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Abstract
With a large number of film capacitors being deployed in critical locations in electrical and
electronic systems, artificial intelligence (AI) technology is also expected to address the
problems encountered in this process. According to our findings, AI applications can
cover the entire lifecycle of film capacitors. However, the AI safety hazards in these
applications have not received the attention they deserve. To meet this, the authors argue,
with specific examples, risks that flawed, erratic, and unethical AI can introduce in the
design, operation, and evaluation of film capacitors. Human‐AI common impact and
more multi‐dimensional evaluation for AI are proposed to better cope with unknown,
ambiguity, and known risks brought from AI in film capacitors now and in the future.
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1 | INTRODUCTION

In the fight against energy supply and environmental protec-
tion issues [1, 2], devices [3] that can help more renewable
energy to be consumed [4] by the energy system are too
important to be ignored. With more material potential [5, 6]
and excellent properties [7–9], film capacitors will play more
and more significant roles as energy connection nodes [10].
Hence, novel technologies [11, 12] and helpful strategies [13,
14] are needed to address the problems that may be faced
when expanding the range of applications for film capacitors.

Artificial intelligence‐(AI) related approaches have been
proposed to deal with issues in high‐stakes fields, such as en-
ergy [15], transportation [16], communication [17], materials

[18], biology [19], chemistry [20], physics [21], economics [22],
environment [23], and military [24]. On the other hand, the
accidents [25, 26] that occurred during this process also began
to draw attention to the assurance challenges [27, 28]. How-
ever, more research is currently focused on the direct threats
posed by AI [29, 30], and more gaps exist in research on the
impact of AI safety on critical areas of human existence, such
as energy transmissions [31].

Except for the traditional engineering method for film
capacitors [32] and AI methods regardless of capacitor type
[33–37], many ideas based on AI for solving problems of film
capacitors were also proposed. Nevertheless, the possible
safety issues in the application of AI to film capacitors have not
yet received attention. Considering most of the critical
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decisions that determine system safety occur early in devel-
opment [30], there is still considerable value in the research on
the AI safety of film capacitors while the entire life cycle of
film capacitors has not been fully AI‐enabled.

Therefore, we conduct a comprehensive review to assess
the extensive potential applications of AI in film capacitors.
Subsequently, we address our concerns regarding the potential
risks posed by AI within the context of film capacitors. This is
accomplished by providing detailed examples of AI's impact
on the design, operation, and evaluation phases of film
capacitor development. Furthermore, we assert that there may
exist unidentified safety concerns that have not yet been
acknowledged, let alone addressed. This discrepancy between
the significance of AI safety in energy devices and the level of
attention it currently receives is a focal point of our argument.
The proposed solutions presented herein are intended to assist
individuals in preparing for the imminent challenges and po-
tential catastrophes associated with AI integration in film
capacitors.

2 | THE APPLICATIONS OF AI IN FILM
CAPACITORS

The film capacitor industry is on the cusp of a major trans-
formation, primarily propelled by two significant factors: the
increasing emphasis on reducing carbon emissions [10] and the
surging demand for reliable energy devices [38]. This conver-
gence of environmental consciousness and energy needs is
ushering in a new era of expansion for the film capacitor
sector. As the industry shifts its focus towards sustainability
and efficiency, we can anticipate a substantial rise in both the
production and application of film capacitors. This burgeoning
industry has a vision for the future that revolves around high
levels of automation and intelligence. At the heart of this
transformation lies AI, poised to play a pivotal role. By har-
nessing the power of AI, we foresee the development of
optimised solutions that cover every facet of the film capaci-
tor's life cycle, spanning from design and production to testing,
operation, evaluation, and recycling. These AI‐driven solutions
hold immense potential, promising to greatly enhance both
economic viability and environmental sustainability.

Table 1, with its array of references, underscores the idea
that AI can be seamlessly integrated into each stage of the film
capacitor's life cycle, a process that currently relies heavily on
human expertise. This marks a profound shift towards AI
integration, raising a crucial concern ‐ the safety of AI systems.
The integrity of AI systems has far‐reaching implications for
every aspect of film capacitor technology. As our dependence
on AI intensifies in the coming years, the issue of AI safety
becomes increasingly prominent. Mistakes or malfunctions in
AI algorithms have the potential for dire consequences,
especially in critical scenarios. Given the frequency at which AI
systems operate, the possibility of such errors cannot be
underestimated.

In essence, while the film capacitor industry is poised for a
revolution driven by AI, promising superior performance,

energy efficiency, and sustainability, this journey also demands
heightened attention to the safety and reliability of AI systems.
Ensuring these aspects will be vital for a seamless transition
into an AI‐powered future.

3 | EXISTING SAFETY PROBLEMS

AI is expected to facilitate the development of film capacitors,
while at the same time, the vulnerabilities introduced during
this period have attracted little attention [31]. Here, we give
three examples to describe the safety problems that may
happen when AI is used in film capacitors.

3.1 | Flawed AI in the design phase of film
capacitors

We further study the AI model [40] that can output the cor-
responding capacitance based on the input dielectric material
code. This AI model used to produce the data is based on the
Back Propagation algorithm. The 43,684 pieces of data were
used to train this model. After that, this AI model was asked to
predict 10,920 pieces of film capacitor data. Although it should
have more capacitance possibilities (Figure 1a), the output of
the AI model is always 11.5 μF when the input material code is
14 (Figure 1b). This can lead to a lack of design diversity in film
capacitors. AI models that perform well in most cases but
produce unexpected results in some undetected cases are
classified as flawed AI models. The weaknesses of these AI
models are likely to be exploited by adversarial attackers [30] to
induce the models to output incorrect results, thus affecting
the quality of the film capacitors produced. To cope with this
problem, in addition to increasing the probability distribution
of the output and the interpretation of the results, more
auxiliary determination conditions on the results can be
introduced to filter out the outrageous AI model output re-
sults. Moreover, this phenomenon easily reminds us of the
treacherous turn [46], which refers to a model that hides an
ability of some kind until it is advantageous to use this ability.
For example, until security measures are turned off. Or when it
is deployed in the real world. As the capabilities of AI increase
and the film capacitor problems handled by AI become more
and more novel (and humans may not be able to test the
correctness of the results), the situation we will face may
become increasingly dangerous.

3.2 | Erratic AI in the operation phase of
film capacitors

A backpropagation neural network is trained with ageing
capacitance data [7] to predict the future variance of capaci-
tance. Although the same data are used for training, and there
are predictions near the actual capacitances, it cannot be
ignored that there are also two predictions that deviate far from
the actual capacitances: AI2 and AI8 (Figure 1c). Considering
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the demands for the reliability of film capacitors in critical
equipment [47, 48], we need accurate monitoring of the states
of film capacitors [49, 50]. Therefore, large monitoring de-
viations in the states of the film capacitors are not desired by
the maintenance personnel. In addition, there are some dif-
ferences between the mean absolute error [51] and the max
absolute error [52] of the 10 prediction results (Figure 1d). The
unstable output of AI models can also introduce uncertainty in
the state estimation of film capacitors and interfere with the
judgement or decision‐making of device operators, thus posing
a safety hazard. This uncertainty can be dealt with by averaging
the output of the AI model several times. However, in future
research, it is more important to investigate the reasons for the
fluctuation of AI model output and make the output inter-
pretable [53] help the stakeholders to make more relevant
evaluation solutions.

3.3 | Unethical AI in the evaluation phase of
film capacitors

A natural language processing (NLP) model based on bidi-
rectional encoder representations from transformers [54] is
tested to give sentiment analysis on film capacitors. This NLP
model can output the corresponding utility scores based on the
input sentences. This NLP model breaks down the sentences
into tokens through a tokeniser when processing the sentences,
which facilitates the subsequent computation. In this NLP
model, we use the gradient calculation to get the best estimate
of the utility for a given word being inputted. In the analysis
using this NLP model, we use '[]' as a substitution variable in
the same type of sentence describing film capacitors and
observe the model output (utility score) when different objects
are used as substitution variables. Although they all invented a
new‐type film capacitor, the utility scores given by the AI were

different just because of the names of the engineers
(Figure 1e). Locations, especially those where people have
stereotypes, can also affect utility scores (Figure 1f). The reason
for the above prejudicial results may be that the training data of
AI contains human bias. In the highly automated future of the
film capacitor industry, we want to have machine‐ethical AI for
the objective evaluation of film capacitors. An objective eval-
uation will help us phase out unusable film capacitors accu-
rately, apply degraded film capacitors to industries where
device reliability is not so critical, and help the recycling of film
capacitors [55], thus bringing economic and environmental
benefits. Maybe we can try to construct machine ethics by
introducing rules such as "equality" within the AI.

4 | MORE THAN FILM CAPACITORS

In the examples above, we see the risks that flawed AI, un-
certain AI, and unethical AI can bring to film capacitors. From
radios to converters, we believe that AI safety affects more
than just film capacitors (Figure 2), considering the increasingly
critical position they occupy [10]. For example, the inefficiency
of AI leads to the wrong evaluation of film capacitor states,
which makes some faults or problems not repaired in time and
will increase the risk of downtime and failure of film capacitors
and their related equipment, thus reducing the reliability of
energy transmission. A typical example is the evaluation of the
capacitance of a film capacitor using AI. Assuming that the
voltage u [10] on the film capacitor is measured correctly, a
wrong evaluation of the capacitance of the film capacitor by AI
can also lead to a wrong evaluation of its stored energy, which
in turn can cause problems in energy dispatch.

Δe¼ eactual − eAI ¼
1
2
u2ðCactual − CAIÞ ð1Þ

TABLE 1 The applications of artificial intelligence (AI) in film capacitors.

Location in life
cycle Application scenario Object items problems Method & main algorithm References

Design and
production

Material production Discover new materials for film capacitors. Bayesian molecular design
algorithm

[18]

Convolutional neural networks [39]

Design and reverse
design

The personalised customisation of film capacitors. Backpropagation neural network [40]

Process improvement Improve the production process of the film capacitor. Optimisation iteration [12]

Production monitoring Analyse devices faults in the film capacitor workshop. Fuzzy support vector machine [41]

Testing and
operation

Appearance inspection Use machine vision to detect surface defects of film
capacitors.

Gradient detection [42]

Non‐subsampled contourlet
transform

[43]

Lifetime test Obtain the optimisation result of the acceleration life
test parameters of film capacitors.

Genetic algorithm, D‐optimal [44]

Lifetime prediction Predict the lifespan of the film capacitor. Backpropagation neural network [45]

Evaluation and
recycle

State evaluation Propose the idea of using AI‐based technology to evaluate
film capacitors that can be used in secondary industries.

Data‐physical hybrid‐driven
method

[10]
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In this formula, Cactual is the actual capacitance of the film
capacitor, CAI is the capacitance of the film capacitor evaluated
by the AI, and Δe is the deviation between the actual storage
energy and the storage energy incorrectly evaluated by the AI.

On the other hand, inaccurate AI allows poor‐quality film
capacitors to be used, which will make the capacity of energy
transmission to decrease. Specifically, film capacitors with high
dielectric losses are misused by AI, making energy efficiency
lower. In addition, as more capacitors become connected to
the Internet of Things, unconventional scenarios that include
cyber‐attacks [30] could unexpectedly affect the safety of AI,
which in turn could cause film capacitors to operate outside of
their safe parameters, then affect the safety of energy. Overall,
it is important to carefully consider the potential safety risks
related to AI‐based film capacitors and implement appropriate
safeguards to ensure their safe operation. If it is difficult to

ensure robustness, specification, and ethics when applying AI
in film capacitors, this unresolved but critical issue will be
disastrous.

5 | THE CHALLENGING FUTURE AND
POSSIBLE COPING IDEAS

5.1 | From unknown risks to not risk

Wehave shown above the possible safety risks of AI applications
in film capacitors. These risks are known to us, while other un-
known scenarios also deserve our attention (Figure 3a). Here is
the formulation [56] that can help us manage how risks we face
when AI gradually covers the whole life cycle of film capacitors
from the cradle to the grave.Different kinds of risks are shown in

F I GURE 1 Artificial intelligence (AI) risk example results of film capacitors. (a), The actual capacitances and corresponding dielectric material codes of film
capacitors. (b), When the input material's code is 14, the AI model's output capacitances and actual capacitances. (c), The tested capacitances and the predicted
capacitances AI0 to AI9 (with AI0 representing the 10th case) change with the day obtained by the AI model learns the same film capacitor capacitances data and
predicts the future capacitances 10 times. (d), The mean absolute error and the max absolute error between the predicted capacitance and the actual capacitance
for each time of the AI model in the prediction period. (e), The large language model gives different evaluations just because of names. (f), The large language
model gives different evaluations just because of locations.
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Table 2. For I, not risks means that we are aware of and under-
stand how the risks will work. But they also needed requirements
or regulations to make sure there was no accident will happen.
For II, ambiguity risks are that some AI safety problems of film
capacitors can be solved by methods in other domains, but we
have not noticed these methods yet. This requires more
communication to allow response options to be shared. For III,
unknown risks refer to threats that we have not yet identified that
are more untargeted. For example, it could be a problem that
happens when applying a new AI technology to a new film
capacitor. To reduce this risk, more experiments and analyses
may broaden our horizons so that we can change unknown
unknowns into known unknowns. For VI, the known risk can be
the accidents we encounter in applying AI in film capacitors, but
we cannot figure it out now. Researching to reduce the amount of
uncertainty and attempting to capture assumptions and create
emergency measures for others are possible paths to reducing
this risk.

5.2 | Human‐AI common impact

We have seen attempts to use AI to monitor film capacitors,
but the AI used to monitor film capacitors itself needs to be
monitored as well.

In addition, the previous section also demonstrates the
potential unfairness or lack of expertise in the application of
large language models to more fine‐grained areas of expertise,

which also highlights the importance of human experts in
aiding the application of AI to film capacitors. Given that the
interpretability of current AI outputs is yet to be sufficiently
improved [57], the human‐AI common impact that includes
the assistance of human experts [58] should be the main model
during the transition period in the process of moving from
known knowns to unknown unknowns, especially in the early
days of AI applications on film capacitors (Figure 3b). The
introduction of film capacitor experts' judgement and in-
structions through the interface can, on the one hand, check
the quality of AI operation results, thus reducing the occur-
rence of accidents related to film capacitors caused by the AI's
lack of knowledge or misaligning with human; on the other
hand, converting the experience of film capacitor experts
collected and organised in this interaction mode into training
data is also conducive to building a more reliable and profes-
sional AI. It should be noted that even with the help of human
judgement, there is no guarantee of getting the desired result,
and even human "intervention" can make the situation worse
[25]. How to make AI truly understand human goals or
alignment problems [59] is the next topic that needs attention
not only from film capacitor researchers but also from AI
researchers. In detail, a misaligned example might be: one
wants to use AI to design a voltage withstand test circuit for
film capacitors. The goal of training AI is to minimise the
number of safety incidents that occur during the test, and the
actual AI output test circuit solution is to set the power rating
of the power supply to a very small amount (When the

F I GURE 2 Artificial intelligence (AI) safety affects the quality and state of film capacitors, the latter affects the capability and reliability of energy
transmission.
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breakdown voltage of the film capacitors is high, this circuit
does not serve the purpose of withstand voltage testing.)
instead of designing a scheme with a protection module.

5.3 | More multi‐dimensional evaluation

In addition to human help as a gatekeeper, the establishment of a
better AI evaluation system will also allow us to have a more
comprehensive understanding of the range of capabilities of AI
models or agents serving the film capacitors industry, to identify
asmany potential problems as possible before application, and to
reduce the occurrence of unanticipated events. In an example of
using machine vision [60] to judge the quality of film capacitors,
blocks of the metrics (Figure 3e) can be introduced to describe
the possible output results from AI and then evaluate the
different aspects of AI. For the reality that the film capacitor is

F I GURE 3 (a), Different risks we face. (b), The framework of the application of artificial intelligence (AI) on film capacitors with the introduction of human
expert influence. (c),The unqualifiedfilmcapacitor. (d), The qualifiedfilmcapacitor. (e), The blocksof themetrics that evaluate theAImodel forfilmcapacitors' states.

TABLE 2 Different kinds of risks.

Quadrant Aware Understand Type

I √ √ Known knowns

II � √ Unknown knowns

III � � Unknown unknowns

VI √ � Known unknowns
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unqualified (Figure 3c), if AI thinks the film capacitor needs to be
replaced, then there will be no safety risks (TP). On this issue, if
the output ofAI is: this film capacitor can be used, then the safety
hazard is buried (FN). For the reality that the film capacitor is
qualified (Figure 3d), if the adjudgment results from AI is: the
film capacitor is not competent, we will use a new film capacitor
to substitute for it (FP). Although no risks are introduced, eco-
nomic losses are incurred. On the same premise, if the AI con-
siders this film capacitor to be useable (TN), that would be the
best‐case scenario: no risk and no financial loss. In fact, the AI
judgement (classification) performance evaluation indicators
Recall and Precision [61] are further constructed based on blocks
that reflect different perspectives. To be more comprehensive,
various demands can be balanced by constructing comprehen-
sive indicators. Considering the importance of film capacitors,
this paper still suggests paying more attention to safety. At least,
give more weight to safety. That is, in Equation (2), let the value
of α be larger.

8
>>>>>>><

>>>>>>>:

Recall¼
TP

TPþ FN

Precision¼
TP

TPþ FP

Comprehensive¼ α
TP

TPþ FN
þ ð1 − αÞ

TP
TPþ FP

ð2Þ

where α is a weight coefficient and 0 < α < 1.

6 | DISCUSSIONS AND CONCLUSIONS

Advances in computational methods [62] and computational
devices [63], as well as the accumulation of data [64], have
made AI ever more powerful, which can easily fill people with
longing and neglect the higher and more comprehensive re-
quirements that should be put on AI. For example, in addition
to accuracy, we should also pay attention to the economy and
environmental friendliness of AI [65, 66], and another example
is that AI should have better robustness [67–69] to keep it
accurate in different tasks. Of course, in addition to all of the
above, it should also include requirements related to AI safety,
considering that this issue still requires a lot of investment
from us [70].

While the demand for film capacitors is increasing day by
day, the application of AI in film capacitors is also on the rise.
In the future, when we leave the tasks related to film capacitors
entirely to AI, it will be difficult (at least for now) to know
whether AI is flawed in responding to questions to which even
we may not know the answers. In addition, the unethical and
erratic behaviour of AI caused by human bias and noise in the
training data still makes people lack sufficient confidence in the
large‐scale application of AI in energy devices, including film
capacitors. More importantly, some AI safety problems of film
capacitors are not yet apparent, but they are likely to arise when
AI is applied to the entire life cycle of film capacitors. With

film capacitors in an increasingly critical position in the energy
system, it is not only the film capacitors themselves that are
affected by AI safety but also the energy transmission.
Therefore, we need to prepare in advance, as well as invest
more effort to deal with the above dilemmas. These attempts
include assistance from human film capacitor experts, as is a
more comprehensive evaluation system for AI models. In
addition, there are other ideas to consider, such as delineating
safe sets and prohibiting AI operations in unsafe areas that may
put film capacitors at risk.

Ultimately, it is hoped that this paper will not only draw the
film capacitor community's attention to AI safety but also
allow more energy device practitioners to include AI safety as a
design consideration in specifications, standards, and so on as
they further expand the scope of AI applications in energy
devices as well as other critical areas.
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