
SENANAYAKE, J., RAJAPAKSHA, S., YANAI, N., KOMIYA, C. and KALUTARAGE, H. 2024. MADONNA: browser-based
malicious domain detection through optimized neural network with feature analysis. In Meyer, N. and

Grocholewska-Czuryło, A. (eds.) Revised selected papers from the proceedings of the 38th International conference
on ICT systems security and privacy protection (IFIP SEC 2023), 14-16 June 2023, Poznan, Poland. IFIP advances in

information and communication technology, 679. Cham: Springer [online], pages 279-292. Available from:
https://doi.org/10.1007/978-3-031-56326-3_20

This is the accepted manuscript version of the above paper, which is distributed under the Springer
AM terms of use (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-
terms). The published version of record is available for purchase from the publisher's website:
https://doi.org/10.1007/978-3-031-56326-3_20

This document was downloaded from
https://openair.rgu.ac.uk

MADONNA: browser-based malicious domain
detection through optimized neural network

with feature analysis.

SENANAYAKE, J., RAJAPAKSHA, S., YANAI, N., KOMIYA, C. and
KALUTARAGE, H.

2024

https://doi.org/10.1007/978-3-031-56326-3_20
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://doi.org/10.1007/978-3-031-56326-3_20

MADONNA: Browser-Based MAlicious Domain
Detection through Optimized Neural Network

with Feature Analysis

Janaka Senanayake1[0000−0003−2278−8671], Sampath
Rajapaksha1[0000−0001−7772−3774], Naoto Yanai2[0000−0002−0817−6188], Chika
Komiya2[0009−0001−2253−5407], and Harsha Kalutarage1[0000−0001−6430−9558]

1 School of Computing, Robert Gordon University, Aberdeen, UK
{j.senanayake,s.rajapaksha,h.kalutarage}@rgu.ac.uk

2 Department of Information Security Engineering, Osaka University, Japan
{yanai,c-komiya}@ist.osaka-u.ac.jp

Abstract. The detection of malicious domains often relies on machine
learning (ML), and proposals for browser-based detection of malicious
domains with high throughput have been put forward in recent years.
However, existing methods suffer from limited accuracy. In this paper,
we present MADONNA, a novel browser-based detector for malicious
domains that surpasses the current state-of-the-art in both accuracy and
throughput. Our technical contributions include optimized feature se-
lection through correlation analysis, and the incorporation of various
model optimization techniques like pruning and quantization, to enhance
MADONNA’s throughput while maintaining accuracy. We conducted
extensive experiments and found that our optimized architecture, the
Shallow Neural Network (SNN), achieved higher accuracy than standard
architectures. Furthermore, we developed and evaluated MADONNA’s
Google Chrome extension, which outperformed existing methods in terms
of accuracy and F1-score by six points (achieving 0.94) and four points
(achieving 0.92), respectively, while maintaining a higher throughput im-
provement of 0.87 seconds. Our evaluation demonstrates that MADONNA
is capable of precisely detecting malicious domains, even in real-world
deployments.

Keywords: malicious domain detection · machine learning · feature en-
gineering · browser extension.

1 Introduction

The incidence of cybercrime has significantly increased in recent years, with the
use of rogue domains being a common tactic employed by adversaries for vari-
ous purposes such as running command and control (C&C) servers or setting up
phishing websites. Shockingly, the creation of about 40,000 malicious domains
per day has been reported, and this leads to an average loss of $17,700 per
minute [15]. To circumvent blacklist blocking, attackers often use short-lived ma-
licious domains generated by domain generation algorithms (DGAs). Therefore,

2 Senanayake et al.

the use of machine learning (ML) for detecting malicious domains has received
significant attention in recent years [29].

A browser is the closest interface for a user, and hence users can be alerted
to ongoing malicious attempts, such as phishing, via the browser in real-time.
However, the inference throughput and accuracy of the existing work need to be
increased further to build an efficient malicious domain detection model. In this
paper, we aim to design an artificial intelligence-based domain detection appli-
cation for web browsers with higher accuracy and lower computation overhead
(throughput). We note that such a design is non-trivial.

Indeed, the reason for the low accuracy of previous work is caused by the
use of simple neural network models or traditional ML models to improve the
throughput. If an enriched ML model is trivially introduced in the application
instead of a simple neural network, the throughput will be downgraded drasti-
cally [9]. It might be unsuitable for a browser-based deployment due to the high
throughput. Hence, we need to address a trade-off problem between the through-
put and accuracy to develop a practically deployable browser-based malicious
domain detection application.

Our approach to addressing the aforementioned problems involves two stand-
points. Firstly, we identify the most relevant features for detecting malicious
domains. In general, choosing such features is a technical matter [23], and one
potential approach is to analyze feature correlations [2, 10]. Through an in-depth
examination of feature correlations, we can eliminate redundant features, thereby
improving throughput without compromising accuracy. Secondly, we employ
model optimization techniques, such as pruning and parameter quantization,
in deep learning models. By implementing these techniques and eliminating un-
necessary neurons in the models, we can significantly improve throughput while
maintaining accuracy. Based on the above viewpoints, we propose MADONNA
(MAlicious Domain detection through Optimized Neural Network with feature
Analysis). We demonstrate that MADONNA outperforms other state-of-the-art
models in terms of both accuracy and throughput by virtue of the analysis of fea-
ture correlations and neural network-based learning techniques while achieving
94% accuracy.

To sum up, we make the following contributions:

– We present MADONNA, an open-source browser-based extension (plug-in)
that runs AI in the backbend to detect malicious domains in near real-time.

– We analyze feature correlations for malicious domain detection by removing
highly correlated features to improve both throughput and accuracy.

– We show that parameter quantization and pruning in a deep learning model
can strikingly improve throughput by keeping the same-level accuracy for
malicious domain detection.

– We conduct a real-world experiment to distinguish benign and malicious do-
mains in the real world and show that MADONNA can detect these domains
precisely.

– We demonstrate that MADONNA outperforms the benchmarked models
with respect to the accuracy and throughput of malicious domain detection.

MADONNA: Browser-Based Malicious Domain Detection 3

The rest of the paper is organized as follows: Section 2 contains preliminaries.
Section 3 explains the methodology, and Section 4 discusses the results. Finally,
the conclusions and future work directions are discussed in Section 5.

2 Preliminaries

This section provides background knowledge on domain names and malicious
domain detection using machine learning (ML) to aid in the understanding of
our work.

2.1 Domain Names

Domain names are texts correlated to network hosts and are operated via the Do-
main Name System (DNS). Generally, domain names are hierarchically managed
under namespaces called a zone, and the highest domain is called root. The most
popular domains are .com, .org, .us, .uk, and .jp, and such domains are called
top-level domains (TLDs). There are multiple domains under each TLD, which
are managed hierarchically and distributively through their zones. In a normal
URL, protocol, subdomains (optional), domain name, TLD, and subdirectories
can be linked as shown in this example: https://ifipsec2023.psnc.pl/program/.

2.2 Malicious Domain Detection

There are two main approaches to detect malicious domains, namely knowledge-
based and machine learning-based methods [29]. The former approach is based on
expertise and heuristics to distinguish benign and malicious domains. However,
these methods often fail to detect novel attacks, leading to zero-day exploits. In
contrast, the latter approach can effectively infer unknown domains as benign or
malicious [12]. Especially, supervised learning is a common setting because of the
efficiency and the selection of the most relevant features from raw data [13, 14,
16, 17, 19, 25]. It can infer new domains after the training with labeled domains
with high accuracy. Hence, we focus on malicious domain detection based on
ML.

Malicious domain detection based on ML provides inferences to determine
whether the given domains are malicious. Informally, an ML model learns fea-
tures of domains and their labels that represent the domains as benign or ma-
licious. Afterward, the model takes features of a target domain as inputs in
the inference phase and then infers its label as benign or malicious. A typical
approach for domain detection in recent years is based on deep neural networks.

Problem Formulation: We formalize the problem of domain detection
based on ML below. Let F = {f1, · · · , fl} be a set of features. Each domain
di ∈ D has features Fi = {fi,1, · · · , fi,l}, where D denotes a set of domains, and
l ∈ N denotes the size of Fi, i.e., the number of features of each domain. In addi-
tion, each di ∈ D has a label Li ∈ {0, 1} ⊆ L, where each label denotes a benign
domain by 0 and a malicious domain by 1. For the size n of D, i.e., the number of

4 Senanayake et al.

domains, DFL = {(d1, F1, L1), · · · (dn, Fn, Ln)} denotes the combinations with
domains, features, and labels. Let Model = M(DFL) denote a trained model,
where M denotes a learning algorithm. If dt is a test domain (test case) unseen
by M during its training time, our goal is then to obtain an inference result,
Lt = Model(Ft), by extracting features Ft = {ft,1, · · · , ft,l} for the unlearned
domain dt.

2.3 Related Works

We describe related works in three aspects: feature selection, feature engineering,
and browser-based applications.

For the feature selection, the major way of malicious domain detection is
to utilize an enriched model only with domain names [4, 27, 28]. While domain
names are dealt with text data, malicious domain detection often needs more
information, such as DNS information [21, 22] and web contents [1, 3]. We follow
features in [9], which include domain names, DNS information, and web content.

For feature engineering, a typical way to improve accuracy is to evaluate the
feature importance. To this end, features can be analyzed by principal component
analysis [31] or decision trees [26]. Redundant features can also be removed by
computing zero scores [18] or the equality of data points [30]. We adopt feature
correlations [10] to remove redundant features for the design of MADONNA
because training prediction models with too many correlated features reduces
their accuracy and increases the model’s computational overhead.

For browser-based applications, a web browser for detecting a phishing site [6]
was developed in recent years. However, it is not a common browser such as Fire-
fox or Google Chrome. As plug-ins for existing browsers, several works [3] have
developed phishing site detection, and there are several products according to the
recent survey [23]. They utilize whitelists and blacklists of domains as a part of
detection. We discuss more general malicious domains, including phishing sites,
only with ML as browser-based applications. The closest work to ours is MAD-
MAX [9], which is a browser-based application for detecting malicious domains
and includes feature selection. Another important related work in [2] provided
four feature importance evaluations. Our goal is to design a high-performing
browser-based extension that outperforms the benchmarked and state-of-the-art
model. Therefore, we introduce MADONNA, which will be compared to MAD-
MAX in the benchmarking process.

Various libraries [11, 20] exist for implementing deep learning in web browsers,
which have the potential to deliver performance equivalent to JavaScript. Ad-
ditionally, MADONNA functions as a distributed platform [7]. These libraries
can be used to build a browser-based system for detecting malicious domains.
While these libraries focus on creating generalized ML platforms, MADONNA
is designed specifically for detecting malicious domains.

MADONNA: Browser-Based Malicious Domain Detection 5

Fig. 1: The Overview of MADONNA

3 Methodology

This section outlines the specific methodology used for detecting malicious do-
mains, which is divided into three subsections: Feature Extraction, Model Train-
ing and Optimization, and Browser-based Deployment. Figure 1 provides an
overview of the MADONNA system and explains each of the steps involved.
When a user clicks on the MADONNA extension to check the malicious status
of a domain, the system’s Application Programming Interface (API) is called.
The API extracts the required features and uses the trained SNN model to
generate prediction results, which are then displayed to the user through the
extension.

3.1 Feature Extraction

This work utilized the dataset introduced in [5, 9]. This dataset consists of 25
features, including text-based features, DNS-based features, and web-based fea-
tures. Text-based features represent information obtained from strings of do-
main names and discuss whether malicious domains can be detected from the
domain names. DNS-based features represent information obtained from DNS
records of their corresponding domains and discuss the difference of DNS records
between malicious domains and benign domains. Web-based features represent
information obtained from contents on domains and discuss characteristics of
the contents provided by malicious domains.

Throughput is one critical criterion of the proposed model, as real-time or
near-real-time malicious domain detection is highly important. Therefore, a min-
imum number of features should be selected whilst achieving the highest level of
detection rate. Figure 2 shows the feature correlation metrics for the 25 features.

Label feature includes the ground truth 1 and 0 for malicious and benign
domains, respectively. Based on this, features n_ns and ns_similarity have the

6 Senanayake et al.

Fig. 2: Feature Correlations

highest Pearson correlations with the label, whereas mean_TTL and stdev_TTL
have the lowest Pearson correlations. Some features have higher correlations with
some other features. For example, active_time and life_time have a correlation
of 0.97. Therefore, we can remove one of these highly correlated features from
the ML model.

In their study [9] the authors employed the permutation importance algo-
rithm to choose seven features. The backward selection was utilized to take into
account feature correlation and distribution. The chosen features include: length,
n_ns, n_vowels, n_vowel_chars, life_time, n_constant_chars, n_nums, ns
_similarity, n_other_chars, entropy, n_countries, n_mx, and n_labels. Table 1
provides a summary of the feature description and their behavior in both benign
and malicious scenarios based on our analysis.

Feature distributions for a sample of features are depicted in Figure 3. X-
axis represents malicious and benign class labels, while the y-axis represents
value ranges for the respective variable. None of the features create 100% class
separability. For example, the highest correlated variable ns_similarity, which
is shown in Figure 3c, has shared values between 0.71 and 1.00 for both benign
and malicious domains. Further, this clearly shows that outliers are available
in the benign dataset. Therefore, these outliers are removed using Z-score to
achieve higher generalization capability. Z-score greater than +3 or less than -3
is considered as the threshold to identify the outliers.

3.2 Model Training and Optimization

A supervised learning model was trained by utilizing the dataset proposed in [5]
and selecting the optimized features only. To evaluate the performance of the

MADONNA: Browser-Based Malicious Domain Detection 7

Table 1: Selected Features
Feature Name Description

length The length of the domain. The average length of malicious domains is about two
times that of benign domains.

n_ns The number of distinct name servers. n_ns values tend to be low for malicious do-
mains.

n_vowels The number of vowels in the domain. These values tend to be high for malicious
domains.

life_time The difference of expiration date and creation date of WHOIS data, in days. Generally,
life_time is low for malicious domains.

n_vowel_chars The number of vowel characters in the domain. n_vowel_chars has similar charac-
teristics as n_vowels.

n_constant_chars The number of constant characters in the domain. Malicious domains include more
constant characters.

n_nums The number of numeric characters in the domain. This is typically high in malicious
domains.

n_other_chars Number of characters other than digits and alphabets in the domain. This is compar-
atively high in malicious domains.

entropy The entropy of the domain. High values can be observed for malicious domains.

ns_similarity The similarity between name servers. This is significantly low for malicious domains.

n_countries The number of countries obtained from GeoLite2 service queried using each of the
distinct IP addresses. This tends to be greater than 1 for malicious domains.

n_mx The number of distinct mail exchange records. Low values can be observed for mali-
cious domains.

n_labels The number of HTML elements of the content. This is significantly low in malicious
domains.

models, a variety of experiments were conducted, which involved training them
with different machine learning algorithms, such as Logistic Regression (LR)
and Random Forest (RF), boosting algorithms like Gradient Boosting (GB),
eXtreme Gradient Boosting (XGB), Light Gradient Boosting (LGB), and Ex-
treme Learning Machine (ELM). In addition, Multilayer Perceptron (MLP) and
SNN were trained and assessed the performance in terms of the accuracy, F1-
Score, and throughput of the models, and it was found that the SNN delivered
a good performance. Therefore, the optimal artificial neural network model was
selected for further experiments. A simple model architecture was selected con-
sidering the detection latency of the model. To this end, grid search was used to
select the optimum hyperparameters of the SNN model.

Pruning and Quantization The throughput of a Neural Network can be
improved by eliminating the least significant weight parameters. This aims to
keep the model’s accuracy while improving its efficiency. Magnitude-based prun-
ing [24] is a simple but effective approach that eliminates the weights whilst
keeping the same level of accuracy. Magnitude-based pruning gradually removes
the insignificant weights by assigning value zeros during the model training pro-
cess. Model accuracy depends on the level of sparsity and therefore, sparsity
level should be selected carefully to achieve the same level of accuracy. The
TensorFlow model optimization toolkit was used to apply the magnitude-based

8 Senanayake et al.

(a) length (b) n_ns (c) ns_similarity (d) life_time

Fig. 3: Feature Selection

model pruning. First, the model was trained with all parameters and then ap-
plied pruning to achieve 50% of parameter sparsity starting from 0% sparsity.
The pruned model is referred to as SNN-P in this work.

Quantization [8] is another optimization technique that reduces the precision
of the numbers used for model parameters. Typically, Tensorflow uses 32-bit
floating point numbers. Quantization leads to achieving a better throughput by
moving 32-bit numbers into 16 or 8-bit numbers. However, this might reduce the
model accuracy slightly due to the loss of precision. The TensorFlow optimiza-
tion toolkit provides different quantization options. Accordingly, we used non-
optimized quantization (SNN-NOQ), dynamic range quantization (SNN-DRQ),
float16 quantization (SNN-F16Q), and int8 quantization (SNN-I8Q). The Ten-
sorFlow quantization also converts the model into a more lightweight TFLite
version. Therefore, SNN-NOQ, SNN-DRQ, SNN-F16Q, and SNN-I8Q models
are TFLite versions.

3.3 Browser Deployment

The browser extension named MADONNA, which was produced in this work,
can be used to detect malicious domains near real-time when visiting websites.
Due to the popularity of web browsers, Google Chrome was selected as the
target browser to develop the extension. The extension can be downloaded from
GitHub3 and can be easily installed in Google Chrome.

The MADONNA extension has been connected with a Python Flask web
API. The API can be started by executing the start_api.bat file (for Windows)
or start_api.sh file (for Linux). To execute the API, Python 3 runtime should
be available. Once the API is running in the backend, when a user uses the
browser extension, it sends the URL user attempts to visit, to the API, and
the API extracts the required text-based, DNS-based, and web-based features of
the given URL. These features are passed to the trained SNN model. Then the
model predicts whether the domain is malicious or benign. Based on the results
user will be prompted by the browser extension whether the URL is safe to visit.

3 https://github.com/softwaresec-labs/MADONNA

MADONNA: Browser-Based Malicious Domain Detection 9

4 Results and Discussion

This section presents an evaluation of the performance of MADONNA using
an existing dataset [5]. The analysis includes several key metrics, such as accu-
racy, model size, and throughput. Additionally, we benchmark the MADONNA
extension in Google Chrome against MADMAX [9] to evaluate its performance.

4.1 Experimental Setting

The dataset introduced in [5], consisting of 48,252 domains (24,126 benign and
24,126 malicious), was utilized to train the model using the 13 identified impor-
tant features. The SNN model was trained with 28 nodes in the hidden layer
for 50 epochs and a batch size of 128, using the Adam optimizer with a learn-
ing rate of 0.001. To prevent overfitting, early stopping was applied. ReLU was
used as the activation function for the hidden layer, while softmax was used for
the classification layer. The model architecture was simple, with only 533 train-
able parameters, which helped to achieve low latency. TensorFlow and Keras
libraries were used to implement the SNN model, and Google Colab standard
environment with 12GB of RAM was utilized for model training and inference.

4.2 Accuracy and Throughput of the Model

To evaluate the accuracy and F1-score of MADONNA’s SNN model, traditional
machine learning algorithms and boosting algorithms were trained using the
same dataset and set of features. 5-fold cross-validation was performed for all
models. The SNN model was further optimized for throughput by implementing
pruning and quantization techniques. As the initialization time of the API is
dependent on the model size, it is crucial to have a smaller model size to achieve
faster performance. This is particularly important for detecting malicious do-
mains since web users prefer fast browsing without additional delays. Therefore,
it is necessary to ensure that domain analysis is performed within a reasonable
timeframe to predict whether a domain is malicious or not. The accuracy, pre-
cision, recall and F1-Score, model size, and inference time of these models are
compared in Table 2.

According to Table 2, it was identified that when applying boosting algo-
rithms (XGB, GB, LGB), higher accuracies and F1-Scores can be obtained com-
pared with the other ML algorithms (LR, RF, ELM, and MLP). However, the
SNN model outperformed all the traditional machine learning models with 94%
accuracy and 0.92 F1-Score. It was also identified that the optimized SNN vari-
ants achieve the same level of performance except for a slight performance drop
in the SNN-I8Q model.

The best-performed ML-based model was XGB. It required the largest model
size, whereas the ELM model showed the longest inference time. This is because,
even if ELM requires a small training time, it still requires a large number of
model parameters to learn the benign and malicious domain patterns. Therefore,
it takes much time for the inference. On the other hand, due to the simple

10 Senanayake et al.

Table 2: Comparison of Accuracy, Precision, Recall, F1-Score, Throughput
Model Accuracy Precision Recall F1-Score Model

size(KB)
Inference
time(µs)

LR 87% 0.87 0.86 0.87 443 151
RF 88% 0.92 0.83 0.87 480 41
GB 89% 0.91 0.89 0.89 422 112
MLP 83% 0.88 0.78 0.82 78 69
LGB 89% 0.91 0.89 0.89 482 98
XGB 90% 0.92 0.89 0.90 526 27
ELM 87% 0.88 0.86 0.87 312 198
SNN 94% 0.96 0.89 0.92 33 64
SNN-P 94% 0.96 0.90 0.92 19 36
SNN-NOQ 94% 0.96 0.90 0.92 4 19
SNN-DRQ 94% 0.96 0.90 0.92 4 16
SNN-F16Q 94% 0.96 0.90 0.92 3 10
SNN-I8Q 93% 0.95 0.89 0.91 3 12

model architecture of the SNN model, it only takes 33KB of memory and 64µs
inference time. Pruned model (SNN-P) optimized these values due to the removal
of insignificant weights. As expected, quantized models further optimized both
model size and inference time. However, despite low precision, SNN-I8Q took
small additional time compared to the SNN-F16Q model. This is likely because
quantized int requires an arm device such as Raspberry Pi to get the optimum
inference.

By considering all the evaluation matrices, including the accuracy, precision,
recall, F1-Score, model size, and inference time, the SNN-F16Q model was se-
lected to integrate with the browser extension to detect malicious domains.

4.3 Performance of Browser Extension

Users receive notifications reflecting predictions of the malicious status of a do-
main upon clicking on the MADONNA extension icon in Google Chrome. Exam-
ples of these notifications are shown in Figure 4. The extension displays a notifi-
cation similar to Figure 4b if a domain is benign (e.g., https://www.google.com).
On the other hand, if the checked URL contains a malicious domain (e.g.,
https://chromnius. download/browser2/?mrddp=1 &mrddz=2353135), a noti-
fication resembling Figure 4c appears. Figure 4a illustrates the notification dis-
played when checking a domain’s malicious status.

(a) Checking Domain (b) Benign Domain (c) Malicious Domain

Fig. 4: Chrome Browser Extension Notifications

MADONNA: Browser-Based Malicious Domain Detection 11

Table 3: Comparison of MADMAX and MADONNA
Aspect MADMAX MADONNA
Used Text-based features length, n_constant_chars,

n_vowel_chars, num_ratio
length, n_vowels, n_vowel_chars,
n_constant_chars, n_nums, en-
tropy, n_other_chars

Used DNS-based Features n_ns n_ns, ns_similarity, n_mx,
n_countries

Used Web-based Features life_time, n_labels life_time, n_labels
Model Inference Time 198µs 10µs
Supported Browser Firefox Chrome
Avg. Prediction time in Browser 3.3s 2.43s
Accuracy 88% 94%
F1-Score 0.88 0.92
Precision 0.90 0.96
Recall 0.86 0.90
Connectivity Externally-hosted Sever Internally-hosted API

4.4 Comparison with Existing Works

A comparison between MADONNA and MADMAX was conducted as MAD-
MAX is the closest high-accuracy AI-based malicious domain detection work.
The comparison results are presented in Table 3, indicating that MADONNA in-
cludes more text-based and DNS-based features than MADMAX, which were se-
lected based on their significance in feature analysis. By combining these features
with an optimized and quantized SNN model, MADONNA achieved better accu-
racy, F1-Score, precision, and recall than MADMAX. Specifically, MADONNA
outperformed MADMAX by 6% in accuracy and 4% in F1-Score, representing
a significant improvement.

MADONNA supports the widely used Google Chrome browser and its back-
end model achieves significantly faster inference times (10µs compared to MAD-
MAX’s 198µs) which should be considered as notable advantages. Additionally,
the MADONNA browser extension predicts the malicious status of domains more
quickly, with an average prediction time of 2.43s compared to MADMAX’s 3.3s.
MADONNA’s extension connects to an internally hosted web API, prioritiz-
ing user privacy, while MADMAX’s extension relies on an external server for
predictions. In summary, MADONNA outperforms MADMAX in all aspects.

We also conducted real-world experiments to evaluate the performance of
MADONNA, validating the performance of the MADONNA Chrome extension
by visiting well-known benign sites and malicious sites listed in CyberCrime,
PhishTank, and Tranco websites [9]. The experimental machine used had a Core
i5 processor with 16GB RAM and 66.6 Mbps fiber broadband internet connec-
tivity. The MADONNA extension can predict whether the URL is malicious or
benign on average in 2.43 seconds, which is reasonable for practical use. Although
the SNN model can predict the malicious status of a given feature set in just
10µs, the MADONNA extension takes more time to extract some of the DNS-
based and web-based features, which is why it takes 2.43s on average to provide
a notification. The detailed experiment results are available in MADONNA’s

12 Senanayake et al.

GitHub repository4, although they are not presented in the paper due to space
constraints.

4.5 Limitations

The misclassification results suggest that certain malicious domains exhibit be-
nign feature values while some benign domains exhibit malicious feature values
for the selected features. This observation implies the need for more sophisticated
and distinguishable web-based features to further minimize misclassifications.
Features such as pop-up messages, alert boxes, a high percentage of advertise-
ments, and site redirection are examples of malicious web-based features that
can be taken into account during the feature analysis stage. However, these fea-
tures must be extracted after the page has been loaded in the browser, which
could potentially reduce the throughput and real-time usability of the solution.

The MADONNA model has a very fast inference time of just 10µs, but the
prediction time through the browser extension takes on average 2.43s. This delay
is mainly due to internet connectivity and cannot be easily solved with exist-
ing web-engineering techniques. The authors explored the possibility of using
Pyscript5 to remove the API execution step and convert it to a fully browser-
based model, but this was not feasible due to limited library support for ex-
tracting web and DNS-based features. Therefore, MADONNA still requires a
connection with a hosted API on the local machine, which adds computational
overhead to the overall process.

5 Conclusion and Future Work

Overall, MADONNA is a promising approach to detecting malicious domains
and demonstrates the potential of leveraging machine learning and browser-
based applications for malicious domain detection. The authors’ contributions
in optimizing feature extraction, applying ML methods and optimization tech-
niques, and introducing the SNN architecture are significant and demonstrate
the effectiveness of MADONNA compared to state-of-the-art methods. However,
there are also some limitations to consider, such as the computational overhead
of connecting with a hosted API on the local machine and the dependence on
internet connectivity for timely predictions. Further research could explore ways
to minimize prediction time and improve accuracy while integrating web-based
features to enhance MADONNA’s capabilities. Nonetheless, MADONNA repre-
sents a significant step forward in the field of cybersecurity (malicious domain
detection) and shows promise for future development and improvement.

References

1. Abdelnabi, S., Krombholz, K., Fritz, M.: Visualphishnet: Zero-day phishing website
detection by visual similarity. In: Proc. of CCS 2020. pp. 1681–1698. ACM (2020)

4 https://github.com/softwaresec-labs/MADONNA
5 https://pyscript.net/

MADONNA: Browser-Based Malicious Domain Detection 13

2. Alhogail, A.A., Al-Turaiki, I.: Improved detection of malicious domain names using
gradient boosted machines and feature engineering. Information Technology and
Control 51(2), 313–331 (2022)

3. Ariyadasa, S., Fernando, S., Fernando, S.: Combining long-term recur-
rent convolutional and graph convolutional networks to detect phish-
ing sites using url and html. IEEE Access 10, 82355–82375 (2022).
https://doi.org/10.1109/ACCESS.2022.3196018

4. Berman, D.S.: Dga capsnet: 1d application of capsule networks to dga detection.
Information 10(5), 157 (2019)

5. Chien, C.J., Yanai, N., Okamura, S.: Design of malicious domain de-
tection dataset for network security (2021), http://www-infosec.ist.osaka-
u.ac.jp/ yanai/dataset.pdf

6. HR, M.G., MV, A., S, G.P., S, V.: Development of anti-phishing browser based on
random forest and rule of extraction framework. Cybersecurity 3(1), 1–20 (2020)

7. Huang, Y., Qiao, X., Dustdar, S., Li, Y.: Aodnn: An auto-offloading approach to
optimize deep inference for fostering mobile web. In: Proc. of INFOCOM 2022. pp.
2198–2207 (2022)

8. Idelbayev, Y., Carreira-Perpinan, M.A.: An empirical comparison of quantiza-
tion, pruning and low-rank neural network compression using the lc toolkit. In:
2021 International Joint Conference on Neural Networks (IJCNN). pp. 1–8 (2021).
https://doi.org/10.1109/IJCNN52387.2021.9533730

9. Iwahana, K., Takemura, T., Cheng, J.C., Ashizawa, N., Umeda, N., Sato, K.,
Kawakami, R., Shimizu, R., Chinen, Y., Yanai, N.: Madmax: Browser-based mali-
cious domain detection through extreme learning machine. IEEE Access 9, 78293–
78314 (2021)

10. Li, T., Kou, G., Peng, Y.: Improving malicious urls detection via feature engineer-
ing: Linear and nonlinear space transformation methods. Information Systems 91,
101494 (2020)

11. Morell, J.A., Camero, A., Alba, E.: Jsdoop and tensorflow.js: Volunteer distributed
web browser-based neural network training. IEEE Access 7, 158671–158684 (2019)

12. Palaniappan, G., S, S., Rajendran, B., Sanjay, Goyal, S., B S, B.: Malicious domain
detection using machine learning on domain name features, host-based features and
web-based features. Procedia Computer Science 171, 654–661 (2020)

13. Rajapaksha, S., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Madzudzo, G.,
Cheah, M.: Ai-based intrusion detection systems for in-vehicle networks: A sur-
vey. ACM Comput. Surv. 55(11) (feb 2023). https://doi.org/10.1145/3570954,
https://doi.org/10.1145/3570954

14. Rupa, C., Srivastava, G., Bhattacharya, S., Reddy, P., Gadekallu, T.R.: A machine
learning driven threat intelligence system for malicious url detection. In: Proc. of
ARES 2021. pp. 1–7. ACM (2021)

15. Saleem Raja, A., Vinodini, R., Kavitha, A.: Lexical features based malicious url
detection using machine learning techniques. Materials Today: Proceedings 47,
163–166 (2021)

16. Senanayake, J., Kalutarage, H., Al-Kadri, M.O.: Android mobile malware detection
using machine learning: A systematic review. Electronics 10(13), 1606 (2021).
https://doi.org/10.3390/electronics10131606, https://www.mdpi.com/2079-
9292/10/13/1606

17. Senanayake, J., Kalutarage, H., Al-Kadri, M.O., Petrovski, A., Piras, L.:
Android source code vulnerability detection: A systematic literature re-
view. ACM Comput. Surv. 55(9) (jan 2023). https://doi.org/10.1145/3556974,
https://doi.org/10.1145/3556974

14 Senanayake et al.

18. Shabudin, S., Sani, N.S., Ariffin, K.A.Z., Aliff, M.: Feature selection for phishing
website classification. International Journal of Advanced Computer Science and
Applications 11(4) (2020)

19. Shi, Y., Chen, G., Li, J.: Malicious domain name detection based on extreme
machine learning. Neural Processing Letters 48(3), 1347–1357 (2018)

20. Smilkov, D., Thorat, N., Assogba, Y., Yuan, A., Kreeger, N., Yu, P., Zhang, K.,
Cai, S., Nielsen, E., Soergel, D., Bileschi, S., Terry, M., Nicholson, C., Gupta,
S.N., Sirajuddin, S., Sculley, D., Monga, R., Corrado, G., Viégas, F.B., Wat-
tenberg, M.: Tensorflow.js: Machine learning for the web and beyond (2019).
https://doi.org/10.48550/ARXIV.1901.05350, https://arxiv.org/abs/1901.05350

21. Sun, X., Tong, M., Yang, J., Xinran, L., Heng, L.: Hindom: A robust malicious
domain detection system based on heterogeneous information network with trans-
ductive classification. In: Proc. of RAID 2019. pp. 399–412. USENIX Association
(2019)

22. Sun, X., Yang, J., Wang, Z., Liu, H.: Hgdom: Heterogeneous graph convolutional
networks for malicious domain detection. In: Proc. of NOMS 2020. pp. 1–9. IEEE
(2020)

23. Tang, L., Mahmoud, Q.H.: A survey of machine learning-based solutions for phish-
ing website detection. Machine Learning and Knowledge Extraction 3(3), 672–694
(2021)

24. Vadera, S., Ameen, S.: Methods for pruning deep neural networks. IEEE Access
10, 63280–63300 (2022). https://doi.org/10.1109/ACCESS.2022.3182659

25. Vinayakumar, R., Soman, K., Poornachandran, P.: Detecting malicious domain
names using deep learning approaches at scale. Journal of Intelligent and Fuzzy
Systems 34(3), 1355–1367 (2018)

26. Yahya, F., W Mahibol, R.I., Ying, C.K., Anai, M.B., Frankie, S.A., Nin Wei, E.L.,
Utomo, R.G.: Detection of phising websites using machine learning approaches. In:
Proc. of ICoDSA 2021. pp. 40–47. IEEE (2021)

27. Yang, L., Liu, G., Dai, Y., Wang, J., Zhai, J.: Detecting stealthy domain generation
algorithms using heterogeneous deep neural network framework. IEEE Access 8,
82876–82889 (2020)

28. Yu, B., Pan, J., Hu, J., Nascimento, A., De Cock, M.: Character level based de-
tection of dga domain names. In: Proc. of IJCNN 2018. pp. 1–8. IEEE (2018)

29. Yu, T., Zhauniarovich, Y., Khalil, I., Dacier, M.: A survey on malicious domains
detection through dns data analysis. ACM Computing Surveys 51(4) (2018)

30. Zabihimayvan, M., Doran, D.: Fuzzy rough set feature selection to enhance
phishing attack detection. In: Proc. of FUZZ-IEEE 2019. pp. 1–6. IEEE (2019).
https://doi.org/10.1109/FUZZ-IEEE.2019.8858884

31. Zamir, A., Khan, H.U., Iqbal, T., Yousaf, N., Aslam, F., Anjum, A., Hamdani,
M.: Phishing web site detection using diverse machine learning algorithms. The
Electronic Library 38(1), 65–80 (2020)

	coversheet_template
	SENANAYAKE 2024 MADONNA (AAM)

