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Abstract

Embedded systems, including the Internet of things (IoT), play a crucial role in the functioning of critical infrastructure.
However, these devices face significant challenges such as memory footprint, technical challenges, privacy concerns, per-
formance trade-offs and vulnerability to cyber-attacks. One approach to address these concerns is minimising computational
overhead and adopting lightweight intrusion detection techniques. In this study, we propose a highly efficient model called
optimized common features selection and deep-autoencoder (OCFSDA) for lightweight intrusion detection in IoT environ-
ments. The proposed OCFSDA model incorporates feature selection, data compression, pruning, and deparameterization.
We deployed the model on a Raspberry Pi4 using the TFLite interpreter by leveraging optimisation and inferencing with
semi-supervised learning. Using the MQTT-IoT-IDS2020 and CIC-IDS2017 datasets, our experimental results demonstrate
a remarkable reduction in the computation cost in terms of time and memory use. Notably, the model achieved an overall
average accuracies of 99% and 97%, along with comparable performance on other important metrics such as precision, recall,
and F1-score. Moreover, the model accomplished the classification tasks within 0.30 and 0.12 s using only 2KB of memory.

Keywords Intrusion detection - Feature selection - Internet of things - Computational cost

1 Introduction

The IoT refers to the interconnection of everyday objects
with the Internet. Roy et al. [49] define it as the connection of
uniquely identifiable, diverse embedded devices. This con-
nection has led to remarkable growth in the IoT over the
years, transcending various facets of human life and finding
applications in critical infrastructures, smart homes, health-
care facilities, industries, and even the environment. It has
revolutionized the acquisition, processing, and use of data.
However, this widespread adoption and application has also
introduced some associated risks. These risks stem from an
initial lack of emphasis on security during manufacturing,
as manufacturers were mostly driven by market consider-
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ations and competition [10, 35]. In addition, IoT systems
have become targets because they are susceptible to diverse
security issues, thus raising significant privacy concerns for
end-users in sectors such as critical infrastructures and smart
homes [8]. Controls and strategies such as encryption, access
control, trust policies, and management controls have been
developed to counter these attacks. However, the advent
of Intrusion Detection Systems (IDS), especially Al-based
IDS, has marked a significant stride in the future. IDS can
detect and prevent malicious activities efficiently and effec-
tively, thus representing an additional layer of defence against
unauthorized intrusion. They can be categorized as either
network-based (NIDS) or host-based, scrutinizing network
traffic and system baselines to detect anomalies. Conven-
tional IDS are unsuitable for IoT because of their unique
characteristics, as noted by [49]. This is because IoT and
other embedded systems have limited hardware resources
such as Random Access Memory (RAM) and flash mem-
ory [66]. These limitations impose constraints on its ability
to resolve pertinent security issues effectively. For instance,
the standard technique of data feature analysis could esca-
late the computational costs of IoT devices. In addition, the
incapacity could further be compounded by the redundancy
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of certain features in a dataset, which may impact overall
classification outcomes. This underlines why a Lightweight
Intrusion Detection System (LIDS) is better tailored for IoT
and other embedded systems.

The deployment of Lightweight Intrusion Detection Sys-
tems (LIDS) offers several benefits, including reduced
computational overhead, reduced power consumption, and
optimized computing, communication, and storage capaci-
ties. According to [48], LIDS is a small but potent and flexible
software tool with a modest system footprint that can be
promptly integrated as a permanent security solution. The
authors further emphasize that given the evolving nature of
security scenarios, a LIDS should be adaptable to seamlessly
integrate into the existing network security infrastructure,
especially when its distinctive challenges in terms of proto-
col and structure are considered. In fact, the need for effective
LIDS for the IoT is unique. This is because of the net-
work protocols and other properties, such as IEEE 802.15.4,
6LoWPAN, RPL, and CoAP, used in the IoT network. These
properties make the IoT very distinct from traditional net-
work protocols. In addition, these properties also add to the
constraints on its intrusion detection mechanisms [19].

This research introduces a novel LIDS. However, it is
imperative to acknowledge the recent increase in scholarly
research focusing on applying Machine Learning (ML) tech-
niques for detecting security breaches across diverse devices.
This heightened interest stems from the notable efficacy
of the ML techniques in uncovering intrusions. Neverthe-
less, it is crucial to recognize that these approaches incur
considerable computational overhead when implemented
verbatim. Notably, deploying ML methods on resource-
constrained devices, particularly within the IoT paradigm,
presents formidable challenges. The intricacies of apply-
ing conventional and ML-based intrusion detection systems
underscore the need for a tailored approach. Consequently,
this study comprehensively addresses the research questions,
taking cognisance of the complexities intrinsic to implement-
ing intrusion detection systems.

1. RQ1: How can a lightweight Intrusion Detection System
be achieved for resource-constrained devices such as the
IoT with efficient and effective classification ability with-
out significantly compromising accuracy?

2. RQ2: How can the proposed model be made resilient
against adversarial attacks such as label poisoning?

3. RQ3: How will the result compare with the output of the
benchmark dataset and existing studies regarding compu-

tation cost?

To address these research questions, this study proposes
an Optimized Feature Selection and Deep Neural Network
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model for effective lightweight intrusion detection in IoT.
It incorporates a number of distinct approaches to achieve
the proposed model. The approaches include feature selec-
tion, data compression, and quantization. Feature selection
is a dimensionality reduction technique that aids in condens-
ing the original feature space by eliminating redundant and
less relevant features. This process enhances the efficiency
of ML models by focusing on the most informative and
significant features, thereby improving model performance
and interpretability [60]. Subsequently, the selected features
were compressed using the neural network’s Long Short-
Term Memory Autoencoder (LSTM-AE). The compression
technique further reduces the dimensionality of the selected
data, minimizes redundancy, and preserves data density and
structure [24, 51]. Thereafter, the output of the autoencoder
is further optimized through quantization and inferencing to
achieve an effective Lightweight Intrusion Detection Sys-
tem. Consequently, this study presents the following novel
contributions:

1.1 Contribution

1. We present a novel optimized common features selection
and deep-autoencoder (OCFSDA) model for lightweight
intrusion detection in the IoT. The proposed model can
reduce CPU computational cost, measured in terms of
memory usage and computation time, when applied to
two benchmark datasets.

2. The proposed model’s resilience was also evaluated
against adversarial attacks such as label poisoning attacks,
and the results show the robustness of the proposed model.

3. In addition to reducing memory footprint and execu-
tion time, the proposed model was also able to achieve
effective results across different metrics of measurement,
especially when compared with other related works on
lightweight intrusion detection systems.

1.2 Scope of work

The scope of this study is limited to using existing bench-
mark datasets to achieve lightweight intrusion detection. To
accomplish the scope, emphasis was placed on using feature
selection and an LSTM-autoencoder with semi-supervised
and supervised learning to implement this work. In addition,
for inferencing, the proposed model is deployed on a Rasp-
berry Pi for evaluation.
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1.3 Structure of paper

The rest of this paper is structured as follows: Sect.?2 intro-
duces the relevant literature. Section 3 provides an overview
of the preliminaries, elucidating the background activities of
the methodology. Section 4 elucidates the methods employed
for the proposed model. Section 5 discusses and presents the
results in relation to the outputs and proposal. Section 6 con-
cludes the paper and outlines potential future work.

2 Related work

Over the years, researchers have developed diverse method-
ologies for lightweight intrusion detection in the IoT domain.
While some techniques have proven effective, others have
become outdated due to evolving threats. Therefore, this
study split the related works between feature selection,
machine learning, and quantisation approaches.

2.1 Feature selection technique for LIDS

Features do help in effective classification of data, how-
ever, redundant features can compromise model accuracy.
Consequently, numerous researchers have advocated various
feature selection methodologies to reduce data dimensions,
striving for both lightweightness and enhanced classification
proficiency. As an illustration, Wang et al. [61] introduced
a feature selection framework tailored for high-dimensional
datasets. Their approach involved amalgamating outcomes
from the chi-square test, maximum information coefficient,
and XGBoost feature selection techniques to ascertain fea-
ture rankings. Similarly, Neumann et al. [36] presented an
ensemble feature selection approach aimed at mitigating
biases inherent in individual feature selection methods. In
a related development, [4] proposed a hybrid approach for
lightweight intrusion detection. This approach combines fea-
ture selection with a heterogeneous ensemble of intelligent
classifiers. Meanwhile, Jan et al. [19] proposed a method
that uses feature selection based on the packet arrival rate
of the NSL-KDD dataset to achieve a lightweight intru-
sion detection system (IDS). The authors fitted a Support
Vector Machine (SVM) model to the data, focusing on detect-
ing Denial of Service (DoS) attacks. In another study, Li
et al. [28] introduced the Hierarchical and Dynamic Fea-
ture Extraction Framework (HDFEF) for network intrusion
detection in IoT. They addressed the challenge of effec-
tively representing features in network flows by designing
a hierarchical network model that dynamically adjusts the
distribution of feature representations for correlated net-
work packets using an attention mechanism. This approach
achieved a classification rate of 99.7% by generating discrim-
inant vectors from multiple mappings. Li et al. [29] proposed

a Lightweight Intrusion Detection System that implemented
feature selection with a random mutation hill-climbing opti-
mization approach to select the best features. Furthermore,
Moukhafi et al. [33] proposed a model that combines the
Genetic Algorithm (GA) and SVM algorithms. The GA algo-
rithm was used to select a subset of features obtained through
particle swarm optimization (PSO).

In the same vein, Manal et al. [2] proposed an intrusion
detection method based on dividing a dataset into subsets
based on the attack type. Using an information gain filter, a
set of optimal features is selected and combined for model
fitting. Furthermore, Halim et al. [12] in their work proposed
a Genetic Algorithm (GA)-based feature selection method
called GA-based Feature Selection (GbFS) for the reduc-
tion of data dimensionality and improvement in intrusion
detection. Osanaiye et al. [40] in their work, proposed a fea-
ture selection approach that combines three filter methods,
namely, Gain ratio, Chi-squared, and ReliefF, in a cluster-
based heterogeneous Wireless Sensor Network. Similarly,
Subbiah et al. [58] also proposed a novel framework for an
Intrusion Detection System (IDS) that uses the Boruta fea-
ture selection with grid search random forest (BFS-GSRF)
algorithm. In addition, Li et al. [27] in their work consid-
ered a deep learning approach that incorporated the random
forest technique for creating a training set involving feature
selection and grouping. Following this training process, they
used an auto-encoder model to predict attacks, consequently
reducing detection time and enhancing prediction accuracy.
Similarly, Tao et al. [59] proposed a lightweight intrusion
detection system based on feature selection and weight using
a genetic algorithm. The authors conducted continuous opti-
mization of the SVM parameters to achieve optimal values.
In a related development, Jaw and Wang [20] highlighted
the challenges of creating trustworthy IDSs, such as accu-
racy, novel attack detection, labelled training data, and time
consumption. Following that, they proposed a Hybrid Fea-
ture Selection (HFS) with an ensemble classifier, combining
CfsSubsetEval, genetic search, and a rule-based engine to
reduce model complexity and enhance learning algorithm
performance.

2.2 Machine learning-based lightweight intrusion
detection approach

There are a number of studies bordering on using machine
learning for dimensionality reduction in other to achieve
lightweight intrusion detection. For instance, Mendonca et
al. [32] proposed using deep learning-based intelligent sys-
tems for Lightweight Intrusion Detection Systems (IDS) in
the IoT. The approach uses Sparse Evolutionary Training
(SET) and involves weight modification and converting the
resulting sparse matrix into different vectors. Lahasan B. and
Sama [22] proposed an optimized deep autoencoder model
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for a Lightweight Intrusion Detection System in IoT. Their
approach incorporated a two-layer optimizer that selected
features, training instances, and latent neurons simultane-
ously. Additionally, Wang et al. [63] presented a Knowledge
Distillation approach based on Triplet Convolution Neural
Network (KD-TCNN) to enhance the speed and efficiency
of anomaly detection in IoT. Furthermore, Shone et al. [55]
introduced a non-symmetric autoencoder (NDAE) model,
which basically focused on the encoding phase of the Long
Short-Term Memory (LSTM) without the decoding phase.
Their approach aimed at unsupervised feature learning, and
they further introduced a stacked form of NDAEs using the
KDD and NSL-KDD datasets. In the same vein, Kim et al.
[21] developed a deep autoencoder model for outlier detec-
tion, using normal IoT traffic as training data to identify
instances that deviate from the learned pattern as malicious.

In another study, Mushtaq et al. [34] presented a two-stage
intrusion detection system using an LSTM-autoencoder.
Their method involved using the LSTM-autoencoder to iden-
tify relevant features and subsequently using a bidirectional
LSTM for malicious classification. Using the NSL-KDD
dataset, their model achieved an overall accuracy of 8§9%.
Similarly, Xu et al. [65] proposed an IoT intrusion detection
system based on an LSTM autoencoder. The authors lever-
aged the LSTM autoencoder to capture time series features
and exploit its feature learning capabilities for classifica-
tion. Hanafi et al. [13] introduced a new Intrusion Detection
System (IDS) model that combines the Improved Binary
Golden Jackal Optimization (IBGJO) algorithm with a Long
Short-Term Memory (LSTM) network. Naung et al. [57]
implemented a lightweight Intrusion Detection System based
on machine learning on a Raspberry Pi. Their approach used a
correlation-based feature selection (CFS) algorithm to reduce
the number of features and employed a J48 classifier for
classification, achieving improved performance in terms of
overall accuracy and detection speed. In addition, Zhao et al.
[69] proposed an approach for IoT LIDS using a lightweight
deep neural network (LNN). The approach employs Principal
Component Analysis (PCA) to reduce feature dimensionality
and uses specialized structures for effective feature extrac-
tion at a low computational cost. [38] proposes‘‘Realguard,’a
Deep Neural Network-based network intrusion detection sys-
tem (NIDS) for IoT devices. Mendonca et al. [32] proposed
a deep learning model to predict cybersecurity threats. This
approach uses a sparse evolutionary training (SET) based
prediction model to analyze and detect attacks.

2.3 Quantisation
Quantisation is another technique for reducing the dimen-
sion of data, and several studies have introduced it to

reduce data dimensionality for IoT intrusion detection. One
approach proposed by [54] utilizes quantization techniques
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in a Quantized Autoencoder (QAE) model tailored for IoT
intrusion detection. Two variants, QAE-u8 and QAE-f16,
were designed to make resource-intensive Al models suit-
able for Edge devices. According to the authors, these models
identified various attack types, achieving improved accuracy.
Another study by [53] introduced Vector Space Bag of Words
(VSBW) for feature extraction and employed Boosted Vari-
ance Quantization Neural Networks (BVQNNSs) for intrusion
detection. The approach also incorporates an MH-RSO
algorithm to enhance intrusion anticipation. Evaluation of
standard IoT datasets demonstrated the effectiveness of this
methodology in bolstering IoT system security. Additionally,
[44] proposed a Vector Space Bag of Words (VSBW) com-
bined with Boosted Variance Quantization Neural Networks
(BVQNNS5) for intrusion detection. The approach integrates
the Multi-Hunting Reptile Search Optimization (MH-RSO)
algorithm, enhancing intrusion anticipation. Evaluation of
standard IoT datasets showed the ability of the methodol-
ogy to improve IoT security. Furthermore, [62] proposed
DL-BiLSTM, a lightweight IoT intrusion detection model
that combines DNNs and BiLSTMs for feature extrac-
tion. The model employs IPCA for feature reduction and
dynamic quantization for computational efficiency, achiev-
ing improved detection performance while maintaining lower
complexity.

These studies have proposed various approaches to achieve
lightweight intrusion detection in resource-constrained
devices such as the IoT. However, a prevalent trend in the
studies primarily entails deploying the models in edge and
cloud environments, while many others implemented their
approach on Windows systems. Interestingly, some results
could be improved upon and suitable for the IoT ecosystem
considering that the devices could be deployed in remote
terrains. Therefore, in this study, we have undertaken a com-
prehensive approach that combines the three approaches to
achieve effectiveness and reduce the size of our model while
maintaining data density and structure.

3 Preliminaries

Several steps were taken to achieve our proposed model,
including dimensionality reduction techniques (feature selec-
tion, LSTM autoencoder-based data compression), quantiza-
tion, pruning, deparameterization, a Bayesian optimization
technique, and inferencing.

3.1 Feature selection

Assuming a function f, which was applied on a dataset
T with the following features, X1, X2, X3, ..., X, to find
the information content relative to the target variable. This
approach is helpful in the selection of relevant features and in
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the generation of a minimal set of features devoid of redun-
dancies. Feature selection is generally helpful because it
enhances generalization and reduces overfitting. However,
the danger of using a single feature selection method is
the risk of generating suboptimal feature subsets that could
impact the detection performance of the learning method [15,
47]. Therefore, we adopted an ensemble of multiple feature
selection techniques to rank the features. Our approach lever-
ages the strengths of each technique to create a more robust
and effective feature subset.

This study employed feature selection techniques specif-
ically tailored to intrusion detection. We focused on Infor-
mation Gain, Chi-Squared, and Gini Index methods. These
selections were made based on their direct relevance to
addressing issues such as (i) disorder or anomalies within
traffic patterns, (ii) the critical need for precise data classifi-
cation in the traffic flow, and (iii) the ability to measure the
distribution of values in a feature while considering the prob-
ability of a randomly selected instance being misclassified.

3.1.1 Feature selection based on information gain

Information Gain quantifies the information a feature pro-
vides to predict the target variable. In intrusion detection,
this methodology offers benefits by identifying unique and
significant features crucial for accurate detection. In informa-
tion theory, higher uncertainty equates to lower information
content. Therefore, by assigning weights to features and
emphasizing the most relevant ones, Information Gain helps
reduce the complexity of the dataset. The calculation of the
information gain for each feature relies on entropy, repre-
sented as E(), and these have been extensively discussed
in some relevant literature, including [5]. Equations 1 and 2
present the fundamental mathematical principles behind cal-
culating information gain. Nevertheless, we utilized relevant
libraries in this study to generate and rank the features.

1G(S, x) = E(S) — E(S|x) 1

where 1G(S, x) represents the information gain for the
dataset, S; x represents a random variable; E(S) represents
the entropy of S; E(S|x) represents the conditional entropy
of S given x.

E(S)=—)_ PilogP, @)
i=1

In information theory, entropy, as defined by Eq. 2, serves
as a measure of the uncertainty associated with a random
variable. This uncertainty is derived from the probabilities
assigned to various outcomes of the random variable. By

comparing the entropy with the conditional probability given
a specific feature, the learning algorithm can discern the sig-
nificance of a feature.

3.1.2 Feature selection based on chi-square

The Chi-Square method is a statistical algorithm utilized for
the binning of numerical variables based on the x? statistic
to detect significant variations within the dataset. Its primary
objective is to assess the association between independent
(predictor) and dependent categorical features (response).
A higher Chi-Square value suggests a more pronounced
reliance on the feature on the response, thereby enhancing its
suitability for model training. In the context of a classification
task involving a categorical target variable and continuous
independent variables, the Chi-Square technique is a feasi-
ble feature selection option. A Chi-square test can ascertain
whether a feature influences the class label [45]. While Eq. 3
has provided the basic mathematics behind feature ranking
using Chi-Squared; in this case, however, relevant libraries
were used to rank the features.

O; — E; 2
x3=2% 3)

where ¢ represents the degree of freedom; O represents the
observed values; E represents the expected values.

The degree of freedom (c), observed values (O) and the
expected values (E) are parameters used to calculate the
Chi-squared statistic, which is then used to measure the
extent of association between features and the target vari-
able. The Chi-squared statistic is calculated by comparing
the observed frequencies in the contingency table with the
expected frequencies, and it quantifies the extent to which the
observed frequencies deviate from what would be expected
under the assumption of independence. Features with higher
Chi-squared values are considered more relevant for classi-
fication.

3.1.3 Feature selection based on Gini-Index

The Gini Index was proposed by Breiman in 1984 and has
since been widely used in various algorithms, including fea-
ture selection, with favorable classification results. It is a
method that calculates the decrease in heterogeneity (d;;) at
a specific node (j) during a split, and it measures the impurity
at nodes. The Gini Index is particularly suitable for binary
and continuous numeric values [31].

Assuming a right split as R, a right Gini node is repre-
sented as G g, and a left split is denoted as L, with a left Gini
node represented as G . Then, the Gini Index (G) and the
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decrease in impurity (d;;) at a single node can be calculated
as shown in Eq. 4.

Np Ng
dij:G_(WGL—l—WGR) 4)

where N represents the number of units in the dataset; Ny,
and Ny indicates the number of units in the left and right
nodes after the split, respectively.

The measure of the feature importance (FI) for the rank-
ing of a feature, K; in a tree, t, is as defined in Eq. 5 [50].

Flg, () = ZdijI(K,- splits at node j) (@)
jeJ

3.2 Data compression

Data compression is another approach for reducing the
dimensionality of data. It is a feature extraction method
that reduces the number of features by replacing the exist-
ing features with fewer artificial features, a combination of
the existing features. There are several feature extraction
techniques, and they include Factor Analysis (FA), Principal
Component Analysis (PCA), Singular Value Decomposition
(SVD), Linear Discriminant Analysis (LDA), t-distributed
Stochastic Neighbor Embedding (t-SNE), Auto-encoder,
etc. All the approaches have their advantages and disad-
vantages, and techniques like PCA lead to the curse of
dimensionality because of the need to explain the variance
with each principal component. In this study, however, we
employed the LSTM-AE approach for data compression
to reduce the dimension of our common features selected
data. Autencoders are flexible and adaptable to different
types of data and tasks. They can also handle both linear
and non-linear relationships in the data. Moreover, autoen-
coders excel at discerning intricate and abstract features
that may evade detection by alternative methodologies. The
LSTM-AE architecture comprises two basic components: the
encoder and the decoder. According to [6, 23], an LSTM-
Autoencoder is a type of Recurrent Neural Network (RNN)
that performs its operations in two steps: accepting input
sequence prediction and then reconstructing the input. First,
it compresses the input data into a lower-dimensional repre-
sentation using the encoder, and then it recreates the original
input from the lower-dimensional representation using the
decoder. Because this study primarily focuses on dimension-
ality reduction to achieve lightweight intrusion detection, we
restricted this work to the encoder component. Mathemati-
cally representing an LSTM-AE data compression model can
be complex because it involves multiple layers containing
LSTM cells. Each LSTM cell is equipped with three gates:
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the input gate (i; ), output gate (0, ), and forget gate ( f; ), which
regulate the flow of information within the cell. The input gate
determines how much new information should be added to
the cell state, the forget gate determines how much of the pre-
vious state should be ignored, and the output gate controls the
amount of the current state to be outputted. A simple picto-
rial representation of the LSTM-AE is shown in Fig. 1 with
hyperbolic tangent (ranh) [64] and sigmoid [17] as acti-
vation functions. The functions ranh and sigmoid enable
LSTM to control the flow of information and sequential data
effectively. In this way, the network can selectively remem-
ber or forget information over time using the input, forget,
and output gates.
The cell state of an LSTM-AE is updated using Eq. 6.

Cr=fi x Cr—1 +ir X g (6)

where C; is the cell state at time, ¢, f; is the forget gate at time,
t, i; is the input gate at time, ¢, and g, is the input modulation
at time, ¢. The output of an LSTM cell is computed using
Eq. 7.

h; = 0; x tanh(Cy) @)

where #; is the output of the cell at time, ¢, o; is the output
gate at time, ¢, and tanh is the hyperbolic tangent activation
function.

3.3 Bayesian optimisation for hyperparameter
tuning

Bayesian optimization is an effective approach for hyperpa-
rameter tuning in deep learning models. It leverages Bayesian
inference and optimization techniques to explore and dis-
cover the optimal hyperparameter configurations efficiently.
Compared with traditional methods such as grid search,
Bayesian optimization addresses the time and computational
complexity associated with tuning many hyperparameters.
One advantage of Bayesian optimization is its ability to
consider varying hyperparameter requirements for accu-
rate predictions on different datasets. This adaptability suits
our work well because it allows for exploring different
hyperparameter configurations while maximizing model per-
formance. In this study, we focused on tuning the following
hyperparameters: learning rate, batch size, number of layers,
number of neurons, regularization, and activation functions,
as they are crucial for achieving optimal model performance.
More importantly, by finding the most suitable hyperparame-
ter configurations, we aim to minimize cost and loss through
weight adjustment in deep learning, thus aligning with the
fundamental principle of optimizing deep learning models.
Overall, Bayesian optimization provides a systematic and
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efficient framework for hyperparameter tuning in deep learn-
ing because it helps unlock better model performance while
minimizing computational complexities.

3.4 Evaluation metrics

The metrics used to evaluate our proposed model in this
study are Accuracy, Precision, Recall, F1-score, and Receiver
Operating Characteristics (ROC). These multi-dimensional
evaluation frameworks were used to thoroughly assess the
efficacy, performance, and generalization capabilities of the
model.

4 Experimental design

This section demonstrates the viability of our proposed
OCFSDA lightweight intrusion detection model. The steps
used to achieve the proposed model are shown in Fig. 2. Two
benchmark datasets were used for the implementation.

4.1 Dataset

In this section, we provide an overview of the process. Ini-
tially, the selected features derived from the feature selection
procedure are further condensed to reduce dimensionality.
The condensed data are subsequently employed for training
using a fully connected sequential model. This study utilizes
two openly accessible IoT network datasets: the MQTT-
IoT-IDS2020 dataset [14] and the CICIDS2017 dataset [52].

These datasets were transformed into binary class datasets.
Algorithm II outlines the steps involved in this stage of the
research.

4.1.1 MQTT-1oT-IDS2020 dataset

The MQTT-IoT-IDS2020 dataset was generated by simu-
lating the Message Queuing Telemetry Transport (MQTT)
protocol. The protocol is extensively employed in machine-
to-machine communication within the IoT domain. The
simulation encompassed various components such as sen-
sors, a broker, a simulated camera, and an attacker. The
simulation captured five scenarios: normal operation, aggres-
sive scan, UDP scan, Sparta SSH brute-force, and MQTT
brute-force attack. Pcap files were generated and stored, and
features were extracted. The dataset authors claim to have
extracted three levels of feature abstraction from the pcap
files: packet features, unidirectional flow features, and bidi-
rectional flow features. This study used the bidirectional flow
feature dataset and consolidated the target class into binary
(benign and malicious). Therefore, the dataset comprised
225,711 observations and 68 features. The class distribution
was as follows: 128,025 instances of malicious traffic and
97,681 instances of benign traffic.

4.1.2 CIC-IDS2017 dataset
The creation of the CIC-IDS2017 dataset by the Canadian

Institute of Cybersecurity addressed the lack of benchmark
datasets that offer insights into traffic diversity, volumes,
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target variable as follows: The“PortScan”instance, represent-
ing the attack class, comprised 158,930 observations, while

the*“Benign”class accounted for 127,537 observations.

v Jr 4.1.3 Data preprocessing
‘ Feature ranking 1 ’ ‘ Feature ranking 2 Feature ranking 3 ’

In the data preprocessing stage, we primarily focus on data
l i l cleaning and getting the data ready for further actions. This
o e includes tasks such as converting categorical variables and

selected features based
on cumulative variance

No

features based on
cumulative variance

features based on
cumulative variance

Common feature

common features
Xq, X2, Xg, .- X

Xn

LSTM-Autoencoder \

@ A

Quantization

TFLite Interpreter and
inference

Fig.2 Steps used to achieve the proposed model

known attacks, and anonymized packet payloads, all reflect-
ing real network infrastructure trends. The dataset was
partitioned into two segments. Part 1 encompassed four
machines responsible for executing various attacks, whereas
Part 2 involved ten machines susceptible to vulnerabilities.
The dataset itself had 78 features and 286,467 observa-
tions. However, ten of these features either had values of
zero or very marginal values, which, after normalization,
resulted in NaN values. Consequently, these ten features were
excluded from the dataset. This led to the distribution of the
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protocols into one-hot encoding. In addition, we transformed
the target class, condensing the multiclass into a binary for-
mat, where *Benign’ is represented as 0 and the "Malicious’
class as 1. Furthermore, we applied min-max normalization
to the independent variables. Min-max normalization is a data
preprocessing technique that transforms numerical features
to a common scale. The essence is to rescale the data so that
all features have the same minimum and maximum values,
typically within the range of [0, 1]. This helps to preserve the
original distribution of the data.

Indeed, high-dimensional data often leads to a deteriora-
tion in the performance of learning algorithms, impacting
both their accuracy and training duration [37, 67]. This
phenomenon, commonly referred to as the“curse of dimen-
sionality,’underscores the importance of feature ranking in
selecting concise and informative feature subsets. Such sub-
sets play a pivotal role in enhancing the efficacy of learning
algorithms by mitigating the adverse effects associated with
high-dimensional data.

4.1.4 Feature ranking and common features subset

In this stage, the features selected from Sect. 3.1 were
used following data preprocessing. Using the two datasets
(MQTT-IoT-IDS2020 and CIC-IDS2017), the features were
ranked in descending order of importance as illustrated in
Tables 11 and 12 (“Appendix A and B”). The procedure
is outlined in Algorithm 1. The Common Features subset
pertains to features shared among the three feature selec-
tion techniques, as depicted in Fig. 3. The selection process
occurs after ranking the features, which then results in the
selection of 17 features, as shown in Table 1. The selection
of common features is determined by computing the cumu-
lative variance. Before selection, the cumulative variance of
the feature values was calculated, initially starting with 10
values and progressively increasing to 15, 20, and so forth. A
threshold was identified when further value additions ceased
to impact the cumulative variance. This threshold designates
the point at which the cumulative variance plateaus, indicat-
ing that additional feature values no longer contribute to any
variance increase (i.e., O variance).

Consider a dataset 7', which contains features (X1, X»,
X3, ..., X,). The features were ranked using Information
Gain, Chi-squared, and Gini-index feature selection tech-
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Universal data T

Fig. 3 Features and the area showing common features—intersection
of features

Table1 Common features for MQTT-IoT-IDS2020 and CIC-IDS2017
datasets

S/N MQTT-I0oT-IDS2020
Common Features

CIC-IDS2017
Common Features

1 Total.Length.of Fwd.Packets Packet Length Mean

2 Subflow.Fwd.Bytes Packet Length Std

3 Average.Packet.Size Average Packet Size

4 Bwd.Packet.Length.Mean Init_Win_bytes_backward
5 Fwd.Header.Length.1 Init_Win_bytes_forward
6 Fwd.Header.Length Fwd Packet Length Mean
7 Bwd.Packet.Length.Max Avg Fwd Segment Size

8 Init_Win_bytes_forward Fwd Packet Length Max
9 Fwd.Packet.Length.Mean Avg Bwd Segment Size
10 Avg.Fwd.Segment.Size Bwd Packet Length Max
11 Fwd.Packet.Length.Max Bwd Packet Length Min
12 Total.Fwd.Packets Flow Duration

13 Subflow.Fwd.Packets Flow IAT Max

14 Init_Win_bytes_backward Max Packet Length

15 act_data_pkt_fwd PSH Flag Count

16 Bwd.IAT.Total Fwd Packet Length Min
17 Fwd.Packet.Length.Std Min Packet Length

niques. Let I, C, and G be subsets of the ranked features
of the dataset 7'. It could be deduced that / € T, C C T,
and G C T are valid. Futhermore, Let i, c, and g represent
any of the features (X1, X2, X3, ..., X;) in the subsets. This
therefore, imply thati € I, ¢ € C,and g € G. The com-
mon features are the intersecting features in 7, C, and G. The
representation of the set and subsets are shown in Fig. 3.

The areaindicated as common features in Fig. 3 is the point
of interest because it is the region shared by all subsets. The
identification of the common features was done to shrink the
original subsets into a smaller feature set to allow for further
customising and processing of the selected features.

Algorithm 1 feature selection approaches

1: Input: Labeled — data, Ty, Number of iterations N;
2: Output: Common feature. Cf

cfori=1inf, :do

4 rank features
5 rank features
6:  rank features
7

8

9

(98}

IGr < [, fii, fiiis s Jn)
CSr < fO)(Sis fiis fidis oo Jn)
Glgr < f(Qfi, fiis fiiis s Jn)
: end for
:order (IGg, CSg, GIR) order magnitudeindescending order
. for a; in ([GR, CSR, GIR) do
10: compute Cumy,1G < Cumulative,, (IGR)
11:  compute Cum,, CS < Cumulative,, (CSg)
12:  compute Cum,, GI < Cumulativey, (GIg)
13:  while Cumyg, (i) + Var(a;) Cumyg, (i) do
takes IGg, CSg, & GIp

< where i

14: Cumygr (i) < Var(aijy+1)

15: A;j < Cumyq,r (1) < save selected features
16:  end while

17: end for

18: for f; in (A;, Aji, Ajii) do
19: if f, S (A,' ﬂA,‘i n A,',',') then
mon features

< finding com-

20: select f;

21: saveY <« f;
22:  endif

23: end for

24: Return(Y)

In summary, three feature selection techniques were
employed to rank the features of the datasets based on their
importance. The cumulative variance computation was uti-
lized to aid in selecting feature subsets for each technique.
Then, a subset of features common to the initial subsets was
chosen and used as input for the next phase of the work.

4.1.5 LSTM-Autoencoder architecture

As highlighted in Sect. 3.2, the common features, which
were the output of the feature selection stage, were used
as input in the input layer of the LSTM-AE model. While
the redundant features have been removed, it was impera-
tive for the structure and density of the data to be sustained.
Therefore, we followed a specific procedure to compress the
common feature data using an LSTM-AE model. First, we
generated a sequence with a time-step of 5 and a sliding win-
dow of 1. The number of samples was determined on the
basis of the number of observations. The LSTM-AE model
was then fed the sequence arising from the common fea-
ture data as input, where each element represented a time
step. As the sequence progressed, the LSTM cells processed
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the data and produced a compressed representation of the
input, as shown in equations 6 and 7. In the implementa-
tion, we maintained four layers in the LSTM-AE model and
used the tanh activation function to achieve compression.
We employed the sigmoid function for recurrent activation
with a glorof_uniform_kernel initializer. In addition, we
applied a regularizer with a value of 0.001 to effectively
fit the training data and avoid overfitting. The resulting com-
pressed representation was obtained from the encoder at the
bottleneck layer, where we compressed the data to 5 nodes.
In making the decision as to the size of the nodes at the bot-
tleneck layer of the encoder, we were mindful of the fact
that over-compression of data might lead to the elimination
of discrimination of information between categories of data,
reduced model generalization, decreased model robustness,
and limited adaptability [30, 68].

4.2 Imbalanced class oversampling

In both datasets, there was a class imbalance of approxi-
mately 30,000 instances between the malicious and benign
classes. This imbalance can potentially cause bias and skew
the output of the learning algorithm. To address this, a minor-
ity oversampling technique based on the Sort-Augment and
Combine (SAC) strategy with data perturbation augmenta-
tion [41] was employed. Initially, the data was sorted into
distinct classes, and a function called combine_samples was
developed to blend features from two samples by averaging
their corresponding elements. Synthetic samples were then
generated by randomly selecting pairs of samples from the
minority class array, combining their features, and perturbing
them with Gaussian noise controlled by a magnitude param-
eter. This noise introduces variability without significantly
increasing variance, aiding the learning algorithm in gen-
eralization without compromising predictive accuracy. The
augmented data was subsequently used to enrich the original
dataset.

4.3 Model training

The dense model, a fully connected neural network, is a deep
learning model characterized by multiple layers of intercon-
nected neurons. Each neuron in a layer is connected to every
neuron in the previous layer, and all neurons contribute to the
model output. In this study, we incorporated an input layer
and a hidden layer, which performed the bulk of the computa-
tions in the model. The output layer represents the final layer
responsible for generating the model’s predictions or outputs.
The output of the bottleneck layer of the LSTM-AE encoder
was used as the input to train the dense model. Here, each
neuron in the dense layer underwent a linear transformation
of its input, followed by a non-linear activation function.
The linear transformation involved calculating a weighted
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sum of the inputs from the previous layer, where each input
is multiplied by an adaptable weight parameter. The result
of this linear transformation was then passed through the
activation function, which introduced non-linearity into the
model. We selected the Re LU (Rectified Linear Unit) activa-
tion function for both the input and hidden layers. ReL.U sets
negative inputs to zero and leaves positive inputs untouched.
We employed the sigmoid activation function for the out-
put layer, which maps inputs to a range of 0-1 for binary
classification.

The dense model can be mathematically represented as a
function that takes an input vector x and produces an output
vector y. The function encompasses L layers, including an
input layer, one or more hidden layers, and an output layer.
Each layer / in the model consists of N; neurons and is con-
nected to the preceding layer / — 1 and the subsequent layer
[ + 1. The processes of the transformation are indicated in
equations 8 - 10.

The output of the neurons in layer / is given by:

=W xa_1+b (8)

where W; is a matrix of weights with dimensions (N; X
N;—_1), aj—1 is the output of the previous layer, and b; is a
vector of biases with dimensions (N; x 1). The operation x
denotes matrix multiplication.

The output of the neurons in layer / is then passed through
an activation function g; to introduce non-linearity into the
model. The output of layer / is given by:

ar = gi(z1) 9)

The output of the final layer L is the output of the training
model y, which is a function of the output of the previous
layeray_1:

y = flar-1) (10)

where f is the activation function of the output layer.

However, during the data training process using the dense
model, the model goes through weight and bias updates using
an optimization algorithm and a loss function to minimize
the error. Therefore, the Adam optimizer and the binary
cross-entropy were utilized as the loss function to create sta-
bility. The loss function basically quantifies the difference
between the model predictions and the true outputs, while
the optimization algorithm adjusts the weights and biases to
decrease this difference. To achieve a fair amount of train-
ing to enhance the effective learning process, the model was
trained and evaluated using an epoch of 300 and a batch
size of 64. After the training stage, we performed pruning to
reduce the model size and unnecessary weights.
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4.4 Pruning and deparameterisation

The success of model training is often accompanied by a sig-
nificant increase in computation cost and parameter storage
[25]. Ignoring the increase in computation cost occasioned
by the introduction of parameters would certainly not aid our
efforts to achieve a LIDS for the IoT. Therefore, pruning was
adopted to reduce the overheads through weight compression
of the various layers without affecting the original accuracy.
By doing this, less important connections are removed which
then leads to a more efficient model without significantly los-
ing efficiency and performance. To achieve this, we used the
TensorFlow-keras-cloned-model library to clone the model
and then pruned 50% of the weights. Mathematically, weight
pruning can be represented as follows:

Let W be the weight matrix of a neural network with
dimensions (m, n), where m represents the number of neu-
rons in the dense layer and » indicates the number of neurons
in the current layer.

Let 6 be the pruning threshold, a value between 0 and
1 that determines the percentage of weights to be pruned.
For example, if 8 = 0.5, then 50% of the weights will be
pruned. To perform weight pruning, the weights in W;; are
ranked based on their magnitude from smallest to largest. The
lowest w;; % of weights are then removed and set to zero, and
in this case, 50% of it was set to zero. The weight pruning
operation for a specific weight w;; in the weight matrix W
can be defined as:

0, if|w,~j|<9

w;j, otherwise

(1)

wijj =

where w;; represents the weight connecting neuron 7 to neu-
ron j in the dense layer. 6 is the pruning threshold.
From Eq. 11:

o If the absolute value of the weight w;; is less than the
pruning threshold 6, the weight is set to zero, effectively
pruning the connection between neurons.

o If the absolute value of the weight w;; is greater than
or equal to the pruning threshold 6, the weight remains
unchanged.

Equation 11 can be applied iteratively across the weight
matrix W, resulting in a pruned weight matrix where many
connections below the pruning threshold (€) have been set to
zero (0).

Pruning reduces memory requirements, accelerates infer-
ence time, and makes the network more efficient; however,
the sparsity (0) values introduced by pruning are also unnec-
essary weights. This is because, upon the validation of the
pruned model, it was discovered that the model size was
still large (refer to Tables 2 and 3). Therefore, stripping the

structured sparsity patterns introduced during the pruning
process was necessary to further reduce the memory foot-
print. This is achieved through the deparameterization of
the model. Deparameterization is a technique applied after
pruning to remove additional weights, leading to a more effi-
cient model. It reduces the number of parameters to compute,
leading to faster inference times. This is particularly crucial
in real-time applications where the response time is criti-
cal. We accomplished deparameterization by employing the
TensorFlow Keras pruning method. This process enhanced
portability and simplified the model by removing the sparsity
introduced through pruning. This reduces memory require-
ments, simplifies subsequent optimization steps, and makes
the deparameterized model easier to work with. By com-
bining pruning and deparameterisation, the issue of high
model size was effectively addressed while maintaining or
improving performance. Furthermore, we used the Bayesian
optimization technique to search and select the best param-
eters for optimum model performance of our model training
process, as indicated in Sect. 3.3. The steps to the data
compression technique and model training are explained in
Algorithm 2.

With pruning and deparameterization accomplished, the
model was retrained using the output of the deparameter-
ized model. However, before the training, we performed
data splitting to adopt semi-supervised learning approaches.
First, we divided the dataset into training and testing subsets
with a 70:30 ratio to ensure that there was no data leak-
age. Subsequently, we further partitioned the training data
into three subsets: X_labeled, y_labeled, and X_unlabeled.
Next, we trained a model, denoted as mod , on the labeled
data (X_labeled and y_labeled) for 200 epochs, employing
a batch_size of 64. We then used mody to predict the labels
for the X_unlabeled data, generating pseudo-labels known
as y_pseudo. To create a combined dataset for training, both
X_labeled and X_unlabeled data were concatenated, and
similarly, y_labeled and y_pseudo were concatenated. After
shuffling to ensure a balanced mixture of labeled and pseudo-
labeled samples, the model was trained again using the same
number of epochs and batch_size. This approach expanded
the training data and aided the model in refining its predic-
tions and adapting to the pseudo-labeled data.

4.5 Adversarial attack

Adversarial attacks manifest in various forms, including
poison attacks, where attackers manipulate training data
to mislead the learning algorithm into producing erro-
neous classifications [42]. This form of attack significantly
degrades the performance of the system, and in this study,
we introduced a labeled poisoned attack by randomly flip-
ping three (3) label samples in the training dataset. This is
a form of adversarial attack that was done to undermine the

@ Springer



2570

U. Otokwala et al.

Table2 MQTT-IoT-IDS2020
dataset metrics

Table3 CIC-DS2017 dataset
metrics

Table Column Head
Accuracy Precision Recall F1 Time Model_size
Model on all 68 Features 99.96 100 100 100 1.7s 31.5MB
Model + Pruned (5 nodes) 99 99 100 100 1.05 25MB
Model + Pruned + Deparame 99 99 100 100 0.932s 85Kb
Table Column Head
Accuracy Precision Recall F1 Time Model_size
Model on all 68 Features 97.8 96 100 97 1.7s 31.5MB
Model + Pruned (5 nodes) 98 96 100 97 1.2s 25MB
Model + Pruned + Depar (5 nodes) 98 96 100 97 1.03s 85Kb

Algorithm 2 for data compression and model fitting

1: Input: Common
Deparameterization

2: Output: Encodeggrq

3: for each X in Xrr4in : do

4:  while x; < time — step : do

features, Cy, Sequence, pruning,

input layer of

LSTM-AE
5: AE < AutoEncoder(Xt1rain)
6: Cy = fixCi_y +irxg; calculate C; (Eqn.6)
7: hy = oyxtanh(Cy) update state hy (Eqn.7)
8 Encodegqrq < compress AE toSnodes
9:  end while
10: end for
11: train Encodegara

: while Modg;;, = high : do

Prunedy,q < Prune(Mod)

Deparpoq < Deparameterize(Prunedy,oq)
: end while

: for y in parameters : do
perform(BayesianOptimisationSearch)

: end for

: Train(traininggara)

performance of the performance model and thus cause it to
make incorrect predictions on new and unseen data.

4.6 Default quantisation

Quantization is a technique employed in deep learning to
reduce neural network models’ memory and computation
requirements without compromising their accuracy. This
method entails mapping continuous value ranges to discrete
values, effectively diminishing the number of bits essential
to represent each parameter or activation in the network.
In our study, after model training, we performed quantiza-
tion and used the TensorFlow Lite model to preserve the
weight of the model. Quantization can be performed either
after model training or during training, which is known as
Quantisation Aware Training (QAT). We chose QAT over
post-training quantization because the latter may affect the
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overall accuracy. Quantization-Aware Training integrates the
quantization process seamlessly into the training itself, thus
optimizing the model for quantization right from the start.
The following are the steps we followed in implementing
QAT:

1. The deparameterized model was trained and optimised
using float DEFAULT Byte quantisation, resulting in a
g_model. This approach explored different optimisation
options using float 8 Byte, float 16 Byte, and float 32 Byte,
selecting the most effective.

. The output (g_model) from the previous step was fine-
tuned and trained for 30 epochs, followed by validation,
resulting in a fine-tuned-q_model.

3. Finally, a TensorFlow Lite model was applied to the fine-

tuned model to obtain a TFLite_model.

QAT, or Quantisation Aware Training, enables us to train
the model using a combination of both full-precision and
quantised versions of the parameters. During the forward
and backward passes, we utilize the quantised version, while
during weight updates, we employ the full-precision version
to mitigate any information loss resulting from quantisation
errors. Training with an awareness of quantisation yields sev-
eral advantages, including reduced memory and computation
requirements, minimal loss of accuracy, flexibility in choos-
ing quantisation methods, and seamless integration into the
deep learning workflow. Once quantisation is complete, the
model is converted into the TensorFlow Lite (TFLite) format.
With that, the model is ready for implementation and infer-
ence on the test data using the TensorFlow Lite interpreter,
allowing us to evaluate the results effectively.

4.7 Model deployment and inferencing

To validate the efficacy of our proposed model, we deployed
it on two distinct devices for evaluation. The first device
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was a Windows 11 Desktop machine, where we leveraged
Google Colab to run the Python code. The Windows sys-
tem employed a single-threaded CPU with an Intel Core
17-1065G7 processor running at a frequency of 1.30-1.50
GHz. With 16 GB of RAM and a 500 GB hard disk, it pro-
vided the necessary hardware resources. The second device
used was a Raspberry Pi 4 with an 8 GB model, operating
on the Bullseye Debian-based OS with aarch64 architec-
ture. While the Python Notebook was the IDE used on
the Windows system, the Thorny IDE was the platform for
the experiment on the Raspberry Pi. TensorFlow and other
essential Python libraries were installed and used on the Win-
dows Desktop machine, while the Raspberry Pi used TFLite,
a lightweight version of TensorFlow, for inference opera-
tions. Subsequently, we loaded the TFLite model using the
tf.lite.Interpreter class and allocated memory for the input
and output tensors through the allocate_tensors method.
Using the get_input_details and get_output_details meth-
ods, we obtained information regarding the input and output
tensors of the lightweight model. The input data shape was
defined, and a random numpy array of the test data was gen-
erated to mimic the input data. The numpy array was then
assigned as the input data via the set_tensor method. After
configuring the input tensor, we invoked the interpreter using
the invoke method to perform inference and acquire the out-
put tensor. A threshold value of 0.5 was applied to the output
tensor to convert the probability scores into binary predic-
tions of 0 and 1. Finally, we generated a classification report
by leveraging the numpy form of the data alongside the pre-
dicted labels. In addition, we computed the model size and
time required for the computations. The steps to achieve
quantisation, deployment and inferencing are highlighted in
Algorithm 3.

Algorithm 3 for quantization, deployment and inferencing

: Mod < Model

. if Mod = deparameterised then
Mod.h5 save model
: end if

: GetModelSize()

: Converttotflite file

:if Mod = tflite then
quantizeyodel(model)

: end if

10: get input & output tensors

11: while Tensor # 0 do

12: Resizetensor

13:  interpreter.invoke()

14: end while

15: Classification

16: classification Report()

17: getValidationTime()

18: getModelSize()

Ne)

5 Results and discussion

This section provides an overview of the results obtained
while evaluating the proposed LIDS model on the two
datasets. It also compares the results of other studies with
our study and explains how the proposed model answers the
research questions.

5.1 Result comparison

Following the methodology encompassing feature selec-
tion and data compression, the subsequent stages of this
experiment were evaluated to determine the reduction in
computation cost, which is the mainstay of this study. The
evaluation results of the two datasets (MQTT-IoT-IDS202
and CIC-IDS2017 datasets) are displayed in Tables 5 and 6.
To ensure consistency and unbias, we limited the experiment
to semi-supervised learning and then computed the classifi-
cation report.

1. We evaluated the approach at different stages and recorded
the overall accuracy, precision, recall, F1-score, compu-
tation time and model size.

2. The result of the model evaluation on all the 68 features
(benchmark data), the pruned data, the deparameterized
model and the inferencing for comparison.

3. The ROC curve showing the Area Under the Curve (AUC)
was plotted, and the training and validation loss and accu-
racy plots were also plotted to check for overfitting or
underfitting.

Tables 5 and 6 present the comparative assessment of
overall accuracy between the LSTM model on the bench-
mark dataset and our proposed model, demonstrating parity
at 99% and 97.8%, respectively. This equivalence is corrob-
orated by the convergence patterns depicted in Fig. 6b (right
plot), affirming the absence of overfitting. The observed con-
vergence indicates a minimal disparity between the training
and loss metrics. In addition, the ROC curves in Figs.4 and
5 visually encapsulate the proposed model’s discriminative
prowess, elucidating its ability to distinguish between the two
classes.

To further scrutinize model performance, we plotted train-
ing and validation losses (Figs. 6a and 7) to gauge potential
overfitting or underfitting concerns. This analysis assumes
paramount importance in evaluating the behavior and effi-
cacy of the model throughout the training and validation
phases. The trajectory of training loss offers insights into the
learning progression of a model on the training data. Concur-
rently, the validation loss plot indicates a model proficiency
in generalizing to novel and unobserved data. A consistent
downward trend in both the training and validation loss plots,
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Fig. 4 ROC curve showing the Area Under the Curve (AUC) for the
MQTT dataset
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Fig.5 ROC curve showing the Area Under the Curve (AUC) for CIC-
IDS2017 dataset

as illustrated in Figs. 6 and 7, signifies that the model is adept
at refining predictions on hitherto unseen data. Conversely,
an ascending trend could indicate overfitting. Similar to the
accuracies and the ROC curve are the precision score, recall,
and F1 score, as shown in Tables 3, 4, 5, 6, 7 and 8. These
metrics are instrumental in classification (refer to Sect. 3.4).
The score value in both tables further attests to the high per-
formance of the proposed model on the two datasets.
Considering the importance of computation cost in a
resource-constrained device such as the 10T, the size of the
model, which indicates the amount of memory used, was
drastically reduced from 315 and 265KB to 2KB in 0.3 and
0.12s, respectively. The import is that while the benchmark
model achieved its classification in 1.7s with a model size
of 315 and 256KB, the proposed model accomplishes clas-
sification in considerably less time and effectively reduces
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the model size to 2KB. In addition, the recall values in both
tables indicate the percentage classification of the positive
class, which our proposed model effectively achieved.

5.2 Model resilience against label Poison attack

Overcoming adversarial attacks and ensuring the resilience
of a model requires effective training and learning. For this
reason, [43] proposed a deep k-NN approach to counter label
poisoning attacks. Similarly, [3] proposed a scalable and
transferable clean-label poisoning attack on label poisoning
attack. In the same vein, [66] proposed a non-perturbation
approach that relies on the effectiveness of the resource-
efficient model to withstand label adversarial attacks. In
this case, to ensure that the model is resilient against label
poisoning attacks, we implemented two approaches: (a)
Robust Learning Approach: This involves integrating outlier
detection into the training process to identify and eliminate
poisoned examples. To execute this, we utilized the Ellipti-
cEnvelope class from the scikit-learn library [9] in Python
for detecting and removing outliers from the training set.
(b) Robust Training by Generating Pseudo-Labels: In this
approach, pseudo-labels were generated by leveraging the
model trained on labeled data to predict unlabeled data, and
the output was then concatenated with the original dataset.
By adopting these two strategies, we effectively cleansed the
data of any potential poisoning while also enhancing general-
ization through data augmentation. Subsequently, the model
underwent evaluation on the testing dataset. The model out-
put after label poisoning is displayed in Tables 6, 7, 8 and
9.

The result of the benchmark model and the degradation
resulting from the label poisoning attack are detailed and
compared in Tables 6, 7, 8, and 9. The tables showcase
the performance of the models both pre and post-attack.
In Table 6, a 20.9% decline in overall accuracy was noted
for the benchmark dataset, while Table 7 demonstrated a
16.16% decrease for the proposed model. Similarly, the CIC-
IDS2017 dataset (Table 8) exhibited a 22.9% accuracy drop
for the benchmark model and a 19.38% reduction for the
proposed model (Table 9). In both cases, the recall, which
is the proportion of the true positive cases correctly classi-
fied, indicates that the proposed model performed very well.
Therefore, we can infer that the proposed model is more
resilient than the benchmark dataset.

5.2.1 Receiver operating characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve is
an important tool for the graphical representation of a
binary classification model performance. It provides valuable
insight into the Area Under the Curve (AUC), quantifying
the model classification accuracy. For example, when the
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Model loss AUC reaches 1, as illustrated in Fig.4, it signifies a perfect
0016 —— Train classification. This indicates that the model has effectively
— \alidation differentiated between benign and malicious classes. In other

0014 words, the model has successfully distinguished between

positive and negative instances in the dataset, resulting in
a classification with 100% sensitivity (true positive rate) and
100% specificity (true negative rate).

Loss (mse)
o o o
2 2 =2
@ o N

0.006
5.3 Comparison with other works
0.004
0 10 20 30 40 50 We compared our findings with those of other relevant studies
Epoch on Lightweight Intrusion Detection in the context of the [oT.
Fig. 7 Plot showing training and validation loss for CIC-IDS2017 To malnta_m ObJeCtl_V_lty’ we limited our comparison to results
dataset from studies that utilized the same two datasets we employed.

Table 10 displays the detailed comparison.

Table4 MQTT-10T-IDS2020

. . Metrics
dataset Classification report
Accuracy  Precision  Recall  Fl1 Time Model_size
Model on all 68 Features 99.96 100 100 100 1.7s 315KB
model + Pruned (5 nodes) 99 99 100 100 1.05 255KB
Model + Pruned + Depar (5 nodes) 99 99 100 100 0.932s 85KB
OCFSDA (proposed model) 99 100 98 99 0.30s 2KB
Table 5 CIC-IDS2017 dataset -
. . Metrics
Classification report
Accuracy Precision Recall F1 Time Model_size
Model on all 68 Features 97.8 96 100 97 1.7s 265KB
Model + Pruned (5 nodes) 98 96 100 97 1.2s 223KB
Model + Pruned + Depar (5 nodes) 98 96 100 97 1.03s 85KB
OCFSDA (proposed model) 97 95 100 97 0.12s 2KB
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Table 6 Table showing

benchmark model results before Acc Presc Recall F1 Time Model_size
and after label poisoning attack ey chmark model before poison Attack ~ 99.96 100 100 100 1.7 315KB
on MQTT-IoT-IDS2020 dataset .

Benchmark model after poison Attack 79 43 94 59.01 1.73s 308 KB
Table7 Table showing Acc Presc Recall F1 Time Model_size
proposed model results before
and after label poisoning attack  py,06e4 model before Poison Attack 99 100 98 9899  030s  2KB
on MQTT-IoT-IDS2020 dataset .

Proposed model after poison Attack 83 68 100 80.95 0.14s 2KB
Table 8 Table showing - .
benchmark model results before Acc Presc Recall F1 Time Model_size
and after label poisoning attack Benchmark model before poison Attack 97.8 96 100 97 1.7 265KB
on CIC-IDS2017 dataset .

Benchmark model after poison Attack 754 53 84 64.8 1.63s 255KB

Table 9 Table showing
proposed model results before

Acc Presc Recall Fl Time Model_size

and after label poisoning attack

Proposed model before Poison Attack 97 95 100 97 0.12s 2KB

on CIC-IDS2017 dataset )
Proposed model after poison Attack 78.2 63 100 76 0.13s 2KB

Table 10 Model result -

comparison with other related Metrics

approaches of other authors LID Model Ref Acc Precision  Recall ~ Fl-score ~ Cmp_Time  Mem_size
OCSVM [11] 99 ? ? ? ? ?
Isolation F [11] 84 ? ? ? ? ?
SENMQTT [56] 100 ? ? 100 0.04s ?
NL_SVM-IoT  [18] 99.34 ? ? ? 17.57s ?
DL-HIDS [16] 96.69  ? ? ? 2e-6 2.704KB
GAN-AE [71] 97.3 97.4 97.3 97.3 ? ?
1D-DCNN [46] 99.7 ? ? ? ? ?
SS-DEEP-ID [1] 99.6 99.48 99.23 99.35 1.1s ?
ELETL-IDS [39] 100 ? ? ? ? ?
Self-Attention [26] 98.9 98 98.6 98.3 ? ?
KD-TCNN [63] 99.44  99.48 99.47 99.46 ? 18.1KB
HFS-KODE [20] 99.99  99.2 99.75 99.3 208s ?
NewData-IDS [53] 100 ? 2100 0.04s ?
IBGJO [13] 98.21 98.48 98.92 97.25 ? ?
HDFEF [28] 99.7 99.73 99.96 99.84 138.098s ?
OCFSDA Our model 99 100 98 99 0.30s 2KB

Table 10 shows that significant progress has been made in
the domain of lightweight intrusion detection for resource-
constrained devices such as the IoT. Nevertheless, while
noteworthy advancements have been demonstrated in terms

@ Springer

of overall accuracy, it remains challenging to determine the
computational time and model size as they are essential fac-
tors in computation cost. Notably, the approach presented by
[16] achieved an accuracy of 96.69% in 0.000002s, using
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a model size of 2.7KB. However, this study did not dis-
close the precision, recall, and F1-score values nor provided
information on the ROC necessary for effective comparison.
Similarly, [53] achieved an average accuracy classification
rate and F1-score of 100% in 0.04s. However, this study failed
to provide scores for other critical metrics and the authors did
not also provide the model size. To this end, because of the
absence of values for some metrics, a question mark (?) was
entered in the table. In line with the assessment, our OCFSDA
approach to the two datasets yielded overall accuracy rates
of 99% and 97%. In addition, our proposed model success-
fully generated precision, recall, and F1-score values within
0.30 and 0.12s, respectively, accompanied by a model size
of 2KB.

6 Conclusion

The evolution of IoT technology has ushered in a trans-
formative era, revolutionizing critical infrastructure, smart
home environments, and smart cities with unprecedented
connectivity and convenience. However, the inherent security
vulnerabilities within IoT systems expose them to poten-
tial cyber threats. Conventional intrusion detection methods,
constrained by protocol limitations and memory constraints,
struggle to protect these devices effectively. Thus, our study
focused on developing a lightweight intrusion detection solu-
tion for resource-constrained IoT devices.

Central to our approach was the utilization of effi-
cient dimensionality reduction techniques, including feature
selection and feature extraction. By applying three feature
selection methods, we identified pertinent features correlated
with the target variable. These features underwent further
extraction using an LSTM-autoencoder, compressing the
encoder output to just five nodes. Subsequent optimization
involved pruning and deparameterization to eliminate redun-

dant weights and enhancing model efficiency. In addition
to resilience against adversarial attacks like poison attacks,
we leveraged quantization to optimize inferencing efficiency,
resulting in a lightweight model with reduced memory foot-
print and accelerated inference times. However, prior to
inferencing, the input data underwent further processing
using the TFLite interpreter, ensuring compatibility with the
model’s input requirements. The interpreter facilitated the
seamless execution of inferences, processing both input and
output data to generate accurate predictions.

Our innovative Lightweight Intrusion Detection
(OCFSDA) model, utilizing semi-supervised learning and
deployed on a Raspberry Pi4, achieved overall accuracies
of 99% and 97% from two datasets, along with improved
performances across various evaluation metrics. Notably,
the model demonstrated an improved classification run-time
within 0.30 and 0.12 s while utilizing 2KB of memory, high-
lighting its efficiency and effectiveness in real-world IoT
deployment scenarios.

Future work: Based on this study and our comprehen-
sive work, we strongly believe that it is crucial to prioritize
future work to enhance the model’s resilience and broaden its
capabilities to detect various types of data poisoning attacks.
These include poison frog, bullseye polytope, and convex
attacks.

Appendix A

See Table 11.
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Table 11 MQTT-IoT-IDS2020 dataset feature ranking

Feature Ranking

Dataset Features

Info-Gain Ranking

Chi-Squared Ranking

Gini-Index Ranking

O 00 N N B W N~

A b, B A B B B W W W W W W W W W W RN NN N NN NN = = = s = e e e e e
A L A WD = O 0 XN R WD = O 0 0NN R WD =, O V0 0NN R WD = O

Destination.Port
Flow.Duration

Total. Fwd.Packets
Total.Backward.Packets
Total.Length.of Fwd.Packets
Total.Length.of. Bwd.Packets
Fwd.Packet.Length.Max
Fwd.Packet.Length.Min
Fwd.Packet.Length.Mean
Fwd.Packet.Length.Std
Bwd.Packet.Length.Max
Bwd.Packet.Length.Min
Bwd.Packet.Length.Mean
Bwd.Packet.Length.Std
Flow.Bytes.s
Flow.Packets.s
Flow.IAT.Mean
Flow.IAT.Std
Flow.IAT.Max
Flow.IAT.Min
Fwd.IAT.Total
Fwd.IAT.Mean
Fwd.IAT.Std
Fwd.IAT.Max
Fwd.IAT.Min
Bwd.IAT.Total
Bwd.IAT.Mean
Bwd.IAT.Std
Bwd.IAT.Max
Bwd.IAT.Min
Fwd.PSH.Flags
Fwd.Header.Length
Bwd.Header.Length
Fwd.Packets.s
Bwd.Packets.s
Min.Packet.Length
Max.Packet.Length
Packet.Length.Mean
Packet.Length.Std
Packet.Length. Variance
FIN.Flag.Count
SYN.Flag.Count
RST.Flag.Count
PSH.Flag.Count

ACK Flag.Count
URG.Flag.Count

Total.Length.of Fwd.Packets
Subflow.Fwd.Bytes
Average.Packet.Size
Bwd.Packet.Length.Mean
Destination.Port
Avg.Bwd.Segment.Size
Total.Length.of. Bwd.Packets
Subflow.Bwd.Bytes
Fwd.Header.Length.1
Fwd.Header.Length
Bwd.Packet.Length.Max
Init_ Win_bytes_forward
Fwd.Packet.Length.Mean
Avg Fwd.Segment.Size
Fwd.Packet.Length.Max
Bwd.Header.Length
Fwd.IAT.Max
Fwd.IAT.Total
Fwd.IAT.Mean
Total.Fwd.Packets
Fwd.IAT.Std
Subflow.Fwd.Packets
Init_Win_bytes_backward
Packet.Length.Mean
act_data_pkt_fwd
Packet.Length.Std
Packet.Length. Variance
Bwd.IAT.Max
Bwd.IAT.Total
Fwd.Packet.Length.Std
Bwd.Packet.Length.Std
Bwd.Packets.s
Bwd.IAT.Mean
Total.Backward.Packets
Subflow.Bwd.Packets
Fwd.Packets.s
Max.Packet.Length
Flow.Duration
Bwd.Packet.Length.Min
Flow.Bytes.s
Flow.IAT.Max
Flow.IAT.Std
Flow.IAT.Mean
Bwd.IAT.Std
Flow.Packets.s
Active.Min

URG.Flag.Count
min_seg_size_forward
Destination.Port
Min.Packet.Length
Bwd.IAT.Total
Fwd.Packet.Length.Std
Fwd.Packet.Length.Mean
Avg Fwd.Segment.Size
Bwd.IAT.Std
Fwd.Packet.Length.Max
Bwd.IAT.Max
Total.Length.of Fwd.Packets
Subflow.Fwd.Bytes
Fwd.PSH.Flags
SYN.Flag.Count
Bwd.Packet.Length.Min
Bwd.IAT.Mean
Init_Win_bytes_backward
Total. Fwd.Packets
Subflow.Fwd.Packets
Fwd.Header.Length
Fwd.Header.Length.1
Fwd.Packet.Length.Min
act_data_pkt_fwd
Flow.Packets.s
Fwd.Packets.s
Init_Win_bytes_forward
Bwd.Packet.Length.Mean
Avg.Bwd.Segment.Size
Bwd.Packet.Length.Max
Active.Std
Bwd.Header.Length
Bwd.Packet.Length.Std
Bwd.Packets.s
Bwd.IAT.Min
Fwd.IAT.Min
Total.Backward.Packets
Subflow.Bwd.Packets
FIN.Flag.Count
Down.Up.Ratio
Average.Packet.Size
Packet.Length.Mean
Flow.IAT.Min
Flow.Bytes.s
Packet.Length.Std
Packet.Length. Variance

Total.Length.of Fwd.Packets
Subflow.Fwd.Bytes
Average.Packet.Size
Destination.Port
Bwd.Packet.Length.Mean
Avg.Bwd.Segment.Size
Subflow.Bwd.Bytes
Total.Length.of. Bwd.Packets
Fwd.Header.Length.1
Fwd.Header.Length
Bwd.Packet.Length.Max
Init_ Win_bytes_forward
Avg Fwd.Segment.Size
Fwd.Packet.Length.Mean
Fwd.Packet.Length.Max
Bwd.Header.Length
Fwd.IAT.Max
Fwd.IAT.Total
Fwd.IAT.Mean
Subflow.Fwd.Packets
Total. Fwd.Packets
Init_Win_bytes_backward
Fwd.IAT.Std
Packet.Length.Mean
act_data_pkt_fwd
Packet.Length. Variance
Packet.Length.Std
Bwd.IAT.Total
Fwd.Packet.Length.Std
Bwd.Packet.Length.Std
Bwd.Packets.s
Bwd.IAT.Max
Total.Backward.Packets
Subflow.Bwd.Packets
Fwd.Packets.s
Max.Packet.Length
Bwd.IAT.Mean
Flow.Duration
Bwd.Packet.Length.Min
Flow.Bytes.s
Flow.IAT.Max
Flow.IAT.Std
Flow.IAT.Mean
Flow.Packets.s
Bwd.IAT.Std

Active.Min
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Table 11 continued

Feature Ranking

Dataset Features

Info-Gain Ranking

Chi-Squared Ranking

Gini-Index Ranking

47 ECE.Flag.Count Active.Mean Max.Packet.Length Bwd.IAT.Min

48 Down.Up.Ratio Bwd.IAT.Min Idle.Std Active.Mean

49 Average.Packet.Size Active.Max Total.Length.of Bwd.Packets Active.Max

50 Avg.Fwd.Segment.Size Fwd.IAT.Min Subflow.Bwd.Bytes Fwd.IAT.Min

51 Avg.Bwd.Segment.Size Fwd.Packet.Length.Min Fwd.IAT.Mean Fwd.Packet.Length.Min
52 Fwd.Header.Length. 1 Min.Packet.Length RST.Flag.Count URG.Flag.Count
53 Subflow.Fwd.Packets URG.Flag.Count ECE.Flag.Count Min.Packet.Length
54 Subflow.Fwd.Bytes Down.Up.Ratio PSH.Flag.Count Down.Up.Ratio

55 Subflow.Bwd.Packets min_seg_size_forward Idle.Max min_seg_size_forward
56 Subflow.Bwd.Bytes Flow.IAT.Min Active.Min Flow.JAT.Min

57 Init_Win_bytes_forward Idle.Min Flow.IAT Max Idle.Mean

58 Init_Win_bytes_backward Idle.Max Idle.Mean Idle.Max

59 ac_data_pkt_fwd Idle.Mean Flow.IAT.Std Idle.Min

60 min_seg_size_forward PSH.Flag.Count Active.Mean PSH.Flag.Count
61 Active.Mean Idle.Std Flow.JAT.Mean Idle.Std

62 Active.Std Fwd.PSH.Flags Fwd.IAT.Max Fwd.PSH.Flags

63 Active.Max SYN.Flag.Count Idle.Min SYN.Flag.Count
64 Active.Min Active.Std Fwd.JAT.Total Active.Std

65 Idle.Mean ACK.Flag.Count Flow.Duration ACK.Flag.Count
66 Idle.Std FIN.Flag.Count Active.Max FIN.Flag.Count

67 Idle.Max RST.Flag.Count Fwd.IAT.Std ECE.Flag.Count
68 Idle.Min ECE.Flag.Count ACK.Flag.Count RST.Flag.Count
Appendix B

See Table 12.
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Table 12 CICIDS2017 dataset feature ranking

Feature Ranking

Dataset Features Information Gain Chi Squared Gini Index
1 Destination Port Packet Length Mean PSH Flag Count Avg Fwd Segment Size
2 Flow Duration Packet Length Std ACK Flag Count Packet Length Std
3 Total Fwd Packets Packet Length Variance URG Flag Count Flow Bytes/s
4 Total Backward Packets Destination Port Flow Duration Destination Port
5 Total Length of Fwd Packets min_seg_size_forward Fwd IAT Total min_seg_size_forward
6 Total Length of Bwd Packets Average Packet Size Bwd IAT Total Average Packet Size
7 Fwd Packet Length Max Init_Win_bytes_backward Min Packet Length Init_Win_bytes_backward
8 Fwd Packet Length Min Init_ Win_bytes_forward Packet Length Mean Init_ Win_bytes_forward
9 Fwd Packet Length Mean Flow Bytes/s Avg Bwd Segment Size Packet Length Variance
10 Fwd Packet Length Std Subflow Fwd Bytes Bwd Packet Length Mean Subflow Fwd Bytes
11 Bwd Packet Length Max Total Length of Fwd Packets Init_Win_bytes_forward Total Length of Fwd Packets
12 Bwd Packet Length Min Fwd Packet Length Mean Average Packet Size Packet Length Mean
13 Bwd Packet Length Mean Avg Fwd Segment Size Packet Length Std Fwd Packet Length Mean
14 Bwd Packet Length Std Fwd Packet Length Max Fwd PSH Flags Fwd Packet Length Max
15 Flow Bytes/s Subflow Bwd Bytes SYN Flag Count Subflow Bwd Bytes
16 Flow Packets/s Total Length of Bwd Packets Bwd Packet Length Std Total Length of Bwd Packets
17 Flow IAT Mean Bwd Packet Length Mean Bwd Packet Length Max Avg Bwd Segment Size
18 Flow IAT Std Avg Bwd Segment Size Flow IAT Max Bwd Packet Length Mean
19 Flow IAT Max Bwd Packet Length Max Max Packet Length Bwd Packet Length Max
20 Flow IAT Min Bwd Packet Length Min Fwd IAT Max URG Flag Count
21 Fwd IAT Total Bwd Packets/s Init_Win_bytes_backward Bwd Packets/s
22 Fwd IAT Mean Flow Duration Idle Max Flow Duration
23 Fwd IAT Std Flow IAT Max Idle Mean Flow IAT Max
24 Fwd IAT Max Fwd Packets/s Bwd IAT Max Fwd Packets/s
25 Fwd IAT Min Flow Packets/s Bwd Packet Length Min Flow Packets/s
26 Bwd IAT Total Bwd Header Length Idle Min Bwd Header Length
27 Bwd IAT Mean Flow IAT Mean FIN Flag Count Flow IAT Mean
28 Bwd IAT Std Fwd Header Length Fwd Packet Length Std Total Fwd Packets
29 Bwd IAT Max Fwd Header Length.1 Flow IAT Std Fwd Header Length
30 Bwd IAT Min Max Packet Length Fwd Packet Length Mean Max Packet Length
31 Fwd PSH Flags PSH Flag Count Avg Fwd Segment Size PSH Flag Count
32 Fwd Header Length Fwd Packet Length Min Fwd IAT Std Fwd IAT Mean
33 Bwd Header Length Flow IAT Min Fwd Packet Length Min Flow IAT Min
34 Fwd Packets/s Min Packet Length Fwd Packet Length Max Min Packet Length
35 Bwd Packets/s Fwd IAT Max Bwd IAT Mean Fwd IAT Max
36 Min Packet Length Fwd IAT Mean Fwd IAT Mean Subflow Bwd Packets
37 Max Packet Length Fwd IAT Total Packet Length Variance Fwd IAT Total
38 Packet Length Mean Fwd IAT Min min_seg_size_forward Fwd IAT Min
39 Packet Length Std Total Fwd Packets Bwd IAT Std Fwd Header Length.1
40 Packet Length Variance Subflow Fwd Packets Bwd IAT Min Subflow Fwd Packets
41 FIN Flag Count Subflow Bwd Packets Flow IAT Mean Fwd Packet Length Min
42 SYN Flag Count Total Backward Packets Fwd IAT Min Total Backward Packets
43 RST Flag Count act_data_pkt_fwd Bwd Packets/s act_data_pkt_fwd
44 PSH Flag Count Flow IAT Std Total Length of Fwd Packets Flow IAT Std
45 ACK Flag Count Bwd IAT Max Subflow Fwd Bytes Bwd IAT Total
46 URG Flag Count Bwd IAT Mean Idle Std Bwd IAT Max
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Table 12 continued

Feature Ranking

Dataset Features Information Gain Chi Squared Gini Index
47 ECE Flag Count Bwd IAT Total act_data_pkt_fwd Bwd IAT Mean
48 Down/Up Ratio Bwd IAT Min Fwd Packets/s Bwd IAT Min
49 Average Packet Size Down/Up Ratio Total Fwd Packets Down/Up Ratio
50 Avg Fwd Segment Size Fwd IAT Std Subflow Fwd Packets Fwd IAT Std
51 Avg Bwd Segment Size Fwd Packet Length Std Active Max Fwd Packet Length Std
52 Fwd Header Length.1 ACK Flag Count Destination Port ACK Flag Count
53 Fwd Avg Bytes/Bulk Bwd IAT Std Bwd Header Length Bwd IAT Std
54 Fwd Avg Packets/Bulk Bwd Packet Length Std Total Backward Packets Bwd Packet Length Std
55 Fwd Avg Bulk Rate Active Mean Subflow Bwd Packets Active Mean
56 Bwd Avg Bytes/Bulk Idle Max Fwd Header Length Idle Mean
57 Bwd Avg Packets/Bulk Active Max Fwd Header Length.1 Active Max
58 Bwd Avg Bulk Rate Idle Min Total Length of Bwd Packets Active Min
59 Subflow Fwd Packets Idle Mean Subflow Bwd Bytes Idle Min
60 Subflow Fwd Bytes Active Min Active Std Idle Max
61 Subflow Bwd Packets Idle Std Active Mean Idle Std
62 Subflow Bwd Bytes Active Std Active Min Active Std
63 Init_Win_bytes_forward URG Flag Count Down/Up Ratio Bwd Packet Length Min
64 Init_Win_bytes_backward SYN Flag Count Flow IAT Min Fwd PSH Flags
65 act_data_pkt_fwd Fwd PSH Flags RST Flag Count SYN Flag Count
66 min_seg_size_forward FIN Flag Count ECE Flag Count FIN Flag Count
67 Active Mean RST Flag Count Flow Bytes/s ECE Flag Count
68 Active Std ECE Flag Count Flow Packets/s RST Flag Count

Research data policy and data availability statements MQTT-IoT-
IDS2020 dataset can be found at https://ieee-dataport.org/open-access/
mqtt-iot-ids2020-mqtt-internet-things-intrusion-detection-dataset OR
https://doi.org/10.21227/bhxy-ep04 CIC-IDS2017 dataset can be found
at: https://doi.org/10.5220/0006639801080116.
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