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Abstract 

The processes that constitute the designs and implementations of AI systems such as self-driving cars, factory robots and so 
on have been mostly hand-engineered in the sense that the designers aim at giving the robots adequate knowledge of its 
world. This approach is not always efficient especially when the agent’s environment is unknown or too complex to be 
represented algorithmically. A truly autonomous agent can develop skills to enable it to succeed in such environments 
without giving it the ontological knowledge of the environment a priori. This paper seeks to review different notions of 
machine autonomy and presents a definition of autonomy and its attributes. The attributes of autonomy as presented in this 
paper are categorised into low-level and high-level attributes. The low-level attributes are the basic attributes that serve as 
the separating line between autonomous and other automated systems while the high-level attributes can serve as a 
taxonomic framework for ranking the degrees of autonomy of any system that has passed the low-level autonomy. The paper 
reviews some AI techniques as well as popular AI projects that focus on autonomous agent designs in order to identify the 
challenges of achieving a true autonomous system and suggest possible research directions.   

Keywords: Autonomous agent, Machine Autonomy, Automation, Robots, Artificial Intelligence, Learning.  

1 Introduction  

Autonomous machine intelligence has been a long time concern among roboticists and artificial intelligence researchers; 
however, there has not been a unifying definition of autonomy in artificial agents. Due to the severalties of its definitions, it 
is difficult to assess or rate the degree of autonomy of most disruptive and sophisticated systems such as self-driving cars, 
industrial robots or game playing agents. Importantly, the first step in building a truly autonomous system is the 
understanding of what it means for a system to be truly autonomous and what the attributes of a system that exhibits 
autonomy are. Having a coherent conceptual framework would help researchers know how much progress has been made in 
the syntheses of such systems. Some authors have presented autonomous system in a very broad sense that leaves no 
distinction between autonomy and automation. For example, Smithers et al [1] viewed the autonomous system as the act of 
building robots. In the same vein, Franklin [2] referred to a remotely controlled mobile robot as an autonomous system. The 
most popular view is the notion that autonomous robots are to interact with their environments without ongoing human 
intervention [3]. The use of the word ‘ongoing’ implies that even if the designer equips the robot a priori with all the 
prevailing knowledge it needs to operate in the environment it would still be labelled autonomous inasmuch as it is not 
assisted to perform its tasks after deployment. 

According to US National Institute of Standards and Technology (NIST) in [4], a system is fully autonomous if it is capable 
of achieving its goal within a defined scope without human interventions while adapting to operational and environmental 
conditions. The definition of the autonomous system here is in respect to a well-defined scope. Similarly, Harbers et al [5] 
classified robots, “which are able to perform well-constrained tasks such as surgery, driving on a highway, or vacuum 
cleaning” as being completely autonomous. It can be argued, however, that such systems are not completely autonomous. 
Autonomy is when these systems if introduced to an unknown scope or domain, given suitable sensors and actuators for that 
scope, without changing the algorithm in any way, learns how to handle the sensor signals, adapt their behaviours and act 
intelligibly. Bradshaw et al [6] posits, “since there is no entity that could perform all possible tasks in all possible 
circumstances; full autonomy does not exist?” This is true even for the most intelligent entity - human. Rich et al [7] defines 
artificial intelligence as “the study of how to make computers do things, which at the moment people do better”. This places 
human-level cognition as the benchmark for building artificial intelligence. Although the computer has outperformed 
humans in some tasks such as games and some perception tasks, it turns out that our understanding of how humans achieve 
their high degree of autonomy is paramount in the subject of autonomous systems. Roe et al [8] showed that the brain does 
not require different algorithms to perform different tasks. In their experiment, they rewired the brain of a ferret such that 
retinal inputs were routed to the auditory pathway. The result demonstrated that the auditory cortex learnt to process visual 
input after some time. This denotes that the brain is adaptive enough to respond to different forms of sensory data based on a 
single learning algorithm. In consonance to the preceding, there should be a single algorithm that could enable an 
autonomous agent to adapt to new situations given suitable sensors without having to teach it how to process and make sense 
from these sensors’ data. To achieve this in any artificial system requires that the system is able to exhibit some attributes of 
autonomy. This paper seeks to present a definition of machine autonomy and its attributes; and, based on this definition, to 
provide a review of some underpinning methods and a number of popular researches that aim at autonomous agents. Finally, 
the paper highlights some research gaps and suggests possible research directions. 
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2 Attributes of Machine Autonomy 

Leveraging on different viewpoints of different researchers on autonomy [9-11], this study considers the attributes of 
autonomy under two categories – the low-level and the high-level attributes. The low-level attributes are must-have for any 
autonomous system. They include perception, actuation, learning, context-awareness and decision-making. However, 
systems that possess only the aforementioned attributes are at the lowest level of autonomy. Conversely, if any of these 
attributes is missing in any system then such a system cannot be described as autonomous according to these definitions. In 
contrast, the high-level attributes of autonomy are more advanced attributes and they are the subject of numerous researches 
in autonomous systems in recent years. They include domain-independence, self-motivation, self-recovery and self-
identification of goals. These have been summarised in Table 1 and described in sections 2.1 and 2.2. 

Table 1. Attributes of machine autonomy 

Low-level Attributes High-level Attributes 
Learning Domain-independence 
Context-awareness Self-motivation 
Actuation Self-identification of goals 
Perception Self-recoverability 
Decision-making  

2.1 Low-level Attributes 

Perception. For an agent to make the right decision in its environment it requires information from the environment. 
Perception is the problem of analysing and representing sensory inputs from dedicated purpose sensors. All autonomous 
agents must have a means of perceiving their worlds and analysing observations to extract or filter relevant features that 
would enable them to make sense of the environment. Human agents are naturally equipped with these abilities. However, to 
enable an artificial agent to exhibit human-level perception is indeed a challenging task. Machine perception has attracted 
huge research attention. In recent times, there are remarkable contributions in computer vision, natural language processing, 
feature extraction and dimensionality reduction techniques due to the emergence of some powerful methods in deep learning 
and machine learning in general. 

Actuation. An agent requires a means of providing feedback to the world. Actuation is the ability of an agent to cause a 
change in both its environment state and/or its internal state. Actuators often “convert other sources of energy such as 
electric energy, hydraulic fluid or pneumatic pressure to mechanical motion” [12]. The motion is often in response to 
observations in the agent’s environment. Every autonomous agent requires actuators to enable it to act suitably in its 
environment. Lomonova [12] presents a detailed review of the state-of-the-art actuation systems.  

Learning. A learning agent has the ability to make sense from sensory inputs. The science of designing such algorithms is 
machine learning. Machine learning is an important aspect of computing due to its vast applications across domains. A 
learning agent can engage in supervised, unsupervised or reinforcement learning depending on the kind of environment it is 
to operate in and the nature of data that are available to it. A supervised learning agent requires labelled data points to derive 
a predictive model of its environment. This is different for unsupervised learning technique in which the agent tries to figure 
out internal structure within unlabelled dataset. The most applied of these three in interactional agent design is the 
reinforcement learning technique in which an agent makes decisions using unlabelled data points or observations depending 
on some reward function. Even though learning is one of the necessary attributes of machine autonomy not all learning 
agents are autonomous. 

Context-awareness. Context is an alternative term for the state of an agent’s environment. Context-awareness or 
situational-awareness is the ability of an agent to sense, interpret and adapt to the current context of its environment [13-15]. 
A context-aware agent has perception and learning abilities and can keep track of a dynamic environment. An autonomous 
agent should be context-aware i.e. it should have the ability to sense and interpret in real time the prevailing state of its 
environment and consequently, enabling learning to be contextually relevant.  

Decision-making. An important attribute of any computing system is its ability to make decisions. Decision-making is the 
ability of an agent to map context or perceptual information to action. An intelligent agent should be able to select best 
actions for all situations. However, decision-making has been implemented in different ways. While some agents depend on 
hardcoded lookup tables to make their decisions, state-of-the-art techniques are concerned with giving agents the ability to 
learn optimal and robust decision-making policies. The approach of using hardcoded lookup tables is also referred to as 
symbolic artificial intelligence or GOFAI (Good Old-Fashioned Artificial Intelligence) [16] while the more recent approach 
is in non-symbolic artificial intelligence. However, it is difficult to achieve an autonomous GOFAI agent.  
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2.2  High-level Attributes  

Domain-independence. Domain-independent agents do not require the ontological knowledge of their environments at 
design time to succeed in the environment. This would enable the system to succeed even if the sensors’ values change 
unpredictably [17].The traditional approach of designing the agent whereby the engineer tries to figure out and account for 
all the possible problems the agent could encounter in the environment, either by hardcoding it or through a task-specific 
value system, has a huge limitation. The agent would certainly fail woefully if any kind of situation the engineer did not 
foresee surfaces [18]. A domain-independent algorithm would enable the robot to cope autonomously with any form of 
environment when given suitable sensors and actuators to sense observations from the environment and act based on the 
observations using the actuators. 

Self-motivation. For an autonomous system to be able to handle an array of interesting tasks as they occur in the 
environment it should have some level of self-motivation. Typically, intelligent agents are given task-specific knowledge in 
the form of utility or reinforcement to drive their actions towards achieving a predefined goal. One of the drawbacks of this 
approach is that the designer must understand the environment and decide the best way to assign values to states and/or 
actions to enable the agent to act efficiently in the environment. The degree of autonomy of an explicit reward-driven agent 
would be low since the agent will not be able to adjust its behaviour to handle new interesting states in its environment 
unless the value system is modified to capture the emerging interests. Assuming a robot is designed to move from a point A 
to a point B in a navigational environment and the reward function is such that the robot earns a positive reward for avoiding 
an obstacle and a negative reward for bumping into it.  Supposing an unforeseen situation occurs and an obstacle falls on the 
path to the robot’s goal such that the only way this robot can make it to the goal is to displace the obstacle by bumping into 
it; the robot may not see this as the right thing to do since it is not captured in its reward function. Some researchers have 
approached this by implementing ∈-greedy policies which enables the robot to perform some random action with small 
probability, ∈. However, a more promising technique is to provide autonomous agents with some degree of  self-motivation. 
Different terms have been used to refer to self-motivation in the literature. Some researchers have viewed self-motivation as 
intrinsic motivation [19-22], others as artificial curiosity [23-25]while Georgeon et al [26] proposed interactional 
motivation. However, the key idea of self-motivation is to avoid explicit assignments of values to states or state-action 
pairs as often done in traditional reinforcement learning. A self-motivated agent is able to act intelligibly in an environment 
without being hardcoded or being given a task-specific value system. Such an agent uses curiosity to handle situations in 
the environment, while engaging in an open-ended or lifelong learning [27]. 

Self-recovery. An interesting application of autonomous agents is the use of robots in environments that are extremely 
hazardous to humans. The aim of deploying such robots instead of humans in these environments would be defeated if a 
human technician has to be physically present in the environment to troubleshoot and repair the robots upon failure or 
reprogram the robot to cope if the environment or the goal changes unpredictably. This necessitates the need for a self-
recovery or self-programming mechanisms in autonomous agents. Self-recovery can be proactive, reactive or a fall-back 
mechanism. In proactive self-recovery, the agent is able to foresee possible causes of failure and devise a solution to abate it. 
Reactive self-recovery allows the agent to recover from failure after it has occurred. Chaput [18] proposed a fall-back 
mechanism by which an agent learns different hierarchies of knowledge such that if it encounters a completely strange 
situation that its higher-level knowledge cannot handle the agent falls back to its lower hierarchy of knowledge and starts 
building new knowledge that can handle the new situation from there. A self-recovery agent must have the ability to self-
analyse itself based on the prevailing situation and build knowledge from the outcome of these analyses. The knowledge 
gathered in the course of the self-analyses may result in the autonomous reconfiguration of the agent’s intelligence 
mechanism and eventually, an emergent behaviour to suit the situation. Such behaviours may not be explicitly traceable to 
the agent’s program. This has also been referred to as self-programming [28-30] 

Self-identification of goal.  Goal-oriented agents or robots are the commonest kinds of robots in the literature. Typically, 
these robots are given goal information either by hardcoding them or by using suitable value systems.  Hardcoding goals in 
an agent program demands that the designer understands, and can formalise, the model of the environment with respect to 
the agent’s actions. This approach will probably fail if this environment is not predictable or known to the designer. For 
example, it is difficult to hardcode in a self-driving car what constitutes safe driving for every scenario on the road.  
Furthermore, techniques like the model-free reinforcement learning have successfully applied value systems in numerous 
applications without the knowledge of transition dynamics of the environment. Nevertheless, it requires prior understanding 
of the environment and possible actions of the agent in order to be able to design a suitable reward function that would 
enable the agent to achieve specified goals. To avoid this challenge, there is a need for mechanisms that would enable the 
agent to self-identify goals and learn suitable skills to enable it to realise them. Simply put, an agent is able to self-identify 
goals in a given environment if it can develop suitable skills to enable it to achieve a goal that is not explicitly defined in the 
environment. Although efforts have been made in affordance learning [31-33] and intrinsically motivated learning research 
[20], self-identification of a goal is still a huge challenge in complex real world tasks.    

3 AI Approaches to Autonomous Agents 

While autonomy is not possible in symbolic or GOFAI agents, machine learning, evolutionary techniques and developmental 
artificial intelligence have been widely applied in numerous autonomous agent research. Despite their promising 
characteristics, none of these techniques has been able to yield a truly autonomous outcome due to some limitations. These 
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techniques as well as their strengths and weaknesses, in the context of machine autonomy, are discussed in this section. 
Machine learning is a broad term for techniques that make sense from data. They include supervised, unsupervised and 
reinforcement learning. Moreover, other techniques have emerged from the diverse ways of implementing the basic machine 
learning methods. These techniques include active learning and transfer learning. Nonetheless, instead of considering the 
broad family of machine learning as a topic, these techniques are reviewed individually since they are suitable for different 
kinds of problems and their strengths and weaknesses are equally different.  

3.1 Supervised Learning  

A supervised learning agent learns a function that maps input to output given some example of input-output pairs [34,35]. In 
supervised learning, each data point in the training set is labelled. The learning algorithms analyse the training data and 
infers a function that can return the corresponding output for a given input. A supervised learning task is solved when the 
resulting function is able to generalise data points that are not in the training set, otherwise the function is said to overfit. 
Arrays of solutions have been devised to minimise overfitting during training. These include early stopping [34], cross-
validation [36], regularisation [34,37] and dropout technique [38]. Supervised learning algorithms are categorised as 
classification or regression techniques.  

Classification is a form of supervised learning task in which the training samples belong to a finite set of classes. A classifier 
f(x) is trained to predict the class y, belonging to a finite set of classes, to which an independent input feature vector x 
belongs [39]. Training the classifier requires a labelled training set, (x(୧), y(୧))୧ୀଵ

୫ ; where m is the size of the dataset and 
(x(୧), y(୧)) is the i − th training example. The label y(୧) for all i ∈ {1,2, … , m}is discrete.  Regular classification methods in 
the literature include k-Nearest Neighbour (KNN), logistic regression, Support Vector Machine (SVM), decision tree, 
random forest, naïve Bayes and Linear Discriminant Analysis (LDA).  

In contrast, regression is the task of approximating a function f(x) from an independent input feature vector x to a continuous 
output variable, y. Similar to a classifier, training the regressor, f(x),requires a labelled training set, (x(୧), y(୧))୧ୀଵ

୫  ; where m 
is the size of the dataset and (x(୧), y(୧)) is the ith training example. However, the label y(୧) for all i ∈ {1,2, … , m} is a real-
value, such as an integer or floating-point value. Commonly used regression methods include linear regression, Linear 
Weighted Regression (LWR), Artificial Neural Networks (ANN), ridge regression and Support Vector Regression (SVR).   

Some applications of supervised learning in autonomous agent design. Supervised learning has been largely 
applied in robotics and the development of other AI agents through imitation learning[40,41]. Imitation learning techniques 
give an agent the ability to learn a policy using a training set obtained from an expert’s demonstrations in a similar task [39]. 
Direct imitation learning is also known as behavioural cloning. Two major problem of direct imitation learning are the 
correspondence problem [42] and the difficulty for an imitation learning agent to generalise to situations that are not 
contained in the demonstration dataset. Correspondence problem occurs because of the difference in the architecture, 
skeleton or degrees of freedom between a human demonstrator and a robot. These two challenges have been better handled 
using indirect imitation learning or inverse reinforcement learning [42] whereby the agent learns the objectives behind the 
expert’s action in form of a reward function and uses it along with its own experience to improve its behaviours.  

The generalisation ability of some supervised learning algorithm such as the deep neural network has helped in improving 
perceptual tasks in high dimensional feature space. For example, deep learning has helped to improve reinforcement learning 
in video game playing agents due to its generalisation potential [43] and ability to scale to multi-dimensional feature space 
[44].  

Table 2. Strengths and weaknesses of supervised learning 

Strengths Weaknesses 
Supervised learning is a suitable learning technique when a 
dataset of sensory inputs and the corresponding desirable 
outputs is available.  
 

Supervised learning algorithms are suitable only when there 
is a labelled dataset. In the absence of labelled samples, 
supervised learning cannot be used. 
 

Most supervised learning algorithms have better 
generalisation than other methods. 

Some supervised learning algorithms such as deep learning 
algorithms require large amounts of data and cannot 
generalise to simple problems [45]. 
 

Supervised learning algorithms such as ANN, SVM with 
kernel trick, decision tree, random forest and KNN yield 
non-linear models i.e. they fit into situations where a linear 
hyperplane is not able to represent the approximation 
function or the decision boundary for the training samples. 
This is a huge advantage because real world tasks are often 
non-linear.  
 

While the knowledge representations in some supervised 
learning algorithms such as decision trees and naïve Bayes 
algorithms are transparent, those of more sophisticated and 
powerful techniques such as ANN, SVM, random forest and 
deep learning are not interpretable and are considered black 
box in nature.   
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3.2 Unsupervised Learning 

An unsupervised learning agent learns a pattern in an unlabelled dataset [34].  Unsupervised learning tasks are implemented 
as clustering techniques, such as k-means, self-organising maps (SOM), adaptive resonance theory (ART), hierarchical 
models or mixture models. A clustering algorithm is able to automatically figure out the internal structure of a set of inputs 
without any form of feedback. 

Other approaches to unsupervised learning include the Hidden Markov Model (HMM) [46], blind source separation (BSS) 
[47] and association rule mining [48]. In HMM, the system is assumed to be a Markov process with hidden states while BSS 
techniques are feature extraction techniques for dimensionality reduction; examples include principal component 
analysis(PCA), independent component analysis (ICA), non-negative matrix factorization[47] and singular value 
decomposition. Association rule mining is popular for “discovering interesting relations among variables in a large database” 
[48]. Common algorithms used for association rule mining include FP-growth algorithm, a priori algorithm and Eclat 
algorithm [49].  

Some applications of unsupervised learning in autonomous agent design. Unsupervised learning algorithms like 
PCA, SOM, ICA and k-means algorithms are often applied in dimensionality reduction tasks in multimodal sensors 
tasks(50).Furthermore, some attempts have been made in implementing the forward kinematics of a robot using 
unsupervised learning algorithms [51,52]. Chaput in [51] implemented a self-recovery mechanism, using a hierarchy of 
SOMs, which enables a robot to fall back to a lower level of knowledge if its higher-level knowledge cannot handle a 
situation in the environment.  

Table 3.  Strengths and weaknesses of unsupervised learning 

Strengths Weaknesses 
They are the most suitable approach to pattern recognition 
when there is no domain knowledge. 
 

It is difficult to decide the correct output or agent action 
given a set of unlabelled inputs or observations. 
 

They resemble learning in humans and animals[53]more 
than the supervised learning techniques.  
 

Evaluation of unsupervised learning algorithms is difficult 
unless there are some labelled samples so that the clustering 
can be interpreted.  
 

These techniques are often used as data quantisation and 
dimensionality reduction techniques[54-56] and they have 
been vastly applied in robotics [57-59].  
 

Some unsupervised learning techniques require some 
hyperparameters to be chosen a priori before clustering data 
points. For example, k-means algorithm requires that the 
number of cluster centres or centroids, k, is chosen correctly.  
 

 

 

3.3 Reinforcement Learning  

Reinforcement learning differs from the supervised and unsupervised learning in the sense that it is a kind of learning 
whereby an agent learns an optimal policy for sequential decision-making by interacting with its environment in a trial and 
error fashion [43,60,61]. A reinforcement learning agent receives “a state s୲, from a state space S,  at time t and selects an 
action a୲ from an action space A, following a policy π(a୲|s୲), obtains a reward r୲, and transitions to next state s୲ାଵ, in 
accordance with the model of the environmentT(s୲ାଵ,r୲|s୲, a୲)” [43,60,61]. The goal of the agent is to maximise expected 
long-term discounted rewards or the expectation of long-term return over a horizon (episodic or continual). The return is 
expressed as R୲ =  ∑ γ୩ஶ

୩ୀଵ r୲ା୩, where γ ∈ (0,1] is the discount factor.  

For the reinforcement-learning agent to choose the best action a in any state s it must have some function that predicts the 
measure of how good each state, or state-action pair, is. This function is called the value function. The state value function 
v(s) =  E[R|s] is the expected return following policy π starting from state s while the action-value function Q(s, a) =
 E[R|s, a, π] is the expected return of taking action a in state s, then, following policy π. The goal of a reinforcement learning 
agent is to achieve an optimal policyπ∗. The optimal policy π∗ chooses action from Q∗

(s, . ) or V∗(s) such that the value 
function is maximised at each state s. Reinforcement learning is the problem of arriving at the optimal policy for a particular 
task. Assuming the environment dynamics or model is known, two basic approaches to deriving optimal policy are value 
iteration and policy iteration. This reinforcement learning problem setting is referred to as model-based reinforcement 
learning. Methods such as the Monte Carlo methods, temporal difference TD and TD(λ) learnings are model-free 
reinforcement learning. They do not require the environment dynamics to arrive at the optimal policy for any given task.  
Model-free reinforcement learning is the basis for algorithms like Q-learning [62] and SARSA [60] algorithms which have 
been widely applied in the literature. To handle generalisation and memory issues reinforcement learning techniques are 
combined with function approximation such as the least square regression, artificial neural networks, deep learning and so 
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on. This, especially function approximation with deep learning, has improved the applications of reinforcement learning 
across domains. In addition, methods that do not care about value function in realising the policy π has equally emerged. 
These methods are generally called policy gradient methods. An example of a policy gradient method is the REINFORCE 
algorithm. Likewise, the actor-critic method combines policy iteration, value iteration and policy gradient. This has been 
widely applied in practice. See [61] for detailed explanations of reinforcement techniques. 

Some applications of reinforcement learning in autonomous agent design. Reinforcement learning is one of the 
most applied techniques in autonomous agent designs due to its ability to allow an agent to improve its behaviour through 
interactions with the environment. A popular application of reinforcement learning is in the game industry. For example, 
reinforcement learning was applied in the development of AlphaGo Low, which unlike AlphaGo, the first agent to beat a 
world Go champion, acquired a superhuman skill in difficult domains, starting tabula rasa. AlphaGo Low beat AlphaGo 
100-0 in the game of Go [63]. Reinforcement learning has equally been applied in real life robots such as pancake flipping 
task, bipedal walking energy minimisation task and an archery-based aiming task [64]. Real world applications using tabula 
rasa reinforcement learning can be time consuming and difficult; as such most real world reinforcement learning 
applications rely on imitation learning and other techniques to hasten the speed of learning.  

Table 4. Strengths and weaknesses of reinforcement learning 

Strengths Weaknesses 
A reinforcement learning agent does not need labelled 
dataset like supervised learning methods. 
 

Adequate exploration of the state-action space is required for 
the agent to have enough experience and knowledge from 
the environment. This makes reinforcement learning 
impracticable for most real world tasks. 
 

A reinforcement learning agent is able to learn 
synchronously through interaction with the environment. 
 

Adequate exploration of the state-action space is required for 
the agent to have enough experience and knowledge from 
the environment. This makes reinforcement learning 
impracticable for most real world tasks. 
 

Model-free reinforcement learning methods do not need the 
transition dynamics of the environment in order to be 
effective. 
 

It is difficult to define the reward function for some real 
world domain [65]. 
 

 Sparse and delayed reward can be a problem in several 
cases.  
 

 

3.4 Active Learning  

An active learning agent tries to learn a model using a dataset of labelled training samples. It estimates how confident the 
learned model is in predicting the output of a set of the training samples in the unlabelled dataset. The agent queries human 
experts for the correct outputs of the unlabelled data points which have a low confidence estimate as the case may be. The 
pool of the labelled dataset is updated with the new input-output pairs and learning continues. Several techniques exist in the 
literature for implementing active learning [66,67].  

Some applications of active learning in autonomous agent design. Active learning is often applied in situations 
where there are limited annotated demonstration dataset for outright imitation learning. It has been employed to improve 
imitation learning in 3D navigation tasks [68] in MASH simulator [69]. In [70], active learning for outdoor obstacle 
detection in a mobile robot using a dataset with severely unbalanced class priors was demonstrated. 

Table 5. Strengths and weaknesses of active learning 

 

Strengths Weaknesses 
It fits into situations where there are few labelled data and 
some unlabelled data. 
 

It requires active participation of a human expert throughout 
the training and testing process  

It is less expensive and less time consuming than supervised 
learning in situations where an experienced human annotator 
has to label all training and testing samples. 
 

The agent environment must be known, accessible, 
understandable and interpretable to the human expert. 
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3.5 Transfer Learning  

Transfer learning is a learning paradigm that allows the use of an already trained model as a starting point to learn a new 
task. Transfer learning is defined in [71] thus: “Given a source domain Dୱ and learning task Tୱ, a target domain D and 
learning task T, transfer learning aims to help improve the learning of the target predictive function f(. ) in D using the 
knowledge in Dୱ and Tୱ, where Dୱ  ≠  D , or  Tୱ  ≠  T”. In the case where Dୱ  ≠  D holds, then at least one of the 
following is true: (i.) the domains are of different feature spaces; (ii.) probability distributions of the domains are different. 
In the case where Tୱ  ≠  T holds, then at least one of the following is true: (i.) the label spaces are different; (ii.) predictive 
functions are different. The relevance of transfer learning is that samples are difficult and costly to acquire in most real world 
problems. Furthermore, it could be more efficient to build knowledge for a new task by tuning an existing knowledge [71].  
For example, in [72] the knowledge for solving a simple version of a problem is transferred to a more complex one – transfer 
learning from 2D to 3D mountain car problem; transfer learning from a Mario game without enemies to a Mario game with 
enemies.  More in-depth reviews of transfer learning techniques are provided in [71,73,74]. 

Some applications of transfer learning in autonomous agent design. Transfer learning has been applied in [75] to 
significantly speed up and improve asymptotic performance of reinforcement learning in a physical robot. Kira [76] 
demonstrated that learning can be successfully sped up between two heterogeneous robots utilizing different sensors and 
representations by making them transfer support vector machine (SVM) classifiers among each other. Large datasets are 
often required in several applications of deep convolutional neural networks (CNN). In most cases, knowledge can be 
transferred from one domain to another by reusing pre-trained convolution layers. In [77], this technique is applied for 
synthetic aperture radar (SAR) target classification with limited labelled data.  

Table 6. Strengths and weaknesses of transfer learning 

Strengths Weaknesses 
Transfer learning may speed up learning in a new domain 
using experiences from a different but somehow similar 
domain.   
 

Transfer learning may not be an efficient approach when the 
type of data in the source domain and those from the target 
domain  are too dissimilar. 
 

A transfer learning agent does not require a large amount of 
experiences in the target domain. 
 

There is no standard way of knowing the size of datasets 
both in the source and target domains for which transfer 
learning is suitable. 
 

3.6 Evolutionary Robotics  

Evolutionary robotics is a methodology towards autonomous robot development that leverages evolutionary computation, a 
family of techniques that incorporates principles from biological population genetics to perform search, optimisation, and 
machine learning [78]. Popular evolutionary computation techniques are genetic algorithms [79], evolutionary strategy [80] 
and genetic programming [81]. The general idea of evolutionary robotics is to initialise a population of candidate controllers 
or policies for the robot. After each iteration, the controllers are modified according to a fitness function using some genetic 
operators such as mutation, crossover and selection of fitter candidates. Fitness function is a metric that reflects the desired 
performance for the task [78]. A detailed survey and analyses of fitness functions often applied in evolutionary robotics is 
presented in [82].  A candidate controller may represent a neural network, a collection of rules or a collection of parameter 
settings [78]. 

Some applications of evolutionary robotics in autonomous agent design. Evolutionary robotic techniques have 
been widely applied in some current robotics research [83]. For example, deep neuroevolution, an algorithm that trains a 
deep neural network using genetic algorithms, has competed with some state-of-the-art algorithms for deep reinforcement 
learning such as deep Q-network (DQN), asynchronous advantage actor-critic (A3C) and Evolution strategies (ES) in 
challenging reinforcement learning tasks [84]. The paper reports that deep neuroevolution performed faster than the other 
three algorithms.  

Table 7. Strengths and weaknesses of evolutionary robotics 

Strengths Weaknesses 
Evolutionary techniques are adaptive and they are robust to 
changes in an agent environment. 
 

Evolutionary robotics techniques require fitness function, 
which is often difficult to craft for most tasks. 
 

Evolutionary robotics is a suitable approach towards 
autonomous coordinated and cooperative multi-agent 
systems[85, 86]. 
 

Fitness function is always task-specific. 
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It applies to a wide variety of problems i.e. supervised, 
unsupervised and reinforcement learning problems. 
 

Training evolutionary algorithms can be computationally 
intensive depending on the task. 
 

 

3.7 Developmental Artificial Intelligence  

Developmental approach to autonomous systems seeks to replicate infant cognition in artificial systems. This term is often 
used interchangeably as developmental robotics, autonomous mental development or epigenetic robotics in the literature. In 
[27] developmental robotics is defined as “an interdisciplinary approach to the autonomous design of behavioural and 
cognitive capabilities in artificial agents that takes direct inspiration from the developmental principles and mechanisms 
observed in the natural cognitive system of children”. The motivation of developmental artificial intelligence is in line with 
Turing’s idea that “it is easier to build an artificial baby and train it to maturity than trying to build and simulate an adult 
mind” [87]. In addition to Turing’s idea, several works in developmental psychology especially those by Piaget have 
contributed to the basis for research in developmental artificial intelligence [88,89]. Fundamentally, the developmental 
artificial intelligence approach seeks to achieve an autonomously open-ended learning driven by intrinsic motivation or 
artificial curiosity in a way similar to how human infants learn. Given primitive sensors, motors, and a suitable learning 
algorithm without any prior knowledge of its environment, a developmental agent should be able to bootstrap to maturity out 
of its own curiosity leading to self-exploration in the environment. Extensive surveys of developmental artificial intelligence 
are provided in [27, 90-92]. 

Some applications of developmental artificial intelligence in autonomous agent design. In [93], intelligent 
adaptive curiosity, an intrinsic motivation mechanism, was used to teach a real robot how to manipulate objects on a baby 
play mat in such  a way that maximises its learning progress. Artificial curiosity has been used to improve reinforcement 
learning for motion planning on real world humanoids [23]. 

Table 8. Strengths and weaknesses of developmental artificial intelligence 

Strengths Weaknesses 
It makes use of computational models of curiosity, which 
could enable an agent to explore its environment intelligibly. 
 

It is difficult to train a completely self-motivated agent. 
 

Developmental agents learn in an open-ended manner and 
are able to adapt to changes in the environment. 
 

Developmental artificial intelligence employs techniques 
from other methods like reinforcement learning, 
evolutionary algorithms, etc. and may suffer the inherent 
weaknesses of these methods. 
 

3.8 Summary 

Overall, each of these methods has inherent weaknesses that have made them not suitable for realising full autonomy. 
However, researchers have adopted synergies of algorithms in an attempt towards developing a true autonomous agent. For 
example, deep neural networks is combined with reinforcement learning in deep reinforcement learning; deep learning has 
been combined with evolutionary technique in deep neuroevolution techniques; artificial curiosity as studied in 
developmental robotics has been integrated with reinforcement learning while active learning has been used with deep 
imitation learning. Although all of these current methods appear promising, they are still not able to realise full autonomy 
according to the definition given in this paper. This is largely due to over reliance of these algorithms on externally crafted 
motivation functions, a human expert experience or domain-specificity of the techniques. The following section presents 
detailed reviews of popular research papers that have implemented these techniques. 

4 Review of Selected Papers 

This section considers applications of the techniques or combination of techniques studied in section 3. In order to keep the 
review as succinct as possible, the studies are summarised in table 10. However, the works are evaluated only on the basis of 
the high-level attributes desired in the paper. Autonomous system technologies apply to different kinds of systems; 
nevertheless, the review in this paper considers only embodied and situated agents, either real world robots or simulated 
agents, which have demonstrated at least all the low-level attributes. The last column of table 10 gives comments for cases to 
give further details. The papers are reviewed based on the high-level attributes presented in section 2.2. Table 9 recaps the 
attributes and presents their abbreviations as used in table 10.  

 



9 
 

Table 9. Meanings of abbreviations used in Table 10 

Abbreviation Meaning  Definition 

 
DI 

Domain-independence Domain-independence is the ability of an agent to cope autonomously with any 
environment if given suitable sensors and actuators for that environment without being 
reprogrammed by the designer.  
 

SM Self-motivation Self-motivation enables an agent to act intelligibly in an environment without being 
hardcoded or being given a task-specific value system. Such an agent uses curiosity to 
handle situations in the environment, while engaging in an open-ended or lifelong 
learning 

SR Self-recovery Self-recovery is the ability of an agent to self-analyse and reconfigure itself so as to 
emerge behaviours that are suitable to the prevailing situations in a changing 
environment.  

SIG Self-identification of 
goal 

Self-identification of goal is an agent’s ability to develop suitable skills to enable it 
achieve a goal that is not explicitly defined in the environment 
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Table 10. Summary of related literatures. 

Citation Aim Method(s) Contribution Environment Attributes demonstrated by 
the agent 

Comment 

DI SM SR SIG 

[68] To improve the ability 
of imitation learning to 
generalise and learn 
from raw high 
dimensional data. 

Deep imitation 
learning    + 

Active learning 

An approach towards 
improving generalisation 
in imitation learning.  

Simulated 
environment 

X X X X The agent was demonstrated in four different 
environments; however, it completely depends on expert 
demonstrations to learn how to succeed in each of these 
environments. This is in contrast to our definition of 
domain-independence. Other attributes are not 
demonstrated.  

[84] To demonstrate that a 
combination of deep 
learning and genetic 
algorithms can compete 
with deep reinforcement 
learning algorithms in 
video games 

Deep 
Neuroevolution + 
Novelty search 

A combination of deep 
neural networks and 
genetic algorithms as an 
alternative for deep 
reinforcement learning. 
Moreover, the paper 
demonstrated how novelty 
search can improve and 
hasten learning. 

Simulated 
environment 

√ √ X X The same algorithm was applied in different domains 
without an account of any change in the algorithm. Self-
motivation was implemented as a novelty search, 
although there was no demonstration on how the agent 
would perform on the task using only its self-motivation 
without external reward.  

[94] To implement 
autonomous mobile 
robot capable of solving 
a spiral maze. 

Reinforcement 
learning  

Novel concepts called 
health and sub-health 
states were suggested 

Real world 
environment 

X X X X The robot’s behaviours were entirely dependent on the 
reward function specified by the experimenter; so, there 
was no proof of self-motivation. Moreover, there was no 
attempt to demonstrate other attributes. 

[95] The paper develops a 
novel strategy that 
teaches an agent to 
learn control policies 
that are suitable for 
succeeding in a range of 
Atari 2600 games. 

Deep 
reinforcement 
learning 

A strategy for learning 
human-level control 
policies from high 
dimensional visual input.  

Simulated 
environment 

√ X X X It was demonstrated that the agent learnt how to play 
seven Atari 2600 games with no adjustment of the 
architecture or learning algorithm. This meets our 
definition of domain-independence. However, other 
attributes were not demonstrated. 
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Citation Aim Method(s) Contribution Environment Attributes demonstrated by 
the agent 

Comment 

DI SM SR SIG 

[96] To demonstrate that 
intrinsically motivated 
hierarchical reinforcement 
learning can enable an 
artificial agent to learn 
reusable skills that are 
needed for competent 
autonomy 

Intrinsic 
motivation 

         + 

Hierarchical 
reinforcement 
learning 

The combination of 
intrinsic motivation with 
reinforcement learning 

Simulated 
environment 

X √ X X The paper combines both intrinsic (self) and extrinsic 
(external) rewards or motivations. The intrinsic reward 
motivated the agent to learn complicated subtasks leading 
to the goal. The extrinsic motivation is activated after the 
agent attained the goal state. Furthermore, the paper did 
not show if the algorithm could adapt to a new 
environment, or a change in the original environment, 
without a manual alteration of the agent program or the 
reward system. 

[97] The develops as strategy 
that helps to train a robot to 
be able interact with an 
unknown environment. 

Evolutionary 
algorithms 

A novel chromosome 
encoding for mobile 
robotics as well as the 
simulator for this task was 
achieved. 

Simulated and 
real world 
environments 

X X X X A task-specific fitness function was crafted for the agent. 
The fitness function is not generic enough and would 
require to be adapted to any new environment if the agent 
must behave as desired by the designer. 

[98] To implement a curiosity-
based intrinsic reward that 
enables an agent to cope 
with high dimensional 
visual inputs.  

Intrinsic 
Curiosity 
model + 
reinforcement 
learning 
(A3C) 

An intrinsic reward signal 
that “scales to high-
dimensional continuous 
state spaces like images, 
bypasses the hard 
problem of predicting 
pixels and is unaffected 
by the unpredictable 
aspects of the 
environment that do not 
affect the agent”[98]. 

 

Simulated 
Environments 

√ √ X √ The work in this paper tried to show the possibility of 
achieving meaningful behaviour using only curiosity as 
reward. However, the agent progress towards the goal 
was not yet significant (the agent made a 30% progress in 
level 1 of the game) but there was a proof of the 
possibility of purely curiosity-driven learning agent. 
Moreover, an agent pre-trained at the level 1 of the super 
Mario bros using only intrinsic motivation as reward 
performs better in level 2 when fine-tuned than an agent 
that is trained from the scratch in level 2 using only 
curiosity.  
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5 Discussions 

Table 10 summarises diverse techniques towards realisations of intelligent systems. However, these methods were 
implemented in different environments and/or for tasks other than true autonomous systems, as such they cannot be properly 
compared against each other. To be able to review these approaches for autonomy, the high-level attributes of autonomy, as 
defined in this paper, were used as the framework for the review. The works in the papers already satisfy all the low-level 
attributes and as such, using those attributes was not necessary for this review.  

Each of these methods professes to be good in the task for which it is designed, however, none of them has demonstrated all 
the high-level attributes of autonomy. Based on our review, the four best performing methods where adopted for further 
discussions. These are  the deep neuroevolution with novelty search(DNNS)[84] ; deep reinforcement learning(DRL)[95] ; 
Intrinsically motivated hierarchical reinforcement learning(IMHRL)[96]; and curiosity-driven reinforcement 
learning(CDRL)[98]. DNNS, DRL and CDRL proved to generalise in more than one environment. However, these 
environments are closely related in terms of the kind of input signals that the agents receive from the environments and the 
values/scores the agents try to optimise. Further work is required to ensure that an agent generalises in a variety of significantly 
unrelated environments. 

Although self-motivation was demonstrated by DNNS, IMHRL and CDRL, CDRL demonstrated how much progress an agent 
can make based on purely intrinsic motivation while other techniques explored the improvements in the agents’ behaviours 
when intrinsic and extrinsic motivations are combined. In DNNS, extrinsic motivation is modelled as a fitness function as is 
typical with evolutionary techniques while IMHRL used external reward signal for the extrinsic motivation. Using only 
intrinsic motivation, the CDRL agent was able to make 30% progress in the level 1 of a super Mario game. This was 
impressive being the first attempt towards a purely curiosity-driven agent in a game environment. However, it requires an 
improvement.  

According to the definition of self-recovery in this paper, none of the techniques demonstrated this attribute. Apart from 
IMHRL, which was tested in a simple playground environment, the other three were demonstrated in Open AI gym 
environments. These environments are less flexible to demonstrate self-recoverability of these techniques; as such, a more 
flexible environment is required for this evaluation. 

Amongst the four agents only CDRL demonstrated self-identification of goal. The agent learnt how to navigate the vizdoom 
environment using only the intrinsic motivation. Similarly, the agent learnt how to make progress while killing the enemies in 
about 30% of level 1 of the super Mario game. However, there is still room for improvement in more complex and real world 
environments such as the real world self-driving car or industrial robots in unstructured environments. 

6 Conclusion and Research Directions 

The paper has reviewed different notions of autonomy and has presented a schema for the classification of autonomy using 
multidimensional attributes of autonomy. The attributes of machine autonomy presented in the paper are classified into two 
major groups – low-level and high-level autonomy. The low-level autonomy constitutes the basic attributes that any 
autonomous system must have while the high-level attributes are bases for evaluating the system’s degree of autonomy. It is 
challenging to think of how best to evaluate any machine’s autonomy based on these attributes. Future work should consider 
creating evaluation metrics for these attributes. 

Different AI approaches to autonomous agent design were reviewed and their key challenges highlighted. It is clear that none 
of the techniques is able to realise all the attributes of autonomy as defined in this paper. Further work is therefore required in 
developing a single algorithm that would enable an embodied tabula rasa, equipped with suitable sensors and actuators, to 
acquire adequate knowledge to succeed in different environments by adapting and reprogramming itself without any form of 
human guidance.  

Furthermore, most researches in autonomous agents are often experimented in a simulated environment due to high sample 
complexities of the algorithms that underpin them. This has made it almost impracticable to replicate these algorithms in 
physical robots despite the ubiquity of high performance computers. Most successful works on physical robots often combine 
imitation or active learning with other techniques, which are still much dependent on human designers and cannot yield true 
autonomy. Another reason for this challenge is that robotic simulators for testing autonomy are excessively simple when 
compared to the real world situations; as such, often times, success in the simulated environment will not imply same in the 
real world. A way forward could be to develop simulators that present the same difficulty and complexity in training these 
agents as in the real world while giving the flexibility for researchers to test and evaluate the attributes of autonomy. These can 
serve as benchmarking tools for research in machine autonomy.  
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