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Abstract— Drone-view object detection (DroneDet) models 
typically suffer a significant p erformance d rop w hen applied 
to nighttime scenes. Existing solutions attempt to employ an 
exposure-adjustment module to reveal objects hidden in dark 
regions before detection. However, most exposure-adjustment 
models are only optimized for human perception, where the 
exposure-adjusted images may not necessarily enhance recog-
nition. To tackle this issue, we propose a novel Detection-driven 
Exposure-correction network for nighttime DroneDet, called 
DEDet. The DEDet conducts adaptive, nonlinear adjustment 
of pixel values in a spatially fine-grained m anner t o generate 
DroneDet-friendly images. Specifically, we develop a  fine-grained 
parameter predictor (FPP) to estimate pixelwise parameter maps 
of the image filters. T hese fi lters, al ong wi th th e estimated 
parameters, are used to adjust pixel values of the low-light 
image based on nonuniform illuminations in drone-captured 
images. In order to learn the nonlinear transformation from the 
original nighttime images to their DroneDet-friendly counter-
parts, we propose a progressive filtering m odule t hat applies 
recursive filters t o i teratively r efine th e ex posed im age. Fur-
thermore, to evaluate the performance of the proposed DEDet, 
we have built a dataset NightDrone to address the scarcity 
of the datasets specifically t ailored f or t his p urpose. Extensive 
experiments conducted on four nighttime datasets show that 
DEDet achieves a superior accuracy compared with the state-
of-the-art (SOTA) methods. Furthermore, ablation studies and 
visualizations demonstrate the validity and interpretability of 
our approach. Our NightDrone dataset can be downloaded from 
https://github.com/yuexiemail/NightDrone-Dataset.

Index Terms— Adverse illumination conditions, differentiable 
image filters, d rone-view o bject d etection ( DroneDet), exposure 
correction.
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I. INTRODUCTION

DRONE-VIEW object detection (DroneDet) is a drone-
vision technique for locating objects and predicting their

categories in images captured by drones. It has gathered great
momentum in various drone-vision applications [1], including
aerial object tracking [2], aerial person reidentification [3], and
aerial crowd counting, among others. Despite the remarkable
advances in DroneDet [4], [5], [6], [7] in recent years, object
detection at night remains a challenging because of adverse
illumination conditions at night. For instance, a widely used
detector YOLOv5 [8] achieves an average precision (AP) at an
intersection-over-union (IoU) threshold of 0.5 for all classes
(AP50) of only 41.2% on the VisDrone (Night) dataset,1 in
contrast to the AP50 of 67.3% achieved on the Microsoft
COCO [10]. This performance drop of nearly 30% is largely
attributed to the presence of small objects in adverse illumi-
nation conditions.

Images captured under adverse illumination conditions usu-
ally contain underexposure and/or overexposure, significantly
degrading the image quality and the performance of following-
on analysis. Underexposure errors result in very dark regions,
which suffer from low signal-to-noise ratios (SNRs) and
contrast due to limited photons, whereas overexposure errors
result in very bright and saturated image regions due to the
limited range of camera sensors. These adverse illumination
conditions severely restrict the availability of valuable infor-
mation necessary for robust object detection.

One intuitive solution to address the adverse illumination
issue is to first generate well-exposed images using an image
enhancement module. These well-exposed images are then fed
into a detection module for object detection. However, the per-
formance improvement brought by this separate fashion is very
limited because the primary goal of the enhancement module
is to improve visual or perceptual quality for human viewing
rather than specifically optimizing the task of DroneDet.
Another solution involves cascading the enhancement module
and detection module to optimize both of them using enhance-
ment or detection losses. Although this solution aligns with
logic, it fails to achieve satisfactory detection performance.
The existing enhancement modules typically perform image-
to-image translation with neural networks [11]. As a result,

1VisDrone (Night) includes only nighttime images and their corresponding
labels carefully selected from the VisDrone datasets [9].



Fig. 1. Comparisons of different pipelines. (a) Pipeline of IA-YOLO [12].
It follows a rigid exposure paradigm, which applies an image filter with
the same parameter on every pixel in an image. (b) Our DEDet estimates
a set of pixelwise parameter maps and then progressively applies filters with
the estimated parameters on an image to cope with the issue of nonuniform
illumination in a drone-captured image.

these translated images may contain a large number of artifacts
that can be harmful to the subsequent detection module.

Recently, a novel model called IA-YOLO [12] has emerged.
As shown in Fig. 1(a), instead of direct image-to-image trans-
lation, a differentiable image filter was designed to enhance
the nighttime images for a detection module, with parameters
estimated by a neural network. In practice, there are substantial
illumination variations in different regions of large scenes in
drone-captured images. Nighttime, drone-view images cover-
ing large-scale scenes are typically captured under different
types of lights, such as streetlights, headlights and taillights
of a vehicle, and lights of stores along the street. It is
unrealistic to expect an image filter with a fixed parameter to
effectively process every pixel exposed under different lighting
conditions. This leads to the question “How to design a fine
exposure module capable of correcting every pixel value based
on the distribution of illuminations in a nighttime image,” so
as to improve nighttime DroneDet performance by deploying
more accurate estimations.

To answer this question, we propose Detection-driven
Exposure-correction network for nighttime DroneDet
(DEDet), an exposure-based detection network specifically
designed for nighttime DroneDet. Our DEDet improves the
DroneDet performance in low-light conditions by applying a
novel technique, “detection-driven exposure-correction,” on
nighttime images. As illustrated in Fig. 1(b), DEDet consists
of an exposure-correction module and a detection module,
jointly optimized in an end-to-end training paradigm. The
exposure-correction module generates nighttime DroneDet-
friendly images through the cooperation of the fine-grained
parameter predictor (FPP) module and the progressive filtering
module (PFM). Specifically, the FPP estimates pixelwise
exposure parameter maps of a series of image filters using
a transformer-based neural network. The PFM conducts a

complex nonlinear transformation to each pixel value by
iteratively applying the image filters estimated by FPP. The
detection module then conducts DroneDet on the exposed
images generated by the exposure module. Last but not least,
to facilitate the evaluation of DEDet and address the scarcity
of datasets for nighttime DroneDet, we collected real-world
images using a drone and created a new drone-captured
dataset, called NightDrone.

The key contributions made in this study are as follows.
1) We propose a DEDet framework to expand DroneDet

from daytime scenes to nighttime scenes by learn-
ing fine-grained exposure maps and obtain nighttime
DroneDet-friendly images.

2) We develop the FPP and PFM modules that can coop-
erate together to obtain nighttime DroneDet-friendly
images, leading to further improved DroneDet perfor-
mance.

3) We create the NightDrone dataset, the first drone-
captured dataset for nighttime DroneDet, to advance
the capabilities of DroneDet in adverse illumination
conditions.

The remainder of this study is organized as follows.
Section II provides a comprehensive review of nighttime
DroneDet and summarizes related works. Section III presents
details of our DEDet. Section IV introduces the new Night-
Drone dataset created for nighttime DroneDet. Section V
presents the experimental results of DEDet. Section VI con-
cludes this article and points out future research directions.

II. RELATED WORK

Nighttime DroneDet is closely related to three key tech-
niques, i.e., DroneDet, low-light image enhancement (referred
to as “LLIE”), and low-light object detection (referred to as
“LLDet”). In this section, we briefly summarize the recent
developments in these three techniques.

A. DroneDet: Drone-View Object Detection

DroneDet [9] is an emerging research topic in remote
sensing. Images captured by drones contain numerous small
objects, which can significantly degrade detection perfor-
mance. Existing methods can be classified into three groups:
super-resolution-based (SR-based) methods, context-based
methods, and representation fusion-based (RF-based) methods.

SR-based methods [6], [13], [14] enhance low-resolution
regions of interest (RoIs) into high-resolution ones using
super-resolution techniques. These models generally consist of
candidate proposal, super resolution, and detection modules,
regarded as a multistage strategy. However, the multistage
strategy can be inefficient and challenging to train effectively.

Context-based methods [15], [16], [17] leverage local con-
text of surrounding objects and global context in an image,
and integrate both of these contexts into the original objects’
features. Building such contextual relationships proves chal-
lenging due to the complexity and diversity of backgrounds in
drone-captured images.

RF-based methods [18], [19], [20], [21] combine detailed
spatial information in shallow representations and semantic



information in deep representations for improving aerial object
detection. Dong et al. [18] proposed a novel attention-based
multilevel feature fusion module to adaptively fuse multilevel
features and generate more powerful pyramidal features for
object detection in aerial images. Ye et al. [19] proposed an
adaptive attention fusion mechanism for fusing features to
boost the representation power.

Although these methods have obtained impressive DroneDet
performance, most of them fail to recognize objects at night.
Some recent works [22], [23] have started to fuse infrared and
RGB images to improve the detection performance. Infrared
images provide complementary information for RGB images
due to their high-sensitivity in night vision. However, infrared
cameras are not equipped in most commercial drones, mainly
due to the limitations of the manufacturing process and the cost
concerns. Therefore, our focus is to improve the DroneDet
on RGB images under poor visibility conditions caused by
adverse illumination conditions.

B. LLIE: Low-Light Image Enhancement

LLIE reveals information hidden in the dark areas of an
image to improve the image’s quality for human percep-
tion. Early methods for LLIE adopted intensity mapping
and local statistics, including exposure correction [24] and
histogram equalization [25]. Later, Retinex-based meth-
ods [26], [27], [28], [29] disentangled illumination-related
and reflectance-related components from low-light images
by introducing certain priors based on empirical observa-
tions. Recently, neural-network-based methods [30], [31],
[32], [33] have shown impressive results in LLIE. The
pioneering work LLNet [30] utilized stacked sparse deep
autoencoders to brighten and denoise low-light images.
KinD [31] was proposed to kindle the darkness, which
decomposes low-light images into an illumination compo-
nent for light adjustment and a reflectance component for
degradation removal. Xu et al. [32] proposed an SNR-aware
network, which exploited the long-range operation for global
context and the short-range operation for local context for
pixelwise enhancement in a spatial-varying manner. Yang
et al. [33] proposed the sparse gradient minimization sub-
network (SGM-Net) and built a coupled representation with
l0 gradient minimization.

When these LLIE methods are used for nighttime DroneDet,
there is still room for further improvement. After all, these
methods are designed for human perception rather than
machine vision. In this article, we propose a detection-driven
exposure-correction mechanism to strengthen the weak collab-
oration between LLIE and DroneDet.

C. LLDet: Low-Light Object Detection

Few works have paid attention to the improvement of detec-
tion performance after low-light enhancement [34]. Detectors
used for LLDet are categorized into three categories.

1) Directly Trained Detectors: The models in this category
are trained directly on nighttime images, as shown in
Fig. 2(a).

Fig. 2. Comparison of detection methods with an enhancement module under
adverse illumination conditions. (a) Directly trained detectors. (b) Separately
trained detector. (c) Jointly trained detectors.

2) Separately Trained Detectors: An enhancement module
is first trained to brighten nighttime images, and then,
a pretrained detection module is trained on the enhanced
images, as shown in Fig. 2(b).

3) Jointly Trained Detectors: The enhancement and detec-
tion modules are jointly trained in an end-to-end manner
on nighttime images, as shown in Fig. 2(c).

It is hard for directly trained detectors [35], [36], [37], [38],
[39] to learn sufficiently discriminative features for detection
due to low SNRs and contrast brought by image degradation.
Yim and Sohn [35] proposed a dual-channel convolutional
architecture to deal with quality degradation under low-light
conditions. For separately trained detectors [40], enhancement
and detection modules are optimized separately, which is also
referred to as a two-stage strategy. However, it is problematic
to evaluate the connection between the two modules. Most
methods merely employed object detection performance as an
evaluation metric of enhancement modules. Although the two-
stage strategy may boost the detection performance, they often
lack robustness and generalization. Pei et al. [40] suggested
that enhancement methods sometimes fail to improve detection
performance and can even lead to a reduction in detection
performance.

Recently, few works have focused on the third category,
the jointly trained detectors [11], [12], [41], [42], [43]. They
started to explore the connection between image exposure
and DroneDet. Ma et al. [42] proposed an illumination allo-
cator following a parallel architecture to deal with LLDet.
In the architecture, the latent representations between image
exposure and detection are built to mutually enhance each
other. Xue et al. [43] proposed a cascaded architecture
for low-light exposure and object detection. Following the
cascaded architecture, the recurrent exposure generation net-
work (REGNet) [11] simulated the nonlinear process of the
multiexposure technique by generating a series of pseudo-
exposure images. Instead of image-to-image mapping for
image exposure, Liu et al. [12] reformatted the exposure task
as parameters of image filters to enhance low-light images
for better object detection. Different from the aforementioned
methods, we propose to learn the pixelwise parameter maps
of image filters to adjust each pixel value in a fine exposure-
correction manner to deal with the nonuniform illumination in
drone-captured images.



Fig. 3. Pipeline of our DEDet, which contains three modules. The first
module FPP is responsible for estimating the parameter maps of image filters
for a night image. The second module PFM uses the image filters with the
estimated parameters to adjust the image exposure. The last module Detector
performs the final object detection on the DroneDet-friendly image. The three
modules are optimized together in an end-to-end training fashion.

III. PROPOSED METHOD

A. Overview

The proposed DEDet employs a detection-driven exposure-
correction mechanism to generate nighttime DroneDet-friendly
images so as to improve the accuracy of nighttime DroneDet.
Fig. 3 illustrates the workflow of DEDet, which consists
of three key modules: FPP, PFM, and Detector. The FPP
module estimates multiple pixelwise parameter maps for an
input image, where each value corresponds to individual pixels
within the image. The PFM module then adjusts the image’s
exposure using the parameters estimated by FPP to generate
an exposure-corrected image that produces better DroneDet
performance. Note that the PFM module is iteratively deployed
for multiple times with varying parameters to progressively
refine the enhanced images. Finally, the Detector module
locates and classifies objects of interest in the images.

B. FPP: Fine-Grained Parameter Predictor

Existing filters with adaptive parameters often assume a
uniform illumination condition for the entire image. However,
in real-world scenarios, illumination conditions vary spatially
in different regions of the drone-captured images due to the
large scene these images encompass, typically captured under
various lighting conditions.

To overcome these limitations, we propose the FPP module,
which estimates pixelwise parameter maps to adjust each pixel
value. As illustrated in Fig. 4, the FPP module contains three
submodules: the residual feature encoder, the latent feature
extractor, and the residual feature decoder.

1) Residual Feature Encoder: An input image is defined
as I ∈ RW×H×Cin , where W, H , and Cin are the width,
height, and channel number of the image, respectively. We use
two residual convolutional blocks (RCBs) E(·) to extract the
feature F ∈ R(W/4)×(H/4)×C as

F = E(I ) (1)

where C is the number of the feature channels. The convo-
lutional layers are beneficial to visual processing, allowing

transformers in the latent feature extractor to converge more
stably and rapidly [44]. In addition, to improve the encoding
efficiency, F is obtained with two max-pooling layers by
downsampling the original image I .

2) Latent Feature Extractor: After the input image is
mapped into a higher dimension latent space with the residual
feature encoder, we use S Swin transformer blocks (STBs),
denoted as H(·), to extract the features F ′

∈ R(W/4)×(H/4)×C

in the latent space from F as

F ′
= H(F). (2)

In particular, the intermediate features {F0, F1, . . . , FS−1} and
the output feature F ′ are extracted by a series of cascaded
STB as

Fi+1 = Hi (Fi ), i = 0, 1, 2, . . . , S − 1 (3)

where Hi (·) represents the i th STB, F0 = F , and F ′
= FS .

As illustrated in Fig. 4, each STB consists of a standard
multihead self-attention (MSA) module, a two-layer multilayer
perception (MLP) module, and a residual connection applied
after each module. The MSA allows the model to extract
jointly to information in different feature subspaces, which
is beneficial for dealing with nonuniform illumination in the
image. The MLP transforms the input to a higher dimensional
space and then restores to the original dimension as the input.

3) Residual Feature Decoder: The residual feature decoder
D(·) is used to estimate the parameter maps of image fil-
ters. Initially, two upsampling residual convolutional blocks
(URCBs) are utilized to upsample the latent feature F ′ back to
the original input size. Then, a convolutional layer is employed
to generate N parameter maps, denoted as P ∈ RW×H×C ′

, as

P = D(F ′) (4)

where C ′
= N × N f is the channel number of the parameter

maps, and N f is the number of image filters.

C. PFM: Progressive Filtering Module

1) Progressive Filtering: Experienced engineers often
employ various image filters, such as Gamma correction and
image sharpening, to create more expressive and visually
appealing images. However, manually tuning the hyperparam-
eters of these image filters for a broad range of scenes based on
visual perception and experience can be very time-consuming.

We employ a progressive scheme to adjust the image expo-
sure, which first generates a coarse image using the filters with
the first parameter map and then gradually refines the coarse
image using filters with other parameter maps. Specifically,
given a pixel value Pin in I and a pixel value Pout in a
DroneDet-friendly image, the pixel value adjustment from
Pin to Pout is a complex nonlinear mapping. To enable more
versatile adjustments, we progressively apply image filters
with different parameter maps as

P i+1
in = Fi (P i

in), 0 ≤ i ≤ N − 1 (5)

where N denotes the number of iterations, P0
in = Pin, and

Pout = P N
in . Fi (·) = G((·)γ, λ), G(·, λ) is a sharpening filter,

and (·)γ is a Gamma function used to control image exposure



Fig. 4. Details of FPP, which is composed of three modules: the residual feature encoder, the latent feature extractor, and the residual feature decoder.

Fig. 5. Details of PFM, which consists of the brightening filter for image
exposure and sharpening filter for image sharpening. The differentiability of
PFM allows the training of neural networks by backpropagation.

levels. We set N = 4, as a tradeoff by taking into consideration
of the computational cost and performance gain.

In addition, to ensure the effectiveness of the gradient-
based optimization of DEDet, the design of PFM needs to
adhere to the principle of differentiability. PFM needs to be
differentiable in terms of their filters’ parameters for gradient-
based optimization of DEDet. It is necessary to ensure that
each module in a neural network is differentiable in terms
of its parameters to train the neural network with gradient
backpropagation. As shown in Fig. 5, the PFM module cas-
cades two differentiable image filters: a brightening filter and
a sharpening filter.

2) Brightening Filter: The brightening filter brightens a
low-light image by mapping pixel values Pn of the nighttime
image to pixel values Pbr of the brightened image with power
transformations. The brightening filter is described as

Pbr = Pγ
n (6)

where γ is the brightening filter’s parameter, which is differ-
entiable on both Pn and γ.

3) Sharpening Filter: We use the Gaussian filter Gauss(·)
for a better detection performance by adding the details of an
image. The image sharpening process is described as follows:

G(Pbr, λ) = Pbr + λ(Pbr − Gauss(Pbr)) (7)

where λ is a positive scaling factor, and the higher the λ is, the
more the details are added to the image. Moreover, G(·, λ) is
differentiable with respect to Pbr and λ. The degree of image
sharpening is tuned by optimizing λ to obtain a better detection
performance. As for the Gaussian filter Gauss(·), we follow

the practice described in this article [12] and set its σ as
5 and its kernel size as 7. The parameters of the kernels are
sampled from the 2-D Gaussian function and constant during
the training process.

D. Unsupervised Pretraining for the Exposure Module

Most exposure networks rely on paired images of low-light
and normal-light images for supervised training [45]. These
paired images are exhaustively collected through illumination
condition adjustments, modifying cameras’ parameter settings
during data collection, or retouched by experts to enhance the
visual appearance of images.

Nonetheless, it is labor-intensive to collect numerous paired
drone-captured images for training our exposure module.
To overcome the limitation, we propose an unsupervised
pretraining strategy for image exposure, where no paired
or unpaired data are required during the training process.
In addition, the unsupervised pretraining strategy is beneficial
to accelerate the joint training process and boost the DroneDet
accuracy. Two differentiable losses are adopted to evaluate
the quality of exposed images for pretraining our exposure
module. We define the total loss Lt as follows:

Lt = Ls + Le (8)

where Ls and Le are the smoothness and exposure losses,
respectively.

1) Smoothness Loss: According to the total variation
loss [46] for image reconstruction, a smoothness loss is
designed to the parameter maps P to preserve the smoothness
property and structural information of illumination conditions.
Ls is described as follows:

Ls =
1
N

N∑
i=1

||∇vPi ||1 + ||∇hPi ||1 (9)

where N is the same as the iteration number N in (5), ∇v

and ∇h are the vertical and horizontal gradient operations of
P, respectively, and ||·||1 is the the L1-norm.

2) Exposure Loss: To mitigate underexposed or overex-
posed areas, an exposure loss Le is designed to control the
exposure level of every local region in an exposed image. The
normalized intensity of each pixel, ranging from 0 (underex-
posed) to 1 (overexposed) in the exposed image, is required
to retreat from 0 or 1. Le is utilized to calculate the distance
between the average intensity value of a local region and the



well-exposedness level E . According to exposure fusion [47],
E is set to 0.6 in the experiments. Le is described as
follows:

Le =
1
K

K∑
i=1

|Ai − E | (10)

where K is the number of nonoverlapping local regions R,
whose sizes are 32 × 32 pixels, and Ai is the average intensity
of each Ri in an exposed image. By minimizing Le, we can
optimize the enhancement process to achieve desired exposure
levels across the image.

E. Backbone Detector

We employ the detector YOLOv5 [8] as the detector mod-
ule of DEDet. YOLOv5 is a popular detector and widely
deployed in numerous real-world scenarios, including video
surveillance and autonomous driving. Compared with its
previous versions, YOLOv5 introduces Mosaic data augmen-
tation and adaptive anchor computation for efficient training.
In addition, YOLOv5 incorporates the focus layers and the
CSP [48] structure into the original Darknet backbone for
robust feature extraction, which improves the small object
detection accuracy. In this work, the same network architec-
ture and loss functions as YOLOv5 are utilized for training
DEDet.

IV. NIGHTDRONE DATASETS

Currently, there is a lack of benchmark datasets specifically
collected for nighttime DroneDet. As stated in [9] on drone
vision, two drone-captured benchmark datasets VisDrone and
DroneVehicle are widely used for DroneDet. Moreover, only
a small portion of images in both of the drone-based datasets
is nighttime images, and the majority of the images in these
two datasets were collected in the daytime. To fill the gap
in available datasets for nighttime DroneDet, we have created
the NightDrone dataset. In this section, we first present the
data collection and annotation process of this dataset, and then
compare it with the existing DroneDet datasets.

A. Nighttime Drone-Captured Image Collection

We used a DJI MINI 2 drone equipped with a camera
to capture image data at nighttime for this drone dataset
“NightDrone.” This dataset encompasses a variety of aerial
scenes, such as urban and rural streets, pedestrian malls,
and parking lots. We deliberately conducted data collection
at different times of the day, including evening, dusk, and
midnight, to increase the diversity in images’ illumination.
In addition, during data collection, we adjusted the drone’s
height and shooting angle to simulate different scenarios in
the real world. To increase the diversity of objects’ scales,
the drone used for data collection is controlled to fly between
60 and 120 m. Similarly, to increase the diversity of objects’
appearance, the drone is flying with three shooting angles
(30◦, 60◦, and 90◦). The above settings make DroneDet on
our NightDrone dataset even more challenging.

Fig. 6. Example from our NightDrone dataset. (a) Typical image including
numerous instances under adverse illumination conditions. (b) Illustration
of “People” instances under a low-light region. (c) Illustration of “People”
instances under an overexposed region. (d) Illustration of “Car” instances
under a low-light region. (e) Illustration of “Car” and “Motor” instances
under a normal-light region. Four out of eight of the possible categories in
NightDrone are shown.

B. Nighttime Image Annotation

We annotate objects of interest in drone-captured images
with rectangular bounding boxes (BBoxes). A BBox is defined
as [(xc, yc), w, h, c], where (xc, yc), w, h, and c are its center
coordinate, its width and height, and the object’s category,
respectively. The annotation is done using the labeling soft-
ware “LabelImg.”2 Finally, the annotations of every image
are saved as an XML file following the PASCAL VOC [49]
format.

It is worth noting that annotating images captured by
drones at night is very challenging due to the presence of
numerous small-size objects in poor illumination conditions,
as shown in Fig. 6. To ensure the precision and accuracy
of the annotation, instead of the original nighttime images,
we annotate the reconstructed nighttime images generated by
low-light enhancement algorithms. The self-calibrated illumi-
nation (SCI) model [50] is adapted to brighten these low-light
images to reduce the probability of incorrect or missing labels
during manual annotation.

C. Statistics for Our NightDrone Dataset

Our NightDrone Dataset includes 6805 images collected
by drones. This dataset includes 5445 training images and
1360 testing images. The 254 222 objects were manually
annotated with BBoxes. Each image in NightDrone includes
an average of 37.36 objects, of which the maximum number
is 673. Fig. 7(a) shows the histogram of the number of
annotated objects per image. Additionally, we define eight
common object categories in drone application: Car, People,
Motor, Van, Bicycle, Truck, Bus, and Tricycle. Different from
the ten object categories defined in VisDrone, we do not
distinguish People and Pedestrian, and Tricycle and Awning-
tricycle due to their similar appearance at night. The pie chart
in Fig. 7(b) shows the proportion of objects of the predefined

2The software is available at https://github.com/heartexlabs/labelImg.



Fig. 7. Statistics of our NightDrone dataset. (a) Histogram of the number of annotated instances per image. (b) Proportion of objects of different categories.
(c) Histogram of the number of images in three types of nighttime illumination conditions: “Strong,” “Weak,” and “Extreme Dark.”

Fig. 8. Comparison of the numbers of instances in each category between
our NightDrone and VisDrone (Night).

eight categories. Its unbalanced distribution might result in a
performance drop of DroneDet.

Following ExDark [51], all the images in NighDrone are
grouped into three types of nighttime illumination conditions:
“Strong,” “Weak,” and “Extreme Dark.” The “Strong” type
refers to images with multiple visible and relatively bright
light sources, the “Weak” type refers to images with a few
visible and weak light sources, and the “Extreme Dark” type
refers to images with very low illumination. Fig. 7(c) presents
the histogram of the number of images in the three types of
nighttime illumination conditions.

D. Comparison With Existing Drone-Captured Datasets

We compare our NightDrone with the two existing
drone-captured image datasets, namely, the VisDrone and
DroneVehicle dataset. VisDrone [9] is a benchmark dataset
collected using a drone platform DJI under diverse lighting
conditions and annotated with ground truth for DroneDet.
However, most of the images in VisDrone were captured dur-
ing the daytime with good illumination conditions. Nighttime
images account for 17.9% of the whole dataset. Fig. 8 shows
the comparison of the number of instances in each category
between our NightDrone and VisDrone (Night).

Fig. 9. Examples from the experimental datasets. (a) Images from our
VisDrone (Night) dataset. (b) Images from our DroneVehicle (Night) dataset.
(c) Images from the ExDark dataset.

The DroneVehicle dataset [22] is a drone-based cross-
modality dataset. It includes pairs of RGB and infrared images
covering a wide range of scenarios from daytime to nighttime.
However, the annotated objects in this dataset are mainly
larger-sized objects, such as trucks and cars, while small-sized
objects, such as pedestrians and motors, are not annotated.

In contrast, all images in the NightDrone dataset were
collected at nighttime under poor lighting conditions. Fur-
thermore, the annotated objects in NightDrone include both
large-sized and small-sized objects.

V. EXPERIMENTS

We conducted extensive experiments on four datasets and
compared the detection performance of DEDet with seven
state-of-the-art (SOTA) methods to validate its effectiveness



TABLE I
OVERVIEW OF THE EXPERIMENTAL DATASETS

for nighttime DroneDet. Next, we first introduce the exper-
imental datasets and then present the detailed experimental
results.

A. Datasets

The real nighttime DroneDet performance is evaluated
on not only our NightDrone dataset but also the nighttime
images of the two drone-captured datasets, VisDrone and
DroneVehicle, which are referred to as “VisDrone (Night)”
and “DroneVehicle (Night),” respectively. In addition, we also
use a general object dataset called ExDark [51]. These four
datasets encompass a diverse range of scenarios and capturing
conditions. Table I presents a summary of these four datasets.

1) VisDrone (Night): From VisDrone [9], we carefully
selected the nighttime images and their corresponding anno-
tation files to build our experimental dataset VisDrone
(Night),3 which includes 1008 training images and 253 testing
images. The spatial resolution of the images is approximately
2000 × 1500 pixels. These images are annotated with giving
BBoxes into ten predefined categories, i.e., Truck, Bus, Car,
Van, Awning-tricycle, Tricycle, Motor, Bicycle, Person, and
Pedestrian, the same as those in VisDrone, as shown in
Fig. 9(a).

2) DroneVehicle (Night): As the first drone-based cross-
modality dataset for vehicle detection, DroneVehicle [22]
contains pairs of RGB and infrared images. Similarly, we care-
fully selected image pairs collected during the nighttime and
then chose only RGB images with annotated ground truth
to build the DroneVehicle (Night)3 dataset. As a result, the
new DroneVehicle (Night) includes 4279 training images and
438 testing images, where each image has a spatial resolution
of 640 × 512 pixels. The images are annotated with defined
BBoxes into five vehicle categories, i.e., Bus, Fright Car,
Truck, Car, and Van, the same as those in DroneVehicle,
as shown in Fig. 9(b).

3) ExDark: ExDark is a natural scene dataset widely used
for LLDet. It comprises a total of 7363 images, which are
annotated with BBoxes into 12 predefined categories, namely,
Bus, Car, Bicycle, Boat, Motorbike, Table, Chair, Cup, Bot-
tle, People, Cat, and Dog. The 80% of these images from
each category are used for training and the remaining 20%
for testing. The resolution of these images is approximately
640 × 480 pixels, as shown in Fig. 9(c).

B. Implementation and Evaluation Metrics

1) Implementation Details: We implemented the proposed
DEDet based on PyTorch 1.8.1, and all models were trained

3The VisDrone (Night) and DroneVehicle (Night) dataset can be freely
accessed from the link: https://github.com/yuexiemail/NightDrone-Dataset.

using one computing node of two NVIDIA RTX3090 GPU
cards each with 24-GB memory. The pretrained weights4

were utilized to expedite the training process. The Adam
optimizer was used for training because it dealt with sparse
gradients in backpropagation more effectively and converged
faster than the stochastic gradient descent (SGD) optimizer.
We adopted the cosine learning rate schedule with a learning
rate of 3e−4, and set the batch size to 8. Additionally, several
data augmentation techniques were utilized, including Mosaic,
Random Affine, and hue value saturation (HSV) random
augmentation. Considering the limited computing resources
onboard, the input images in our experiments were all resized
to 640 × 640 pixels without any tricks, such as multiscale
testing, while larger input images could actually improve the
detection accuracy of the DroneDet.

2) Evaluation Metrics: Similar to the PASCAL VOC
Benchmark [49], the detection performance is evaluated by
using the metric called AP across IoU with different thresh-
olds. To be specific, AP is averaged over ten IoU thresholds,
which range from 0.50 to 0.95 with a fixed interval of 0.05.
AP50 and AP75 are calculated on the single IoU thresholds of
0.5 and 0.75, respectively. AP is calculated by the integral of
the Precision–Recall curve p(r), given by

AP =

∫ 1

r=0
p(r)dr (11)

where p is the Precision, and r is the Recall

p =
TP

TP + FP
(12)

r =
TP

TP + FN
(13)

where TP is the number of correctly predicted positive
instances; FP is the number of incorrectly predicted positive
instances; and FN is the number of missing positive instances
during the detection.

C. Ablation Studies

To verify the effectiveness of each component in DEDet,
we conducted ablation studies on our NightDrone dataset,
using YOLOv5 [8] as the baseline.

1) Effectiveness of Image Filters in PFM: We conduct
quantitative AP evaluation on the brightening filter and sharp-
ening filter to verify the effectiveness of image filters adopted
in PFM. We first remove the brightening filter while retaining
the sharpening filter, referred to as “DEDet w/ Sharping.”
Then, we remove the sharpening filter while retaining the
brightening filter, referred to as “DEDet w/ Brightening.”
The model with both filters is referred to as “DEDet w/
Sharping & Brightening.” Table II shows that brightening
filter and sharpening filter improves AP50 accuracy by 2.7%
and 3.1%, respectively, compared with the baseline model.
Moreover, combining the two filters achieves the highest
detection accuracy, showing the effectiveness of these filters.

4The pretrained weights of YOLOv5 [8] can be downloaded from this URL
https://download.openmmlab.com/mmyolo/v0/yolov5.



TABLE II
RESULTS OF ABLATION STUDIES ON DIFFERENT IMAGE FILTERS IN PFM

Fig. 10. Ablation studies on different STB Numbers in FPP and iteration
numbers N in PFM.

Fig. 11. Visualization of the parameter maps estimated by the FPP.
(a) Original nighttime images. (b) Parameter maps of the brightening filter
in PFM. (c) Exposed images after applying the estimated parameters.

2) Impact of the STB Number in FPP and Iteration Number
in PFM: Fig. 10 presents the effects of the STB number in
FPP and the iteration number N in PFM on the DEDet detec-
tion accuracy AP50, respectively. It is observed that the AP50 is
positively correlated with both hyperparameters. As the STB
number and iteration number increase, the performance gain
tends to be saturated gradually, and the computational cost
increases. Therefore, taking both the detection performance
gain and computational cost into consideration, setting both
of the STB number and the iteration number N to be 4 is
optimal in terms obtaining a relatively lightweight model.

3) Visualization of the Parameter Maps Generated by FPP:
We visualize pixelwise parameter maps to demonstrate the
effectiveness of the FPP in adjusting the parameters of filters
in the PFM module based on the illumination conditions in the

Fig. 12. Visualization of input images and their corresponding feature maps
obtained from the backbone in detector. (a) Detector without performing
exposure correction. (b) Detector “w/ Exposure x1” with the exposure module
executed once. (c) Detector “w/ Exposure x4” with the exposure module
executed four times.

images. In Fig. 11, images in (a) are the original input images
and (b) shows the averaged parameter maps of the brightening
filter of all iterations, which are then normalized to the range
of [0, 1]. Finally, Fig. 11(c) illustrates the images exposed with
the parameter maps. The visualization in Fig. 11(b) shows that
values of parameter maps in dark regions are higher than those
in bright regions. Furthermore, in the red rectangular box, the
headlights region of the cars is strongly exposed, while its
body region is weakly exposed. This demonstrates that the
pixelwise parameter maps can adaptively adjust their values
based on different illumination conditions in an image.

4) Visualization of Feature Maps: We then visualize fea-
ture maps from the backbone of the Detection module to
demonstrate the effectiveness of our progressive exposure
strategy. To this end, we trained three detectors independently:
a baseline detector referred to as “w/o Exposure,” a detector
with exposure executed once referred to as “w/ Exposure x1,”
and the detector with exposure executed four times referred to
as “w/ Exposure x4.” Fig. 12 illustrates the resulting feature
maps obtained with the three detectors. Fig. 12(a) displays the
input image and its feature maps obtained from the baseline
detector without performing exposure correction. Fig. 12(b)
and (c) presents the input images and their feature maps
obtained executing the exposure correction module once and
four times, respectively.

From this visualization, we can observe that the enhanced
feature maps in Fig. 12(c) exhibit stronger activation values
than these of the feature maps in Fig. 12(a) and (b). These
visualization results demonstrate that our progressive exposure
strategy enables the detector to focus more precisely on objects
of interest in low-light images.

5) Effectiveness of Unsupervised Pretraining Strategy:
We proceed to evaluate the unsupervised pretraining strategy
adopted in our approach. We adopt our NightDrone dataset
for unsupervised pretraining. We experimentally compare
the detection performance of DEDet applying and without
applying the proposed unsupervised pretraining strategy. The
results displayed in the last two rows in Table II show
that, when the FPP module is randomly initialized without
pretraining, DEDet can achieve a good performance. With



TABLE III
PERFORMANCE COMPARISON ON THE NIGHTTIME DRONE-CAPTURED DATASETS, AND THE INPUT IMAGE SIZE IS 640 × 640 PIXELS. THE INFERENCE

TIME OF MODELS IS MEASURED IN MILLISECONDS, AND ITS COMPUTATIONAL COST IS MEASURED IN GFLOPS

Fig. 13. Loss curve of the exposure module in the pretraining stage.

our unsupervised pretraining strategy, DEDet achieved its best
performance 64.1% of AP50 with a 1.4% performance gain.

Fig. 13 presents the loss curve of total loss Lt in (8) for
pretraining the exposure module. It can be observed that the
loss starts from a value of 0.59, gradually declines and finally
stabilizes at a value of approximately 0.05. Furthermore,
we also present the visual comparison between the input night-
time images and the images generated by the exposure module.
Subfigures in the first row of Fig. 14 display the original
nighttime images, and subfigures in the second row display
images generated after applying the exposure module. These
visualization results demonstrate that the exposure module
effectively brightens the dark regions in the input images while
preserving their image contents. Therefore, the above exper-
imental results demonstrate that our fine exposure-correction
module, with the unsupervised pretraining strategy, converges
stably at the pretraining stage and effectively enhances low-
light images.

D. Comparison With SOTA Methods

As introduced in Section II-C, the SOTA nighttime object
detectors are grouped into three categories: the directly trained
detectors, the separately trained detectors, and the jointly
trained detectors. In this section, we conduct comparisons with
SOTA methods in each category to demonstrate the strength of
our approach. Tables III and IV present the comparison results

Fig. 14. Visualization results of the images exposed with the unsupervised
pretrained strategy. Firstly, subfigures in the first row are original nighttime
images. Secondly, subfigures in the second row are enhanced images. Note
the obviously enhanced subregions highlighted in the red boxes.

TABLE IV
PERFORMANCE COMPARISON ON THE EXDARK DATASET

with the three groups of SOTA detectors on the four datasets.
For a fair comparison, we replace the original detection
modules of IATDet, REGDet, and IA-YOLO with the baseline
detection model YOLOv5.

1) Comparison With Directly Trained Detectors: We first
compare our DEDet with two directly trained detectors:
YOLOv5 [8] and TPH-YOLOv5 [52]. Note that TPH-
YOLOv5 is an object detector tailored for DroneDet.

Tables III and IV show that DEDet achieves the best
detection performance on all four datasets. To be specific,
for DroneVehicle (Night), DEDet brings 6.8% and 5.0% of
AP50 higher than YOLOv5 and TPH-YOLOv5, respectively.
For VisDrone (Night), DEDet brings 2.0% and 4.3% of AP50
higher than YOLOv5 and TPH-YOLOv5, respectively. For our
NightDrone, DEDet brings 5.8% and 3.0% of AP50 higher



Fig. 15. Qualitative comparison of SOTA methods and our DEDet. The BBoxes, distinguished by different colors, represent various detection outputs: blue
for true positives, red for missed targets, and yellow for false alarms.

than YOLOv5 and TPH-YOLOv5, respectively. For ExDark,
DEDet brings 2.7% of AP50 higher than YOLOv5.

2) Comparison With Separately Trained Detectors: To
compare with SOTA separately trained detectors, we adopted
the exposure network SCI [50] to enhance the low-light
images and then fed them into YOLOv5 [8] and TPH-
YOLOv5 [52] for object detection, referred to as “SCI +

YOLOv5” and “SCI + TPH-YOLOv5,” respectively. Table III
presents that DEDet also achieves the best detection perfor-
mance on the three datasets. In particular, for DroneVehicle
(Night), DEDet brings 6.2% and 5.4% higher than SCI
+ YOLOv5 and SCI + TPH-YOLOv5, respectively. For
VisDrone (Night), DEDet brings 1.5% and 4.2% of AP50
gains to SCI + YOLOv5 and SCI + TPH-YOLOv5, respec-
tively. For our NightDrone, DEDet brings 6.6% and 2.8% of
AP50 gains to SCI + YOLOv5 and SCI + TPH-YOLOv5,
respectively.

We observe that the separately trained paradigm does not
necessarily improve DroneDet accuracy. Compared to the
directly trained group, SCI + TPH-YOLOv5 even exhibits
a slight degradation, while SCI + YOLOv5 shows some
improvement. This suggests that the enhancement module
may introduce random noise into features extracted by the
detection module. Additionally, integrating Transformer and
convolutional block attention module (CBAM) into the detec-
tor backbone of SCI + TPH-YOLOv5 increases the model’s
complexity, resulting in over-fitting to random noise.

3) Comparison With Jointly Trained Detectors: Finally,
we compare our DEDet with three jointly trained models: IAT-
Det [53], REGDet [11], and IA-YOLO [12]. IATDet utilizes
attention queries to adjust image signal processor (ISP)-related
parameters for subsequent detection. REGDet progressively
generates images corresponding to various exposure settings to
address nonuniform illumination and noise issues. IA-YOLO



Fig. 16. Examples of the DEDet detection results from the real-world nighttime drone-captured datasets. (a) and (c) Original images with detection labels.
(b) and (d) Corresponding exposed images generated by DEDet with the predicted BBoxes. Zoomed-in view on the small-size objects in low-light regions
for a better viewing experience.

incorporates the differentiable image processing (DIP), which
adopts the convolutional neural network-based parameter pre-
dictor (CNN-PP) to predict its filter parameters, to restore the
latent information beneficial for the subsequent detection.

Tables III and IV demonstrate that DEDet achieves the best
detection performance on all four datasets. To be specific,
for DroneVehicle (Night), DEDet brings 2.3%, 3.5%, and
2.6% of AP50 higher than IATDet, REGDet, and IA-YOLO,
respectively. For VisDrone (Night), the AP50 of DEDet is
1.9%, 4.1%, and 2.4% higher than those obtained by IATDet,
REGDet, and IA-YOLO, respectively. For our NightDrone, the
AP50 of DEDet is 2.7%, 2.9%, and 1.2% higher than those
obtained by IATDet, REGDet, and IA-YOLO, respectively. For
ExDark, the AP50 of DEDet is 2.3% and 1.5% higher than
those obtained by IATDet and IA-YOLO, respectively.

We also observed that REGDet exhibits slow convergence
and poor performance. Furthermore, during training the detec-
tion loss of the entire REGDet model struggles to escape
the local optima. The other detector IA-YOLO with high
accuracy merely adopts detection losses. Nonetheless, in the
process of predicting hyperparameters of DIP by using CNN-
PP, the datasets-specific upper and lower bounds of these
hyperparameters need to be manually set carefully.

4) Visualization of Detection Results: Figs. 15 and 16 show
the visual comparison of the detection results of DEDet and

those obtained using SOTA methods. It can be observed that
DEDet has achieved remarkable detection results on real-world
nighttime drone-captured datasets. Thus, by outperforming
SOTA methods across three different paradigms of solutions
quantitatively and qualitatively, DEDet demonstrates its effec-
tiveness and superiority in nighttime DroneDet tasks.

5) Computational Cost and Inference Time Analysis:
To compare the computational complexity of DEDet with
other SOTA methods, the floating point operations (GFLOPs)
and inference time (milliseconds) are adopted and shown in
Table III. As seen, DEDet has a processing time of 36.7 ms
and GFLOPs of 129.8. Compared with the baseline model
of YOLOv5, the models following the jointly trained strategy
are more complex and have an increased inference time and
GFLOPs due to the resources needed for LLIE. Moreover,
our DEDet has obtained 2.6%, 2.4%, and 1.2% of AP50 per-
formance gain on the DroneVehicle (Night), VisDrone (Night),
and NightDrone datasets compared with IA-YOLO, which is
a reasonable payback with its extra 18.3% computational cost.

VI. CONCLUSION

The proposed DEDet for nighttime DroneDet gener-
ates nighttime DroneDet-friendly images via detection-driven
exposure correction. The proposed FPP module effectively
addresses the issue of nonuniform illumination by estimating



pixelwise parameter maps of image filters. The proposed PFM
module learns a highly sophisticated nonlinear mapping of
pixel values from an original nighttime image to its DroneDet-
friendly image by a progressively filtering strategy. Finally,
we have created the NightDrone, the first dataset specifically
designed for the task of nighttime DroneDet, which presents
practical and challenging scenarios for detecting small objects
under adverse illumination conditions. This dataset can extend
the limits of DroneDet algorithms.

We can extend our DEDet as follows. First, we will incor-
porate semantic information into the enhancement module to
estimate objectwise parameter maps for pixel value adjust-
ment. This strategy has the potential to promote a positive
correlation between LLIE and DroneDet performance. Second,
we will collect and annotate more images in more diverse
scenarios with drones to build the largest benchmark dataset
for nighttime DroneDet. At last, considering that an infrared
camera is robust to image degradation in extremely dark
scenes, we intend to explore cross-modality detectors that
leverage RGB-infrared images to improve the performance of
nighttime DroneDet.
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