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Abstract—Measuring the purity of the metal powder is
essential to maintain the quality of additive manufacturing
products. Contamination is a significant concern, leading
to cracks and malfunctions in the final products.
Conventional assessment methods focus more on
physical integrity rather than material composition and
can be time-consuming. By capturing spectral data from
a wide frequency range along with the spatial information,
hyperspectral imaging (HSI) can detect minor differences in
terms of temperature, moisture, and chemical composition
to tackle this challenge. In this article, we explore the
application of HSI in conjunction with machine learning for
nondestructive inspection of metal powders. By employing
near-infrared and visible HSI cameras, we introduce the
utilization of HSI for this purpose. We delve into the
technical challenges encountered and present detailed
solutions through three case studies, including the
establishment of a spectral dictionary, contamination
detection, and band selection analysis. Our experimental
results demonstrate the immense potential of HSI and
its synergy with machine learning for nondestructive
testing in powder metallurgy, particularly in meeting the
requirements of industrial manufacturing environments.

Index Terms—3-D printing, additive manufacturing (AM),
hyperspectral imaging (HSI), metal powder, nondestructive
testing (NDT), quality control.
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I. INTRODUCTION

TAKING advantage of 3-D printing, additive manufacturing
(AM) has become one of the most significant manufac-

turing industries due to its capacity to save time and cost,
reduce waste, and reuse material during the printing process, and
streamline supply chains. Nowadays, collaboration between the
AM and other major industries, such as aerospace, medicine,
automotive, and architecture, is growing progressively. In the
next five years, the AM market is projected to expand from $ 51
billion to $ 120 billion [1].

During the 3-D printing process, a 3-D object will be formed
by layering the powder material. Typically, 5%–10% of raw
material in the powder bed [2], [3] will be used to make a com-
ponent in AM, which means a significant portion of the material
remains unmelted and is often recycled in the collector chamber
for reuse in subsequent builds. However, every time the material
is reused, there is a risk of contamination. Contaminants can
arise from the degradation of the material itself or from external
sources in processes, such as oxidation, moisture, corrosion, and
creep [4], [5], [6], [7], [8], [9], [10], [11].

Oxidation of reused powder leads to oxygen pickup and oxide
layer formation on particles, altering surface chemistry and
composition [4]. Higher oxygen content enables oxide phase
nucleation during printing, which impairs the strength, ductility,
and fatigue resistance of the formed component [5]. As for
moisture, it introduces hydrogen contamination in reactive alloy
powders, e.g., Ti and Al alloys. Absorbed hydrogen causes
porosity, acting as crack initiation sites, degrading tensile and
fatigue properties [6]. In addition, corrosion alters the surface
composition of powders through a preferential dissolution of
more reactive elements. The enrichment of less noble residues
affects reactivity and the localization of galvanic corrosion
during processing and in end-use [7]. Finally, creep causes
composition changes via diffusion and rearrangement of alloy-
ing elements at high temperatures. This can create localized
compositional variations, leading to property mismatches and
weakened interfaces prone to failure [8].

When such degradation occurs on the particle surface, these
particles are incorporated into subsequent build layers, and the
difference in material composition can result in crack propaga-
tion points. In critical industries, such as aerospace and medical
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sector, precise control of metal powder composition is crucial, as
even minor variations can induce noticeable defects by altering
the microstructure evolution during the 3-D printing [9], [10].
By mixing different alloy powders, compositional gradients at
interparticle boundaries can be generated, which will disrupt the
diffusion and the growth of desired phases [11]. Contamination
caused by foreign particle provides heterogeneous nucleation
sites that change the solidification patterns and dendrite mor-
phology. The resulting microsegregation and nonequilibrium
structures reduce the ductility and fatigue life [2]. Therefore,
it is essential to develop a nondestructive technique for iden-
tifying powder contamination, enabling nondestructive quality
assessment of the powders before deciding their suitability for
reuse [12].

Currently, typical methods for inspection of 3-D printing
materials include visual inspection, ultrasonic testing, ther-
mal imaging, metallography, and X-ray computed tomography
(XCT) [13], as detailed in the following text. Visual inspection
is a quick and low-cost inspection method where an extra instru-
mentation is not needed. However, it is less effective for metal-
lurgical condition assessment due to two main reasons. One is the
similar color properties of the commonly used metal powders,
including TI-6AL4V, AlSi10Mg, Tungsten, M300 Steel, and
IN718, and the other is the micron-level particle, which is too
small to be easily distinguished by human eyes.

Ultrasonic testing has been widely used to inspect internal
defects of metal components. It employs a transmitting probe
that transmits ultrasonic waves through the component and then
emits various reflected signals when encountering different sur-
faces. The difference between the transmission times of various
signals can help to reveal faults, e.g., pores and cracks [14].
Recently, laser ultrasonic inspection has been developed for
real-time AM monitoring. It generates the ultrasonic waves by
laser pulse and detects the reflected signal with a laser interfer-
ometer. However, ultrasonic testing struggles with nonsmooth
and complicated surfaces, requiring the treating of surfaces to
eliminate the influence of surface roughness [15].

Thermal imaging is mostly carried out by infrared cameras
for temperature measurement, where any physical changes and
defects during the manufacturing will affect the heat conduction
in the workpieces, and present a higher temperature response in
infrared images [16]. However, making accurate measurement
relies on a high-sensitive and expensive infrared camera [17].
A comprehensive calibration is also needed depending on the
ambient conditions and materials.

XCT is an imaging technique that reconstructs the 3-D struc-
ture of an object by capturing several X-ray pictures around a
rotating axis. It can expose the internal structure of a metallurgi-
cal product, allowing for the detection of defects, such as cracks,
porosity, inclusions, and density variations [18]. Since XCT
relies on the X-ray penetration of the object to be scanned, larger
size of the object will reduce the maximum possible magnifica-
tion of the scan and lead to a decreased spatial resolution [19].
Although this issue can be mitigated by stitching multiple locally
tomographic images to form larger tomograms, the results can
be still skewed and make it a challenge in detecting small defects
[20].

Metallography, also known as optical microscopy, captures
several 2-D images by optical light microscope and then stitches
them together to create and record the whole cross section of
the workpieces [21], enabling a very high precision for pore
detection. However, its experimental setup and calibration are
very complex, including the selection of lens magnification and
the number of captured images under different magnification
levels. Also, manual focus adjustment and location choice dur-
ing the data capturing may cause human errors and increase
uneconomical manpower [22].

Most of the aforementioned techniques extract information
about the physical integrity of the as-built components rather
than the material composition of the metal powders. In this
context, hyperspectral imaging (HSI), an emerging technique
that combines spectroscopy with digital imaging, can provide a
novel insight to fill this gap.

Conventional multispectral systems, e.g., color cameras, use
the red (R), green (G), and blue (B) as three channels to collect
information. HSI, in contrast, captures intensities over a con-
tinuous spectral range in a series of very narrow wavebands.
Each pixel at the spatial coordinates of (x, y) contains the rich
spectral information as a continuous spectrum. Depending on
the sensor properties and settings, this can entail hundreds of
wavebands. The data are stored in a 3-D data cube, often referred
to as a hypercube, where for each wavelength, it will form a
full-resolution spatial image.

HSI has been widely applied to remote sensing for land
mapping [23], precision agriculture [24], and mineral explo-
ration [25]. Due to the recent advances in imaging technol-
ogy, HSI has become more popular for industrial applications,
such as peatness prediction in the malted barley for Whisky
manufacturing [26], nondestructive testing (NDT) of carbon
fiber reinforced polymer remanufacturing [27], and corrosion
detection in nuclear packages [28]. The popularity derives from
the nondestructive nature of HSI, where samples can be analyzed
chemometrically without altering their physical integrity. A
second advantage is the comprehensive data acquisition even in
real time. It will not be limited by the environmental temperature
and geometry of the object, making it a unique and effective
solution for nondestructive inspection far beyond conventional
techniques. It is expected that this will subsequently reduce
the costs and environmental impact associated with the pro-
duction of unqualified products. As a result, HSI poses the
great potential of a real-time chemometric analysis tool that can
seamlessly be integrated into the processing chain of industrial
production.

Due to the constrained lab environment, it was infeasible to
accurately obtain metal powders with defined levels of contam-
ination. Instead, the mixtures of different pure metals served as
simplified proxies for contamination in this study. We aimed to
evaluate whether our proposed approach could detect anomalies
within the composed metal powders so as to demonstrate the
proof-of-concept in smart sensing and quality control of compo-
sitional variations in AM. To achieve this, we carried out three
experimental case studies, which included spectral dictionary
establishment of metal powders, detection of contamination, and
band selection.
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Fig. 1. HSI inspection system for powder metallurgy.

As the spatial resolution of HSI camera is in millimeters,
in comparison with the particle size of metal powders in mi-
crons, each pixel will contain hundreds to thousands of metal
particles. For the accurate mapping of the ground truth (GT), a
high-resolution microscope is needed. Since the microscope can
only cover a small region, this will require numerous operations
to capture the full scene, thus increasing the processing time
and the difficulty to keep the distribution consistency of the
powders. Thus, this has led to a huge challenge of the un-
certainty in data annotation for GT mapping, for which HSI
and machine learning are combined to detect the contamination
as a special classification problem, using the spectral dictio-
nary established from the original samples to discriminate the
contamination.

Although HSI contains rich spectral information, the high
dimensionality is also a big challenge that affects the computa-
tional efficiency and difficulty in practical deployment caused
by the heavy device cost [29]. Herein, a new proximity ranking-
based band selection (PRBS) approach is proposed to enable
filter the redundant bands while preserving the representative
ones in the NDT of metal powders.

The major contributions of this article are highlighted as
follows.

1) To the best of our knowledge, we are the first to propose an
HIS-based inspection framework for metal powder char-
acterization, integrating onsite transparent data collection
with offsite AI-driven data processing to serve AM.

2) We demonstrated the ability of HSI and machine learn-
ing to detect the contamination in mixed metal powder
samples using a spectral dictionary approach.

3) We introduced a new band selection method called PRBS
to reduce HSI data redundancy while maintaining the
most representative information.

The rest of this article is organized as follows. Section II
describes the concept of the HIS-based inspection system. Sec-
tion III discusses the way to data acquisition and data processing
in this system. Section IV details the three case studies. Finally,
Section V concludes this article.

II. HSI INSPECTION SYSTEM

The concept of the HSI inspection system for AM is sum-
marized in Fig. 1, which is composed of two interactive mod-
ules, i.e., onsite data transparency and offsite AI-driven data
processing. For data-intensive applications, data transparency
is essential for evidence-based decision making through proper
information collection and evaluation of its effect and usefulness
[30]. In our HSI inspection system, both imaging module and
condition assessment are accessible to users for onsite data
transparency. In the imaging module, any optical sensor, such
as visible (VIS), near-infrared (NIR), and short-wave infrared
HSI cameras, can be adopted. The acquired information flow
will be transferred from onsite to offsite for data processing
and analysis. In condition assessment, the outcomes of data
processing and analysis will assist the metallurgical experts in
understanding the state of metal powders, allowing them to make
more informed decisions.

Within the data processing techniques, three core streams are
covered, i.e., dictionary building, anomaly detection, and band
selection. Dictionary building is a vital step for learning the
spectral information from the original metal powders, where data
calibration and enhancement of the acquired data are needed to
produce high-quality data for easy understanding and improved
analysis in following-on modules. In general, spectral calibra-
tion is an essential step to normalize the captured spectrum.
According to the practical needs of different NDT tasks, spectral
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correction and spatial denoising are needed for improving the
data quality. For large objects, image registration and stitching
are also essential to tackle the limitation of the field of view and
cover the whole surface of the object.

One of the biggest issues in analyzing hyperspectral data is
the large number of variables involved, leading to the curse of
dimensionality or the Hughes phenomenon [26]. A high number
of variables necessitates a considerable number of samples, thus
the corresponding memory and processing capacity, and may
potentially result in overfitting of the AI models during model
training. To address this issue, band selection is the main tech-
nique used in our system for mining HSI data. Band selection
is beneficial for dimension reduction and more effectively data
characterization. Moreover, selecting fewer bands can lead to the
development of a bespoke multispectral camera that can capture
the critical spectral information while reducing the heavy cost
associated with a normal HSI camera for more feasible on-site
deployment.

Machine learning algorithms, such as the support vector ma-
chine (SVM), random forest, and neural network, have been
widely applied to a wide range of industrial applications [26],
[27]. Combining dictionary building, band selection, and classi-
fication can provide an automatic anomaly detection mechanism
for detecting the defects of contamination, moisture, corrosion,
oxidation, and creep in the metal powder.

In summary, the proposed HSI inspection system can be
employed for better condition assessment of metal powders,
helping on-site operators make more efficient manufacturing
strategies and improve quality control in 3-D printing.

III. MATERIALS AND METHODOLOGIES

In this section, the standard progress of data acquisition
in the lab environment and data preprocessing techniques are
introduced. Those techniques are not only used in this work but
also applicable in many other HSI applications.

A. Data Acquisition

In our case studies, HSI cubes were collected using a visible-
near infrared (VIS, 400–950 nm) camera and a near-infrared
(NIR, 950–1700 nm) camera in a push-broom scanning config-
uration (see Fig. 2). Two 20-W Tungsten halogen lights were
used for illumination. The samples were raster scanned with
a working distance of 25 cm beneath the cameras using a
motorized stage at a consistent speed of 16 mm/s to build up
the HSI datacubes with two spatial dimensions and a spectral
one.

The VIS camera comprised a Hamamatsu ORCA-03G CCD
detector and Specim V8E spectrograph, providing 2 nm spectral
resolution. The four times binning was applied during VIS
acquisition for reduced noise and enhanced sensitivity, resulting
in 336 pixels per line and 256 spectral responses per pixel. The
NIR imaging utilized an Innospec RedEye 1.7 camera with
10 nm spectral resolution without binning, resulting in 256
spectral bands and 320 spatial pixels per line. Further details
of the hyperspectral systems are provided in Table I. Fig. 3(a)
and (b) shows the average spectral profiles of the five original

Fig. 2. Camera settings in the lab environment.

TABLE I
TECHNICAL DETAILS OF TWO HSI CAMERAS FOR DATA ACQUISITION

Fig. 3. Spectral profiles of five original samples using the (a) NIR and
(b) VIS cameras.

metal powders over the entire spectral bands of NIR and VIS.
Aluminum and Tungsten exhibit distinct spectral profiles, while
M300 Steel, TI-6AL4V, and IN718 have similar trends despite
varying intensities.

Fig. 4 presents microscopic images of the five original metal
powders acquired using a 100× Apex microscope. All powder
types exhibit approximately spherical morphologies, with some
minor variations in particle size and shape observed. As the
primary focus of this research was demonstrating the capability
of HSI and machine learning for anomaly detection in metal
powders, we made a simplifying assumption of uniform spher-
ical particles. This allowed establishing an initial methodology
without modeling complex particle factors.

During the data acquisition, the powder samples were scanned
at room temperature of 20 °C in a controlled lab environment. To
minimize the effects of temperature and illumination changes,
spectral calibration was performed before scanning each sample.
We also rotated the sample container and repeated the scans at 0°,
90°, 180°, and 270° to average any variability. As the operating
temperature range for the NIR and VIS cameras is −5 °C to
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Fig. 4. 100× magnification viewing from apex microscope.

+40 °C and 0 °C to +40 °C, respectively, they worked stably in
the controlled environment to produce consistent spectral data in
HSI for analysis. In the experiment, five original metal powders
were used for training (i.e., building the spectrum dictionary)
and mixed metal powders were used for testing. The hypercubes
from the four rotation scans of each sample were preprocessed
and stacked in a pixelwise manner to produce a stacked image
data pool for further processing.

To generate representative spectral samples from the HSI,
extraction of the region of interest (ROI) was first applied. This
has resulted in approximately 20 000 pixels per sample for the
NIR data and 75 000 pixels per sample for the VIS data. To
reduce the redundancy and overfitting, we randomly subsampled
the ROI pixels with a spacing of s = M∗0.1, where M is the total
number of pixels within the ROI for that sample. This allowed to
build representative training and test sets from each category’s
cube while minimizing the repeated measurements of the same
spectral pixels. For example, with 75 000 pixels in the ROI of
VIS HSI, we have around 7500 distinct spectral samples per
class for training and testing. For robustness, the subsampling
stage was repeated ten times to randomly generate ten groups
of spectral samples for training and testing, and the averaged
testing results are reported for evaluation.

B. Data Processing

1) Spectral Calibration: During the data acquisition stage,
the lighting conditions may shift within a hypercube or between
different datasets along the scan lines, due possibly to camera
quantum and physical configuration differences of the imaging
system. To mitigate such an effect, reliable calibrations of the
HSI system are required to ensure the stability and acceptance
of the data produced. As a result, light calibration is adopted to
convert the raw radiance spectrum s to the reflectance spectrum
r in order to reduce this incoherence and retain a consistent
influence of the light conditions. Without exposing the camera
to light, we may get a dark reference spectrum d, which estimates
the sensor’s noise and drift. Then, a white reference spectrum w
can be obtained by imaging an ideally reflective white surface
(e.g., Spectralon with Lambertian scattering). The normalized
light sensitivity of illumination can be obtained as follows:

r =
s− d

w − d
. (1)

2) ROI Extraction: During the sample preparation, the metal
powders are spread out in the round container. After acquiring

Fig. 5. Illustration of the process for ROI extraction. (a) Image captured
by phone. (b) First PCA component from HSI. (c) Selected ROI.

the HSI data, a robust circle detection method was applied to
extract the ROI of the metal powder. This can help to remove
the shadow that usually exists near the container boundary,
highlighted by a red ring, as shown in Fig. 5(a), while retaining
the powder pixels for further analysis.

Defining the ROI on a single band was sufficient, as all
spectral bands share the identical spatial structure. However, se-
lecting certain band empirically can reduce the scalability of our
proposed system. As an uncomplicated and scalable approach,
principal component analysis (PCA) is particularly useful for
preserving as much of the original variance as possible while
reducing the dimensionality of data, while other technique, such
as independent component analysis (ICA), is more suitable for
separating a multivariate signal into independent sources. Apart
from this, PCA has the capability of straightforward compu-
tation, interpretability, and widespread implementation. There-
fore, the PCA was chosen to compress the high-dimensional
HSI data into a primary component image with a much lower
dimension yet preserving the dominant spectral variance. The
powder pixels can then be separated from the background by
thresholding this simplified representation, enabling reliable
ROI segmentation.

The steps for circle detection are summarized as follows.
1) Map the HSI data to the feature domain using PCA.
2) Apply an adaptive thresholding method [31] on the first

PCA component to extract a binary ROI.
3) Calculate the centroid of the extracted ROI using the

central moment, i.e., the mean (x, y) of all white pixels.
4) Determine the minimum radius of the ROI to generate the

circular mask, as shown in Fig. 5(b).
5) Apply the ROI mask on the preprocessed hypercube to

extract the pixels in a red circle, see in Fig. 5(c).
3) Band Selection: To reduce the high dimensionality of

the hyperspectral data while retaining its interpretability, we
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propose a PRBS method. Unlike feature extraction techniques
that project the HSI data into an abstract feature space, band
selection identifies a subset of the original spectral bands to
preserve the spectral consistency. Our PRBS can retain the
most representative bands through the selective elimination of
redundant bands.

In PRBS, the only parameter required is the desired number
of selected bands K. The algorithm then works intrinsically to
determine the optimal K through an iterative process of cluster-
ing and ranking. First, similar spectral bands are merged based
on a distance–density metric until K distinct clusters emerge.
Next, the most representative band in each cluster is selected by
ranking the proximities of intracluster bands. This data-driven
clustering and ranking automatically identify the top K dominant
bands from the high-dimensional HSI cube. By retaining the
original bands, PRBS maintains the interpretability and spectral
consistency while drastically reducing the data volume. The
simple tuning of K makes the band selection accessible based
on application needs. Detailed implementation is presented as
follows.

Based on the extracted ROI, a spectral matrix X ∈ �N×B

can be obtained, where N is the number of pixel-based spectral
vectors and B is the number of bands. First, a band hierarchy
concept [23] is adopted to group the similar spectral bands
iteratively. Let G = (V,E) represents the X in a unidirec-
tional graph, where the node set V = [1, 2, . . . , B] denotes the
spectral bands in X . Initially, each spectral band is treated as
an individual cluster. E = [e1, e2, . . . , eZ ] denotes the distance
between two adjacent clusters, where 1 ≤ Z ≤ B. To ensure the
computational efficiency during each iteration of the clustering
process, it is crucial to use a distance measurement that is both
efficient and robust. Therefore, we have opted to utilize the
Euclidean distance metric. The distance between the ith and
the jth clusters can be calculated as follows:

Di,j =
1
B

√
‖Xi −Xj‖2 =

1
B

√√√√ N∑
n=1

(Xn,i −Xn,j)
2. (2)

The distance between two adjacent spectral bands can be
obtained by setting eb = Db,b+1. If eb < eb−1 and eb < eb+1,
band b and band b + 1 will be merged into a new cluster
X̂b that is represented by the mean of all bands it contained.
However, considering the noise sensitivity of the Euclidean
distance, noisy bands can be clustered separately as they tend
to be discriminative against neighboring ones. To address this
issue, we further measure the density of each cluster and refine
the distance between adjacent clusters eb.

The density of a data cluster refers to the concentration and
compactness of the data points within that cluster. In the context
of hyperspectral data clustering, we consider the concentration
as the number of bands and compactness as the internal distance
between each band in the cluster. Therefore, the density Ib for
cluster X̂b can be obtained as follows:

Ib = norm(X̂b)∗ cb (3)

where norm(X̂b) represents the Euclidean norm of one cluster,
which can be assumed as compactness of X̂b. cb is the number
of contained bands in the bth cluster. Then, eb will be refined by
integrating Ib

Refined (eb) = Db,b+1 ∗Ib∗Ib+1. (4)

As a result, a cluster with a lower density will have a shorter
distance from its adjacent clusters compared with clusters that
have larger densities.

We iteratively apply the merging process above until a defined
number of K clusters is formed. For efficiently selection of the
most representative band from each band cluster, we rank the
bands based on their intra proximity (P) that is determined
by computing their distance to other bands within the same
cluster using the chosen metric. Here, we select the Pearson
correlation to calculate the P for its computationally efficiency.
Assuming there are B′ bands in the kth (k ∈ [1,K]) cluster,
the P for the mth band in the kth cluster can be derived
by

Pm =

B′∑
d=1

⎛
⎝1 −

∑(
Xm −Xm

) (
Xd −Xd

)
√∑(

Xm −Xm

)2 ∑(
Xd −Xd

)2

⎞
⎠ . (5)

Finally, the band with the smallest P becomes the dominant
one in each cluster, resulting in K selected bands for X .

IV. CASE STUDIES AND DISCUSSIONS

In this section, three case studies are used to show the potential
of the proposed HIS-based NDT of metal powders, including
specific AI techniques introduced in the context.

A. Case Study 1: Dictionary Building

To precisely characterize the original metal powders, a spec-
tral dictionary is established in this study. Here, we assume that
the attributes of the original metal powder spread out in each
container are consistent.

1) Experimental Materials and Settings: In this study, five
categories of original metal powders, including TI-6AL4V,
AlSi10Mg, Tungsten, M300 Steel, and IN718, are used to build
the spectral dictionary. To evaluate the effectiveness of two
spectral dictionaries, we consider this study as a classification
problem with the SVM employed for classification. A compari-
son between VIS spectral dictionary and NIR spectral dictionary
is carried out. Overall accuracy (OA), average accuracy (AA),
and kappa coefficient (KP) are used for quantitative evaluation

OA =
1
n

T∑
i=1

Ci∗100% (6)

AA =
1
T

T∑
i=1

Ci

Ni
∗100% (7)

KP = (P0 − Pe) / (1 − Pe)
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TABLE II
CLASSIFICATION RESULTS (OA%) WITH MULTIPLE TRAINING PIXELS

Fig. 6. t-SNE feature space (a, b) of five original samples based on
NIR and VIS imagery.

P0 = OA, Pe =
1
n2

T∑
i=1

⎛
⎝ T∑

j=1

Ci,j ∗
T∑

j=1

Cj,i

⎞
⎠ (8)

where n is the number of observations, Ni are all the pixels in
class i, the number of observations, T is the number of classes,
andCi represents the number of correctly classified observations
in class i.Ci,j is the row element, andCj,i is the column element
in the confusion matrix.

The SVM is selected as the classifier for three reasons:
1) robustness to the Hughes phenomenon and ability to

utilize a margin-based criterion [32];
2) wide usage in HSI classification [26];
3) availability of libraries [33] supporting SVMs multiple

functions, ensuring simplicity.
Each experiment is repeated ten times, and average results are

reported to ensure statistical significance and minimize system-
atic errors. Disjoint training and testing samples are used within
each repetition, with random selecting the number of training
pixels (5, 10, 15, 20, 25, 30, 5%, and 10%) in each category.

2) Results and Discussion: To assess the discriminative abil-
ity of NIR and VIS imagery, t-distributed stochastic neighbor
embedding (t-SNE) [34] was utilized to map the spectral bands
to a 2-D feature space, as depicted in Fig. 6(a) and (b). Both

NIR and VIS imagery have the great discriminability but with
different characteristics. NIR imagery exhibits multiple clusters
with clear boundaries, whereas VIS spectra tend to organize each
sample into distinct clusters in the t-SNE feature space.

To objectively evaluate the effectiveness of our method for
dictionary building, we have compared the proposed approach
with three deep learning models, i.e., deep 1DCNN [35], stacked
autoencoder (SAE) [36], and spectral transformer (CAF) [37]
across eight training rates. We fine-tuned these models on our
datasets, and the results are given in Tables II –IV. As seen,
without sufficient training, all of these deep learning methods
underperformed our SVM classifiers on this particular metal
powder HSI data. The deep networks may achieve high perfor-
mance on some public datasets [38], but they required extensive
tuning and larger training data to reach parity with SVM on our
data. This has suggested that the compared deep learning models
may be less effective for our specific application in AM.

Moreover, we have compared two SVM variants, i.e., SVM
with the radial basis function kernel (SVM-rbf) and SVM with
polynomial kernel (SVM-poly), where the parameters for both
kernels are fine-tuned through a grid search. Among the SVM
variants, SVM-rbf consistently produced the best results when
comparing with SVM-poly, indicating the superiority of the RBF
in handling the nonlinearity of the high-dimensional HSI data.
Notably, the VIS spectral dictionary with SVM-rbf achieved
metrics approaching or reaching 100% in many experiments. In
comparison, the NIR dictionary performed worse in terms of
OA, AA, and KP. Given these insights, our subsequent experi-
ments will prioritize the VIS spectral dictionary, leveraging the
SVM-rbf as the primary model for HSI classification.

B. Case Study 2: Anomaly Detection

In this study, we assume that HSI is capable of detecting
the anomalies in the mixture metal powders, and we take the
contamination as a typical scenario.

1) Experimental Materials and Settings: To simulate the
contamination scenario, eight mixed metal powders were

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

TABLE III
CLASSIFICATION RESULTS (AA%) WITH MULTIPLE TRAINING PIXELS

TABLE IV
CLASSIFICATION RESULTS (KP∗100) WITH MULTIPLE TRAINING PIXELS

TABLE V
CONTENTS IN EACH MIXED METAL POWDER

created from five raw samples, see details in Table V, where
shaken and unshaken indicate whether or not the container was
manually shaken after metal granules were added. After that,
we carefully placed the containers to be scanned on the movable
system to prevent the secondary powder mixing caused by
undesired shaking.

In our study, the identification of contamination is considered
an anomaly detection problem. To discover the anomalies within
the mixed powders, the VIS spectral dictionary trained by the
SVM model in Case Study 1 will be directly used to detect and
recognize the anomalies accordingly.

2) Results and Discussion: The anticipated proportion of
each type of metal powder in the combined samples is displayed
in Table VI. Based on the findings of the #1 and #2 mixed metal
powders, it appears that VIS spectral dictionary can provide very
promising results in terms of low mean absolute error (MAE)
value. For the #3 mixed metal powder, VIS imagery can detect
the M300 Steel, AlSi10Mg, and IN718 in this mixed metal
powder; however, the estimation of AlSi10Mg and IN718 is far
from anticipation.

The initial inference for the misclassification and failure in
these three mixed metal powders is given as follows.

1) After shaking the container, two classes of powders are
mixed up. The classification performance mainly depends
on the way of shaking [see Fig. 7(a)].
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TABLE VI
RESULTS OF CASE STUDY 2

Fig. 7. Illustration of the reasons for misclassification and failure is-
sue. (a) Random spatial distribution. (b) Stratification issue. (c) Spectral
mixture in a pixel.

2) In general, large density particles tend to settle in the
bottom layer [see Fig. 7(b)], making identification chal-
lenging.

3) Single pixels contain two or more classes of powder
particles, and the classifier has a low discriminative ability
of mixed spectrum [see Fig. 7(c)].

To validate these three assumptions, five more mixed metal
powders are generated. For the #4-#6 mixed metal powders,
the proportion of contamination was raised to 30%. For the #4
mixed metal powder, VIS imagery can recognize the IN718
as the main contamination, although the estimated proportion
is significantly below expectations. For the #5 mixed metal
powder, VIS can provide a relatively accurate assessment. For
the #6 mixed metal powder, VIS correctly identified M300 Steel
and AlSi10Mg but failed to estimate the expected proportions
of the predefined metal powders. This discrepancy is likely due
to unpredictable spatial distribution hindering precise estima-
tion, as well as spectrum mixing caused by the limited spatial
resolution of HSI cameras.

Fig. 8. Surface condition of seventh sample. (a) After sample prepara-
tion. (b) After several minutes. (c) In the final state. (d) Bottom condition
of seventh sample in the final state.

To mitigate the unpredictable spatial distribution issue, the #7
and #8 samples are generated. For the #7 sample, we first spread
the TI-6AL4V over the bottom of the container, then carefully
spread tiny portion of Tungsten on top of TI-6AL4V. For eighth
sample, five original metal powders are spread over the container
in turn. Finally, we placed both containers for scanning without
shaking. From the results of the #7 sample, several findings
can be concluded. First, VIS imagery can identify TI-6AL4V
as the main element and Tungsten as a contamination. Second,
misclassification still happens to VIS imagery, which is again
caused by spectral mixture issue. Although the container has
not been shaken, some TI-6AL4V and Tungsten particles on
the surface are still mixed at the pixel level or overlapped by
each other, which misleads the classifier to make the wrong
estimation. On the other hand, particles with greater density
tend to settle at the bottom, Tungsten particles on the surface
will be underneath of the TI-6AL4V particles.

As seen in Fig. 8(a), the Tungsten powders are in the middle
of the TI-6AL4V powders when they are freshly mixed. In
the next few minutes, the majority of the Tungsten particles
have sunk through the TI-6AL4V powders, while a few remain
on the surface in Fig. 8(b). Eventually, only the TI-6AL4V
particles will be visible on the surface, as shown in Fig. 8(c),
while the Tungsten granules will completely settle at the bot-
tom of the container, see in Fig. 8(d). This situation may
also occur with other samples, such as the #4, simply because
the density of IN718 is higher than that of AlSi10Mg, which
explains the misclassification from a different perspective. In
this case, the issue of spectral mixture no longer exists, but
such a condition still brings the difficulty of contamination
detection.

For the results from the #8 sample, VIS imagery can well
identify the main elements in the same container despite the fact
that the estimated portion of each metal powder mismatch the
ideal value because of the overlapping issue.

In summary, all these results have actually validated that VIS
spectral dictionary is able to recognize the contamination in
the mixed metal powder under two preconditions, i.e., metal
powders to be characterized need to be on the surface and
minimum portion of metal particle needs be larger than a pixel.

3) Discussion on Shaking Duration and Mixing Sequence:
In Table VII, we compared the results of anomaly detection
using four different durations of shaking on the samples #1–#6.
As seen, in some cases, longer duration of shaking can actually
improve the visibility of the contaminant, such as samples #3
and #4. However, in other cases, such as sample #2, longer
shaking may degrade the contaminant visibility. To this end, the
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TABLE VII
ANOMALY DETECTION AFTER FOUR DIFFERENT DURATIONS OF SHAKING THE CONTAINER ON SAMPLES #1–6
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Fig. 9. MAE versus the number of selected bands (no. bands) for six band selection methods evaluated on the eight samples.

relationship between shaking duration and the sample visibility
is rather complex, depending on the agitation and particle distri-
bution, e.g., directionality and vigor. While not conclusive, these
initial results have demonstrated that there is still no definitive
pattern indicating that the detection of contamination is highly
dependent on the shaking time. More controlled, systematic
agitation can be beneficial for further investigation in the future.

Regarding the mixing sequence, the layer thickness is a key
factor that affects the particle visibility after agitation. When
it comes to the practical operations in AM, the powder bed
thickness is typically less than 100 µm [39]. With a sufficiently
thin-layer distribution of samples, shaking can likely separate
and expose various metal powders. However, contaminants
buried under thicker layers may still be obscured.

C. Case Study 3: Band Selection

In this study, we assume that hyperspectral band selection is
able to reduce the redundancy in the HSI data while maintaining
the contamination detection performance.

1) Experimental Materials and Settings: To assess the effi-
cacy of our proposed PRBS band selection method, we compare
it with five state-of-the-art (SOTA) band selection approaches,
i.e., adaptive distance-based band hierarchy (ADBH) [23], op-
timal neighborhood reconstruction (ONR) [40], fast neighbor-
hood grouping method (FNGBS)[41], enhanced fast-peak-based
clustering (EFDPC) [42], and hyperbolic clustering-based band
hierarchy (HCBH) [29]. By taking the full band results from
the second case study as a baseline, we compare the detection
performance before and after adding these band selection meth-
ods in terms of the MAE. A lower MAE value indicates that the
selected bands can make the closer estimation of contamination
in comparison to use the full spectral bands (baseline).

2) Results and Discussion: Fig. 9 compared the band selec-
tion results produced by six approaches on the eight samples.
Due to the lack of salient features on the spectrum of metal

powders, the results from different methods show inconsistency
in various samples. For example, the proposed PRBS has the
lowest MAE on the #1 and the #8 samples; ADBH has the
lowest MAE on the #2 sample, while the MAE of FNGBS is
lower than others on the #6 samples. On a different note, more
selected bands do not necessarily produce a lower MAE. For
example, the MAE of most methods varies with the increasing
number of bands on the #5 and #7 samples. The MAE of PRBS
reaches the valley when we have only four selected bands; it
then increases with the more bands selected for the #1 sample.
Although the performance varies with the number of selected
bands, the proposed PRBS can produce the best MAE and #2
best standard deviation (STD) on average, indicating its high
efficacy and robustness (see Table VIII). Although ONR has a
slightly lower STD than our PRBS, its average MAE is twice as
high as ours, leading to much inferior efficacy.

Another finding in Fig. 9 is that there is a significant MAE
difference when we compare shaking versus no-shaking cases
for the category of “TI-6AL4V (≥99%) + Tungsten (≤1%).”
This can be explained as follows. Without shaking, the TI-
6AL4V is on the bottom layer with the Tungsten visibly on the
surface, allowing straightforward detection of them. In contrast,
the shaking process changes the present powder distribution,
leading to unpredictable mixing and partial occlusion of the
Tungsten contaminant. This has increased the heterogeneity in
the #1 sample with shaking and reduced the detection accuracy
compared with the #7 sample without shaking.

V. CONCLUSION AND FUTURE WORK

In this article, a novel approach was proposed for precision
quality control in AM, using hyperspectral image analysis and
machine learning. Three case studies were designed to offer
unique insights on HSI-based NDT of metal powders-based 3-D
printing. Eight mixed samples generated from five categories
of original metal powders were employed for modeling and
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TABLE VIII
AVERAGED MAE AND ITS ASSOCIATED STD FOR SIX BAND SELECTION METHODS

validation. The experiments had demonstrated the great value
of the integration of machine learning and our band selection in
this context, with particularly promising results in characterizing
materials and contamination detection.

Some remarkable findings were summarized as follows.
1) Our proposed HSI-based NDT framework can detect

the contamination and characterize different mixtures of
metal powders at a lower ratio of 1% under two precon-
ditions.
a) All classes of powder are expected to be visible on

the surface.
b) The particle group is expected to be large enough for

capturing at least one pixel of each sample; otherwise,
the spectra mixture will heavily affect the classifica-
tion accuracy.

2) The proposed band selection produces much improved
results than other SOTA methods, which is particularly
useful to reduce the data redundancy to enable a potential
deployment of a multispectral system for reduced cost.

This study represented only the first steps toward developing
a robust quality assured solution for AM of metal powders. Sig-
nificant opportunities remain to build on this foundation through
further research, such as to expand the studied contaminant
types to validate generalizability beyond the simplified way of
powder mixtures. Investigating the impacts of other factors, such
as the particle size, shape, porosity, and their resulting optical
properties, will also add critical robustness against real-world
powder variations. Standardizing the mixing protocols could
help to improve the characterization of layered or clumped
particles, even supported by the spectral unmixing techniques.
By tackling these limitations via rigorous follow-on studies, a
more comprehensive solution can be built to satisfy industrial
needs in metal AM.
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