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Abstract: The accurate estimation of battery State of Charge (SOC) is a key technology in the research of electric 

vehicle battery management systems. In order to solve the problem of inaccurate noise estimation in nonlinear systems, an 

improved Cauchy robust correction-Sage Husa extended Kalman filtering (CRC-SHEKF) algorithm is proposed for 

high-precision SOC estimation of lithium-ion batteries in new energy vehicles. Considering the polarization effect of the 

battery, the FFRLS algorithm is used for online parameter identification of the Dual Polarization model. Using robust data 

correction methods, the Cauchy robust function is simplified for real-time correction of the covariance matrix Q of system 

state noise and the covariance matrix R of the observed noise in the filtering process and combined with SHEKF for SOC 

estimation. The experimental results show that under different temperature conditions and complex working conditions, the 

proposed CRC-SHEKF algorithm has the minimum mean absolute error (MAE), root mean square error (RMSE), and 

maximum error (MAX). Under the condition of the Beijing bus dynamic stress test (BBDST) at 15℃, the MAE, RMSE, 

and MAX of the CRC-SHEKF algorithm are 0.392%, 0.716%, and 0.945%, with the computing time of only 4.839 

seconds. The algorithm proposed in this article has high accuracy and robustness, and has practical application value, 

providing a reference for the application of lithium battery condition monitoring. 
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Highlights: 

 The Dual Polarization model is established and the FFRLS is used for online parameter identification. 

 An improved Cauchy robust correction-Sage Husa extended Kalman filtering algorithm is proposed. 
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1. Introduction 

With the global energy crisis and the aggravation of climate warming, more and more attention has been 

paid to the research on electric vehicles [1]. Power batteries are an essential core in electric vehicles and 

determine the development of the new energy vehicle industry [2]. Lithium-ion batteries have many advantages, 

including high energy density, long cycle life, no memory effect, and low self-discharge rate. Therefore, it is 

widely used in electric vehicles [3]. Although lithium-ion batteries have a wide range of applications, there are 

still issues with their safety and lifespan. In recent years, the spontaneous combustion of electric vehicles has 

prevented them from gaining public recognition and popularity [4]. To avoid safety accidents, the Battery 

Management System (BMS) is required to control the battery and monitor various parameters and battery status 

changes within the battery [5]. In particular, the state of charge (SOC) of the battery indicates the remaining 

power of the power battery [6]. It is one of the important parameters to characterize the battery status. Accurate 

estimation of SOC is critical for batteries [7; 8]. During the actual operation of the battery, BMS will allocate 

SOC to different systems, making the control efficiency of electric vehicles the highest. 

Early commonly used SOC estimation algorithms include the ampere-hour measurement method, 

open-circuit voltage method, neural network method, Kalman filter algorithm, etc. The ampere-hour 

measurement method has been widely used because of its simple principle and convenient calculation [9]. 

However, the performance of the ampere-hour measurement method is highly dependent on the measurement 

accuracy of the current. In practice, this open-loop calculation method will cause error accumulation due to the 

lack of automatic error correction ability and the interference of uncertain factors. This method is usually 

combined with other algorithms because of its low estimation accuracy. The open-circuit voltage method is 

usually used in conjunction with the ampere-hour measurement method [10; 11]. It is usually used to calibrate 

or obtain the initial SOC value of the battery. However, due to its high measurement cost and time-consuming 



nature, it is not commonly used for online estimation. The neural network method is based on the black box 

model to describe the strong nonlinear relationship between input and output variables [12]. It also requires a lot 

of high-fidelity data to support, but the collection of these data will be costly [13]. Kalman filter algorithm is a 

typical optimal estimation algorithm, which is generally used in linear systems [14; 15]. When the statistical 

characteristics of noise are known, the algorithm has high estimation accuracy. However, the battery is a typical 

nonlinear system, and it is difficult to accurately obtain its noise statistical characteristics. Therefore, scholars 

have improved the Kalman filter algorithm. The extended Kalman filtering algorithm converts a non-linear 

system into a linear system using a Taylor formula [16; 17]. The use of approximation can effectively solve the 

nonlinear problem of battery systems, but it is still affected by random noise. For most complex nonlinear 

systems, the accurate acquisition of noise variance is a difficult problem [18]. Numerous experiments have 

shown that when the noise estimation is inaccurate, especially when the process noise estimation is too large, 

the filtering accuracy will decrease, and even lead to filtering divergence [19]. 

Due to issues such as inaccurate noise estimation and filtering divergence, the estimation results may not 

be ideal. Therefore, many scholars have proposed some improvement methods to solve this problem. It is 

mainly divided into two categories: one is the real-time estimation of noise, and the other is robust Kalman 

filters. The first method can add noise to the state vector to update the noise in real-time, but this method has 

certain limitations, as its process noise estimation is inaccurate and the deviation is small. Another example is to 

derive an estimation equation for noise statistical characteristics using an improved Sage Husa estimator [20; 

21], maximum likelihood estimation [22; 23], and maximum expectation rule, combined with the EKF 

algorithm for real-time updates. It can effectively solve the EKF filtering problem in the presence of unknown 

noise. The second method is the robust Kalman filter. It can ensure the performance of state estimation error 

when the noise variance is uncertain. For example, based on the unscented Kalman filter (UKF), some scholars 

proposed a robust unscented Kalman filter based on the H infinite norm [24]. This algorithm improves the 



simplified UKF in Krein space and changes the filtering gain through specific parameter parameters, making the 

filtering effect more robust [25]. In addition, some scholars have updated the calculation formula of the state 

error variance matrix P. Changing the original subtraction to addition avoids the problem of an undetermined 

variance matrix caused by positive definite matrix subtraction operations. After experimental verification, this 

method can achieve better filtering accuracy requirements compared to the traditional UKF algorithm. In order 

to overcome the divergence or accuracy degradation of UKF in high-dimensional state space, some scholars 

have proposed the Cubature Kalman Filter (CKF). However, due to the influence of uncertain prior noise, the 

estimation accuracy is not high [26]. 

 In the literature [27], the method based on the adaptive extended Kalman filter (AEKF) is used to realize 

SOC estimation. The adaptive method is added to the noise estimation process to update the process and 

measure the noise covariance matrix, which improves the estimation accuracy. However, the above literature 

can not update the battery model parameters in real-time. It belongs to the offline parameter identification 

method [28]. To avoid this shortcoming, the literature [29] uses AEKF and recursive least squares (RLS) to 

update the model parameters in real-time [30]. It belongs to the online parameter identification method. Due to 

its closed-loop feedback structure [31], it has better accuracy of SOC estimation than the first method. The 

above methods mentioned that offline parameter identification and online parameter identification are the two 

main methods of parameter identification related to the battery mathematical model [32; 33]. The parameters 

inside the battery are related to many factors, such as aging, temperature, etc. At this time, it is difficult to 

characterize the parameter changes with the same formula [34; 35]. The results of offline parameter 

identification are fixed values, which do not characterize the intense chemical reactions inside the battery. The 

online parameter identification method can calculate the parameters of the battery model in real-time and 

simulate the changes in the internal parameters of the battery [36]. The accuracy of the estimation result is 

improved effectively by participating in the closed-loop feedback through the SOC estimation result [37; 38]. 



The forgetting factor recursive least square algorithm (FFRLS) is a commonly used online parameter 

identification method, which improves the data saturation problem of the RLS algorithm when identifying 

time-varying parameters [39]. The forgetting factor is added to adjust the weight ratio between time t and time 

t-1 [40]. When the new data fails to meet the expected correction and recognition results, it is necessary to 

reduce the impact of the old data and assign higher weights to the new data. This makes the FFRLS algorithm 

sensitive to changes in input process features and able to respond quickly. 

In the presence of non-Gaussian noise, a simple Kalman filtering method cannot guarantee the accuracy of 

SOC estimation. The literature [41] proposes the adaptive kernel width-based maximum correntropy 

criterion-adaptive iterative extended KF (AMCC-AIEKF) algorithm for estimating SOC. This method combines 

the Maximum Correlation Criterion (AMCC) of Adaptive Kernel Width with the Levenberg Marguard (L-M) 

principle. Replace the minimum mean square error (MMSE) criterion with the MCC criterion, and use an L-M 

optimized multi-step iterative filter to update the covariance matrix and state of AMCC correction to achieve 

SOC estimation. The MAE and RMSE of the proposed AMCC-AIEKF algorithm are 1.2455% and 0.5434%, 

respectively. However, this literature only analyzed the first-order RC equivalent circuit model, and its SOC 

estimation accuracy is not high enough under complex noise conditions. The literature [42] proposes four 

weighted state fusion robust Kalman estimators (filters, predictors, and smoothers). Using the augmented state 

method and virtual noise technology, transform the original system into a system with uncertain noise variance. 

Based on the principle of minimax robust estimation, design a unified form of robust filters and smoothers. The 

effectiveness of the proposed method was verified through a simulation example of a power system. This 

method is mainly aimed at robust weighted state fusion estimation of time-varying multi-sensor network 

systems with mixed uncertainty. The method proposed in this literature can be applied to the SOC estimation 

problem of lithium batteries. 

For most nonlinear systems, the statistical characteristics of noise are difficult to obtain accurately. In order 



to solve the problem of inaccurate noise estimation, this paper proposes an improved estimation error processing 

method: Cauchy robust correction. Combining the Sage Husa adaptive method, an improved Cauchy robust 

correction-Sage Husa extended Kalman filtering (CRC-SHEKF) algorithm is proposed to estimate the SOC of 

lithium-ion batteries. In this paper, with the method of robust data correction, the minimum point of the robust 

objective function corresponds to the minimum point of the residual between the measured estimated value and 

the actual value. Based on the residual between the measured prior value and the actual value, the joint weight 

function is used to correct the noise estimate in the filtering process in real-time. It reduces the weight of the 

inaccurate estimate of noise, minimizes the robust objective function, and improves the filtering accuracy of the 

SHEKF algorithm. The covariance matrix Q of system state noise is dynamically modified by the simplified 

Cauchy robust function. Considering the influence of SOC interval on the battery, the covariance matrix R of 

the observed noise is dynamically adjusted. The problems of system noise caused by unknown statistical 

characteristics and battery model estimation accuracy degradation are solved. The Cauchy robust correction 

process uses judgment statements to correct noise, simplifying the iterative calculation process and reducing 

computation time. Combined with FFRLS online parameter identification method, the identified battery model 

parameters are transmitted to the CRC-SHEKF algorithm in real time to estimate the SOC, making the SOC 

estimation more accurate and reliable. This method is more adaptable to environments with uncertain random 

noise, suitable for different temperatures and complex working conditions, and has a shorter calculation time. It 

can improve the accuracy and robustness of SOC estimation for lithium batteries, and has practical application 

value, providing a reference for the application of lithium battery condition monitoring. 

2. Mathematical analysis 

2.1. Dual Polarization model 

For model-based forecasting methods, the accuracy and complexity of the model are crucial. The battery 

models used for state estimation are divided into three types: electrochemical model, neural network model, and 



equivalent circuit model (ECM). ECM is widely used in SOC estimation because of its simple structure, 

centralized parameters, small computation, clear physical meaning, and high accuracy of voltage fitting. The 

common battery ECM is basically included in the model with n-order RC. The model with 0-order RC is the 

Rint model, the first-order RC is the Thevenin model, and the second-order RC is the DP model. The research 

shows that as the number of RC networks increases, the mathematical expression of the model becomes more 

complex. Too many RC networks will make it more difficult to identify parameters and estimate the SOC of the 

model, which is not conducive to the calculation of the battery management system. In this paper, the Dual 

Polarization model is built as the equivalent circuit model of batteries. It can simulate concentration polarization 

and electrochemical polarization separately so that it can accurately simulate the dynamic characteristics of 

batteries. The first RC network represents the electrochemical polarization of the battery. When a certain amount 

of external current passes through the electrode, the transfer of electrons per unit time cannot participate in the 

oxidation-reduction reaction promptly, resulting in excess charges on the electrode surface and causing the 

electrode potential to deviate from its equilibrium potential. This phenomenon of electrode potential deviating 

from equilibrium potential due to insufficient rapid electron gain and loss, which hinders the reaction on the 

electrode surface, is called electrochemical polarization. The second RC network represents the concentration 

polarization of the battery. Concentration polarization is caused by the sluggishness of ion mass transfer 

processes. The concentration difference caused by the lack of timely replenishment of reactants in the liquid 

layer near the electrode surface or the delayed evacuation of products has led to potential deviation. 

Compared with other equivalent models, it can better characterize the time-varying characteristics of the 

internal parameters of lithium batteries, and the SOC estimation accuracy is higher. While the polarization 

capacitance and polarization resistance characteristics are satisfied, the complexity of the model is controlled 

within a reasonable range. Therefore, the Dual Polarization model is selected according to the above judgment 

that is shown in Fig. 1. 
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Fig. 1 Dual Polarization model 

R0 is the equivalent internal resistance of the battery model, R1 is the internal resistance of polarization 

caused by the battery polarization effect, and R2 is the internal resistance of polarization caused by the battery 

concentration polarization effect. C1 and C2 are polarized capacitors. The first RC network describes the 

impedance of transmission between electrodes, and the second RC network describes the impedance of 

lithium-ion diffusion in electrode materials. U0 is the voltage divided by R0. U1 and U2 are voltage when resistors 

R1 and R2 are current I. UOCV is open circuit voltage and UL is output terminal voltage. According to Kirchhoff's 

Law of Voltage and Current, the expressions of the voltage and current of the equivalent circuit are shown in Eq. 

(1). 
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The output voltage and current can be obtained through HPPC charging and discharging tests as inputs for 

the identification system. The parameter values of R0, R1, R2, C1, and C2 need to be identified by the parameters.  

The SOC is an indicator used to reflect the remaining power of a battery. Its numerical value is defined as 

the ratio of remaining capacity to battery capacity, which is related to the charging and discharging time and 

current of the battery in use. It is a highly valuable indicator for inferring the current battery life. The calculation 

expression for SOC is shown in Eq. (2). 
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Wherein, SOC(k0) is the initial SOC value of the battery, Q0 is the capacity of the battery and η is the 

Coulomb efficiency for charging and discharging. Combined with the SOC definition, the discrete state-space 

equation can be obtained as shown in Eq. (3). 
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In Eq. (3), τ1 = R1C1 and τ2 = R2C2.   is the state error, which is the zero-mean white noise of the 

covariance matrices Q. After discretization, its initial state equation is shown in Eq. (4). 
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In Eq. (4), Δ𝑘 is the sampling time interval. v is the measurement error, which is the zero-mean white 

noise of the covariance matrices R.  

2.2. Parameter identification 

Establishing an appropriate equivalent model for battery characteristics is the basis for accurately 

estimating SOC. Therefore, it is necessary to select appropriate parameter identification methods based on 

different situations. Parameter identification methods are mainly divided into two categories: online parameter 

identification and offline parameter identification. The principle of the offline parameter identification method is 

to calculate internal parameters through mathematical expressions of voltage, current, and internal parameters 

during each discharge process. But these parameters do not have time-varying characteristics, and the battery 

undergoes different changes with aging, temperature, etc. It cannot characterize the dynamic changes that occur 



inside the battery due to intense chemical reactions. The online parameter identification algorithm can 

effectively solve the above problems. The online parameter identification method is to estimate the parameter 

identification value by combining the acquired data and revising the result of the previous time so that the 

parameter identification result at each time is in high conformity with the actual model. 

2.2.1. Forgetting factor recursive least square algorithm 

The forgetting factor recursive least squares (FFRLS) algorithm is a parameter identification method based 

on recursive least squares (RLS) with the forgetting factor. It is suitable for large-scale datasets and situations 

that require real-time computation. The forgetting factor can adjust the weights of old and new data to reduce 

the impact of previous data on current calculations and avoid data saturation issues. The basic idea of the 

FFRLS is to use a recursive formula to correct the predicted value of the previous time for each new set of data 

measured during system operation to obtain the estimated parameter value at the current time. The principle of 

the FFRLS method is simple and can be applied to static and dynamic systems, linear systems, and nonlinear 

systems. This algorithm has the ability to respond quickly to changes in input process characteristics. The 

system equations of the FFRLS algorithm are shown in Eq. (5) to Eq. (8).  

The identified parameter expression is shown in Eq. (5). 
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The algorithmic gain matrix is shown in Eq. (6). 
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The covariance matrix is shown in Eq. (7). 

1
( ) ( ) ( ) ( 1)TP k I K k k P k


      (7) 

The system error expression is shown in Eq. (8). 
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Wherein, ˆ( )k
 

is the estimated value of the identified parameter at time k, ( )k  is the system input, 

( )y k  is the system output.   is the forgetting factor. The forgetting factor is the weight ratio of the previous 

moment to the next. When the new data can not correct the identification results, it is essential to reduce the 

weight of the old data and increase the role of the new data. The value range of   is 0 1  . In this paper, 

0.98  .  

2.2.2. OCV-SOC curve fitting of hysteresis effect 

The terminal voltage of the lithium-ion battery after standing for a period of time is called the open-circuit 

voltage (OCV). There is a certain mathematical relationship between OCV and SOC. Taking the ternary 

lithium-ion battery as the research object, the HPPC test was carried out on the lithium-ion battery. The 

discharge test steps are as follows: first, fully charge the battery with standard constant current and voltage; Set 

aside for 1 hour; 1C constant current discharge for 10 seconds; Set aside for 40 seconds; 1C constant current 

charging for 10 seconds; Set aside for 10 minutes; Discharge from 1C constant current for 12 minutes to reduce 

SOC by 0.1; Set aside for 40 minutes; Starting from the 1C constant current discharge step, repeat the discharge 

and charging steps. Considering the battery hysteresis effect, the charging experiment is conducted in the same 

way. In the charge test and discharge test, record the corresponding OCV value for each 10% decrease or 

increase in SOC. And calculate the average OCV of charge and discharge test. Under HPPC testing at 15 ℃, the 

corresponding relationship between SOC and OCV is shown in Tab. 1.  

Tab. 1 The corresponding relationship between SOC and OCV 

SOC(%) 
Discharge test 

OCV(V) 

Charge test 

OCV(V) 
Average OCV(V) 

100 4.1840 4.1889 4.18645 

90 4.0324 4.0593 4.04585 

80 3.9228 3.9530 3.93790 

70 3.8232 3.8538 3.83850 

60 3.7250 3.7366 3.73080 

50 3.6502 3.6672 3.65870 



40 3.6125 3.6278 3.62015 

30 3.5612 3.5965 3.57885 

20 3.5276 3.5416 3.53460 

10 3.4578 3.4728 3.46530 

Hysteresis is a complex dynamic behavior of batteries, especially those based on embedded materials. The 

hysteresis effect of the battery is mainly reflected in that, depending on the previous state of charge or discharge, 

the battery has a different balance potential even under the same SOC state. Because of the hysteresis effect, the 

OCV value of the battery is a single-value function of the battery SOC value and is also affected by the battery 

charging or discharging history, which makes the same SOC may have different OCV values. The OCV-SOC 

curve will form a banded hysteresis structure with gaps at both ends. The OCV-SOC fitting curve of the 

hysteresis effect is shown in Fig. 2. 

 

Fig. 2 OCV-SOC fitting curve of the hysteresis effect 

According to the fitting curve obtained from the charge and discharge test, when the battery is close to full 

charge or the battery discharge depth reaches 70% within these two SOC ranges, the hysteresis voltage is 

relatively large, and the difference in OCV between charge and discharge is the most significant. In order to 

reduce the impact of hysteresis effects, the average OCV and SOC are taken for polynomial fitting. The 

mathematical relationship between OCV and SOC is shown in Eq. (9). 
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 In Eq. (9), S stands for SOC. When fitting the relationship between OCV and SOC based on test data, the 

fitting accuracy increases with the increase of the fitting order, and the accuracy improvement range of the 7th 

order becomes smaller after analysis. Considering that the increase of the order will increase the computational 

complexity, it is more appropriate to choose the 6th-order fitting. In the subsequent temperature test at 25 ℃, the 

same approach will be used for curve fitting. 

2.3. Extended Kalman filtering 

Kalman filter is an algorithm that uses the state equation of a linear system to filter the system state through 

the system input and output observation data. Because it is only applicable to linear systems, its nonlinear 

system has poor performance. Therefore, in order to make a series of algorithms that can be used in the field of 

non-linear systems, after continuous research, some scholars have proposed the extended Kalman filtering (EKF) 

algorithm. When estimating SOC, the EKF algorithm expands the nonlinear system through the Taylor formula, 

and removes the higher-order terms to linearize the nonlinear system. The state space equation of the nonlinear 

discrete system is shown in Eq. (10). 
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Wherein, kx  and ky  represent system state variables and measurement variables at time k, respectively. 

ku  is the system input variable at time k. kw  and kv  are process noise and measurement noise, respectively, 

which are uncorrelated zero mean Gaussian white noise. kA  is the state transition matrix, kB  is the input 

matrix, kC  is the output matrix, and kD  is the feedforward matrix. 

The state vector of the system is shown in Eq. (11). 
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Combining Eq. (3), Eq. (4) and Eq. (10) can calculate the state transition matrix kA  and the input matrix 

kB , as shown in Eq. (12). 
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Since the terminal voltage ,L kU  in Eq. (4) contains the ,OCV kU  sub term, although ,OCV kU  can be 

expressed as a sixth order polynomial function expression of SOC, there is a non-linear relationship between 

them. Therefore, conventional Kalman filtering algorithm cannot express ,L kU  in the form of Eq. (4). The idea 

of the extended Kalman filtering algorithm is to linearize the nonlinear problem, which uses the Taylor formula 

to expand the ,OCV kU  into a linear expression of SOC. The output matrix kC  and the feedforward matrix kD  

can be calculated, as shown in Eq. (13). 
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2.4. Sage Husa extended Kalman filtering 

The extended Kalman filtering algorithm converts a nonlinear system into a linear system, it can estimate 

SOC using the Kalman filter method. However, it ignores the impact of noise changes on SOC estimation, 

which can cause significant errors. Applying Sage Husa adaptive methods to the EKF algorithm can achieve 

noise estimation and correction, reducing the impact of noise on SOC estimation. The Sage Husa extended 

Kalman filtering algorithm is mainly divided into error covariance matrix kP  and noise kq , kr , kQ , and kR . 

However, while adjusting kQ , the error covariance matrix kP  will also be adjusted. Therefore, adaptive 

methods are often used in practical applications to adjust noise. 

After adaptive update of noise parameters, the system state noise 1kq  , the covariance matrix of system 

state noise 1kQ  , the system observation noise 1kr   and the covariance matrix of system observation noise 



1kR   are shown in Eq. (14) to Eq. (17). 
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In Eq. (14), ˆkx
 
is the state of the system, A is the system state transition matrix, B is the control matrix. In 

Eq. (15), 1ky   
is the state observation measurement, G is the noise driven matrix, 1/k kP   is the error 

covariance matrix of initial prediction. In Eq. (16), C is the system measurement matrix, D is the system 

feedforward matrix. kd  is the weighting coefficient, 
1(1 )(1 )k

kd b b    , 0,1, ,n k . kd  is related to 

the forgetting factor b and is the coefficient of the estimator. The value range of b is 0.95 0.99b  . 

2.5. Robust data correction technology 

Robust data correction technology is a robust statistic proposed by Huber to eliminate errors in parameter 

estimation. Its basic principle is to construct a data correction model based on the existing measurement data 

and instrument information, which can correct the random error contained in the measurement data. It is not 

sensitive to gross error, so as to obtain accurate data correction results. Its essence is an optimization problem. 

The objective function is a robust function, which requires the minimum difference between the corrected value 

and the measured value. The constraint equation is a process model, and the correction value is required to meet 

the material balance, heat balance, chemical reaction metrological relationship, or other chemical and physical 

laws. The expression and constraint equation of the dynamic robust data correction model are shown in Eq. (18) 

and Eq. (19). 
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In Eq. (18), k is the k-th time, 
 

is the current moment, 

 
is a robust function. kz

 
is the measured 

value vector, ˆkz

 
is the correction value vector, kr

 
is the relative residual vector. In Eq. (19), f

 
is the 

differential equation, h

 
is an algebraic equation equality constraint, g  is an inequality constraint, including 

upper and lower bound constraints on variables. 

At present, many robust objective functions have been proposed, such as the Cauchy estimation function, 

Logistic estimation function, Huber estimation function, Fair and Welsch estimation function, etc. These 

functions have been proven to have certain robustness, and each robust function has its advantages and 

disadvantages. However, if set adjustment parameters are appropriate, each robust function can achieve the 

same data correction effect. The simplified expression of the typical Cauchy estimation function is shown in Eq. 

(20). 
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Wherein, c  is an adjustable parameter, which can be selected according to efficiency. r  is the relative 

residual, ˆ( ) /r z z   . 

To measure the robustness of robust functions, Hampel introduced the concept of influence function in 

1986. Suppose there are independent identically distributed variables with samples  1 2 kr r r  obeying 

distribution   and T  is an unbiased estimate of parameter  . That is,  ˆ ( )T r  . Then the influence 

function definition expression is shown in Eq. (21). 
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In Eq. (21), ( )kr r 

 
is the Dirac function centered on kr . If the estimation function is robust, then the 

influence function is bounded when kr  
is infinite. Hampel defines the influence function at kr  

as: 



( ) /k kr r    . Then the influence function of the simplified Cauchy estimation function is shown in Eq. (22). 
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Another important function in robust statistics is the joint weight function, which is defined as: 

( ) ( ) /k k kI r r r . Then the joint weight function of the simplified Cauchy function is shown in Eq. (23). 
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In order to meet the constraint conditions of the model, when the measured value deviates greatly from the 

true value, the more the objective function needs to adjust the measurement point, the smaller the weight 

function of the measurement point, and the smaller the weight value of this point in the objective function. The 

derivation process of the Cauchy robust function is shown in Fig. 3. 
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Fig. 3 Derivation process of the Cauchy robust function 

By using dynamic robust data correction models, the Cauchy estimation function is used as the robust 

objective function. After abstracting and simplifying the Cauchy estimation function, the resulting function can 

be applied to SOC estimation. 

2.6. Cauchy robust correction-Sage Husa Extended Kalman Filtering 

In order to improve the robustness of the algorithm in a complex noise environment, a robust estimation 

function with tolerance for large deviation values is needed. With the help of the idea of robust function data 



correction, it is applied to the SHEKF algorithm to solve the problem of filter accuracy variation caused by 

inaccurate system noise estimation. The essence of using the Cauchy robust function to correct the process error 

is to minimize the difference between the corrected value and the measured value of the objective function. 

According to the Cauchy robust function, the system state noise covariance matrix Q can be modified in 

real-time to reduce the estimation error. To minimize the objective function, take the relative residual between 

the filtered prior measurement value ˆ
kz 

 and the actual measurement value kz  as kr  to correct Q, which is 

expressed as: ˆ( ) /k k k kr z z   , wherein, k  is the standard deviation of the measured value. The system 

state noise covariance matrix Q equation is shown in Eq. (24). 
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Wherein, the value of c is a number of the same order of magnitude as kr . If the order of magnitude is 

different, it will lead to excessive noise Q, making the estimation inaccurate. Because of the system state noise, 

model error, or inaccurate state estimation, it is unrealistic to accurately estimate a residual of 0 between the 

state estimation and the actual measurement value. After many iterations, the Q value will gradually approach 0. 

Therefore, it is necessary to set a threshold   to determine whether to correct Q. The equations to determine 

whether Q is corrected are shown in Eq. (25) and Eq. (26). 

if 1 1
ˆ ˆ, c c

k k kr Q Q  
 

(25) 

else 

2

1 2 2

1

ˆ ˆc c

k k

k

c
Q Q

c r







 (26) 

 Because the battery is a highly nonlinear system, the Dual Polarization model established in this paper 

cannot completely simulate the characteristics of the battery, which leads to some errors in the battery model. 

When the battery is in use, the battery parameters change dynamically with the SOC value of the battery, 

especially when the SOC is near 0 or 1, the battery performance changes significantly, resulting in the drastic 

change of the battery model parameters. In order to suppress the reduction of SOC estimation accuracy caused 



by parameter error, the observation noise covariance matrix R can be modified in real-time when the SOC is 

close to 0 or 1. The specific correction methods of the observed noise covariance matrix R are shown in Eq. (27) 

to Eq. (29). 

if 0 1, [1 ( )]H k k HSOC SOC R R G SOC SOC   
 (27) 

if 0 2, [1 ( )]L k k LSOC SOC R R G SOC SOC     (28) 

else 0k kR R  (29) 

Wherein, 0.8HSOC  , 0.2LSOC  , 1G  and 2G  are constants, 1 2 10G G  . 

The specific process of the Cauchy robust correction-adaptive extended Kalman filtering algorithm is: 

1) Calculating the system state at time k: 

1/
ˆ ˆ

k k k k kx Ax Bu q   
 (30) 

2) Calculating the corrected system state covariance and error covariance at time k: 
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3) Calculating the corrected observation noise covariance at time k: 

if 0 1, [1 ( )]H k k HSOC SOC R R G SOC SOC   
 (34) 

if 0 2, [1 ( )]L k k LSOC SOC R R G SOC SOC     (35) 

else 0k kR R  (36) 

4) Calculating the Kalman gain: 
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5) Calculating the system error covariance matrix at k+1 time: 
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6) Cycling steps (1) to (5) to calculate the value of SOC. 

The FFRLS algorithm is used for online parameter identification, and the identified parameters are used for 

real-time measurement of battery SOC. Since the uncertain system noise will affect the estimation results, an 

improved CRC-SHEKF algorithm is proposed to estimate the SOC of lithium-ion batteries. It is an adaptive 

filtering method and the noise correction method can effectively reduce the impact of noise and improve the 

accuracy of SOC estimation. The frame diagram of estimating the SOC of lithium-ion batteries using the 

CRC-SHEKF algorithm is shown in Fig. 4. 
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Fig. 4 SOC estimation framework of CRC-SHEKF 

First, input the voltage and current data obtained from the experiment, and identify the Dual Polarization 

model parameters online by the FFRLS algorithm. Then the CRC-SHEKF algorithm reads the identified 

real-time model parameters and combines the voltage and current data to estimate the battery SOC. In the 



CRC-SHEKF algorithm, the system state covariance Q and the observation noise covariance R are selected to 

correct according to the judgment rules, then the error covariance P and the Kalman gain K are calculated based 

on the correction values. Finally, the system status is calculated and the SOC value is output. 

3. Experimental verification 

To verify the reliability of the Dual Polarization model and the superiority of the CRC-SHEKF algorithm, 

the FFRLS algorithm is used to identify the model parameters. Compare the estimated voltage with the 

experimental voltage to verify the reliability of the model. The resulting parameters will be passed to the 

CRC-SHEKF algorithm to estimate the lithium battery SOC. When estimating SOC, the voltage and current 

under three dynamic working conditions, HPPC, DST, and BBDST, will be used as inputs. The ampere-hour 

integration method is a classic algorithm for estimating SOC. The calculation formula is the definition of SOC, 

which estimates SOC by accumulating the amount of charge and discharge during the battery charging and 

discharging process. This method only records the incoming and outgoing battery power from the outside, 

which is a theoretical value, and ignores the changes in the internal state of the battery. This article takes the 

SOC theoretical calculation value of the ampere-hour integration method as the true value and compares it with 

the estimated values of other algorithms. The output SOC estimated value is compared with the actual SOC 

value to verify the accuracy of the CRC-SHEKF algorithm. In this paper, mean absolute error (MAE), root 

mean square error (RMSE), maximum error (MAX), and computing time are selected as evaluation indexes. 

3.1. Experimental test platform 

The experimental platform is composed of a charge-discharge tester, an upper computer, and other 

experimental equipment. The type of charge-discharge tester is CT-4016-5V100A-NTFA. The type of ternary 

lithium battery used in the test is BTS200-100-104, the rated capacity is 70 Ah, and the actual capacity is 62.76 

Ah. The test instrument measures the U/I/T signal in real-time through TCP/IP and transmits the data to the 

upper computer. The experimental test platform is shown in Fig. 5. 
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Fig. 5 The experimental test platform 

3.2. Model validation 

The voltage and current data under HPPC working conditions at 15℃ are used as input and the FFRLS 

algorithm is used for online parameter identification of the Dual Polarization model. The reliability of the Dual 

Polarization model is verified by comparing the actual voltage obtained from the experiment with the simulated 

voltage output from the FFRLS algorithm. The voltage comparison under HPPC working conditions is shown in 

Fig. 6. 

 

(a) Real voltage and simulation voltage 

 

(b) Voltage simulation error 

Fig. 6 Voltage comparison under HPPC working conditions 

According to Fig. 6, in the initial stage, the error is significantly greater due to the convergence of the 



algorithm and the influence of the initial value. In each cycle, the simulation error of the sudden change of 

current, that is, the charge and discharge part of the battery, is relatively large, which is related to the intense 

chemical reaction inside the lithium battery, and the simulation results are very good in the remaining stages. 

The MAE and RMSE of the FFRLS algorithm are 0.99% and 1.65%, respectively. Without regard to the error at 

the convergence stage of the algorithm, the maximum error is 0.0367V. The experimental results show that the 

FFRLS algorithm can effectively characterize the Dual Polarization model, and obtain more accurate online 

parameter identification results for subsequent SOC estimation. 

3.3. Analysis of SOC estimation results under complex working conditions 

To validate the proposed CRC-SHEKF algorithm, its accuracy needs to be verified under different complex 

working conditions, including HPPC, DST, and BBDST. At the same time, to verify the adaptability of the 

proposed algorithm to temperature, different operating conditions data of 15℃ and 25℃ were used for 

comparison. The HPPC working conditions refer to hybrid pulse power characterization, which can well reflect 

the dynamic characteristics of the battery during operation. The DST working conditions are a complex 

condition that evolved from the operating conditions of federal cities in the United States, which includes the 

continuous charging and discharging process of lithium batteries. The BBDST working conditions come from 

the real data collection of Beijing's public transportation dynamic testing, which includes data from various 

operations such as starting, coasting, acceleration, and rapid acceleration. It has authenticity and dynamism, 

while the actual application conditions of high-power lithium batteries are complex and variable. Therefore, 

using BBDST experimental data to verify the algorithm is even more convincing. 

3.3.1. Analysis of the results under HPPC working conditions 

To verify the superiority of the CRC-SHEKF algorithm, the SOC estimates of the EKF, SHEKF, and 

CRC-SHEKF algorithms were compared. The comparison of SOC estimation results and the comparison of 

SOC estimation errors of different algorithms under HPPC working conditions are shown in Fig. 7. 



 

(a) SOC estimation results at 15℃ 

 

(b) SOC estimation error at 15℃ 

 

(c) SOC estimation results at 25℃ 

 

(d) SOC estimation error at 25℃ 

Fig. 7 SOC comparison under HPPC working conditions 

According to Fig. 7a, the EKF algorithm exhibits significant fluctuations in SOC at stages 0.9, 0.4, and 0.3, 

and is not as stable as the SHEKF and CRC-SHEKF algorithms. The SOC estimation value of the CRC-SHEKF 

algorithm is closer to the true value than that of the SHEKF algorithm. According to Fig. 7b, the maximum error 

of the CRC-SHEKF algorithm is 0.01212, which is reduced by 0.03441 and 0.01063 compared to the EKF and 

SHEKF algorithms, respectively. Tab. 2 shows the indicators of different algorithms under HPPC working 

conditions. 

Tab. 2 Indicators of different algorithms under HPPC working conditions 

Temperature Algorithm MAE RMSE MAX Computing time(s) 

15℃ 

EKF 0.01632 0.01858 0.04653 11.045 

SHEKF 0.01502 0.01602 0.02275 15.374 

CRC-SHEKF 0.00579 0.00728 0.01212 12.653 

25℃ 

EKF 0.01377 0.01612 0.05456 5.495 

SHEKF 0.01107 0.01242 0.01544 7.654 

CRC-SHEKF 0.00334 0.00414 0.00836 6.504 



According to Tab. 2, the MAE, RMSE, and MAX of the SHEKF algorithm are all smaller than those of the 

EKF algorithm, due to the Sage Husa adaptive noise method. The CRC-SHEKF algorithm performs best due to 

noise correction, which makes the estimation process more in line with the real situation. Comparing the 

computation time of the three methods, the SHEKF algorithm takes longer than the EKF algorithm due to its 

iterative calculation of uncertain random noise. The Cauchy robust correction process uses judgment statements 

to correct noise, simplifies the iterative calculation process, and has a shorter calculation time than the SHEKF 

algorithm. Under the HPPC working conditions, the CRC-SHEKF algorithm can reduce the impact of random 

noise and improve the accuracy of SOC estimation. However, validation under one working condition does not 

necessarily demonstrate the superiority of the algorithm, and validation needs to be conducted under different 

working conditions. 

3.3.2. Analysis of the results under DST working conditions 

The comparison of SOC estimation results and the comparison of SOC estimation errors of different 

algorithms under DST working conditions are shown in Fig. 8. 

 

(a) SOC estimation results at 15℃ 

 

(b) SOC estimation error at 15℃ 



 

(c) SOC estimation results at 25℃ 

 

(d) SOC estimation error at 25℃ 

Fig. 8 SOC comparison under DST working conditions 

According to Fig. 8, the EKF algorithm has a significant estimation error when the SOC is below 0.5. The 

CRC-SHEKF algorithm has a faster convergence time and a minimum maximum error. Tab. 3 shows the 

indicators of different algorithms under DST working conditions. 

Tab. 3 Indicators of different algorithms under DST working conditions 

Temperature Algorithm MAE RMSE MAX Computing time(s) 

15℃ 

EKF 0.01765 0.02365 0.05529 4.244 

SHEKF 0.01584 0.01683 0.01993 11.624 

CRC-SHEKF 0.00499 0.00851 0.01011 4.468 

25℃ 

EKF 0.02306 0.02707 0.05565 4.056 

SHEKF 0.01327 0.01548 0.01404 11.232 

CRC-SHEKF 0.00491 0.00556 0.00122 4.678 

According to Tab. 3, under DST working conditions, the CRC-SHEKF algorithm has the best performance 

in all indicators and has the same experimental results as HPPC. 

3.3.3. Analysis of the results under BBDST working conditions 

The comparison of SOC estimation results and the comparison of SOC estimation errors of different 

algorithms under BBDST working conditions are shown in Fig. 9. 



 

(a) SOC estimation results at 15℃ 

 

(b) SOC estimation error at 15℃ 

 

(c) SOC estimation results at 25℃ 

 

(d) SOC estimation error at 25℃ 

Fig. 9 SOC comparison under BBDST working conditions 

According to Fig. 9, the EKF algorithm has significant errors during the SOC stages of 1.0 to 0.8, 0.4 to 0.2, 

and the end stage, due to the influence of random noise in the system. The CRC-SHEKF algorithm has a smaller 

convergence time, faster convergence speed, and smaller error. The indicators of different algorithms under 

BBDST working conditions are shown in Tab. 4. 

Tab. 4 Indicators of different algorithms under BBDST working conditions 

Temperature Algorithm MAE RMSE MAX Computing time(s) 

15℃ 

EKF 0.01364 0.01572 0.05567 4.279 

SHEKF 0.01056 0.01196 0.01755 10.873 

CRC-SHEKF 0.00392 0.00716 0.00945 4.839 

25℃ 

EKF 0.01897 0.02075 0.04947 4.298 

SHEKF 0.01511 0.01627 0.02085 10.615 

CRC-SHEKF 0.00481 0.00557 0.00903 4.881 

The comparison of various indicators of different algorithms under three working conditions is shown in 

Fig. 10. 



 

(a) MAE comparison at 15℃ 

 

(b) RMSE comparison at 25℃ 

 

(c) MAE comparison at 15℃ 

 

(d) RMSE comparison at 25℃ 

 

(e) MAX comparison at 15℃ 

 

(f) MAX comparison at 25℃ 

Fig. 10 Indicators comparison under different working conditions 

According to Fig. 10, it can be intuitively seen that under different complex working conditions, the 

various indicators of the CRC-SHEKF algorithm are optimal and suitable for different complex working 

conditions, and have good temperature adaptability. From this, it can be concluded that the Cauchy robust 

correction method can reduce the impact of random noise, and the proposed CRC-SHEKF algorithm has strong 

adaptability and higher accuracy. 



4. Conclusion 

In order to solve the problem of inaccurate noise estimation of nonlinear systems, an improved Cauchy 

robust correction-Sage Husa extended Kalman filtering (CRC-SHEKF) algorithm is proposed to estimate the  

SOC of lithium-ion batteries. Firstly, the FFRLS algorithm is used to identify the model parameters of the Dual 

Polarization model online. To reduce the impact of hysteresis effects, the average OCV and SOC are taken for 

polynomial fitting. The CRC-SHEKF algorithm reads the real-time model parameter values, combines the 

Cauchy robust function with the Sage Husa method to modify the filtering state noise covariance matrix Q, and 

real-time corrects the noise covariance matrix R when the SOC approaches 0 or 1. The CRC-SHEKF algorithm 

exhibits better robustness and achieves high-precision SOC estimation for lithium-ion batteries. The 

experimental results show that under various complex working conditions, the improved CRC-SHEKF 

algorithm has smaller estimation errors. MAE, RMSE, and MAX are the smallest compared to EKF and SHEKF 

under three working conditions HPPC, DST, and BBDST. This effectively suppresses the problem of estimation 

accuracy degradation caused by unknown statistical features of system noise or battery model errors, while 

improving the stability and accuracy of the algorithm. Meanwhile, the algorithm has strong adaptability to 

temperature and short calculation time. It has good practical application value and provides a reference for the 

application of lithium battery condition monitoring. 
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