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Abstract. Classical machine learning approaches have made remarkable 
contributions to the field of data-driven techniques for bearing fault diagnosis. 
However, these algorithms mainly depend on distinct features, making the 
application of such techniques tedious in real-time scenarios. Under variable 
working conditions (i.e., various fault severities), the acquired signals contain 
variations in the signal amplitude values. Therefore, the extraction of reliable 
features from the signals under such conditions is important because it could 
discriminate the health conditions of the bearings. In this paper, a transfer 
learning approach based on a 1D convolutional neural network (CNN) and 
frequency domain analysis of the vibration signals is presented to solve the 
problem. Transfer learning enables the developed model to utilize information 
obtained under a given working condition to diagnose faults under other working 
conditions. The proposed approach has a classification accuracy of 99.67% when 
tested with the data acquired from the bearings with various fault severities. We 
also observe that a frequency spectrum enhances the performance of the transfer 
learning-based fault diagnosis model.

Keywords: Bearing fault identification; Convolutional neural network Transfer

learning; Vibration signals

1 Introduction

Bearing faults are some of the most prominent reasons for induction machine failure [1]. 
Incipient fault diagnosis of the bearings can avoid financial loss, reduce machine down 
time due to a failure, and improve plant production capacity [2, 3]. Bearing fault 
diagnosis can be divided into model-driven and data-driven techniques [4, 5]. Data 
driven techniques seem more promising for bearing fault diagnosis [1]. In such 
techniques, distinct features associated with the different health states of the bearing are 
extracted from signals without knowing the detailed architecture of the machinery. 
Later, the extracted features are provided to a sophisticated machine learning algorithm 
to classify the data into different classes.

However, the challenge in such a technique is to extract suitable features from the 
signals. Feature extraction is a tedious process, and the quality of the extracted features
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affects the performance of the classical machine learning algorithms [6–8]. Moreover, 
the same types of data and feature space under a constant working condition are required 
for such methods [1]. Data collected from the bearing in the form of signals is a variable 
of working conditions, i.e., variation in a working condition effects the data values. In 
the case of bearings, fault severity, motor loads, and speeds are responsible for 
inconstant working conditions. The performance of the classical bearing fault diagnosis 
techniques deteriorates under variable working conditions due to the data variation. In 
addition, dealing with a massive amount of data makes the fault diagnosis task more 
difficult and effects the performance of a developed model. To address such problems, 
many deep learning techniques have been used in the field bearing fault diagnosis [2, 6, 
9–11]. However, these methods suffer when dealing with big data in variable working 
conditions. To solve this issue, Zhang et al. [4] developed transfer learning using a 
convolutional neural network. The transfer learning process has been described in detail 
by using raw vibration signals for training and testing. However, many important points 
are left out, which are useful for fault classification. In another study by Wen et al. [1] a 
transfer learning model with an auto encoder was developed to solve the problem. 
However, the dimensionality reduction process through an auto encoder requires many 
additional efforts as well.

The main contribution of the current work is: (1) a transfer learning-based approach 
for fault diagnosis of the bearing with various fault severities, (2) a suggestion of a 
bearing fault diagnosis model that does not require well engineered features, and 
(3) introduction of a frequency spectrum calculation as a preprocessing step of the 
vibrations signals to explore the potential information and enhance the performance of 
the proposed model. To project a real-time scenario, we have created two different 
working conditions by using publicly available bearing data [12]. Both the working 
conditions have different fault severities and number of classes.

The rest of the paper is described as follows. Section 2 defines the proposed methods 
with the background, while Sect. 3 elaborates on the experimental setup and results of 
the experiment. Finally, Sect. 4 draws conclusions.

2 Proposed Method

2.1 Skimming Frame

In this study, vibration signals acquired from a bearing under two different working 
conditions are used for evaluation of the proposed bearing fault diagnosis model. In 
transfer learning, a network is first trained using the training data, and then the 
knowledge gained during the training is transferred to the target domain while testing 
the network. Hence, to create two working conditions, a huge amount of data is 
required. Thus, to create a significant number of samples, a skimming frame algorithm is 
used [4]. For each tiny step, one sample will be created.

If the total length of a vibration signal is “L”, then the total number of the samples 
“n” will be:



n ¼ L� l
s

� �
þ 1: ð1Þ

In (1) “l” is the length of a single frame that needs to be selected based on the 
experimental requirement. The step size is considered as “s”. The dimension of the 
vibration signal “L” is fixed. A complete process of the skimming frame algorithm is 
illustrated in Fig. 1.

2.2 Fast Fourier Transform

In this research, vibration signals are used in the experiments. It is easier to extract 
useful information from frequency domain by using Fast Fourier Transformation 
(FFT) [2]. If the number of samples is v, then FFT will consider v � logðvÞ operations. 
Figure 2 shows the FFT calculation process of the raw vibration signals. The FFT of 
each sample is calculated, and according to the Nyquist theorem, half of the data points 
in the frequency spectrum of each sample are considered for use further in the 
experiments.

Fig. 1. Skimming frame process for generating samples.

Fig. 2. FFT process for preprocessing the RAW signal.



2.3 Transfer Learning

Developing a new network for a new task is a cumbersome and challenging process that 
adds an overhead to the fault diagnosis process. On the other hand, transfer learning 
makes the fault diagnosis process easy and robust [13]; it extracts valuable information 
from one working condition (task A) and applies that knowledge to the target working 
condition (task B) [4]. In general, transfer learning allows for learning from a vast 
number of past experiences, and then transferring that knowledge into different 
environments. In this research, first, the network learns distinct characteristics from 
massive amounts of source data in one working condition, and then passes that 
knowledge to a target task that has the same type of data but acquired under a different 
working condition. The main idea behind transfer learning is identifying a remarkable 
improvement regarding target scenarios from the knowledge that is gathered from the 
source scenario. Figure 3 illustrates the idea of transfer learning.

2.4 Overview of 1D CNN

A Convolution Neural Network (CNN) is one of the most effective supervised machine 
learning approaches [9]. In the current work, 1D CNN has been used in a transfer 
learning-based approach for machine fault diagnosis. CNN has a hierarchical 
architecture composed of convolutional, subsampling, and fully connected layers. 1D 
CNN is the same as conventional 2D CNN; the only difference is the dimension of the 
input data and filters used in the multiple layers. In 1D CNN, if the training data is M 
¼ ½m1; m2; . . .. . .mj�, then the number of training sample is j. Moreover, a target vector is 
N ¼ ½n1; n2; . . .. . .nj� which is associated with M � K layers constitute a CNN, then each 
layer in the network has FK features, which are used in the convolution and

Fig. 3. (a) A traditional machine learning approach is presented which has two independent
models for two different tasks; (b) a transfer learning approach is shown where the two tasks are
denoted as source task and target task and knowledge is transferred between the tasks.



subsampling processes [4]. If the sigmoid activation function is rð:Þ, the weight matrix 
between input and hidden layer is w1, the weight matrix between hidden and output 
layer is w2, the bias vector of the hidden layer is b1 and the output layer is b2, then the 
feed forward process will be denoted as follows:

P ¼ rðw1Mþ b1Þ ð2Þ

N ¼ rðw2Pþ b2Þ ð3Þ

N ¼ rðw2Pþ b2Þ ð4Þ

CNN is like an ordinary neural network that has adjustable weights and biases. In 
1D CNN if the input signal length is L0 

, then the input size is ð1 � L0 � 1Þ. As a result, the 
convolution layer will calculate the output of the neurons. In the proposed model, 32 1D 
filters have been considered in the convolution layer. After the convolution layer, a 
dropout layer is added to the network to avoid overfitting. The third layer in the network 
is max-pooling, which subsamples the data. The max-pooling layer is followed by a 
fully connected layer, which computes the class scores. Each neuron of the fully 
connected layer is connected to all the neurons in the previous layer. A stochastic 
gradient descent algorithm is used for the fine tuning of the network. A softmax 
classifier is added to the network for data classification. Figure 4 describes the overall 
architecture of the network.

2.5 Details of the Proposed Approach

The proposed transfer learning-based bearing fault diagnosis consists of two phases.
The first phase is the training phase of the network and the second is the testing phase
of the model by transferring the domain knowledge. In this research, two working
conditions are considered. First, the network is trained on the first working condition.

Fig. 4. Detail architecture of 1D CNN.



Then, the acquired knowledge is transferred to the second working condition. Figure 5 
illustrates an overall workflow of the proposed model. The steps of the training phase 
are as follows:

1. Required source data is collected for the first working condition.
2. The skimming frame technique is applied to generate multiple samples.
3. To each sample, a label is assigned, as is necessary for supervised learning.
4. Fast Fourier Transform (FFT) calculation of the raw vibration samples is performed

to obtain the frequency spectra of the signals.

Finally, the network (1D CNN) is trained using all samples from the training data,
and the weights of the trained model are saved for later use during the testing phase.

The Steps of the transferring phase are as follows:

1. As the working conditions are different, the data may contain atypical features and
labels.

2. Labels are defined for each sample.
3. The FFT is calculated.
4. 2% of data is utilized to build the network architecture according to the data labels

and dimensionality. The input size should be like the trained network, but the output
will be different because of additional new labels.

5. The parameters of the main network will be unchanged.
6. Finally, the classification accuracy will be calculated.

The proposed model is evaluated by comparing the results with that of a fault
diagnosis model where no preprocessing step is considered. Moreover, the results of
the proposed model are also compared with the model where transfer learning is not
used.

Fig. 5. Block diagram of the proposed model.



3 Experimental Setup

3.1 Dataset

To evaluate the proposed model, publicly available seeded fault bearing dataset by 
Case Western Reverse University was considered throughout the experiments. Drive 
end bearings were seeded with faults on the inner raceways, outer raceways, and rolling 
elements having a diameter of 0.007, 0.014, and 0.021 in. with the help of an electro-
discharge machine as shown in Fig. 6.

Fig. 6. Experimental set up by Case Western Reserve University [12].

Table 1. Details of the considered working conditions

Field name Working condition 1 Working condition 2

Fault diameter 0.007 in. 0.021 in.
Motor load 0 horse power (hp) 0 horse power (hp)
Motor speed 1797 rounds/minute 1797 rounds/minute
Number of fault types 3 5
Number of labels 4 6
Name of the labels Normal

Inner fault
Ball fault
Outer fault at center

Normal
Inner fault
Ball fault
Outer fault at center
Outer fault at orthogonal
Outer fault at oppositely

Utilized for Source task Target task



Thus, the dataset consists of an inner race fault, ball fault, and outer race fault 
signals under variable working conditions. Variable length vibration signals were 
recorded via an accelerometer attached to the housing of the motor close to the drive 
end bearing with a sampling data rate of 12,000 Hz. A dynamometer was used to 
generate different motor loads, ranging from 0 to 3 horsepower (hp). The placement 
and load zone on bearings create an impact on the vibration data of the outer race fault 
as it is stationary [12]. Details about the dataset and different working conditions are 
given in Table 1.

3.2 Result Analysis

The network is trained on the data from the first working condition. Table 1 shows that 
there are four types of signals associated with the health of the bearings for the first 
working condition. The four health states contain one normal and three faulty 
conditions. For each type, 3980 samples are considered. During the source training 
phase, the network gives 100% learning accuracy, while using 0.02% data for 
validation. The weights of the trained network are stored and transferred to the second 
working condition. For working condition 2, new labels are added to the dataset; thus, 
the output architecture of the network is modified. Therefore, from this working 
condition, 0.02%data is used to adjust the network architecture according to the new 
data. After the

Fig. 7. Classification accuracy comparison of second working model (transfer learning-based
model vs. without transfer learning).



To whether the preprocessing of the vibration signals has any impact on the 
performance of the proposed model, comparisons are made with the results of a 1D 
CNN that is trained on raw vibration signals. The training and testing approach of the 
network is identical to the proposed scheme: (1) train with the raw data of the first 
working condition, save, and then transfer the knowledge; (2) then test the model with 
the data from the second working condition. It is evident from Fig. 8 that with the same 
experimental set up, a preprocessing step can improve average classification accuracy of 
the model by at least 16%.

network adjustment, the model is tested with the data of the second working condition. 
In addition, a separate CNN is developed and tested with the data of the second 
working condition without using the transfer learning technique, and the results are 
compared with that of the proposed model.

From Fig. 7, we see that both experiments can achieve around 100% accuracy. It is 
observed that by adopting a transfer learning technique in the fault diagnosis model, 
better performance can be achieved for the second working model at an earlier stage. 
After 16 fine tuning epochs (t1), the network can give almost 100% accuracy. On the 
other hand, without using transfer learning technique, after 80 fine-tuning epochs (t2), 
the network exhibits similar accuracy. Hence, the two approaches can achieve same 
performance in a different time span. In Table 2, the label-wise performance is given. 
For normal and ball fault condition, the improvement is 0%. The significance of using 
transfer leaning in the proposed model can be observed in case of the inner fault with an 
accuracy improvement of 4.8%. Overall, a 1.23% improvement in the average 
classification accuracy is achieved through a transfer learning-based approach for 
bearing fault diagnosis. In short, through transfer learning, better performance can be 
achieved at an earlier stage as compared to the conventional network.

Table 2. Comparison of classification accuracies of different approaches

Labels Transfer learning Without transfer learning Improvements

Normal 100% 100% 0%
Inner fault 100% 95.2% 4.8%
Ball fault 100% 100% 0%
Outer fault at center 98.46% 98.13% 0.33%
Outer fault at orthogonal 100% 98.24% 1.76%
Outer fault at oppositely 99.54% 99.10% 0.44%
Overall 99.67% 98.45% 1.23%



Fig. 8. Classification accuracy of the proposed model using preprocessed data (FFT data) vs. 
RAW data.

4 Conclusion

This paper proposed a novel fault diagnosis approach for the bearings of a rotary 
machine using a 1D convolutional neural network (CNN)-based transfer learning 
technique. Moreover, a preprocessing step was added into the fault diagnosis pipeline, 
which consists of a frequency spectrum calculation of the vibration signals. The 
addition of a preprocessing step in the proposed model enhanced the overall 
performance by extracting useful information. The results demonstrated that the 
proposed method achieves a 99.67% accuracy by using vibration signals acquired 
form the bearings under different working conditions. The frequency spectrum 
calculation of the vibration signals improved the average accuracy of the proposed 
model by 16%. In the future, the presented work can be extended to build an automated 
online fault detection system.
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