ZrO₂ lie on general positions having a C_{2h} space group from which the 168 distribution of normal modes can be calculated. 169

170 $\Gamma = 9 A_g(R) + 9 B_g(R) + 8A_u(IR E|_b) + 7B_u(E_{\perp b}) - --- (1)$

171 The Raman spectrum of the m-ZrO₂ phase has 18 Raman active modes whereas, the t-ZrO₂ and cubic-ZrO₂ phase only have 6 and 1 Raman active modes, respectively. The 172 comparison of the predictions with the observed spectra confirms the formation of the m-ZrO₂ 173 phase, which is the most stable phase of zirconia(Keramidas and White, 1974; Phillippi and 174 Mazdiyasni, 1971). The sharp diffraction peaks of rhombohedral Fe₂O₃ have no other 175 impurities. The Raman spectrum of the obtained Fe_2O_3 (Fig. S 1b) in the range of 200 - 700176 cm⁻¹ corresponds to the α -Fe₂O₃(Wang et al., 2014). The Raman spectrum of FZ (Fig. S1) also 177 has well-developed bands of both α -Fe₂O₃ and m-ZrO₂. This corroborates the successful 178 fabrication of Fe₂O₃/ZrO₂. On the other hand, the fundamental IR frequencies (Fig. S3) of the 179 synthesized materials between the range of 400-500 cm⁻¹ correspond to the M-O chemical 180 bonds. The broad band around the 3500 cm⁻¹ region is attributed to the atmospheric moisture 181 retained from the -OH⁻ groups during synthesis. The minimum bands at 1630 cm⁻¹ and 1350 182 cm⁻¹ belong to the most commonly observed absorbed CO₂ and are assigned to the surface 183 184 carbonate groups in metal oxides(Phillippi and Mazdiyasni, 1971).

185

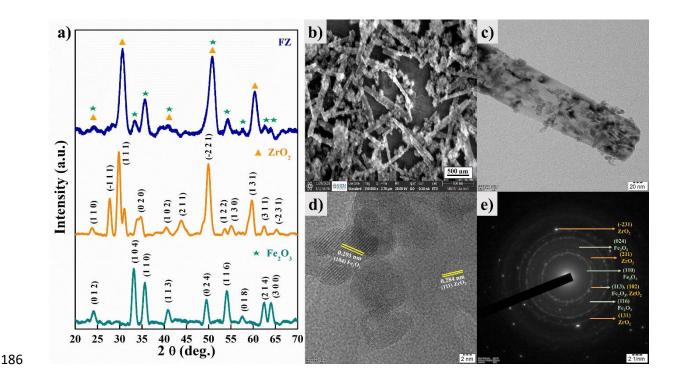


Fig. 1 (a) XRD patterns of Fe₂O₃, ZrO₂, and FZ, (b-e) SEM, TEM, HR-TEM, and SAED
images of FZ, respectively.

The structure and morphology of the as-synthesized photocatalysts obtained at 450°C 189 were investigated using SEM and TEM. Fig. 1b-c shows the representative low and high-190 magnification images of FZ using SEM and TEM, respectively. From Fig. 1 a-b, it is evident 191 that the nanoparticles of Fe₂O₃ (Fig. S4 a) are compactly anchored on the surface of ZrO₂ which 192 maintains its original nanorod structure (Fig. S4 b). The intimate heterojunction thus formed 193 aids in the construction of semiconductor heterostructure interfaces by promoting charge 194 separation to enhance electron-hole separation efficiency. The HR-TEM image obtained for FZ 195 (Fig. 1d) reveals two distinct lattice fringes having interplanar spacings of 0.284 nm and 0.293 196 nm correlating with the lattice planes of ZrO_2 (d₍₁₁₁₎) and Fe₂O₃ (d₍₁₀₄₎), respectively, which 197 match with the planes in the XRD. The Selected Area Electron Diffraction (SAED) pattern of 198 FZ observed in Fig. 1e exhibited a polycrystalline nature. The calculated interplanar distances 199 were found to be representative of (-231), (211), (102), and (131) planes of ZrO₂ and (02)200 201 4), (1 1 0), (1 1 3), and (1 1 6) of Fe₂O₃. To further investigate, energy-dispersive X-ray analysis (EDAX) with elemental mapping (Fig. 2, S4 d, S5) was analysed to identify the elemental 202 components and composition (Table S1) of FZ which revealed the uniform distribution of the 203 204 elements Fe, Zr, and O, confirming the XRD, Raman and XPS results. These experimental results demonstrate the successful establishment of FZ heterojunction between Fe₂O₃ and ZrO₂ 205

that is favourable for the rapid transfer of light-generated electrons restraining therecombination of holes and electrons.

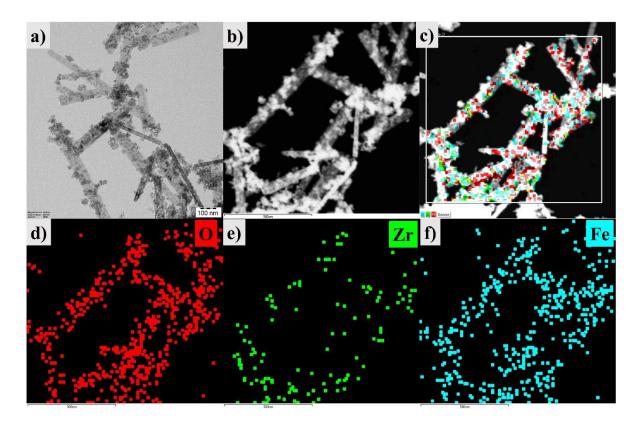
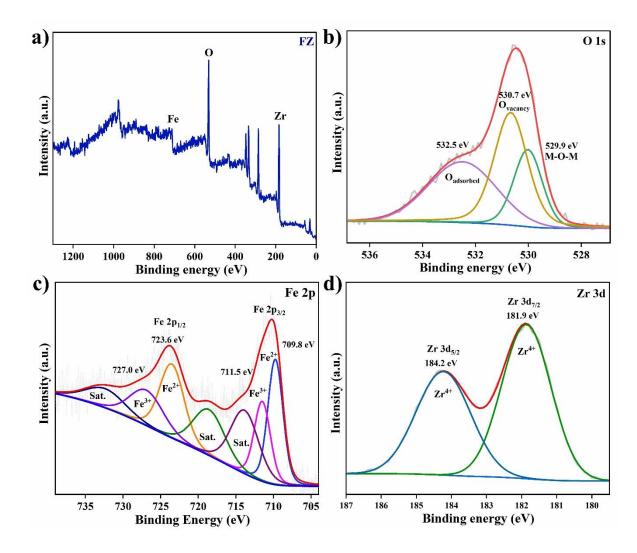
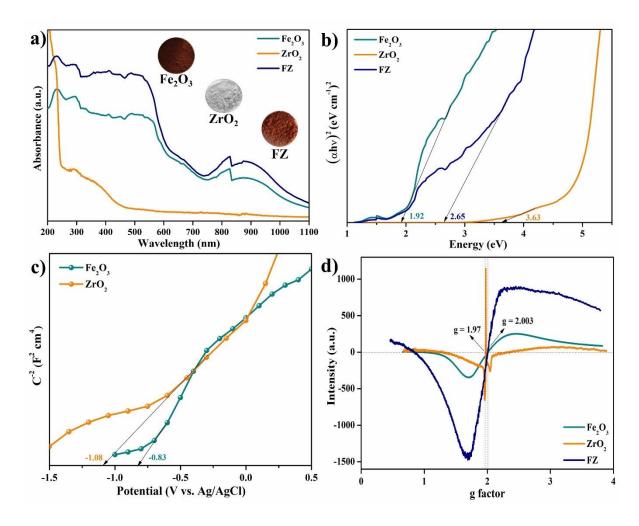



Fig. 2 a-b) TEM images, and c-f) elemental mapping of FZ.

210

208

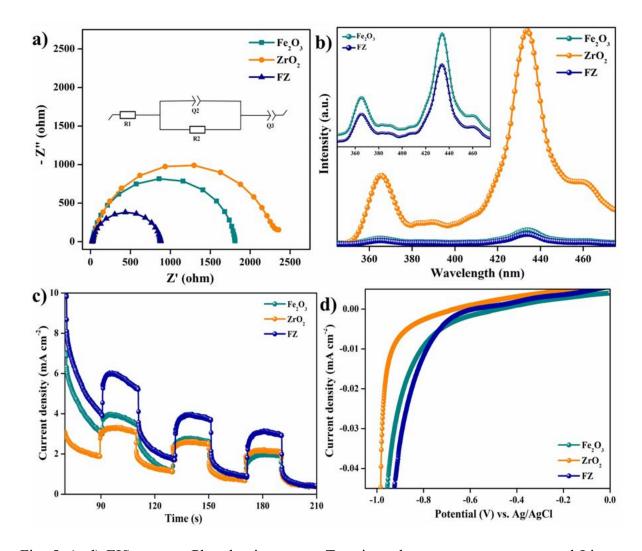


211

Fig 3. XPS (a) survey spectrum, (b) O 1s, (c) Fe 2p, and (d) Zr 3d of Fe₂O₃/ZrO₂.

To further determine the valence state and elemental composition of the elements 213 present and to gain a deeper insight, XPS analysis was performed on the photocatalysts. Fig. 214 3a represents the survey spectrum of Fe_2O_3/ZrO_2 composed of the elements O, Fe, and Zr. The 215 deconvoluted XPS spectra (Fig. 3 b-d) of O1s, Fe 2p, and Zr 3d confirm the presence of the 216 elements in their respective oxidation states. Subsequently, the high-resolution XPS spectrum 217 (Fig. 3b) of the O 1s region was resolved into three peaks with binding energies at 529.9 eV, 218 530.7 eV, and 532.5 eV attributed to the M-O-M, defective oxygen species, and adsorbed 219 oxygen on the surface(AR et al., 2023). To further prove the existence of oxygen vacancies, 220 ESR spectroscopy was performed. Fe₂O₃/ZrO₂ exhibited an ESR signal (Fig. 4d) at a g-value 221 of 2.003, which is attributed to the electrons trapped in the oxygen-vacant sites. The oxygen-222 vacant sites generate sub-band electrons to get excited speeding up the carrier charge transport 223 and preventing electron-hole pair recombination. The deconvoluted Fe 2p spectra (Fig. 3c) 224 having binding energies at 709.8 eV and 711.5 corresponding to Fe²⁺ and Fe³⁺ of Fe 2p_{3/2}, and 225

at 723.6 eV and 727.0 eV corresponding to Fe^{2+} and Fe^{3+} of $Fe 2p_{3/2}$, respectively. The integral area at 714.0, 718.9, and 732.8 are attributed to the Fe^{3+} satellite peaks(Xu et al., 2022). Fig. 3 d shows the fitted shapes of Zr 3d spin-orbital splitting peaks with binding energies centered at 181.9 eV and 184.2 eV with a distance of 2.3 eV characteristic for the Zr $3d_{7/2}$ and Zr $3d_{5/2}$ states of Zr^{4+} . The shift in the binding energy of the as-synthesised ZrO₂ (Fig. S9) to commercial ZrO₂ is due to the generation of Zr^{3+} species(AR et al., 2023; Yu et al., 2023).

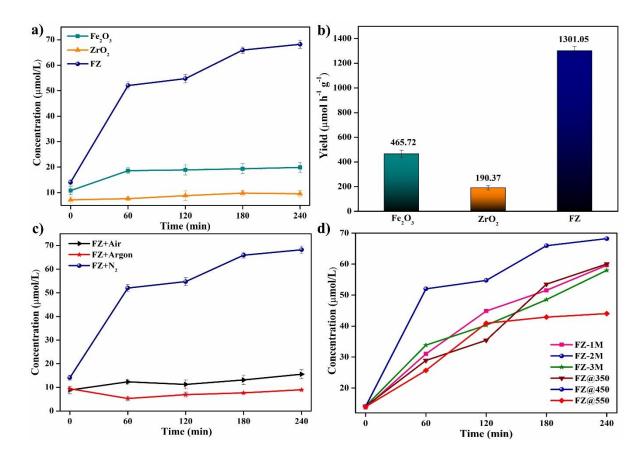


232

Fig. 4. (a-b) Ultraviolet diffuse reflectance spectra and Tauc plots of Fe₂O₃, ZrO₂, and FZ,
respectively, (c) Mott-Schottky curves of Fe₂O₃ and ZrO₂, (d) ESR spectra of Fe₂O₃, ZrO₂, and
FZ.

The UVDRS spectra (Fig. 4a) of the photocatalysts were used to identify the absorption edges and band gaps using Kubelka-Munk formulae. The energy band gap (Fig. 4b) of the catalysts was carried out using Tauc relations plotted with (α hv) vs. energy, where, α is the Kubelka-Munk coefficient and the incident photon energy is represented as hv. FZ has a visible-light active photocatalyst absorption edge of 680 nm extending to 910 nm with a bandgap (Eg) of 2.65 eV. In comparison, Fe₂O₃ and ZrO₂ have an absorption edge of 653 nm

to 887 nm and 255 nm to 498 nm, with bandgaps estimated to be 1.92 eV and 3.63 eV, 242 respectively. The incorporation of iron with ZrO₂ enhanced the light-harvesting property of the 243 photocatalyst FZ from the UV-visible region to the visible region. The Mott-Schottky plots 244 (Fig. 4c) of Fe₂O₃ and ZrO₂ indicate that the semiconductors are n-type having positive slopes. 245 The -0.83 V and -1.08 V vs Ag/AgCl flat band potentials were obtained from the Mott-Schottky 246 plots for Fe₂O₃ and ZrO₂, respectively. Consequently, the conduction band (CB) edge potentials 247 for Fe₂O₃ and ZrO₂ are -0.93 V and -1.18 V vs Ag/AgCl, respectively. When illuminated under 248 sunlight, Fe₂O₃ and ZrO₂ generate photon-induced electrons and holes at the CB and VB edges 249 250 of the photocatalysts. The band gap of the semiconductor Fe₂O₃ is completely contained in the band gap of ZrO₂ (Fig. 7) and, therefore, undergoes Type-I heterojunction with a straddling 251 band structure. Consequently, the holes and electrons are accumulated at the VB and CB edges 252 of Fe₂O₃. Generally, oxygen vacancies can be identified from the absorption bands in UVDRS 253 but remain questionable. In this respect, the oxygen vacancies, being paramagnetic, are 254 successfully studied and determined at the atomistic level by electron spin resonance (ESR) in 255 most oxides. The oxygen-vacant sites identified from the ESR spectra naturally serve as 256 effective electron traps. The ESR spectra (Fig. 4d, Fig. S11) show a signal centred at g = 1.97257 attributed to Zr^{3+} ions and another minor signal was observed at g = 2.003 assigned to single 258 electrons trapped in oxygen-vacant sites of ZrO_2 . The paramagnetic center (Zr^{3+}) is a result of 259 the reduction of Zr⁴⁺ ions due to the capture of electrons from the neighbouring oxygen-vacant 260 site(Matta et al., 1999; Slipenyuk et al., 2004). The ESR signals of Fe₂O₃ and FZ centred at g 261 = 2.003 correspond to the spin-unpaired electrons introduced by oxygen-vacant sites 262 confirming the existence of oxygen vacancies(Al-Madanat et al., 2021; Ananchenko et al., 263 2022). The magnetic hysteresis (M-H) curves (Fig. S12) indicated the Fe₂O₃ and ZrO₂ 264 behaviour to be ferromagnetic and diamagnetic, respectively. The FZ on forming the 265 heterojunction still possesses ferromagnetic properties in small amounts. Since there is a built-266 in internal electric field due to their spontaneous ferroelectric polarisation in ferroelectric 267 materials, there is the spatial separation of the charges resulting in the flow of the light-excited 268 charge carriers in the opposite direction which in turn reduces the recombination rate and 269 increases the efficiency of the photocatalyst(Gao et al., 2017). 270



271

Fig. 5. (a-d) EIS spectra, Photoluminescence, Transient photocurrent responses, and Linear
Sweep Voltammetry of Fe₂O₃, ZrO₂, and FZ, respectively.

The separation efficiencies of the light-induced charge carriers were determined using 274 electrochemical impedance spectra (EIS), photoluminescence (PL) emission spectra and 275 transient photocurrent responses. The EIS and transient photocurrent curves were employed to 276 277 measure the interfacial charge transfer kinetics of the as-synthesised materials. EIS measures the charge carrier resistance of the photocatalysts by correlating the resistance of the charge 278 carrier with the radius of the semicircle. Typically, when the Nyquist curve radius is smaller, 279 the charge transfer resistance is lower, facilitating efficient charger carrier separation, and 280 resulting in more efficient and faster electron transfer. Positively, the Nyquist curve in Fig. 5a 281 exhibited a smaller radius, with a lower charge transfer resistance for FZ than Fe₂O₃ and ZrO₂. 282 The photons stimulate the electrons in the semiconductor which are trapped by holes when 283 illuminated, increasing the photocurrent initially. The photocatalysts on subjection to photons 284 at a 20 s cyclic period presented a quick and steady anodic photocurrent response (Fig. 5c). FZ 285

exhibited a stable and higher photocurrent than Fe₂O₃ and ZrO₂. Typically, a decrease in PL 286 peak intensity is observed when there is a decrease in recombination of electron-hole pair and 287 vice versa. Steady-state PL spectroscopy was used to investigate the recombination of the 288 photogenerated electron-hole pairs. The large photoluminescence intensity of ZrO₂ has 289 obstructed its photocatalytic effect due to its rapid recombination rate of the photon-excited 290 291 charge carriers. FZ exhibited a lower-intensity PL emission peak, indicating a suppressed recombination and a greater charge carrier separation than Fe₂O₃ and ZrO₂ (Fig. 5b). The 292 efficient separation of charges is due to the influence of the heterojunction formed on the 293 294 photocatalyst FZ. The linear sweep voltammogram (LSV) curves (Fig. 5d) of the photocatalysts obtained show an early onset potential for the FZ photocatalyst in comparison 295 to the unary materials due to its improved transfer of charge carriers. which is consistent with 296 the impedance, photocurrent responses, and PL measurements. 297



298

Fig. 6. (a-b) Quantitative determination of ammonia generated using the as-synthesised
photocatalysts, (c) control experiments with FZ in air, Ar, and N₂, and (d) optimisation studies.

The photocatalytic reduction experiments on Fe₂O₃, ZrO₂, and FZ under sunlight irradiation were performed under various reaction conditions as observed in Fig. 6. Fe₂O₃ and ZrO₂ generated ammonia of about 465.72 μ mol h⁻¹ g⁻¹ and 190.37 μ mol h⁻¹ g⁻¹, respectively.

Conventionally, a Type I or straddling heterojunction has the formation of a close 304 interface between two unequal band-structured semiconductors that are in contact with each 305 other in such a way that the generated photoelectrons and holes migrate from the semiconductor 306 with a more negative conductive band and positive valence band to the other semiconductor. 307 FZ exhibited Type I heterojunction (Fig. 7) wherein, the excitons of ZrO₂ migrated to Fe₂O₃. 308 The electrons on Fe₂O₃ were then trapped in a sub-level formed by the oxygen-vacant sites 309 suppressing the direct recombination of the generated excitons. Some of the photoexcited 310 electrons trapped by the oxygen-vacant sites in Fe₂O₃ further aid in the reduction of N₂ to NH₃ 311 312 enhancing its photocatalytic activity. The presence of heterojunction and oxygen vacancies not only inhibits the recombination of excitons directly but also effectively reduces N₂ by utilising 313 the trapped electron(Lee et al., 2021; Rajamani et al., 2024; Yin et al., 2019). The FZ with 314 straddling heterojunction has an enhanced ammonia production rate of 1301.05 µmol h⁻¹ g⁻¹ in 315 comparison to the unary photocatalysts. The formation of heterojunction in FZ proved to 316 improve the photoreduction of nitrogen under sunlight at atmospheric conditions owing to the 317 efficient separation of charges between the unary materials. The addition of Fe₂O₃ increases 318 the number of oxygen-vacant sites and plays a pivotal role in the adsorption and activation of 319 dinitrogen. Orthogonal tests were performed under various reaction conditions to optimise and 320 321 confirm ammonia production (Fig. S13). Control experiments without nitrogen, light or the photocatalyst confirmed the necessity for N₂, sunlight, and the photocatalyst as important 322 requisites for the photocatalytic reduction of nitrogen to ammonia under ambient conditions 323 (Fig. S14). Furthermore, a steady increase in ammonia generation with time proves that the 324 325 ammonia produced is not from the probable impurities present in the reaction system.

326

327 Fig. 7. Plausible mechanism

328 4. Conclusions

In summary, Fe₂O₃/ZrO₂ obtained through hydrothermal treatment followed by calcination is 329 an n-type semiconductor photocatalyst with Type I heterojunction that allows the separation of 330 charges favourably. The obtained FZ heterojunction photocatalyst generates about 7-fold 331 ammonia (1301.05 μ mol h⁻¹ g⁻¹) in comparison to ZrO₂ (190.37 μ mol h⁻¹ g⁻¹) due to its 332 accelerated transfer of photo-excited charge carriers and low recombination rate. The 333 employment of ZrO2 with an oxygen vacancy-inducing ferromagnetic material not only enables 334 the adsorption and activation of nitrogen but also reduces the recombination rate of the 335 photocatalyst thereby enhancing the production of ammonia at ambient conditions under solar 336 irradiation. This work provides promising results guiding the development of novel 337 photocatalysts that could further enhance the photofixation of nitrogen. The future of 338 photocatalytic nitrogen fixation holds promise for sustainable nitrogen utilization. Further 339 research is needed to develop efficient photocatalyst materials and integrated systems, 340 enhancing nitrogen fixation under visible light irradiation. Advancements in reactor design and 341 engineering are crucial for scaling up photocatalytic processes for practical applications in 342 fertilizer production and environmental remediation. 343

344 Acknowledgements

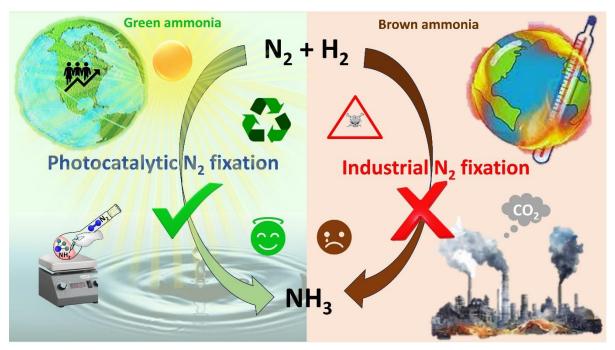
345 This article was financially supported by Department of Science and Technology-Water

Technology Initiative (DST-WTI) [Ref no.: DST/TMD/EWO/WTI/2K19/EWFH/2019/169]

- 347 and Department of Science and Technology-Promotion of University Research and Scientific
- 348 Excellence (DST-PURSE) [File no.: SR/PURSE/2021/65].

349 **References**

- Abbasi, A., Ghanbari, D., Salavati-Niasari, M., Hamadanian, M., 2016. Photo-degradation of
 methylene blue: photocatalyst and magnetic investigation of Fe 2 O 3–TiO 2
 nanoparticles and nanocomposites. Journal of materials science: Materials in electronics
 27, 4800–4809.
- Abdollahi, B., Farshnama, S., Asl, E.A., Najafidoust, A., Sarani, M., 2022. Cu (BDC) metal–
 organic framework (MOF)-based Ag2CrO4 heterostructure with enhanced solar-light
 degradation of organic dyes. Inorg Chem Commun 138, 109236.
- Abdollahi, B., Najafidoust, A., Asl, E.A., Sillanpaa, M., 2021. Fabrication of ZiF-8 metal
 organic framework (MOFs)-based CuO-ZnO photocatalyst with enhanced solar-lightdriven property for degradation of organic dyes. Arabian Journal of Chemistry 14,
 103444.
- Ahmad, H.A., Ahmed, S.S., Amiri, O., 2023. Simple synthesis of CeFeO3 nanostructures as
 an efficient visible-light-driven photocatalyst in degradation of Congo red dye:
 Mechanism investigation. Int J Hydrogen Energy 48, 3878–3892.
- Al-Madanat, O., Nunes, B.N., AlSalka, Y., Hakki, A., Curti, M., Patrocinio, A.O.T.,
 Bahnemann, D.W., 2021. Application of EPR spectroscopy in TiO2 and Nb2O5
 photocatalysis. Catalysts 11, 1514.
- Amiri, O., Salar, K., Othman, P., Rasul, T., Faiq, D., Saadat, M., 2020. Purification of
 wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic
 vibration. J Hazard Mater 394, 122514.
- Ananchenko, D. V, Nikiforov, S. V, Sobyanin, K. V, Konev, S.F., Dauletbekova, A.K.,
 Akhmetova-Abdik, G., Akilbekov, A.T., Popov, A.I., 2022. Paramagnetic Defects and
 Thermoluminescence in Irradiated Nanostructured Monoclinic Zirconium Dioxide.
 Materials 15, 8624.
- AR, S.C.L., Thapa, R., Neppolian, B., 2023. Photon driven nitrogen fixation via Ni incorporated ZrO2/Bi2O3: pn heterojunction. Catal Today 420, 114034.
- Babakr, K.A., Amiri, O., Guo, L.J., Rashi, M.A., Mahmood, P.H., 2022. Kinetic and
 thermodynamic study in piezo degradation of methylene blue by SbSI/Sb2S3
 nanocomposites stimulated by zirconium oxide balls. Sci Rep 12, 15242.
- Bo, Y., Wang, H., Lin, Y., Yang, T., Ye, R., Li, Y., Hu, C., Du, P., Hu, Y., Liu, Z., 2021.
 Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local


- electronic structure of oxygen vacancy with dopant. Angewandte Chemie International
 Edition 60, 16085–16092.
- Boffito, D.C., Crocellà, V., Pirola, C., Neppolian, B., Cerrato, G., Ashokkumar, M., Bianchi,
 C.L., 2013. Ultrasonic enhancement of the acidity, surface area and free fatty acids
 esterification catalytic activity of sulphated ZrO2–TiO2 systems. J Catal 297, 17–26.
- Chen, S., Liu, D., Peng, T., 2021. Fundamentals and Recent Progress of Photocatalytic
 Nitrogen-Fixation Reaction over Semiconductors. Solar Rrl 5, 2000487.
- Cheng, M., Xiao, C., Xie, Y., 2019. Photocatalytic nitrogen fixation: the role of defects in
 photocatalysts. J Mater Chem A Mater 7, 19616–19633.
- Curatti, L., Hernandez, J.A., Igarashi, R.Y., Soboh, B., Zhao, D., Rubio, L.M., 2007. In vitro
 synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur,
 molybdenum, and homocitrate using purified proteins. Proceedings of the National
 Academy of Sciences 104, 17626–17631.
- Das, R.S., Warkhade, S.K., Kumar, A., Wankhade, A. V, 2019. Graphene oxide-based
 zirconium oxide nanocomposite for enhanced visible light-driven photocatalytic activity.
 Research on Chemical Intermediates 45, 1689–1705.
- Di, L., Yang, H., Xian, T., Liu, X., Chen, X., 2019. Photocatalytic and photo-Fenton catalytic
 degradation activities of Z-scheme Ag2S/BiFeO3 heterojunction composites under
 visible-light irradiation. Nanomaterials 9, 399.
- Fu, R., Wang, Y., Wang, G., Zhan, Q., Zhang, L., Liu, L., 2023. Defective ZrO 2- x supported
 Ru nanoparticles as a Mott–Schottky photocatalyst for efficient ammonia synthesis
 under ambient conditions. Green Chemistry 25, 8531–8538.
- Gao, B., Yang, C., Chen, J., Ma, Y., Xie, J., Zhang, H., Wei, L., Li, Q., Du, J., Xu, Q., 2017.
 Ferromagnetic photocatalysts of FeTiO 3–Fe 2 O 3 nanocomposites. RSC Adv 7,
 54594–54602.
- Han, H., Yang, Y., Liu, J., Zheng, X., Wang, X., Meng, S., Zhang, S., Fu, X., Chen, S., 2020.
 Effect of Zn vacancies in Zn3In2S6 nanosheets on boosting photocatalytic N2 fixation.
 ACS Appl Energy Mater 3, 11275–11284.
- Hu, T., Jiang, G., Yan, Y., Lan, S., Xie, J., Zhang, Q., Li, Y., 2023. Facile synthesis of Fe
 single-atom porous photocatalysts via direct metal atomization achieving efficient
 photocatalytic nitrogen fixation. J Mater Sci Technol 167, 248–257.
- Huang, X., Shi, Y., Liu, C., Wang, Z., Bi, J., Jimmy, C.Y., Wu, L., 2023. Enhanced
 photocatalytic nitrogen fixation on Cu2O clusters/MIL-100 (Fe) heterojunction. Appl
 Surf Sci 640, 158443.
- Keramidas, V.G., White, W.B., 1974. Raman scattering study of the crystallization and phase
 transformations of ZrO2. Journal of the American Ceramic Society 57, 22–24.
- Kumar, T.R.N., Karthik, P., Neppolian, B., 2020. Polaron and bipolaron induced charge
 carrier transportation for enhanced photocatalytic H 2 production. Nanoscale 12, 14213–
 14221.

Lee, J., Tan, L.-L., Chai, S.-P., 2021. Heterojunction photocatalysts for artificial nitrogen 420 fixation: fundamentals, latest advances and future perspectives. Nanoscale 13, 7011-421 7033. 422 Liu, X., Han, X., Liang, Z., Xue, Y., Zhou, Y., Zhang, X., Cui, H., Tian, J., 2022. 423 424 Phosphorous-doped 1T-MoS2 decorated nitrogen-doped g-C3N4 nanosheets for 425 enhanced photocatalytic nitrogen fixation. J Colloid Interface Sci 605, 320-329. Liu, Y.-H., Huang, P.-W., Hatzell, M.C., 2023. A rotating ring disc electrode study of photo 426 (electro) catalyst for nitrogen fixation. Faraday Discuss. 427 Matta, J., Lamonier, J.-F., Abi-Aad, E., Zhilinskaya, E.A., Aboukaïs, A., 1999. 428 Transformation of tetragonal zirconia phase to monoclinic phase in the presence of Fe 429 3+ ions as probes: an EPR study. Physical Chemistry Chemical Physics 1, 4975–4980. 430 Mou, H., Wang, J., Yu, D., Zhang, D., Chen, W., Wang, Y., Wang, D., Mu, T., 2019. 431 Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-432 driven ambient ammonia synthesis. ACS Appl Mater Interfaces 11, 44360-44365. 433 Najafidoust, A., Abdollahi, B., Asl, E.A., Karimi, R., 2022. Synthesis and characterization of 434 novel M@ ZnO/UiO-66 (M= Ni, Pt, Pd and mixed Pt&Pd) as an efficient photocatalyst 435 under solar light. J Mol Struct 1256, 132580. 436 Neppolian, B., Ciceri, L., Bianchi, C.L., Grieser, F., Ashokkumar, M., 2011. 437 Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light 438 responsive photocatalyst. Ultrason Sonochem 18, 135-139. 439 Neppolian, B., Kim, Y., Ashokkumar, M., Yamashita, H., Choi, H., 2010. Preparation and 440 properties of visible light responsive ZrTiO4/Bi2O3 photocatalysts for 4-chlorophenol 441 decomposition. J Hazard Mater 182, 557-562. 442 Phillippi, C.M., Mazdiyasni, K.S., 1971. Infrared and Raman spectra of zirconia polymorphs. 443 Journal of the American Ceramic Society 54, 254-258. 444 Rajamani, M., Jeyaprakash, J.S., Madhavan, J., Neppolian, B., 2024. Turning trash to 445 treasure: Innovative use of exhausted desiccant waste supported zinc indium sulphide 446 for sustainable photocatalytic abatement of tetracycline. Chemosphere 349, 140969. 447 Reddy, C.V., Reddy, I.N., Akkinepally, B., Harish, V.V.N., Reddy, K.R., Jaesool, S., 2019. 448 Mn-doped ZrO2 nanoparticles prepared by a template-free method for electrochemical 449 energy storage and abatement of dye degradation. Ceram Int 45, 15298–15306. 450 Shen, Y., Shou, J., Chen, L., Han, W., Zhang, L., Chen, Y., Tu, X., Zhang, S., Sun, Q., Chang, 451 Y., 2022. Efficient photocatalytic nitrogen fixation from air under sunlight via iron-452 doped WO3. Appl Catal A Gen 643, 118739. 453 Shi, R., Zhao, Y., Waterhouse, G.I.N., Zhang, S., Zhang, T., 2019. Defect engineering in 454 photocatalytic nitrogen fixation. ACS Catal 9, 9739-9750. 455 Singh, H., Yadav, K.K., Bajpai, V.K., Jha, M., 2020. Tuning the bandgap of m-ZrO2 by 456 incorporation of copper nanoparticles into visible region for the treatment of organic 457 pollutants. Mater Res Bull 123, 110698. 458

- Slipenyuk, A.M., Glinchuk, M.D., Bykov, I.P., Ragulya, A. V, Klimenko, V.P., Konstantinova,
 T.E., Danilenko, I.A., 2004. ESR investigation of yttria stabilized zirconia powders with
 nanosize particles. Ferroelectrics 298, 289–296.
- Song, J., Dai, J., Zhang, P., Liu, Y., Yu, J., Ding, B., 2021. gC 3 N 4 encapsulated ZrO 2
 nanofibrous membrane decorated with CdS quantum dots: A hierarchically structured,
 self-supported electrocatalyst toward synergistic NH 3 synthesis. Nano Res 14, 1479–
 1487.
- Tao, H., Choi, C., Ding, L.-X., Jiang, Z., Han, Z., Jia, M., Fan, Q., Gao, Y., Wang, H.,
 Robertson, A.W., 2019. Nitrogen fixation by Ru single-atom electrocatalytic reduction.
 Chem 5, 204–214.
- 469 Urgesa, M.H., Wolde, G.S., Kuo, D.-H., 2023. One-step hydrothermal synthesis of novel
 470 flower-like Bi2Mn4O10 anchored on BiOI1– xBrx nanosheets for efficient
 471 photocatalytic nitrogen fixation. J Alloys Compd 947, 169589.
- Vu, M., Sakar, M., Hassanzadeh-Tabrizi, S.A., Do, T., 2019. Nitrogen Fixation: Photo
 (electro) catalytic Nitrogen Fixation: Problems and Possibilities (Adv. Mater. Interfaces
 12/2019). Adv Mater Interfaces 6, 1970076.
- Wang, L., Lu, X., Han, C., Lu, R., Yang, S., Song, X., 2014. Electrospun hollow cage-like αFe 2 O 3 microspheres: synthesis, formation mechanism, and morphology-preserved
 conversion to Fe nanostructures. CrystEngComm 16, 10618–10623.
- Wang, X., Wang, B., Yin, S., Xu, M., Yang, L., Sun, H., 2022. Highly efficient photocatalytic
 nitrogen fixation on bio-inspired triphase interface with improved diffusion of nitrogen.
 J Clean Prod 360, 132162.
- Wei, Y., Jiang, W., Liu, Y., Bai, X., Hao, D., Ni, B.-J., 2022. Recent advances in
 photocatalytic nitrogen fixation and beyond. Nanoscale.
- Xu, Y., Zhang, H., Gong, D., Chen, Y., Xu, S., Qiu, P., 2022. Solar water splitting with
 nanostructured hematite: the role of oxygen vacancy. J Mater Sci 57, 19716–19729.
- Yin, J., Xing, Z., Kuang, J., Li, Z., Zhu, Q., Zhou, W., 2019. Dual oxygen vacancy defectsmediated efficient electron-hole separation via surface engineering of Ag/Bi2MoO6
 nanosheets/TiO2 nanobelts ternary heterostructures. Journal of Industrial and
 Engineering Chemistry 78, 155–163.
- Yu, X., Zhou, C., Huang, Z., Xin, C., Lin, Y., Fu, F., Li, S., Zhang, W., 2023. Rational design of AgCl@ Zr3+-ZrO2 nanostructures for ultra-efficient visible-light photodegradation of emerging pollutants. Appl Catal B 325, 122308.
- Zhang, S., Zhao, Y., Shi, R., Waterhouse, G.I.N., Zhang, T., 2019. Photocatalytic ammonia
 synthesis: Recent progress and future. EnergyChem 1, 100013.
- 494

Highlights

- Green ammonia production using renewable energy sources (water and sunlight)
- Fe₂O₃/ZrO₂ heterojunction is fabricated via ultrasound-assisted hydrothermal method
- Amplification of charge separation using ferromagnetic material
- Enhanced adsorption and activation of the non-polar, inert N₂ molecule using oxygenvacancies
- Superior ammonia production $(1.301 \text{ mmol } h^{-1} \text{ g}^{-1})$ without the use of sacrificial agents

Graphical abstract

Promoting nitrogen photofixation for the synthesis of ammonia using oxygen-vacant Fe₂O₃/ZrO₂ visible light photocatalyst with straddling heterojunction and enhanced charge transfer

A. R. Stesho Crystalin Lazuli^a, Vinoth Ramalingam^b, Bernaurdshaw Neppolian^a*

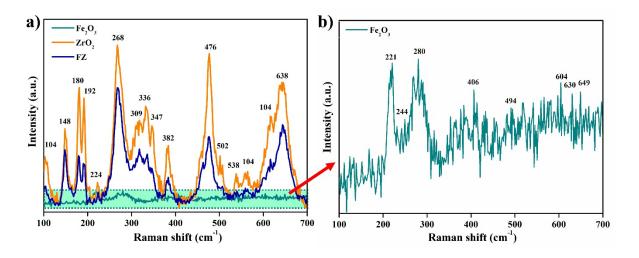
^aEnergy and Environmental Remediation Lab, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India.

^bSchool of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ, United Kingdom.

*Corresponding author: <u>neppolib@srmist.edu.in</u>

Methods

Synthesis of FZ in various concentrations


For the fabrication of Fe₂O₃/ZrO₂, 2M solutions of ferric nitrate and zirconium (IV) isopropoxide were stirred for 20 h in cold conditions separately and then mixed dropwise with vigorous stirring at alkaline conditions (pH = 13). The solution was sonicated for 60 min and then transferred to a 100 mL autoclave. (Temperature: 170 °C; Time: 15 h). The obtained product was washed repeatedly and dried at 80 °C overnight. The product calcined at 450°C for 1 h was labelled Fe₂O₃/ZrO₂ (FZ-2M)) as it is in the molar ratio of 2:2.

To optimise the ratio of Fe₂O₃ and ZrO₂, different molar ratios (1M and 3M) of Fe₂O₃ were prepared using the same hydrothermal method followed by the same calcination temperature and labelled as FZ-1M and FZ-3M, respectively.

Synthesis of FZ at different calcination temperatures

For the fabrication of Fe₂O₃/ZrO₂, 2M solutions of ferric nitrate and zirconium (IV) isopropoxide were stirred for 20 h in cold conditions separately and then mixed dropwise with vigorous stirring at alkaline conditions (pH = 13). The solution was sonicated for 60 min and then transferred to a 100 mL autoclave. (Temperature: 170 °C; Time: 15 h). The obtained product was washed repeatedly and dried at 80 °C overnight. The product calcined at 450°C for 1 h was labelled Fe₂O₃/ZrO₂ (FZ@450).

To optimise the calcination temperature of FZ, Fe_2O_3/ZrO_2 prepared using the same hydrothermal method was calcined at different temperatures (350°C and 550°C) and labelled as FZ@350 and FZ@550, respectively.

Results and discussion

Fig. S1 a) Raman spectra of Fe₂O₃, ZrO₂, and FZ, b) enlarged Raman spectra of Fe₂O₃.

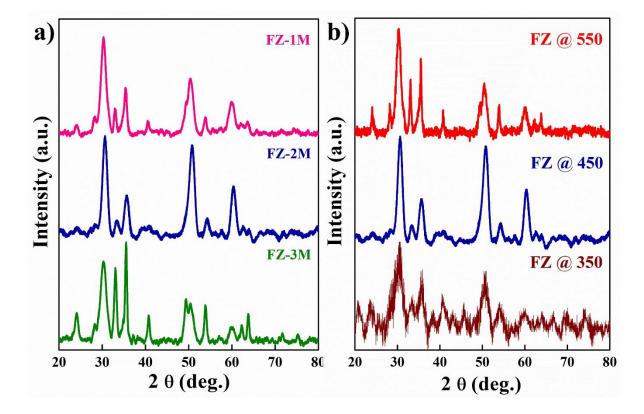


Fig. S2 (a,b) XRD spectra of FZ in various molar concentrations and FZ calcined at different temperatures, respectively.

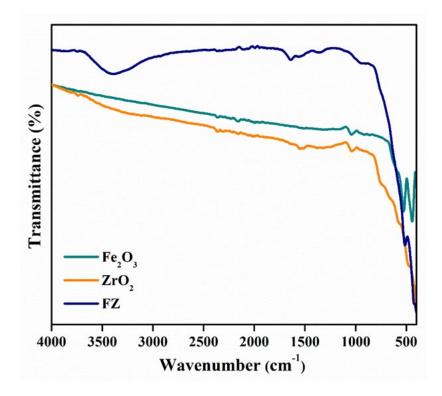


Fig. S3 FTIR spectra of Fe₂O₃, ZrO₂, and FZ.

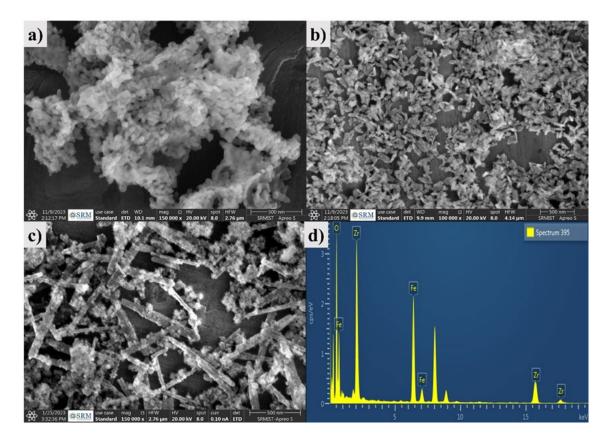


Fig. S4 a-c) SEM images of Fe₂O₃, ZrO₂, and FZ, respectively and d) EDAX spectrum of FZ.

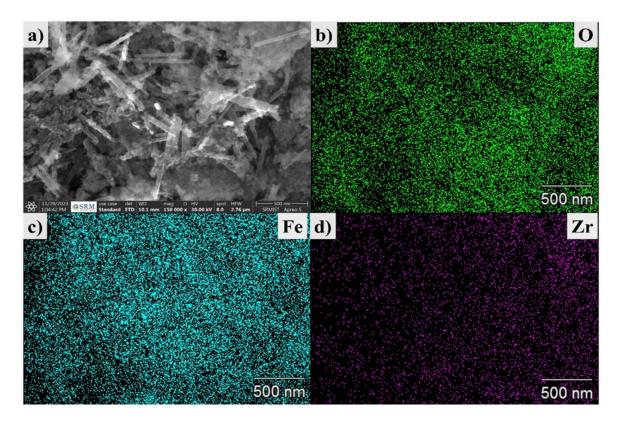


Fig. S5 a-f) SEM image and elemental mapping of FZ.



Fig. S6 SEM images of FZ synthesised in various molar ratios: a) FZ-1M, FZ-2M, and FZ-3M, respectively.

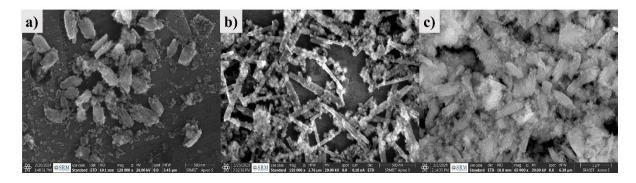


Fig. S7 a-c) SEM images of FZ@350, FZ@450, and FZ@550, respectively.

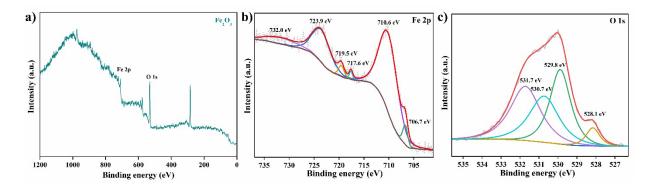


Fig. S8 XPS spectra of a) Survey scan b) Fe 2p and c) O 1s of Fe₂O₃.

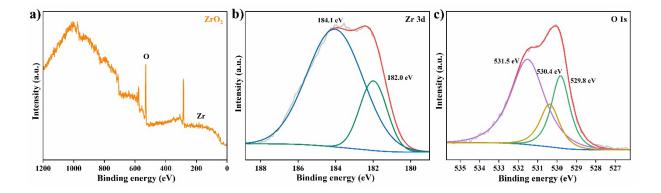


Fig. S9 XPS spectra of a) Survey scan b) Zr 3d and c) O 1s of ZrO₂.

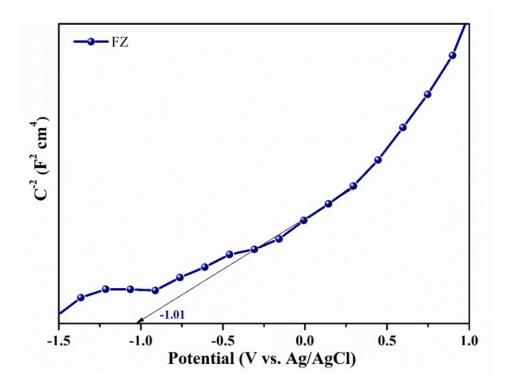


Fig. S10 Mott-Schottky plot of FZ.

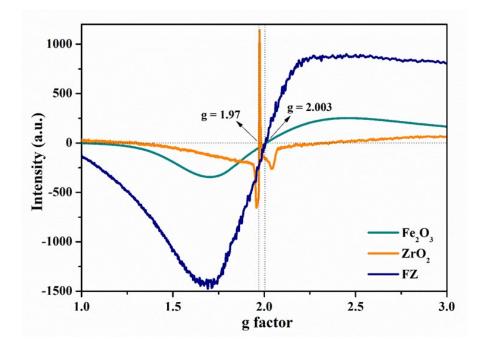


Fig. S11 Enhanced ESR spectra of Fe₂O₃, ZrO₂, and FZ.

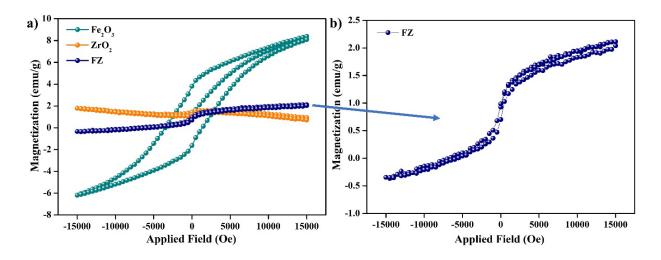


Fig. S12 a) Magnetic hysteresis (M-H) Fe₂O₃, ZrO₂, and FZ curves, b) enlarged magnetic hysteresis (M-H) FZ curves.

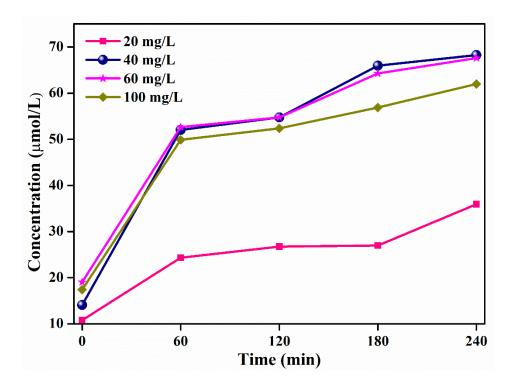


Fig. S13 The effect of photocatalyst dosage on the photocatalytic fixation of N₂.

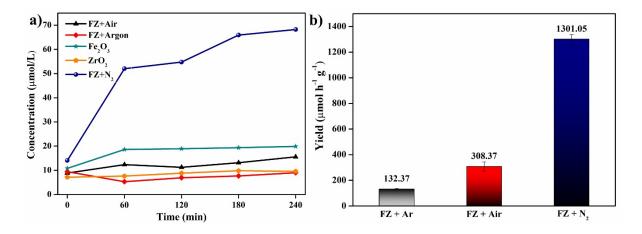


Fig. S14 Comparison of the photocatalytic activity of the photocatalyst with control experiments.

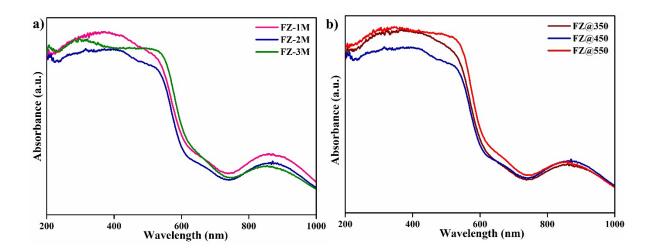


Fig. S15 (a,b) UVDRS spectra of FZ in various molar concentrations and FZ calcined at different temperatures, respectively.

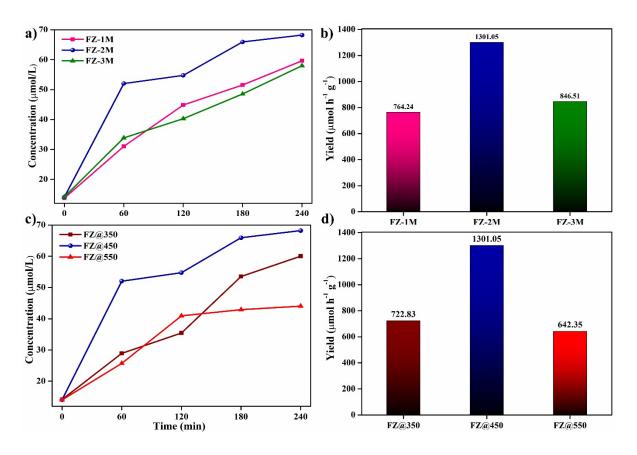


Fig. S16 Comparison of the photocatalytic activity for optimisation studies.

Fig. S17 Experimental setup

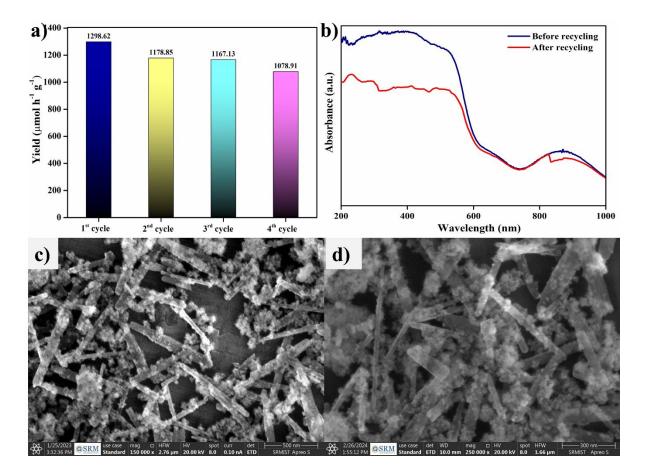


Fig. S18 a) Photocatalytic ammonia production rate in the presence of FZ in the first 3 hours of the cycles, b) UV-DRS spectra of FZ before and after recycling, c,d) SEM images of the FZ before and after recycling, respectively.

Element	Net Counts	Weight %	Atom %	Formula
0	3945	42.25	77.38	0
Fe	3810	20.01	10.50	Fe
Zr	12682	37.73	12.12	Zr
		100.00	100.00	

Table S1 Atomic weight percentage obtained from EDX spectrum of FZ.

 Table S2 Calculated conduction band, valence band and bandgap values of the as-synthesised

 photocatalysts from Mott-Schottky and Tauc plots.

Photocatalyst	Flatband potential (fb)	Conduction Band (CB)	CB (RHE)	Valence Band (VB) (RHE)	Bandgap (Eg) (RHE)
Fe ₂ O ₃	-0.83 V	-0.93 V	-0.32 V	+1.60 V	1.92 eV
ZrO ₂	-1.08 V	-1.18 V	-0.57 V	+3.63 V	3.63 eV
FZ	-1.01 V	-1.11 V	-0.50 V	+2.15 V	2.65 eV

Consequently, the conduction bands (CB) and valence bands (VB) of the as-synthesised materials can be evaluated using the Nernst equation (equation 2) and equation 3, respectively.

$$E_{RHE} = E^{\circ}_{Ag/AgCl} + E_{Ag/AgCl} + (0.059 \text{ X pH}) --- (2)$$

$$E_{VB} = E_g + E_{CB} - - - (3)$$

Where E_{RHE} is the calculated potential vs. RHE, $E_{Ag/AgCl}$ is the measured experimental potential vs. Ag/AgCl electrode, $E^{\circ}_{Ag/AgCl}$ is 0.197 V, and the pH of the solution is 7 at 25 °C.

Table S3	Comparison	of some	of the	photocatalysts	reported	for photoca	atalytic nitrogen
reduction	reactions.						

S. No.	Catalyst	Reaction medium	Light source	Ammonia generation rate	Reference
1.	Ni-incorporated ZrO ₂ /Bi ₂ O ₃	Water and TEOA	Sunlight	9668.2 µmol h ⁻¹ g ⁻¹	1
2.	Fe- doped TiO ₂	Water and ethanol	4-W UV lamp, 254 nm.	400 µmol h ⁻¹ g ⁻¹	2
3.	BiOCl NSs-Fe 5%	Water	300 W Xe lamp	1022 μmol h ⁻¹ g ⁻¹	3
4.	Ov- Bi ₂ MoO ₆	Water and methanol	300 W Xe lamp	1300 µmol h ⁻¹ g ⁻¹	4
5.	NiS/g-C ₃ N ₄	Water and methanol	300 W Xe lamp	8.15 mg L ⁻¹	5
6.	Fe ₂ O ₃ /g-C ₃ N ₄	Water and ethanol	300 W Xe lamp	47.9 mg h ⁻¹ L ⁻¹	6
7.	g-C ₃ N ₄ /ZrO ₂	Water and methanol	300 W Xe lamp	1446 μmol h ⁻¹ L ⁻¹	7
8.	FeN- CDs/TiO ₂ @CN	Water and methanol	300 W Xe lamp	9.365 mg h ⁻¹ g ⁻¹	8
9.	Cu ₂ O clusters/MIL- 100(Fe)	Water	300 W Xe lamp	51.22 μmol h ⁻¹ g ⁻¹	9
10.	Fe ₂ O ₃ /ZrO ₂	Water	Sunlight	1301.05 µmol h ⁻¹ g ⁻¹	This work

References

- 1 S. C. L. AR, R. Thapa and B. Neppolian, *Catal Today*, 2023, **420**, 114034.
- 2 G. Song, R. Gao, Z. Zhao, Y. Zhang, H. Tan, H. Li, D. Wang, Z. Sun and M. Feng, *Appl Catal B*, 2022, **301**, 120809.
- 3 N. Zhang, L. Li, Q. Shao, T. Zhu, X. Huang and X. Xiao, *ACS Appl Energy Mater*, 2019, **2**, 8394–8398.
- 4 G. Li, W. Yang, S. Gao, Q. Shen, J. Xue, K. Chen and Q. Li, *Chemical Engineering Journal*, 2021, **404**, 127115.
- 5 X. Hu, L. Wang, W. Zhang, Y. Wang, Z. Liu, X. Wang and X. Yao, *Diam Relat Mater*, 2023, **140**, 110533.

- S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang and Z. Sun, *Chemical Engineering Journal*, 2019, 373, 572–579.
- 7 H. Mou, J. Wang, D. Yu, D. Zhang, W. Chen, Y. Wang, D. Wang and T. Mu, ACS Appl Mater Interfaces, 2019, 11, 44360–44365.
- 8 K. Li, C. Sun, Z. Chen, H. Qu, H. Xie and Q. Zhong, *Chemical Engineering Journal*, 2022, **429**, 132440.
- 9 X. Huang, Y. Shi, C. Liu, Z. Wang, J. Bi, C. Y. Jimmy and L. Wu, *Appl Surf Sci*, 2023, **640**, 158443.