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Abstract. The presence of vulnerable source code in software applica-
tions is causing significant reliability and security issues, which can be
mitigated by integrating and assuring software security principles during
the early stages of the development lifecycle. One promising approach
to identifying vulnerabilities in source code is the use of Artificial Intel-
ligence (AI). This research proposes an Al-based method for detecting
source code vulnerabilities and leverages Explainable Al to help develop-
ers identify and understand vulnerable source code tokens. To train the
model, a web crawler was used to collect a real-world dataset of 600,000
source code samples, which were annotated using static analysers. Sev-
eral ML classifiers were tested on a feature vector generated using Nat-
ural Language Processing techniques. The Random Forest and Extreme
Gradient Boosting classifiers were found to perform well in binary and
multi-class approaches, respectively. The proposed model achieved a 0.96
F1-Score in binary classification and a 0.85 F1-Score in multi-class clas-
sification based on Common Weakness Enumeration (CWE) IDs. The
model, trained on a dataset of actual source codes, is highly generalisable
and has been integrated into a live web portal to validate its performance
on real-world code vulnerabilities.

Keywords: source code vulnerability - artificial intelligence - software security
- vulnerability scanners

1 Introduction

In software development, it is common for developers to overlook the thorough
validation of source code for security and vulnerability during coding and prior
to releasing the product to the customer [6]. This oversight can cause security
threats to rapidly evolve, which forces developers to keep up to date with the
latest security vulnerabilities to minimize the risk of software attacks. Education
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on security for developers is an ongoing process, but currently, many software
developers neglect security issues throughout the software development lifecy-
cle. This may be due to a lack of understanding about how common errors in
software development can lead to exploitable vulnerabilities in software systems
[13], as well as the pressure for fast deployment. The communication gap be-
tween developers and cybersecurity experts has also contributed to widespread
software vulnerabilities [20].

However, with the availability of data, new algorithms, and advances in com-
putational power, Al and ML techniques can be effectively used to address var-
ious problems in different domains, including computer security and privacy
[21]. Hence, AI/ML algorithms can be utilized to detect vulnerabilities in source
codes [2,14]. By using AI/ML algorithms for vulnerability detection, the need
for human expertise can be reduced [22], and the process can be automated.
Programming languages consist of words, numbers, and various symbols, similar
to natural languages. Therefore, previous research has used Natural Language
Processing (NLP) techniques to detect vulnerabilities in source code by treating
the code as a form of text [3]. To train AI/ML algorithms, extracted features
have been generated through NLP techniques, considering this as a classification
problem. However, existing methods have used limited information for feature
generation, resulting in high false negatives.

This study addresses the need for a highly accurate source code vulnerabil-
ity detection method using AI/ML techniques and proposes a new approach to
feature generation, and demonstrates its effectiveness through experiments. The
study makes the following contributions to the field of source code vulnerabil-
ity detection and offers a promising solution for automated security testing in
software development.

— Data pre-processing approach to identify important features: Presenting a
novel method using Concrete Syntax Trees (CST) to identify the most im-
portant features of source codes to train an ML model.

— Generalized vulnerability detection models: The generalization capability of
the proposed method is high since the models are trained on a carefully
generated dataset that includes real-world source codes and a subset of a
synthetic dataset.

— FExplainability of the model: Visually representing the identified vulnerable
source code segments to help make the necessary changes to convert the
code from vulnerable to benign. Furthermore, this supports optimising the
pre-processing data approach to improve the model accuracy.

— Integration with a web portal: Once the developer enters the source code, the
vulnerability of the code is displayed on a web portal with an explanation
of the vulnerabilities associated with it.

The rest of the paper is organised as follows: Section 2 contains background
and related work. Section 3 explains the methodology of this work. Section 4
discusses the performance evaluation. Finally, the conclusions and future work
are discussed in Section 5.
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2 Background and Related Work

By reviewing relevant studies, this section lays the groundwork for the research
by providing a thorough understanding of source code vulnerabilities, different
parsers and scanners, as well as a range of vulnerability detection techniques.

2.1 Vulnerabilities in Source Code

Human error can lead to numerous vulnerabilities in software code, particularly
when an extensive testing and validation process is not implemented from the
beginning of the software development lifecycle [6]. To promote secure software
development practices, reducing vulnerabilities in the source code is essential
[19]. Nevertheless, without proper mechanisms in place, some developers may
overlook potential vulnerabilities. To address these issues, various repositories of
vulnerabilities and weaknesses have been established by organizations and the
community, such as Common Weakness Enumeration (CWE)! and Common
Vulnerabilities and Exposures (CVE)2. These repositories contain software and
hardware-related vulnerabilities, which developers can reference when identifying
patterns and mitigating security loopholes in the source code. Additionally, it is
important to note that some vulnerabilities are related to other vulnerabilities
and can belong to more than one CWE category. Awareness of these relationships
can help developers develop software more securely. By providing automated tool
support based on CWE and CVE details, the software development process can
be completed more efficiently and vulnerable source code can be minimized.

2.2 Scanners and Parsers

Supportive tools are required by software developers to integrate with their cod-
ing and detect vulnerabilities at an early stage to mitigate them through source
code analysis [12, 14, 16-18]. The source code must first be formatted into a gen-
eralized form, either using CST or Abstract Syntax Tree (AST). Syntax trees
can be generated through static analysis [8]. The accuracy of formulating the
CST/AST and its generalisation mechanism influences the rate of false alarms
on vulnerabilities. Tree-sitter?, an open-source parser generator tool, can create
a CST for a source file and efficiently update the tree when changes occur in the
source code.

After parsing the code, analysis can be performed using scanners. Some scan-
ners are available for analyzing C/C++ source code with relatively good accu-
racy [10]. Cppcheck? is an open-source static analysis tool that detects bugs,
undefined behavior, and dangerous coding constructs in C/C++ code. It pro-
vides essential data for each alert, such as filename, line, severity, alert identifier,

! https://cwe.mitre.org

2 https:/ /www.cvedetails.com

3 https://tree-sitter.github.io/tree-sitter
* https://cppcheck.sourceforge.io
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and CWE, and can be integrated with other development tools. Another open-
source tool, Flawfinder®, can examine C/C++ source code and report possible
security weaknesses. It has a built-in database of C/C++ functions with well-
known vulnerable problems, such as format string problems (printf, snprintf, and
syslog), buffer overflow risks (strcpy, strcat, gets, sprintf, and scanf), potential
shell meta-character dangers (exec, system, popen), poor random number ac-
quisition (random), and race conditions (access, chown, chgrp, chmod, tmpfile,
tmpnam, tempnam, and mktemp).

2.3 Detecting Vulnerabilities

Previous works have proposed two techniques to detect vulnerabilities, namely
metric-based techniques and pattern-based techniques. Metric-based techniques
utilize features such as complexity metrics, token frequency metrics, code churn
metrics, dependency metrics, developer activity metrics, or execution complex-
ity metric to detect vulnerabilities through supervised or unsupervised machine
learning methods [4]. On the other hand, pattern-based techniques utilize static
analysis to identify vulnerable codes based on known vulnerable patterns. How-
ever, this technique is limited to function-level codes and is considered a prelimi-
nary step for vulnerability assessment since it does not identify the vulnerability
type or possible locations. Moreover, the use of metric-based features in different
machine learning algorithms showed low detection capability.

In [15], the authors utilized text features extracted from the source code to
predict software defects. They considered everything as text except comments,
separated by space or tab. Naive Bayes (NB) and Logistic Regression (LR)
were used as classification algorithms. This approach was adapted by [15] for
software vulnerability prediction tasks, using the same algorithms with Bag of
Words (BoW) as features. However, the experimental results showed a lower
F1-Score for all selected test cases, which may be due to poor feature selection
and lack of emphasis on proper data pre-processing. In [7], n-gram (1-gram, 2-
gram, and 3-gram) and word2vec were used as features to predict the presence of
vulnerabilities in test cases. The authors addressed the class imbalance problem
by using random oversampling. However, this model [7] is limited to binary
classification and cannot identify the type of vulnerability.

In their work [14], the authors utilized minimum intermediate representa-
tion learning for detecting vulnerabilities in source code. In order to address the
lack of vulnerability samples, unsupervised learning was employed during the
pre-training stage. High-level features were generated using Convolutional Neu-
ral Networks (CNN), and these features were subsequently fed into classifiers
such as Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine
(SVM), Multi-Layer Perceptron (MLP), Gradient Boosting (GB), Decision Tree
(DT), and Random Forest (RF) for vulnerability detection. However, this model
was trained using only two CWE-IDs from a synthetic dataset, which limits its
generalization capability to other CWE-IDs and real datasets.

® https://github.com/david-a-wheeler /flawfinder
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The authors of [5] presented a technique to assist manual source code analysis
through vulnerability extrapolation. They achieved this by generating an AST
using a parser, but this approach was limited to identifying vulnerabilities in
only a few source code functions. Similarly, [2] employed an AST representation
of source code to detect vulnerabilities. They utilized the Pycparser® library to
generate the AST for the C language and modeled it as a binary classification
task, using MLLP and CNN algorithms. The proposed model targeted four CWE
classes, achieving an F1-Score between 0.09 to 0.59. Commercially accessible
solutions like Fortify 7 and Coverity® are among the tools available for identifying
vulnerabilities. However, these tools are not freely accessible and have limitations
in effectively identifying vulnerabilities linked to CWE IDs.

Despite the increasing popularity of utilizing machine learning for vulnera-
bility detection, as previously mentioned, several studies have failed to achieve
a high accuracy/F1-Score when identifying vulnerabilities in source code. Many
of these studies were not trained on a comprehensive dataset that includes real-
world data or did not follow improved pre-processing techniques. Additionally,
these studies were limited to binary classification or a small number of Common
Weakness Enumeration (CWE) classes. As a result, our research addresses these
issues by using a real-world dataset and achieving an F1-Score of 0.96 in the
binary classification model and 0.85 in the multi-class classification model for
twenty CWE classes. These results outperform the state-of-the-art benchmark
models.

3 Vulnerability Detection Process

In this section, we will cover the proposed vulnerability detection process, which
comprises the model’s architecture as well as the dataset used.

3.1 Dataset

Generally, ML-based methods require a large amount of dataset during the train-
ing phase. One of the major challenges of source code vulnerability detection is
the lack of vulnerability datasets for the majority of common CWE-IDs [9].
National Institute of Standards and Technology (NIST) published a dataset to
encourage the improvement of static code analysers and to find security-related
defects in source code. This dataset was published as a result of Software As-
surance Metrics and Tool Evaluation (SAMATE) project® and the dataset is
referred as Static Analysis Tool Exposition (SATE IV) Juliet test suite!®. This

5 https://github.com/eliben/pycparser
" https://www.microfocus.com/en-us/cyberres/application-security /fortify-languages
8 https://www.synopsys.com/software-integrity /security-testing/static-analysis-
sast /coverity-cwe.html
9 https://samate.nist.gov/SARD/
10 https:/ /www.nist.gov/itl/ssd /software-quality-group/static-analysis-tool-
exposition-sate-iv
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dataset includes 52,185 synthetic test cases for C and C++ languages and an-
notated for CWE-IDs. However, the major limitations of this dataset are highly
imbalanced CWE-ID distribution and the lack of availability of benign data to
train supervised ML algorithms. To address these issues, a web crawler was devel-
oped to retrieve more C and C++ source codes from public GitHub repositories.
Since the retrieved GitHub source codes are not annotated for CWE-IDs to train
ML algorithms, two static code analysers, Cppcheck and Flawfinder which are
based on pre-defined rules were used for the CWE-ID annotation. The annota-
tion was also verified with the expert knowledge of ethical hackers and security
testers to ensure the quality of the dataset. In general, rule-based methods have
lower false positives and suffer from higher false negatives. Different rule-based
static code analysers have different vulnerability detection capabilities based on
the defined rules. The objective of this approach, as a proof of concept, is to
learn both analysers’ capabilities and achieve lower false negative and positive
rates from ML-based models. Going forward, a significant number of freely avail-
able and commercial-grade analysers could be utilized for annotation, enabling
trained ML models to learn the capabilities of various analysers. Ultimately,
this could result in the development of a superior Al-based code analyser that
outperforms any existing static code analysers. Accordingly, a sample was con-
sidered as vulnerable if one of the analysers identifies the code as vulnerable.
In contrast, sample was considered as benign if both analysers identify it as
benign. Source codes relevant to the twenty highest CWE-IDs were considered
as the vulnerable samples whereas, an approximately a similar number of be-
nign samples were selected to make a balanced dataset. This resulted in having
600,000 C and C++ source codes, including SATA IV vulnerable codes. Figure 1
depicts the CWE-ID count distribution for the selected vulnerable source codes.

3.2 Model Architecture

The suggested framework comprises of two ML models designed for both binary
and multiclass classification purposes. The binary model’s function is to distin-
guish between vulnerable and benign statuses, whereas the multiclass model is
aimed at recognizing CWE-IDs if the source code is found to be vulnerable.
Additionally, the utilisation of Explainable Artificial Intelligence (XAI) [1], is
incorporated to explain the predictions made by the model. This is achieved by
highlighting sections of code (tokens) that are considered vulnerable, based on
the outcomes from the multiclass model. The entire procedure is illustrated in
Figure 2, encompassing three core steps: data preprocessing, binary and multi-
class classification, and prediction explanation facilitated by XAI.

Data Pre-Processing The entire source code available in dataset is referred
as the sample. This might include a function, a snippet of code or a large source
code file. SATE IV dataset includes large source code files, whereas retrieved
GitHub source codes include all levels of codes. Therefore, the proposed solution
can take any code as input to the ML models. The developer sends the source
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code into the web portal for the prediction. Since these source codes are similar to
unstructured texts, first it needs to pre-process the codes to identify the features
to train the ML models. To this end, CST is used to identify the tokens of the
source codes. This is due to CST can retain more details of the codes than AST.

Tree-sitter is used to generate the CST. Following pre-processing steps are
applied to the given source code.

1. Use Tree-sitter to generate CSTs of source codes.
2. Clean CST outputs to generate important tokens.

3. Create numerical vectors for the identified tokens to train ML models.

Generated CSTs include various information such as user comments, user-
defined functions, different symbols, and hexadecimal numbers which cannot be
considered as generalized features for ML models. Therefore, it needs to remove
some of these details such as user comments and translate others into general-
ized formats. However, we identified and translated these information with the
support of domain experts who are working as experienced ethical hackers and
security testers to avoid the removal of important information. Figure 3 shows
a sample of pre-processed source code along with the original code. According
to this, we removed the comment and converted the user-defined names into the
standard format of ‘Userdef’. Additionally, the number 20 was converted into
‘number’. C and C++ specific names (functions and keywords) kept unchanged.
Tokens obtained from the pre-processed source code are [‘static’, ‘const’, ‘char’,
‘Userdef’, ‘number’, ‘return’, ‘(’, <)’, . <{’, ‘}, ‘[, ], 7’ ]. Accordingly, we pre-
processed all source codes and converted them into generalized source codes to
extract the tokens.

static const char UniqueString( const char *abc ) static const char Userdef{( const char *Userdef')
{ {
// comment > static char Userdef[number];
static char mybufsize[64]; return Userdef
return mybufsize }
}
Original source code Pre-processed source code

Fig. 3. Preprocessing

Pre-processed source codes are used to generate features to train ML mod-
els. To this end, we used CountVectorizer and TfidfVectorizer Python libraries
treating source codes as texts in natural language [11]. As features, Bag-of-words
(BoW), n-gram (n=2,3) and term frequency-inverse document frequency (TF-
IDF) were used. Grid search was used to identify the optimum hyperparameters
such as maximum (max df) and minimum (min df) document frequencies.
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Algorithms: Features generated by the data pre-processing step can be used
in binary and multi-class classification models. Accordingly, 600,000 source code
samples are used to train the binary classification model. Dataset were split
into 80:20 ratio as training and testing samples. Based on our previous work,
RF, LR and XGB algorithms were used as the classification algorithms with the
features of BoW, n-gram and TF-IDF. The trained binary classifier can identify
the given source code as vulnerable or benign. If the code is vulnerable, then it
sends into the multi-class classification model to identify the relevant CWE-IDs.
Similar to binary model training, 300,000 vulnerable source code samples were
split into 80:20 ratio with the stratified sampling to train the above algorithms.
Since a vulnerable code might have more than one vulnerability, the top K
(K=3) predictions were used as possible vulnerable classes to address the multi-
label cases. Python sklearn library was used to implement these algorithms. All
experiments run on a MacBook M1 Pro with 16 GB RAM.

We also compare the proposed multi-class classification model with the Multi-
Layer Perceptron (MLP) based model proposed in [2]. We consider this as the
baseline model. This model converts the source code into the AST representation
using Pycparser!'! library. To encode nodes of an AST into numeric values, they
identified 48 different essential token types based on the grammar of C language
and assigned unique values for each token type. Array representation of this was
used to train the MLP model.

Vulnerability explanation: Identifying the code as vulnerable is not much
useful if the vulnerable code segments (tokens) are not located. The developer
has to go through the complete code and needs to identify these tokens manually
and the lack of knowledge about the vulnerabilities might restrict the vulnerable
token identification. Therefore, locating the vulnerable tokens is vital in evalu-
ating the model prediction and to make the necessary changes to the vulnerable
code to make it a benign code. To this end, we use Local Interpretable Model-
agnostic Explanations (LIME)!? framework to explain the prediction. LIME
provides an explanation which is a local linear approximation of the behaviour
of the trained model. LIME learns a sparse linear model by sampling instances
around specific instances, approximating the trained model locally. LIME sup-
ports natural language-based models and provides visual and textual artefacts
that developers can understand. We used our trained multi-class model with
LIME to provide the model explanation. This provides output by highlighting
the vulnerable token in the input source code. The developer confirmed accurate
CWE-IDs (ground truth) sends to the source code database for future model
retraining. During the model training, outputs of the LIME were used to opti-
mize the data pre-processing with the support of domain experts by removing
non-related tokens and keeping the important tokens.

' https://github.com/eliben/pycparser
2 https://github.com/marcotcr/lime
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4 Performance Evaluation

This section provides the results for both binary and multiclass models for a
different set of features. The test dataset was used to evaluate the performance.
F1-Score was selected as the evaluation metric as it provides the harmonic mean
of precision and recall. For the binary classification model, label 0 represents
benign source codes, whereas label 1 represents vulnerable source codes. In con-
trast, the multi-class classification model has twenty CWE-IDs as the label.

4.1 Machine Learning Models

Four ML models were used to identify the best models for binary and multi-
class classification using selected features. Table 1 summarises the F1-Score for
binary classification models for BoW, 2-gram, 3-gram and TF-IDF features. We
included the default hyperparameters into the grid search criteria and all al-
gorithms achieved the best performance for the default hyperparameters. The
BoW feature achieved a higher F1-Score than the 2-gram or 3-gram. XGB model
achieved the lowest detection for all features. The RF algorithm outperformed
LR and XGB and showed the best performance with the feature BoW as high-
lighted in the green colour cell in Table 1.

Table 1. Performance of binary classification ML algorithms with BoW, n-gram, and
TF-IDF features (F1-Score)

NB LR RF XGB
Class | BoW|2- 3- TF- |BoW|2- 3- TF- |BoW|2- 3- TF- |BoW|2- 3- TF-
gram | gram | IDF gram | gram | IDF gram | gram | IDF gram | gram | IDF
0 0.72 ]0.57 |0.63 |0.84 |0.90 [0.88 [0.89 |0.91 |0.95 |0.95 |0.95 [0.95 |0 0.02 |0.03 |0
1 0.81 |0.76 [0.78 |0.85 |0.89 [0.88 [0.89 |0.91 |0.96 |0.95 |0.95 |0.95 [0.68 |0.63 |0.66 |0.68

Overall|0.76 [0.66 |0.71 |0.84 [0.89 |0.88 |0.89 |0.91 |0.96 |0.95 (095 [0.95 [0.34 |0.33 |0.37 |0.34

Table 2 presents the performance for multi-class classification. Increasing
the n-gram of the LR model resulted to achieve higher F1-Score. However, the
opposite can be observable for the RF and XGB models. XGB model with BoW
feature outperformed all other algorithms and feature combination with the
overall F1-Score of 0.85 as highlighted in the green colour cell in Table 2. Similar
to the binary classification features, BoW performed better than n-gram for
multi-class classification. In general, higher n-gram includes the context of tokens
and are expected to perform better than the BoW feature. However, increasing
the n-gram causes to increase the sparsity of feature vectors and this might be a
possible reason for the weak performance of n-gram feature compared to BoW
feature. Another possible reason would be the association of key terms with
the vulnerabilities than the term combination. The baseline model (MLP) only
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outperformed the LR model for BoW, 2-gram and 3-gram features. This is likely
due to restricted token types used during the data pre-processing. In contrast,
we considered higher number of token types and CST preserve more details than
the AST outputs.

Table 2. Performance of multi-class classification ML algorithms with BoW, n-gram,
and TF-IDF features (F1-Score)

NB LR RF XGB
CWE |BoW | 2- 3- TF- |BoW|2- 3- TF- |BoW|2- 3- TF- |BoW|2- 3- TF-
ID gram | gram| IDF gram | gram| IDF gram | gram | IDF gram | gram | IDF
20 0.39 |0.39 [0.34 |0.56 |0.63 |0.63 [0.63 |0.70 |0.82 |0.79 |0.74 |0.82 [0.87 |0.83 |0.76 |0.87
78 0.57 |0.57 |0.56 |0.66 |0.78 |0.75 [0.73 |0.83 |0.91 |0.88 |0.84 |0.9 095 1091 |0.85 |0.95
120 0.06 |0.34 [0.35 |0.55 |0.59 |0.60 [0.59 |0.62 |0.80 |0.78 |0.75 |0.79 [0.83 |0.82 |0.78 |0.82
126 0.30 |0.32 |0.32 |0.53 |0.58 |0.60 |[0.61 |0.66 |0.83 |0.80 |0.75 |0.83 [0.87 |0.84 |0.80 |0.87
134 0.40 |0.43 |0.45 |0.54 |0.65 |0.68 [0.69 |0.69 |0.85 |0.82 |0.80 [0.85 [0.86 |0.84 |0.79 |0.86
190 0.35 |0.29 |0.28 |0.57 |0.70 |0.71 |0.68 |0.73 |0.88 |0.87 |0.83 |0.88 [0.91 |0.89 |0.83 |0.90
327 0.57 |0.53 |0.51 |0.69 |0.87 [0.80 [0.75 |0.84 |0.94 |0.90 |0.85 [0.94 [0.96 |0.91 |0.83 |0.96
362 0.49 |0.50 [0.49 |0.58 |0.71 |0.69 |0.67 |0.71 |0.84 |0.82 |0.79 |0.83 [0.87 |0.84 |0.81 |0.87
377 026 |0.23 |0.24 |0.32 |0.36 |0.41 |0.48 |0.62 |0.74 |0.67 |0.62 |0.73 [0.86 |0.72 |0.65 |0.85
398 0.70 |0.73 ]0.74 |0.74 |0.86 |0.87 |[0.87 |0.86 |0.93 |0.92 |0.91 093 [0.94 |0.94 |0.92 |0.93
401 0.39 042 (043 |0.43 |0.42 |0.54 [0.59 |0.62 |0.78 |0.76 [0.73 |0.77 |0.79 |0.80 |0.77 |0.79
457 0.39 |0.40 |0.44 |0.57 |0.65 |0.67 [0.68 |0.69 |0.84 |0.83 |0.81 [0.84 [0.84 |0.82 |0.78 |0.83
476 0.30 |0.32 |0.33 |0.23 |0.40 |0.47 |0.54 |0.47 |0.77 |0.76 |0.75 |0.78 [0.72 |0.72 |0.69 |0.71
562 0.30 |0.31 [0.29 |0.17 |0.47 |0.50 |0.56 |0.38 |0.77 |0.77 |0.76 |0.76 [0.70 |0.71 |0.70 |0.69
664 0.26 |0.26 [0.27 |0.21 |0.34 |0.38 |0.51 |0.48 |0.77 |0.76 |0.74 |0.77 [0.81 |0.82 |0.79 |0.82
676 0.50 |0.48 |0.45 |0.49 |0.79 |0.73 |0.68 |0.80 |0.92 |0.88 |0.80 [0.92 [0.97 |0.91 |0.83 |0.96
732 0.36 |0.40 |0.40 |0.48 |0.66 |0.61 |0.64 |0.70 |0.85 |0.81 |0.75 |0.85 [0.91 [0.89 |0.80 |0.91
758 0.52 |0.53 |0.52 |0.63 |0.70 |0.73 |0.78 |0.76 |0.92 |0.92 |0.91 |0.92 [0.89 |0.87 |0.83 |0.89
775 0.27 |0.27 |0.30 |0.44 |0.38 |0.44 |0.52 |0.52 |0.68 |0.66 |0.64 |0.66 [0.72 |0.73 |0.71 |0.70
788 0.10 |0.29 |0.33 |0.23 |0.16 |0.21 |0.30 |0.43 |0.66 |0.67 |0.65 |0.65 [0.64 |0.67 |0.64 |0.63
Overall | 0.37 [0.40 |0.40 |[0.48 |0.59 |0.60 |0.62 |0.66 |0.82 |0.80 |0.77 [0.82 [0.85 |0.82 |0.78 |0.84

CWE-IDs which has over 20,000 training samples achieved over 0.8 F1-Score.
However, some CWE-IDs such as 676 achieved higher F1-Score regardless of the
small sample size. Usage of vulnerable tokens such as strcat(), strepy() and
sprintf() lead to the CWE-ID 676 vulnerability. Therefore, it is possible to learn
these types of patterns well even with a smaller dataset due to the frequent
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appearance of vulnerable tokens. To evaluate the impotence of dataset size for
vulnerability detection, we trained a separate XGB model with the BoW feature
by only considering the CWE-IDs which had over 20,000 samples. Table 3 sum-
marizes the performance achieved for this model. As expected, this increased
the overall F1-Score by 4%. Therefore, it is possible to improve the detection
performance by increasing the dataset size.

Table 3. Performance of XGB algorithm with BoW for 12 classes (F1-Score)

CWE ID | 120 | 126 | 134 | 190 | 208 | 327 | 362 | 398 | 457 | 758 | 780 | Other | Overall

F1-Score | 0.8 | 0.88 | 0.86 [ 0.9 | 0.87|0.96 | 0.87 | 0.94 | 0.83 | 0.88 | 0.96 | 0.89 | 0.89

In the deployed web portal, developers are expected to get the prediction
with the minimum time and highest detection rate. Therefore, detection latency
is another important aspect of the source code vulnerability detection model
in a real-world environment. This was estimated for the BoW feature due to
its higher vulnerability detection capability. Table 4 summarizes the average
detection latency (ms) per source code sample for the three ML models and the
baseline model. LR takes the minimum time for the prediction. RF takes higher
time which is not suitable for deployment. In contrast, XGB provides the best
detection and latency trade-off by outperforming the baseline model.

Table 4. Average detection latency

ML Algorithm | Detection latency (ms)
MLP 36.41

LR 8.378

RF 175.968

XGB 14.37

4.2 Explainable AT and Web Portal Output

Based on the achieved F1-Score and detection latency, we deployed the RF as a
binary classifier and XGB as the multi-class clarifier in the web portal backend.
Therefore, LIME used the RF as the classifier to give the prediction explanation.
In the deployed web portal, the developer gets the highlighted code as the output
for the given input source code. Even though the CWE-ID annotation was done
at the multi-class level by assigning one CWE-ID for one source code sample,
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in practice, multiple CWE-IDs can appear in the same source code due to the
parent-child relationship of CWE-IDs. Since LIME provides the explanation for
top K prediction, LIME has the capability to visualize multiple CWE-IDs based
on their probability. Therefore, the developer can identify multiple CWE-IDs in
the output if the input source code has multiple vulnerabilities. Figure 4 presents
a part of XAI output which display on the web portal for a given source code.

Detected Vulnerabilities

401 190 [ 0.23 | 126 [0.06 ] Other [0.06 |

CWE 401 : Missing release of memory after effective lifetime

CWE 190 : Integer overflow or wraparound
CWE 126 : Buffer over-read

Vulnerable tokens

NOT 401 NOT 190 NOT 126

Source Code
else if (streasecmpiclassdef-Iname, usrdef) == constdef) {
if (*classdef-lvalue) usrdef = strdup(classdef-Ivalug);

}
else if (streasecmplclassdef-name, usrdef) == constdef) {
if (*classdef-Ivalue) {
if ('usrdef) usrdef = strdup(classdef-ivalue);
else {
usrdef = (char *)-(usrdef, strlen(usrdef) + strlen(classdef-/value) +
constdef);
strcat(usrdef, classdef-Ivalue);
}
}
}

else if (strcasecmpl(classdef-Iname, usrdef) == constdef) {
if (*classdef-value) usrdef = strdup(classdef-tvalue);

Fig. 4. Web Portal Output
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This code has the CWE-ID 401 vulnerability, which is missing release of
memory after an effective lifetime (known as the memory leak). It is expected
that developers to track and release allocated memory after it has been used.
XGB accurately predicts the CWE-ID 401 as the most probable vulnerability
with a 0.61 probability for this code. This is shown in brown colour and tokens
which causes this vulnerability also highlighted in the same colour in the pre-
processed source code. These tokens are ‘realloc’, ‘malloc’, ‘sizeof’ and ‘unistd’.
Most probable token is ‘realloc’ with a 0.47 probability. Annotated ground truth
for this code was CWE-ID 401. However, as the second most probable vulnera-
bility, this predicts the CWE-ID 190 with a 0.23 probability. This is related to
the use of the function ‘atoi’ inappropriately. The domain experts analysed the
code and also confirmed that CWE-ID 190 also lies in this code even though it
has not been annotated as a ground truth. Inappropriate usage of token ‘strlen’
also highlights that vulnerability CWE-ID 126 is presented in this code. Even
if the input is a large source code file with a large number of lines, develop-
ers can quickly identify the vulnerable code segments using the provided colour
codes. Additionally, this shows a brief description for detected CWE-IDs so that
developers can quickly identify the reason and make it benign.

The web portal has the facility to confirm the predicticed CWE-IDs using the
developer’s domain knowledge. This change reflects in the source code database
by annotating the correct ground truth CWE-IDs for the input source code (as
shown in the Figure 2). This human-in-the-loop process allows for incremen-
tal improvement of the model’s accuracy over time through model retraining,
as well as adaptation to changes in the properties of the data (concept drift).
Additionally, this approach produces a human-annotated dataset which helps to
overcome the limitations of static code analysers. Therefore, the proposed model
has higher capability to outperform static code analysers which used for data
annotation.

5 Conclusion and Future Works

The vulnerabilities of source code need to be minimized to avoid the critical se-
curity flaws which lead to numerous impactful consequences. However, existing
solutions for source code vulnerability detections suffer from high false negatives
and low generalization capability. Additionally, these solutions do not provide
the reasons for vulnerabilities which is an important aspect of source code vul-
nerability detection. As a solution, this paper proposed Al-based vulnerability
detection method for C and C++ languages which achieved 0.96 F1-Score for
the binary classification (with RF classifier) and 0.85 F1-Score for the multi-class
classification (with XGB classifier) to detect vulnerable CWE-IDs. Additionally,
XAI which is based on LIME provides visual explanations for detected vulnera-
bilities. The effectiveness of vulnerability detection relies significantly on the size
of the dataset. Hence, it becomes imperative to employ a well-chosen represen-
tative sample from the dataset that encompasses many source codes characteris-
ing diverse representations of the same vulnerability. Moreover, the selection of
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datasets should span across various code repositories to mitigate any inclinations
towards particular CWE-IDs, thereby reducing bias. BoW features showed the
effectiveness of the feature regardless of its simplicity. Detection capability for
the n-grams might increase with the dataset size as it reduces the data sparsity.

The improvement of the model’s detection capability can be achieved by
taking into account the XAI outputs. The current version of the model has
the capacity to detect up to 20 CWE-IDs. However, our plan is to enhance
the model’s performance by training it with a larger dataset, including data
gathered from developers, which is anticipated to result in a higher vulnerability
detection for a greater number of CWE-IDs. Additionally, we intend to offer
benign code segments for the identified vulnerable code segments to developers
as an extension of the deployed model. In addition, we aim to extend our research
to other programming languages, such as Java and Python, to provide a more
comprehensive developer support system that aligns with the realities of secure
software development practices.
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