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Abstract. Adhering to security best practices during the development
of Android applications is of paramount importance due to the high
prevalence of apps released without proper security measures. While au-
tomated tools can be employed to address vulnerabilities during devel-
opment, they may prove to be inadequate in terms of detecting vulner-
abilities. To address this issue, a federated neural network with XAI,
named FedREVAN, has been proposed in this study. The initial model
was trained on the LVDAndro dataset and can predict potential vulner-
abilities with a 96% accuracy and 0.96 F1-Score for binary classification.
Moreover, in case the code is vulnerable, FedREVAN can identify the as-
sociated CWE category with 93% accuracy and 0.91 F1-Score for multi-
class classification. The initial neural network model was released in a
federated environment to enable collaborative training and enhancement
with other clients. Experimental results demonstrate that the federated
neural network model improves accuracy by 2% and F1-Score by 0.04 in
multi-class classification. XAI is utilised to present the vulnerability de-
tection results to developers with prediction probabilities for each word
in the code. The FedREVAN model has been integrated into an API
and further incorporated into Android Studio to provide real-time vul-
nerability detection. The FedREVAN model is highly efficient, providing
prediction probabilities for one code line in an average of 300 millisec-
onds.

Keywords: android application security · code vulnerability · neural
network · federated learning · XAI
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1 Introduction

The identification and timely remediation of source code vulnerabilities are cru-
cial for the secure development of Android applications. Specifically, initiating
this crucial process during the early stages of application development is of
paramount importance. This drastically reduces the possibility that attackers
can find vulnerabilities to exploit. Due to its high popularity, Android currently
holds 70.79% of the market share, as of June 2023, and an average of 90,000
Android mobile apps are released every month on the Google Play Store [19].
Unlike iOS applications, Android apps are not thoroughly checked for security
aspects [5]. Therefore, it is crucial to adjust the development process to comply
with extensive security protocols for Android apps.

Although proper requirements analysis and feasibility studies are conducted
before development, the final product may still fail due to code vulnerabilities. It
is worth noting that fixing bugs in the early stages of the Software Development
Life Cycle (SDLC) is 70 times less costly than fixing them in later stages of the
SDLC [7]. Thus, researchers have developed several automated tools to identify
vulnerabilities in Android apps [6], to prioritise security-oriented development
and prevent cybersecurity breaches, rather than repairing issues later in the app
development life cycle.

Researchers, in previous studies, have introduced a few supportive tools,
frameworks and plugins, to assist developers in automating the detection pro-
cess [16]. They employed conventional methods, as well as Machine Learning
(ML) and Deep Learning (DL) based methods, to detect vulnerabilities in An-
droid apps, using static, dynamic, and hybrid analysis methods. However, such
tools analyse either the Android Application Package (APK) files, or complete
Android project source files, and detect their vulnerabilities. An important draw-
back of current solutions is their failure to address the early identification of vul-
nerabilities in a real-time app development setting. These tools can only assist
in detecting vulnerabilities by scanning the code once the development process
has concluded.

Using AI-based techniques on a properly labelled dataset of Android source
code vulnerabilities can surpass these limitations. However, it is crucial to take
into account the limitations of the datasets used to train the models for detecting
Android vulnerabilities. It is feasible to create a dataset by labelling the source
code after scanning the released APKs, but this approach has its constraints.
The dataset’s scope including the number of distinct vulnerable categories is lim-
ited, and it may not include adequate code examples or novel vulnerabilities. An
alternative approach is to train a model using the source code obtained directly
from app developers. However, developers may be reluctant to share their pro-
prietary code due to privacy concerns. To overcome this challenge in the model
training process, federated learning can be employed. This approach entails the
dissemination of the model training procedure among multiple entities that are
linked within the federated environment. Consequently, these entities can in-
dividually train the model and make revisions to the ultimate model without
disclosing their data, which comprises of source code samples.
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In summary, this paper makes the following contributions:

– Introduce a neural network-based model that is both highly accurate and
efficient for early detection of Android source code vulnerabilities, named
FedREVAN. The initial model is trained using the publicly available LV-
DAndro dataset [17], which contains Android source code vulnerabilities
labelled based on Common Weakness Enumeration (CWE)1.

– Integrating the model with Explainable AI (XAI) techniques, and producing
Application Programming Interface (API). This API provides the reasons for
the predictions related to the vulnerable codes, which can be utilised by An-
droid app developers to identify potential mitigation approaches with the
help of a plugin.

– Retraining the model in a federated learning environment to generate and
extend the model to improve the vulnerability detection capabilities.

– Making FedREVAN open source and making it available to the public as a
GitHub Repository2, complete with Python scripts and instructions.

The paper is structured as follows: Section 2 provides the background and re-
lated work. Section 3 explains the methodology of the federated neural network-
based model and the approach to using it to detect Android code vulnerabilities
in real time. Section 4 presents results and corresponding discussions. Finally,
Section 5 covers conclusions and future work.

2 Background and Related Work

This section sets the base for the study by explaining vulnerabilities in source
code and how developers can be assisted to overcome them. Moreover, vulnerabil-
ity scanning techniques, AI-based vulnerability detection and how to understand
the prediction results, and training AI models in a federated environment are
also discussed along with the related studies.

2.1 Vulnerabilities in Source Code

Code vulnerabilities in applications can lead to the occurrence of bugs and de-
fects. Human error can also introduce significant scope for errors in the software
development process, particularly if no extensive testing and validation process
is in place from the initial stages of the software development lifecycle [11, 14].
Such errors can lead to several vulnerabilities in the code.

1 https://cwe.mitre.org/
2 https://github.com/softwaresec-labs/FedREVAN
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In order to prevent these, popular repositories such as CWE and Common
Vulnerabilities and Exposures (CVE)3 can be utilised. Mobile application devel-
opers can refer to these to address potential security loopholes in their source
code. This knowledge can assist developers in detecting vulnerabilities early [16].

2.2 Developer Assistance for Identifying Code Vulnerabilities

As an initial work of the FedREVAN study, a need analysis survey involving 63
Android app developers who work in app development firms, was conducted to
identify whether security aspects are being considered when developing apps.
Based on the survey results, the majority of developers (55.9%) do not consider
secure coding practices while developing apps, as illustrated in Fig. 1a.

(a) Consideration of Secure
Coding (b) Reasons for Underestimating Secure Coding

Fig. 1: Survey Results

In the aforementioned survey, participants were asked to rate their reasons
for not giving due consideration to secure coding, or for considering it to a lesser
extent, using a 5-Point Likert scale. The responses pertaining to various reasons
are presented in Fig. 1b.

Re 1. Functionality is more important than security.
Re 2. Need to allocate additional time to verify the written source code is secured

due to rapid development cycles.
Re 3. Manual verification requires additional resources, including domain experts.
Re 4. Lack of supportive tools to automate the security checking process.

After analysing the responses, it was discovered that a significant number of
app developers prioritise both functionality and security, as 33 responses were
rated as Average. The majority of developers (68%) firmly believe that extra
time should be allocated to scrutinise code for security. Furthermore, many de-
velopers concur with the notion that involving domain experts, such as security
testers and ethical hackers, in the development process is necessary if manual
security verification is needed. This is because developers may lack knowledge

3 https://www.cvedetails.com/
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of source code vulnerabilities and secure coding practices. In addition, 91% of
the respondents strongly agree that the lack of tool support is a reason for not
considering or underestimating security aspects during app development. As a
result, it was concluded that a highly accurate automated vulnerability detection
model must be incorporated into the development pipeline.

Integrated Development Environments (IDEs) are widely used to increase
efficiency in the development process. IDEs assist developers with tasks such as
code writing, application building, validation, and integration. These IDEs often
have built-in features and third-party plugins to enhance functionality. To avoid
developer errors and increase productivity, Android app developers also require
supportive tools and plugins during the coding process [20]. Android Studio
is the official Android app development IDE built by Google using JetBrain’s
IntelliJ IDEA. Hence, a vulnerability detection model can be integrated with
Android Studio as a plugin to assist developers.

2.3 Vulnerability Scanning Techniques

The research community has identified two methods for scanning Android appli-
cations: 1) reverse-engineering developed Android Application Packages (APKs)
to analyse the code, and 2) analysing the source code as it is being written in
real-time [16]. The initial application scanning step involves static, dynamic, and
hybrid analysis methods. The static analysis identifies code issues without exe-
cuting the application or the source code, whereas dynamic analysis requires a
runtime environment to execute the application for scanning. The hybrid analysis
combines both static and dynamic analysis techniques. Various tools are available
for analysing Android apps, such as the Mobile Security Framework (MobSF)4 a
hybrid analysis tool that identifies vulnerabilities and malware. HornDroid tool
[4] analyses information flow in Android apps, while Quick Android Review Kit
(Qark) tool5 is a static analysis tool that can detect vulnerabilities in pre-built
APKs and complete source code files. These supportive tools can be integrated
with app development to help developers to avoid mistakes [20].

2.4 AI-based Vulnerability Detection

Developing tools for detecting Android code vulnerabilities using AI is a viable
approach. To train such tools, a properly labelled dataset is required. Several
datasets have been proposed for this purpose, mostly related to application vul-
nerabilities. Ghera [10] is an open-source benchmark repository that captures 25
known vulnerabilities in Android apps and provides common characteristics of
vulnerability benchmarks and repositories. The National Vulnerability Database
(NVD) [13] is another dataset that is used to reference vulnerabilities. The An-
droVul repository [12] contains Android security vulnerabilities, such as high-risk

4 https://github.com/MobSF/Mobile-Security-Framework-MobSF
5 https://github.com/linkedin/qark/



6 J.Senanayake et al.

shell commands, security code smells, and dangerous permission-related vulnera-
bility details. However, these datasets are inadequate for building real-time code
vulnerability mitigation methods since they are not labelled based on actual
Android source code. The LVDAndro dataset [17], on the other hand, provides
a CWE-based labelled dataset that contains Android source code vulnerabili-
ties. The LVDAndro was produced by a combination approach of the MobSF
and Qark scanners. The latest dataset, LVDAndro APKs Combined Processed
Dataset, was created by scanning the apps from repositories, including Andro-
Zoo, Fossdroid6 and well-known malware repositories [1]. Since the LVDAndro
dataset is publicly available and provides good accuracy for vulnerability detec-
tion, it can be used as a valuable resource for training AI-based models.

2.5 Understanding AI-based Predictions Results with XAI

Traditional AI-based models usually provide prediction results as a black box.
This makes it difficult for app developers to understand the reasoning behind
predicted vulnerabilities, and to identify possible mitigation approaches. To ad-
dress this limitation, developers need to put in additional effort outside the app
development domain [18]. XAI techniques attempt to make AI models more
transparent by providing human-understandable explanations for their outputs.
These explanations can help model users understand why a particular decision
was made or a certain prediction was generated. Hence the use of XAI can assist
in identifying the causes of code vulnerabilities. Therefore, XAI can be employed
to enhance the identification of code vulnerabilities.

After an AI-powered prediction is generated, the likelihood of predictions
in a binary or multi-class classification model can be determined using vari-
ous Python frameworks. Some widely used frameworks include Shapash, Dalex,
Explain Like I’m 5 (ELI5), Local interpretable model (Lime), Shapley additive
explanations (SHAP), and Explainable boosting machines (EBM), among others
[3]. The selection of a framework depends on the needs of the prediction task.

2.6 Federated Learning for AI Models

Federated Learning is based on a distributed ML approach, which involves train-
ing multiple local models, on different devices, to create a global model. In a
federated environment, clients who connect to the server can train their own lo-
cal models with their own data in several training rounds. During these rounds,
the model weights are shared with the federated server, which averages and up-
dates them and creates a global model using the Federated Averaging (FedAvg)
algorithm. FedAvg is a popular FL averaging technique that facilitates local
model training on multiple clients without sharing the client’s local data with
the server [9]. This approach offers the potential for model convergence with
different client local data in non-independent and non-identically distributed
settings. As a result, researchers from diverse fields have explored FL methods

6 https://fossdroid.com/
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from various perspectives [8]. However, none of these studies has examined how
FL can be applied to AI-based Android code vulnerability detection models.

Existing methods rely on APK files to detect vulnerabilities in Android code,
which makes it challenging to achieve high accuracy in detecting vulnerabilities
early in the SDLC. Additionally, no method currently integrates XAI to provide
developers with explanations for predicted vulnerabilities. The proposed model
was developed to address these gaps by using a federated neural network-based
architecture that enables early and accurate detection of Android code vulnera-
bilities while providing explanations for prediction results using XAI.

3 Methodology

The development of the FedREVAN model consists of four primary stages: se-
lecting the dataset, building the neural network-based model, training the global
model in a federated learning environment and detecting code vulnerabilities.
The source code and detailed instructions are available in FedREVAN GitHub
repository. Fig. 2 depicts the overall approach.

Fig. 2: Overview of the FedREVAN Model

3.1 Selecting the Dataset

Despite the existence of several vulnerability datasets [10, 12, 13], most of them
do not pertain to Android source code vulnerabilities or lack proper labelling.
However, the LVDAndro dataset [17] has made a significant contribution in
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our previous work, by creating a CWE-ID-based labelled dataset that includes
Android code vulnerabilities. This dataset was generated using multiple vulner-
ability scanners and comprises 6,599,597 vulnerable code lines and 14,689,432
non-vulnerable code lines scanned using 15,021 different APKs.

3.2 Building the Neural Network-Based Model

LVDAndro offers processed data, and as such, the binary classification analysis
utilised the processed code and vulnerability status fields. Initially, the dataset
was balanced to avoid class bias (vulnerable samples:non-vulneable sample =
1:1), and then split into 75% for training and 25% for testing. The feature
vector was created using the n-grams technique with ngram range set to 1-3,
min df set to 40, and max df set to 0.80. This feature vector was used to train
a neural network model consisting of one hidden layer with 20 perceptrons and
an output layer with two nodes. The activation function used for the input
and hidden layers was relu, and the sigmoid activation function was used for
the output layer as they performed comparatively well in experiments. Early
stopping by monitoring the val loss with min delta as 0.0001 and patience as 20
in auto mode was used to prevent over-fitting. During the neural network model
training process, the Adam optimiser was used with a default learning rate of
0.001, and the loss function employed was binary cross-entropy.

The feature vector was created for multi-class classification using the pro-
cessed code and CWE-ID fields. One hot encoding was applied for encoding
the labels. Although LVDAndro has code samples for 23 CWE categories, some
classes have fewer samples due to their nature. Therefore, only the top 10 classes
were included, and the remaining classes were re-labelled as Other. The dataset
was then balanced using re-sampling, and the feature vector was created using
ngram range set to 1-3, min df set to 40, and max df set to 0.80, as in the bi-
nary classification. This feature vector was used to train a neural network model
with an input layer, one hidden layer with 20 perceptrons, and an output layer
with 11 nodes. The activation function used for the input and hidden layers was
relu, while softmax was used for the output layer. Early stopping, similar to
the binary classification model (monitor = val loss, min delta = 0.0001 and pa-
tience = 20 and mode = auto), was applied to prevent over-fitting in this model
as well. When training the neural network model, the categorical cross-entropy
was utilised as the loss function, and the Adam optimiser was applied with the
default learning rate of 0.001.

3.3 Model Parameter Tuning and Pruning

Several experiments were conducted by altering the model parameters, such as
adjusting the number of hidden layers and the number of perceptrons, to deter-
mine the optimal configuration. Furthermore, a grid search and hyper-parameter
tuning process were executed to confirm the suitability of the aforementioned
parameters. Upon completion of the training phase, the F1-Scores and accuracies
for both binary and multi-class classification were analysed.
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Additionally, pruning techniques were also applied to the selected model af-
ter parameter tuning. By removing the least significant weight parameters from
a Neural network, the throughput may be increased. The goal is to maintain
the model’s accuracy while increasing its efficiency. Magnitude-based pruning is
a simple but efficient method for removing weights while maintaining the same
degree of precision. By assigning value zeros during the model training phase,
magnitude-based pruning gradually removes inconsequential weights. Model ac-
curacy is dependent on the amount of sparsity. Hence the level of sparsity should
be carefully chosen to attain the same level of precision. The magnitude-based
model pruning was implemented using the TensorFlow model optimisation tool-
box7. The model was first trained with all parameters and then pruned to reach
50% parameter sparsity beginning from 0% sparsity.

3.4 Detection of Vulnerabilities with XAI using Trained Model

Two pickle files were created for each of the binary and multi-class classification-
based models, containing the trained model, classifier, and vectoriser. These
pickle files were then utilised as inputs to the backend of the Flask-based web
API of the FedREVAN, which was developed using Python. The FedREVAN
web API includes a GET request parameter to receive a source code line from
a user, which is then checked for vulnerabilities. Upon initialisation of the web
API, the pre-trained binary and multi-class models’ are loaded from pickle files.

An Android Studio plugin was created as a prototype to capture the code
lines being written by developers in real-time. The plugin can communicate
with the FedREVAN web API and is available for download as a jar file from
the FedREVAN GitHub repository. Once the plugin is integrated, users can
activate the plugin by selecting Tools - Check Code Vulnerability or pressing
CTRL+ALT+A while the cursor is on a specific code line.

When a user’s request is received through the plugin to the API, the binary
classification vectoriser is used to transform the code line. The resulting trans-
formed code is then processed by the binary classification model to determine
its vulnerability status, either as vulnerable or non-vulnerable. If the code line
is predicted as vulnerable, it is transformed using the loaded multi-class model’s
vectoriser, and passed to the multi-class model to predict the CWE-ID.

After predicting the vulnerability status and the CWE-ID, the code line was
processed by following same techniques used in LVDAndro, including replac-
ing comments, and replacing user-defined strings. Then the resulting processed
source code is passed through the Python Lime package, which supports XAI,
to obtain reasons for the predictions in both the binary and multi-class mod-
els in the form of prediction probabilities. Lime package provides information
about the contributions of each word in the processed source code line to both
the vulnerability prediction and the vulnerable category prediction probabilities.
Finally, the prediction results are returned from the API as a JSON response
and then passed to the plugin.

7 https://www.tensorflow.org/model optimization
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Table 1: Performance Comparison of FedREVAN Models
Model Name Accuracy F1-Score Model Size

FedREVAN-B 96% 0.96 335MB
FedREVAN-B-P 95% 0.95 321MB
FedREVAN-M 93% 0.91 8.1MB

FedREVAN-M-P 92% 0.90 7.9MB

3.5 Model Training in the Federated Environment

A simulated federated learning environment was established using a server and
four clients. The server, an Intel Core i5 laptop with 16GB RAM andWindows 11
OS, managed model weight distribution and aggregation. Clients, on Gigabyte
Brix (GB-BXBT-2807) devices, ran Ubuntu Linux and Windows 10, training
models with global weights on local datasets. Python, TensorFlow, and their
dependencies were installed on both server and clients. The Flower framework
[2] was employed, with the server as Flower Server and clients connected. One
client (Alpha) uses the LVDAndro dataset and the other clients (Bravo, Chalie
and Delta) use the LVDAandro dataset generation mechanism to generate the
dataset based on their own data. In practice, developers can contribute to the
training by adding diverse training data obtained through alternative methods
such as manual analysis.

4 Results and Discussions

This section discusses the results of the FedREVAN model generation process,
and the process of early detecting Android vulnerabilities.

4.1 Performances of the Initial Models

The F1-Scores and the accuracies, and model sizes of both neural network-based
binary and multi-class classification were compared in Table 1. The regular neu-
ral network model for binary classification is defined as FedREVAN-B and the
multi-class classification model is defined as FedREVAN-M. The pruned models
are represented as FedREVAN-B-P and FedREVAN-M-P for binary and multi-
class classifications, respectively.

According to Table 1, it was identified that the unpruned neural network
models are performing slightly better than the pruned models. The number of
example codes used and the number of hidden layers used could be the reason
for not getting a significant performance difference between those models. Since
un-pruned models perform better and the model size differences are also negligi-
ble, those models (FedREVAN-B and FedREVAN-M) were selected for the API
integration, as mentioned.

In binary classification models, the variation of accuracies in training and
validation with the number of times that the learning algorithm works (epochs)
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(a) Accuracy - FedREVAN-B (b) Loss - FedREVAN-B

(c) Accuracy - FedREVAN-M (d) Loss - FedREVAN-M

Fig. 3: Variation of Accuracy and Loss with Epochs

is illustrated in Fig. 3a. Fig. 3b illustrates the variation of training and validation
loss in the same model. Variation of training and validation accuracies with the
number or epochs; in the multi-class classification is illustrated in 3c, and 3d
illustrates the training and validation loss.

The optimal performances were received when the number of epochs at 25 for
FedREVAN-B and 24 for FedREVAN-M. The training accuracy for FedREVAN-
B was 96.2% while achieving 95.6% for inference accuracy. In these cases, the
training loss was 0.12, while the validation loss was 0.16. In FedREVAN-M, the
optimal training accuracy of 0.96 and inference accuracy of 0.93 were achieved
when epochs reached 24 while getting 0.10 training loss and 0.33 validation loss
in the same epochs. The increase in loss during training could indicate that the
model is becoming overly complex and fitting noise or outliers in the training
data, rather than capturing the underlying patterns that apply to new data.

FedREVAN is capable of detecting 10 CWE categories (11 including the other
category) which have either a high or medium level likelihood of exploitation [15].
These CWE-IDs are 89, 200, 276, 312, 532, 676, 749, 921, 925 and 939.

The accuracy of the FedREVAN model was also compared with the MobSF
and Qark scanners which were used to build the LVDAndro dataset initially.
In order to compare the accuracy of detecting vulnerable code for new data, a
total of 2,216 source code lines were used. This included 604 lines of vulnerable
code examples from the CWE repository and 1,612 lines of non-vulnerable code
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Table 2: Statistics of the Client Datasets

Characteristic Client Alpha Client Bravo Client Charlie Client Delta

Used APKs 15,021 3,237 779 991
Vulnerable Code Lines 6,599,597 1,121,043 441,981 135,049
Non-Vul. Code Lines 14,689,432 2,065,786 761,862 869,198
Distinct CWE-IDs 23 23 21 22

from real applications. These lines were integrated into an Android app project,
which was then scanned using MobSF and Qark Scanners. The same code lines
were then passed to the FedREVAN model by parsing them while iterating all
the code lines through a python script to the FedREVAN API. The accuracy,
precision, recall and F1-Score are compared and summarised in Table 3a.

After conducting the comparison, it was determined that FedREVAN excelled
in predicting vulnerabilities when compared to MobSF and Qark. FedREVAN
achieved a 95% accuracy rate, with a precision of 0.94, recall of 0.99, and F1-
Score of 0.96. Furthermore, it effectively reduced the false negative rate, thereby
mitigating potential security risks associated with its predictions.

4.2 Federated Neural Network Model

The optimal values for the neural network model parameters in the federated
learning model, such as the number of hidden layers, neurons, and optimisers,
remained unchanged from the initial model. The chosen architecture allows for
efficient model convergence and involves a federated communication round of
50 and five epoch iterations, as returned by the optimised tuning process. The
training datasets for each client (Alpha, Bravo, Charlie, and Delta) contain the
records specified in Table 2.

Federated learning allows for obtaining training source code samples from
multiple clients to the server while maintaining the privacy of their code. Fol-
lowing the completion of 50 rounds of training, the global model was updated on
the federated server and can now be used in the FedREVAN model. The updated
global model was designated as FedREVAN-B-F for binary and FedREVAN-M-F
for multi-class classifications. The accuracy and F1-Score of the updated models
were compared to the initial models, as detailed in Table 3b.

Although there was no improvement in the accuracy and F1-Score of the bi-
nary classification model, the performance of the multi-class classification model
improved. The accuracy of the federated binary classification model (FedREVAN-
B-F) remained at 96%, and the F1-Score remained at 0.96. This could be be-
cause the initial binary classification model (FedREVAN-B) had already been
well-trained using a large number of samples, while the federated model had less
impact. However, the accuracy of the federated multi-class classification model
(FedREVAN-M-F) increased by 2% compared to the initial model (FedREVAN-
M), reaching 95%, and the F1-Score increased by 0.04, reaching 0.95.
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Table 3: Performance Comparison of MobSF, Qark and FedREVAN Models

(a) FedREVAN with MobSF and Qark

Metrics MobSF Qark FedREVAN

Accuracy 91% 89% 95%
Precision 0.93 0.92 0.94
Recall 0.95 0.93 0.99

F1-Score 0.94 0.92 0.96

(b) Various FedREVAN Models

Model Name Accuracy F1-Score

FedREVAN-B 96% 0.96
FedREVAN-B-F 96% 0.96
FedREVAN-M 93% 0.91

FedREVAN-M-F 95% 0.95

As this federated learning environment can be easily extended and imple-
mented, the federated server and the network can be made available to a wide
range of clients, from individual app developers to app development companies.
It is expected that the model performances will increase once the environment
has been released to a larger community.

By leveraging the FedREVAN API in the backend, developers are able to
detect potential code vulnerabilities in real-time as they write code. This is
achieved by passing the code through the API using the plugin that integrates
the API with the development environment. As a result, developers can effi-
ciently check for vulnerabilities without needing to switch between applications,
enabling them to quickly and easily identify and resolve issues as they arise.
Hence, the developers can maintain their workflow without interruption, signif-
icantly improving their efficiency and saving valuable time and resources. The
detailed steps are available FedREVAN GitHub Repository.

4.3 Developer Feedback on FedREVAN

The Android app developers who participated in the initial need analysis survey
were given the plugin to integrate into Android studio and utilise during app
development. A survey was conducted to gather feedback on the plugin’s per-
formance, with the developers being asked to rate their satisfaction levels on a
5-Point Likert scale. Fig. 4 visualises the feedback received from 63 developers.

The survey revealed that a large majority, comprising 87% of the app devel-
opers, was highly satisfied with the accuracy and efficiency of the predictions.
Additionally, 89% of the developers were highly satisfied with the usefulness of
FedREVAN and its mitigation recommendations. However, the survey also high-
lighted the scope for enhancing the usability and integration aspects of the plugin
since only around 22% developers were highly satisfied with them. Furthermore,
the look and feel of the plugin need improvement since 57% of developers were
not highly satisfied with it. This feedback is valuable as it can be used to make
the plugin more appealing by incorporating mitigation suggestions similar to
IDE’s syntax error indication feature, highlighting and providing recommenda-
tions instead of a balloon notification.

Despite the identified areas for improvement, the overall satisfaction rate was
exceptionally high, with 79% of developers reporting being highly satisfied and
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Fig. 4: Survey Results - Satisfaction of the FedREVAN

21% satisfied. With further development, the plugin has the potential to be used
by a larger community to mitigate Android source code vulnerabilities.

5 Conclusion and Future Work

To improve security, within Android application development, by reducing vul-
nerability risks, it is important to implement secure coding practices and detect
code vulnerabilities, from the early development stages. This study presents
the FedREVAN model, a federated neural network-based approach to detect
vulnerabilities during source code writing. The model was trained on the LV-
DAndro dataset. The initial model was then released into a federated learning
environment, to train with local models and enhance its detection capabilities.
Additionally, XAI was incorporated to provide reasons for vulnerability predic-
tions. The federated model achieves: 96% accuracy, 0.96 F1-Score for binary
classification, 95% accuracy and 0.95 F1-Score for CWE-based multi-class clas-
sification. The developers can easily use the prototype plugin for Android Stu-
dio to mitigate vulnerabilities using FedREVAN. FedREVAN is freely available
as a GitHub repository. Potential biases, inaccuracies, or insufficiencies in the
LVDAndro dataset could affect the model’s generalisation capabilities and the
reported accuracy. Differences in coding styles, application domains, and coding
practices might impact the model’s ability to detect vulnerabilities accurately in
different contexts. While the possibility of a more user-friendly plugin for An-
droid Studio is proposed, the actual ease of integration and the learning curve
associated with using such a plugin could impact their adoption by developers.
By incorporating the principles of XAI and harnessing the power of federated
learning, FedREVAN advances vulnerability mitigation and emphasises the im-
portance of data privacy in modern software development practices. In the fu-
ture, the model’s performance can be improved by fine-tuning training model
parameters, and releasing the federated learning environment to a larger commu-
nity. Integrating the developed API with a more user-friendly plugin to Android
studio could also be explored.
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A Appendix

Fig. 5 depicts the federated learning simulation environment.

Fig. 5: Federated Learning Simulated Environment
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