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Abstract

This paper proposes a new controller design methodology for stable and minimum-phase Negative Imaginary (NI) systems
relying on the classical Internal Model Control (IMC) principle. The closed-loop stability of the proposed scheme depends
only on the DC loop gain, which is theoretically justified by the feedback stability results of the NI theory. The main objective
is to design the Youla parameter of an IMC scheme, which has been cast as a Negative Imaginary (NI) controller synthesis
problem. Two different methodologies have been proposed. A frequency-domain IMC design approach is first presented, which
depends on solving a constrained, linear, least-square estimation problem. Then, an LMI-based methodology is developed,
which can be solved by the commercially available SDP solver packages. An in-depth simulation case study on the vibration
attenuation problem of a lightweight cantilever beam (a potential application of the NI theory) was carried out to demonstrate
the usefulness of the NI-based IMC design methodology. Finally, the simulation results were experimentally validated on a
custom-made vibration suppressor to confirm the feasibility of the proposed scheme.

Key words: Negative imaginary systems, vibration control, DC-gain, positive feedback, internal model control, LMIs,
dynamic controller synthesis.

1 Introduction

Negative Imaginary (NI) systems theory has flourished
as a stand-alone robust stability analysis and controller
synthesis framework over the past fifteen years since its
inception in 2008 [18]. In the simplest sense, a system
is called NI (resp. SNI) if the imaginary part of the sys-
tem’s transfer function remains non-positive (resp. neg-
ative) for all ω ∈ (0,∞). NI systems property is closely
related to counter-clockwise input-output dynamics in
a nonlinear setting [1] and a class of dissipative systems
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SRG/2022/000892]. All research data supporting this publi-
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purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to any Author Ac-
cepted Manuscript version arising.

defined with respect to the system’s input and the time-
derivative of the system’s output [5, 2, 3, 16, 4]. NI sys-
tems theory offers a simple closed-loop stability condi-
tion that depends only on the DC loop gain information
[λmax[H(0)G(0)] < 1 w.r.t. Fig. 3] and hence, the the-
ory can be easily applied to practical systems for which
an exact mathematical model is unavailable [18, 37, 26].
NI theory finds potential applications in vibration con-
trol of highly-resonant flexible structures [18], robotic
manipulators [23], in nano-positioning applications [25],
in train platooning [20], in cooperative control of a va-
riety of multi-agent systems [35, 28, 14, 32, 34, 33], etc.
Recently, NI theory has been extended to improper and
non-rational systems [11, 9] and also to discrete-time
LTI systems [10, 22].

NI literature has been enriched by many significant find-
ings on NI controller synthesis. The articles [30, 36, 8]
laid significant contributions in designing static state
feedback and static output feedback controllers utilising
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Fig. 1. Block diagram of the classical IMC scheme.

the NI framework. [29] and [31] took the first step to pro-
pose a dynamic stable-NI controller synthesis technique
that ensured both robust stability and performance re-
lying on a conversion between the Positive Real (PR)
and Bounded Real (BR) frameworks. [21] introduced an
LMI-based dynamic output feedback NI controller syn-
thesis methodology by converting the NI uncertainties
into the PR domain. Of late, [6] and [15] solved the dy-
namic output feedback NI controller synthesis problem
exploiting the Strongly Strict NI (SSNI) [19] and α-SNI
systems properties, respectively. However, these tech-
niques primarily rely on the four-block modelling scheme
introduced in [27] and may face difficulties in fitting a
practical NI plant into the four-block framework for syn-
thesis purpose. Besides, very few attempts have been
taken so far to provide systematic design guidelines for
implementing such controllers in practice.

Motivation and objectives: Drawn by the advance-
ments and limitations of the existing NI controller syn-
thesis techniques, this paper utilises the classical Inter-
nal Model Control (IMC) [24, 12] framework (in Fig. 1)
to synthesize a dynamic controller for the class of sta-
ble and minimum-phase NI plants. The primary con-
trol objective of an IMC scheme is to design a stable
Q(s), known as the Youla parameter, such that steady-
state tracking is achieved and closed-loop stability is
maintained even in the presence of model mismatch [i.e.
when Gm(s) 6= G(s)]. This paper proposes a positive
feedback IMC scheme (refer to Fig. 4) where the con-

troller C(s) = Q(s)
[
I + Gm(s)Q(s)

]−1
is designed to

be a stable-NI or SNI system complying with the rela-
tive degree of a given NI plant. A frequency-domain ap-
proach and a numerically tractable LMI-based technique
will be presented for designing the NI-based IMC con-
troller. The frequency-domain approach seeks to solve
a constrained, linear, least-square estimation problem,
while the LMI-based technique meeds to choose a stable
polynomial d(s) such that 1

d(s)Gm(s)−1 becomes strictly

proper. We also provide a set of detailed guidelines on
how to choose the required polynomial d(s). The LMI-
based design technique facilitates an easy implementa-
tion of the scheme with the help of Matlab-based SDP
solver packages. An in-depth simulation case study is
carried out (in Section 4) on the vibration control prob-
lem of a lightweight cantilever beam (inspired by a real-
world control problem of a vibration suppressor shown
in Fig. 2) to show the usefulness of the NI-based IMC
scheme. Finally, experimental validation results are also
provided in Subsection 4.4 to demonstrate the feasibility

A custom-made vibration suppressor

Fig. 2. A custom-made vibration suppressor for testing the
NI-based IMC synthesis algorithms.

and effectiveness of the scheme in practice.

Contributions: Below, we mention the key contribu-
tions and salient features of this work.

• This paper has developed a new internal model con-
troller (IMC) design methodology for stable and
minimum-phase NI systems. Unlike most of the liter-
ature on NI controller synthesis, this paper does not
only propose a synthesis technique but also provides
precise design guidelines for practical implementation;

• The LMI-based methodology offers a convenient,
systematic and easy-to-implement IMC synthesis
technique due to the commercially available (Matlab-
based) SDP solver packages;

• Apart from the LMI-based IMC design methodology,
a frequency-domain design methodology is also pro-
posed that remains effective for SISO and decoupled
MIMO NI plants;

• The paper has validated the NI-based IMC scheme on
a custom-made vibration suppressor (shown in Fig. 2),
as vibration control is one of the primary application
areas of the NI theory. The disturbance rejection ca-
pacity of the controller and its robustness to model-
mismatch were also tested.

The paper also gives ideas on how to use a Subspace-
based system identification process in real time (via Mat-
lab) while enforcing a particular system property.

Notation and symbols: The notations and acronyms
are standard throughout. R and C denote respectively
the sets of all real and all complex numbers. Rm×n and
Cm×n represent the sets of all real and all complex ma-
trices of dimensions (m× n). <(·) and =(·) express the
real and the imaginary parts respectively. A>, A∗ and Ā
denote the transpose, complex conjugate transpose and
complex conjugate of a matrix A. A−∗ and A−> rep-

resent shorthand for
(
A−1

)∗
and

(
A−1

)>
respectively.

λmax(A) denotes the maximum eigenvalue of a matrix A
having only real eigenvalues. For a real, rational transfer
function matrix M(s), M(jω)∗ = M(−jω)>. RH m×n

∞
denotes the set of all real, rational, proper and asymp-
totically stable transfer function matrices of dimension

(m× n).

A B

C D

 gives a state-space realisation of a
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real, rational, proper transfer function matrix M(s) =
D + C(sI −A)−1B.

2 Background and problem formulation

In this section, we present essential technical preliminar-
ies which underpin the proofs of the main results of the
paper, and the problem formulation.

2.1 Briefs of NI theory

We begin with the definitions of real, rational and proper
NI, SNI and SSNI systems.

Definition 1 (NISystem) [23, 17] LetG(s) be the real,
rational and proper transfer function matrix of a finite-
dimensional, square and causal system G. Then, G(s) is
said to be NI without poles at the origin if

i) G(s) has no poles in {s ∈ C : <[s] > 0 and s = 0};
ii) j[G(jω)−G(jω)∗] ≥ 0 for all ω ∈ (0,∞) except the

values of ω where s = jω is a pole of G(s);
iii) If s = jω0 with ω0 ∈ (0,∞) is a pole of G(s),

then it is at most a simple pole and the residue ma-
trix lim

s→jω0

(s− jω0)jG(s) is Hermitian and positive

semidefinite.

The following lemma, referred to as the NI Lemma, pro-
vides a state-space characterisation for NI systems with-
out poles at the origin.

Lemma 1 (NI Lemma) [37] Let G(s) be the real, ra-
tional and proper transfer function matrix of a finite-
dimensional, square and causal system G having a min-

imal state-space realisation

A B

C D

. Then, G(s) is NI

without poles at the origin if and only if det(A) 6= 0,
D = D> and there exists a real matrix Y = Y > > 0 such
that

AY + Y A> ≤ 0 and B +AY C> = 0. (1)

Definition 2 (SNI System) [18] Let G(s) be the real,
rational and proper transfer function matrix of a finite-
dimensional, square and causal system G. Then, G(s) is
said to be SNI if G(s) has no poles in {s ∈ C : <[s] ≥ 0}
and j[G(jω)−G(jω)∗] > 0 for all ω ∈ (0,∞).

Strongly Strict Negative Imaginary (SSNI) systems form
a strict subset within the SNI class that satisfy two addi-
tional frequency-domain criteria in the neighbourhood
of ω = 0 and ω =∞.

Definition 3 (SSNI System) [19] LetG(s) be the real,
rational and proper transfer function matrix of a finite-
dimensional, square and causal system G. Then, G(s) is
said to be Strongly Strict Negative Imaginary (SSNI) if

• G(s) is SNI;

• lim
ω→0

j
1

ω
[G(jω)−G(jω)∗] > 0;

• lim
ω→∞

jω [G(jω)−G(jω)∗] > 0.

Below, we present a slightly modified version of the SSNI
lemma [19] by exploiting [15, Lemma 2].

Lemma 2 (SSNI Lemma) [19, 15] Let G(s) ∈
RH m×m

∞ be the real, rational and proper transfer func-
tion matrix of a finite-dimensional, square and causal

system G, having a state-space realisation

A B

C D

.

Suppose rank[B] = rank[C] = m and the pair (A,C) is
observable. Then, G(s) is SSNI if and only if D = D>

and there exists a real matrix Y = Y > > 0 such that
AY + Y A> < 0 and B +AY C> = 0.

We now recall the closed-loop stability condition for a
stable NI system interconnected with an SNI system via
positive feedback. Please see [17] for extended closed-
loop stability results of NI-SNI interconnections.




1y

2y

1u

2u

1r

2r

( )G s

( )H s

Fig. 3. A positive feedback interconnection of NI systems.

Theorem 1 [18, 17] Let G(s) ∈ RH m×m
∞ be an NI

system and H(s) ∈ RH m×m
∞ be an SNI system. Let

either G(∞) = 0, or else G(∞)H(∞) = 0 and H(∞) ≥
0. Then, the positive feedback interconnection of G(s)
and H(s) shown in Fig. 3 is asymptotically stable if and
only if λmax[H(0)G(0)] < 1.

2.2 IMC principle in brief

The classical IMC scheme has been adopted in this pa-
per from [24] and is shown in Fig. 1. An IMC problem
seeks to design a stable Q(s), known as the Youla pa-
rameter [24], such that the closed-loop scheme shown
in Fig. 1 has good nominal performance and remains
closed-loop stable even when G(s) 6= Gm(s). Conven-
tionally, an IMC scheme works with negative feedback.
However, in this paper, we have considered a positive
feedback IMC scheme to fit into the NI framework. The
performance of an IMC scheme highly relies on the ac-
curacy of the model Gm(s) of the plant G(s) to be con-
trolled. We do not presume any structure of the model
Gm(s) and thus, the model can be obtained via any sys-
tem identification technique or it can be derived math-
ematically. For example, we used Matlab system identi-
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fication toolbox to obtain a model of the plant from the
experimental observation [detailed in Section 4].

Fig. 1 can equivalently be drawn as in Fig. 4 where the
red-dotted block plays the role of the internal model
controller C(s) = Q(s) [I +Gm(s)Q(s)]

−1
.

( )Q s ( )G s

( )mG s




( )r t ( )y t

( )C s

( )u t

( )T s

Fig. 4. Equivalent block diagram of the classical IMC scheme
shown in Fig. 1.

The Youla parameter is often designed as Q(s) =
Gm(s)−1F (s), where F (s) behaves as a low-pass filter
to be determined. The filter dynamics significantly in-
fluences shaping the steady-state tracking or regulatory
response of an IMC scheme.

2.3 Problem formulation

Given a stable and minimum-phase NI (including SNI)
plant G(s) and a reasonably accurate model Gm(s)
that closely replicates the plant behaviour, design an
SNI/SSNI controller C(s) such that the positive feed-
back IMC scheme shown in Fig. 4 [which is equivalent
to Fig. 1] remains asymptotically stable and facilitates
a faithful steady-state tracking.

3 Controller design methodologies for stable NI
and SNI systems using the IMC principle

This section presents the main theoretical contributions
of this paper. Our objective is to develop an internal
model control scheme for stable NI or SNI systems rely-
ing on the DC loop gain condition of NI stability theory
(Theorem 1). The proposed idea builds on the classical
IMC framework shown in Fig. 4 and offers a frequency-
domain and an LMI-based design methodology to syn-
thesize a stabilising NI/SNI/SSNI controller.

3.1 A frequency-domain design approach

Before presenting the frequency-domain design tech-
nique for an NI (resp. SNI) controller, we want to recall
the standard polynomial factorisation in terms of its
even and odd terms. A frequency-domain polynomial
P (s) can be factored as

P (s) = P0 + P2s
2 + . . .︸ ︷︷ ︸

Peven(s2)

+s (P1 + P3s
2 + . . . )︸ ︷︷ ︸

Podd(s2)

such that if P (jω) = Pr(ω) + jPi(ω), then Pr(ω) =
Peven(−ω2) and Pi(ω) = ωPodd(−ω2) for all ω ∈ R. Us-
ing this factorization, the plant model Gm(s) can be de-

composed asGm(jω) =
Nm(jω)

Dm(jω)
=
Nmr(ω) + jNmi(ω)

Dmr(ω) + jDmi(ω)
.

Lemma 3 offers a sufficient-type frequency-domain con-
dition for designing a SNI (resp. stable NI) controller
C(s) for a SISO, minimum-phase, stable NI (resp. SNI)
plant G(s) having relative degree 0, 1 or 2 following the
positive feedback IMC scheme shown in Fig. 4. It also
facilitates perfect steady-state tracking when Gm(0) =
G(0), as discussed in Remark 2.

Lemma 3 Let G(s) be a SISO, minimum-phase sta-
ble NI (resp. SNI) plant having relative degree 0, 1 or
2 and Gm(s) be a stable NI (resp. SNI) model of the
plant. Let Nm(s) and Dm(s) be the polynomials such

that Gm(s) = Nm(s)
Dm(s) . Let F (s) =

k

s2 + bs+ k
be the de-

sired nominal closed-loop transfer function with k, b > 0.

Then, the controller C(s) =
kDm(s)

Nm(s)(s2 + bs+ 2k)
is SNI

(resp. stable NI) and stabilises the positive feedback IMC
scheme shown in Fig. 4 if Gm(0) ≥ G(0) > 0 and

2k2
[
Dmr(ω)Nmi(ω)−Dmi(ω)Nmr(ω)

]
+ ωkb

[
Dmr(ω)

Nmr(ω) +Dmi(ω)Nmi(ω)
]

+ ω2k
[
Dmi(ω)Nmr(ω)−

Dmr(ω)Nmi(ω)
]
> 0 (resp. ≥ 0) ∀ω ∈ (0,∞). (2)

Furthermore if r(∞) is a finite constant, y(∞) =(
G(0)

Gm(0)

)
2−
(

G(0)
Gm(0)

)r(∞) is also finite. y(t) and r(t) denote re-

spectively the output and reference input signals.

Proof. We begin this proof by recalling the trans-

fer function decomposition Gm(jω) = Nm(jω)
Dm(jω) =

Nmr(ω)+jNmi(ω)
Dmr(ω)+jDmi(ω) . The filter transfer function is con-

sidered as F (s) =
k

s2 + bs+ k
. Then, the controller

transfer function can be expressed as:

C(jω) =
k(Dmr(ω) + jDmi(ω))

(Nmr(ω) + jNmi(ω))(−ω2 + jωb+ 2k)
. (3)

To show that C(s) satisfies the SNI (resp. stable NI)
property, we write

j [C(jω)− C(jω)∗] =
α(ω)

β(ω)
(4)

where α(ω) = 4k2
[
Dmr(ω)Nmi(ω)−Dmi(ω)Nmr(ω)

]
+

2ωkb
[
Dmr(ω)Nmr(ω)+Dmi(ω)Nmi(ω)

]
+2ω2k

[
Dmi(ω)

Nmr(ω) − Dmr(ω)Nmi(ω)
]

and β(ω) = ω2b2N2
mr(ω) +[

ω2Nmr(ω)−2kNmr(ω)
]2

+ω2b2N2
mi(ω)+

[
ω2Nmi(ω)−
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2kNmi(ω)
]2

. Now, β(ω) > 0 ∀ω ∈ (0,∞) as it has all
squared terms with positive signs and α(ω) is restricted
to be positive (resp. non-negative) for all ω ∈ (0,∞)
via (2). Hence, C(s) is SNI (resp. stable NI) via design
with C(0) > 0 as Gm(0) > 0. C(s) also stabilises the
stable NI (resp. SNI) plant G(s) in a positive feedback
loop satisfying the DC loop gain condition C(0)G(0) ≤
C(0)Gm(0) = kDm(0)

2kNm(0) ×
Nm(0)
Dm(0) = 1

2 < 1. It can also be

readily shown that y(∞) =

(
G(0)

Gm(0)

)
2−
(

G(0)
Gm(0)

)r(∞) when r(∞)

is a finite constant. This completes the proof. �

Although Lemma 3 has been derived for SISO systems,
it can be readily extended to MIMO systems having a
diagonal transfer function matrix.

Remark 1 The frequency-domain design methodology
remains effective for SISO and a class of MIMO systems
having a decoupled (or diagonal) transfer function ma-
trix. However, this methodology may not be straightfor-
ward for general MIMO systems (i.e., other than the de-
coupled ones) since the procedure involves a lengthy hand-
driven calculations. For such systems, the LMI-based de-
sign technique is pretty more convenient and useful.

Remark 2 It can be readily shown that a SISO IMC
controller C(s) designed via Lemma 3 achieves faithful
steady-state tracking even in the case of a model mis-
match as long as the DC gains of the plant and its model
remain the same [i.e. G(0) = Gm(0)]. This is an ad-
vantage of the proposed scheme because in practice, it is
nearly impossible to identify a perfect model of the plant;
however, the steady-state gainG(0) can be measured with
a high degree of accuracy. From Fig. 4, the closed-loop

transfer function is given by T (s) = G(s)C(s)
1−G(s)C(s) where

C(s) = Q(s)
1+Gm(s)Q(s) and Q(s) = Gm(s)−1F (s). Hence,

T (0) = G(0)Gm(0)−1F (0)
[1+F (0)−G(0)Gm(0)−1F (0)] = F (0) and F (0) = +1

on noting that Gm(0) = G(0).

Remark 3 The frequency-domain approach offers com-
plete freedom in choosing the filter dynamicsF (s) by solv-
ing a simple constrained least-square estimation prob-
lem (illustrated in Subsection 4.2.1 via a case study). As
the closed-loop response y(t) of the IMC scheme (Fig. 4)
is predominantly governed by the filter, the frequency-
domain design approach can be conveniently used to meet
the desired transient performance criteria. However, this
method may not be effective for MIMO systems (other
than the decoupled ones) since the procedure involves a
lengthy hand-driven calculations.

Remark 4 Since the controllerC(s) in Lemma 3 inverts
the nominal plant model Gm(s) in its construction, it
is sensible to ensure that Gm(s) does not have lightly
damped poles and zeros even when the actual plant G(s)
has lightly damped poles and zeros.

3.2 An LMI-based design approach

Here, we present the LMI-based synthesis technique.

Theorem 2 Let G(s) ∈ RH m×m
∞ be a minimum-phase

NI plant and Gm(s) ∈ RH m×m
∞ be a minimum-phase

NI-model of the plant with Gm(0) ≥ G(0) > 0. Let d(s)
be a stable polynomial such that H(s) = 1

d(s)Gm(s)−1 is

strictly proper. Let H(s) have a minimal state-space re-

alisation

AH BH

CH 0

 with a full-rank CH matrix. Sup-

pose there exist real matrices Ā, B̄, C̄, D̄, Y = Y > and
X = X> of appropriate dimensions such that[

Φ11

(
Ā> +AH

)(
Ā> +AH

)>
Φ22

]
< 0, (5a)

[
Φ13

B̄ + ĀC>H

]
= 0, (5b)

Φ11

(
Ā> +AH

)
Y C>H(

Ā> +AH
)>

Φ22 C>H

CHY CH −Im

 ≤ 0, (5c)

[
Y In

In X

]
> 0 and (5d)

Gm(0)
1
2

[
CHY C

>
H

]
Gm(0)

1
2 < Im, (5e)

with the following shorthand
Φ11 = AHY + Y A>H +BHC̄ + C̄>B>H ,

Φ13 = BHD̄ +AHY C
>
H +BHC̄C

>
H ,

Φ22 = XAH +A>HX.

(6)

Construct an auxiliary system Σ(s) as Σ(s) = DΣ +

CΣ

(
sI −AΣ

)−1
BΣ where

DΣ = D̄,

CΣ = C̄N−>,

BΣ = M−1(B̄ −XBHD̄),

AΣ = M−1
(
Ā−XAHY −XBHC̄

)
N−>,

(7)

and M and N are square and non-singular solutions of
the algebraic equation NM> = In−Y X. Then, the con-
troller C(s) = H(s)Σ(s) is SSNI and asymptotically sta-
bilises the positive feedback IMC scheme shown in Fig. 4.

Proof. We begin the proof on noting that C(s) =

Q(s)
[
I + Gm(s)Q(s)

]−1
where the Youla parameter

matrix Q(s) is parametrised as Q(s) = Gm(s)−1F (s).
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F (s) plays the role of a low-pass filter, which is
to be determined. We first choose a stable polyno-
mial d(s) such that 1

d(s)Gm(s)−1 is strictly proper.

Accordingly, Q(s) = Gm(s)−1F (s) is modified to
Q(s) = 1

d(s)Gm(s)−1F̄ (s) where F̄ (s) = d(s)F (s)

is assumed proper through an appropriate choice of
F (s). Now, F̄ (s) is to be determined instead of F (s).
Denote H(s) = 1

d(s)Gm(s)−1 and let H(s) have a

minimal state-space

AH BH

CH 0

. We then obtain

the expression of the controller C(s) = Q(s)
[
I +

Gm(s)Q(s)
]−1

= H(s)
(
F̄ (s)

[
I + F (s)

]−1
)

substitut-

ing Q(s) = H(s)F̄ (s). Denote Σ(s) = F̄ (s)
[
I +F (s)

]−1

and let Σ(s) have a minimal state-space realisationAΣ BΣ

CΣ DΣ

. We then derive the state-space rep-

resentation of the controller C(s) = H(s)Σ(s) asAc Bc
Cc Dc

 =


AH BHCΣ BHDΣ

0 AΣ BΣ

CH 0 0

. We are now ready

to derive the proof of this theorem, which has been
divided into two main parts for easy understanding.

Part I: To show that C(s) is SSNI

The designed controller C(s) =

Ac Bc
Cc Dc

 is SSNI if

there exists a real matrix Y = Y > > 0 of appropriate
dimension such that{

AcY + Y A>c < 0, and

Bc +AcY C>c = 0,
(8)

via Lemma 2 and the pair (Ac, Cc) remains observable.
However, the conditions in (8) are not in an LMI form as
the terms AcY and AcY C>c contain products of the un-
known matrix variables. Therefore, a linearising change
in the controller variables is required to transform (8)
into an LMI form.

Linearisation process (i.e. conversion to LMI
form): As a first step towards the linearisation process,
we partition Y and Y −1 below following the technique
proposed in [27].

Y =

(
Y N

N> •

)
and Y −1 =

(
X M

M> •

)
(9)

where Y = Y > ∈ Rn×n, X = X> ∈ Rn×n and the

symbol • represents the matrices that are not explicitly
used in the linearisation process. Note Y −1 exists since
Y > 0. Note also that X, Y , M , N are not independent
LMI variables but must satisfy NM> = In − Y X [27].
Since M and N are square and non-singular [27], the
following block matrices

Π1 =

(
In X

0 M>

)
and Π2 =

(
Y In

N> 0

)
(10)

are also non-singular. Π1 and Π2 are related through
the expression Y Π1 = Π2, which has been obtained
from the fundamental relationship Y Y −1 = I [27]. The
positive definiteness of the Lyapunov candidate matrix

Y =

(
Y N

N> •

)
is guaranteed by (5d) via the congru-

ence transformation shown below:

Π>1 Y Π1 =

(
Y In

In X

)
> 0. (11)

Applying another congruence transformation on (8)
with the help of diag{Π1, I}, we obtain{

Π>1
(
AcY + Y A>c

)
Π1 < 0, and

Π>1
(
Bc +AcY C>c

)
= 0.

(12)

Then, inserting a new set of matrix variables
Ā = MAΣN

> +XAHY +XBHCΣN
>,

B̄ = MBΣ +XBHDΣ,

C̄ = CΣN
>, and

D̄ = DΣ,

(13)

into (12), we obtain

[
Φ11

(
Ā> +AH

)(
Ā> +AH

)>
Φ22

]
< 0, and

[
Φ13

B̄ + ĀC>H

]
= 0.

(14)

These two conditions are linear in Ā, B̄, C̄, D̄, Y > 0,
X > 0 and they are indeed the same as (5a) and (5b). At
this stage, we are only left to show that the pair (Ac, Cc)
is observable.

Observability of (Ac,Cc): The pair (Ac, Cc) is observ-
able via (5c) since the associated Observability Gramian
[7] condition PAc + A>c P + C>c Cc ≤ 0 ⇔ AcY +
Y A>c + Y C>c CcY ≤ 0, where Y = P−1 > 0, is equiv-
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alent to (5c) via a congruence transformation with re-
spect to diag{Π1, Im} and taking a Schur complement

[7]. Note also that the matrixCc =
[
CH 0

]
has full row-

rank since rank[CH ] = m via assumption. This implies
from the expression Bc + AcY C>c = 0 that Bc has full
column-rank since Y > 0 and Ac is Hurwitz via (5a).

Hence, the LMI conditions (5a)–(5d) jointly ensure that
C(s) is SSNI via Lemma 2.

Reconstruction of Σ(s), F(s) and C(s) : Reconstruct

the auxiliary filter Σ(s) = DΣ + CΣ

(
sI −AΣ

)−1
BΣ via

DΣ = D̄,

CΣ = C̄N−>,

BΣ = M−1(B̄ −XBHD̄),

AΣ = M−1
(
Ā−XAHY −XBHC̄

)
N−>,

where M and N are square and non-singular solutions 1

of the algebraic equation NM> = In − Y X. From the
knowledge of Σ(s), retrieve the filter F (s) relying on

the relationship F (s) = 1
d(s)Σ(s)

[
I − 1

d(s)Σ(s)
]−1

. Fi-

nally, we also construct the Youla parameter Q(s) =
Gm(s)−1F (s) and the desired controller C(s) =

Q(s)
[
I+Gm(s)Q(s)

]−1
= H(s)Σ(s) = 1

d(s)Gm(s)−1Σ(s).

Part II: DC loop gain condition holds

The inequality condition (5e) is equivalent to Gm(0)
1
2

C(0)Gm(0)
1
2 < Im since C(0) = CcY C>c = CHY C

>
H .

This, in turn, is equivalent to λmax[C(0)Gm(0)] < 1
via [18]. As Gm(0) ≥ G(0) > 0 via assumption and
C(0) > 0 via construction, the preceding condition im-
plies λmax[C(0)G(0)] < 1.

Therefore, Part I and Part II together prove that the
positive feedback interconnection (in Fig. 4) of C(s), be-
ing SSNI, and G(s), being a stable and minimum-phase
NI system, satisfies all the assumptions of Theorem 1,
as well as the DC loop gain condition. Hence, the inter-
connection is asymptotically stable. �

Remark 5 Unlike the frequency-domain approach, the
LMI-based IMC design approach can conveniently and
efficiently handle higher-order and MIMO systems. How-
ever, in the LMI approach, the filter function F (s) is not
explicitly selected by the designer. It is reconstructed from
the variables obtained from the LMI solutions. Therefore,
we cannot guarantee the fulfilment of all desired closed-
loop performance criteria “a priori” via this approach.

1 Note that the solutions M and N are not unique. A conve-
nient choice can be suggested as M = In and N = In − Y X
or N = In and M = In −XY .

In this situation, the choice of the polynomial d(s) be-
comes crucial as d(s) is the only design parameter that
can be selected “a priori” to achieve a desired closed-loop
response.

Remark 6 A necessary and sufficient condition for
the stability of an IMC scheme where G(s) is open-loop
stable is that the Youla parameter Q(s) must be sta-
ble. In the proposed NI-based IMC scheme shown in
Fig. 4, Q(s) = C(s) [I −Gm(s)C(s)]

−1
, which can be

treated as a positive feedback interconnection between
C(s) and Gm(s). Q(s) can be readily shown to be sta-
ble. Since Gm(s) is stable NI and C(s) is designed to
be SNI/SSNI (either via the frequency-domain approach
or via the LMI-based methodology) satisfying the condi-
tion λmax[C(0)Gm(0)] < 1, Theorem 2 guarantees the
closed-loop stability of the positive feedback IMC scheme
(in Fig. 4), which, in turn, implies the stability of Q(s).

3.3 Steady-state tracking performance of the LMI-based
(NI) IMC scheme

The following lemma shows that under a reasonable and
practically feasible assumption Gm(0) = G(0) > 0, a
perfect steady-state tracking can be achieved by the pro-
posed scheme if the inequality condition (5e) is replaced

by the equality condition Gm(0)
1
2CHY C

>
HGm(0)

1
2 =

1
2Im, keeping (5a)–(5d) intact.

Lemma 4 Let G(s) ∈ RH m×m
∞ be a minimum-phase

NI plant with a knownG(0). SupposeGm(0) = G(0) > 0.
Then, the NI-based IMC scheme, developed in The-
orem 2, achieves a perfect steady-state tracking (i.e.
lim
t→∞

[
−r(t) + y(t)

]
= 0) where lim

t→∞
r(t) = rss is a finite

constant if the condition (5e) in Theorem 2 is modified

to Gm(0)
1
2

[
CHY C

>
H

]
Gm(0)

1
2 = 1

2Im.

Proof. The closed-loop transfer function matrix
from the reference input r to the output y of the
IMC scheme, shown in Fig. 4, is given by T (s) =

G(s)C(s)
[
I − G(s)C(s)

]−1
. Now, substituting the ex-

pression C(s) = Gm(s)−1F (s)
[
I + F (s)

]−1
and upon

simplifying, we get T (s) = G(s)Gm(s)−1F (s)
[
I +

F (s) − G(s)Gm(s)−1F (s)
]−1

. This readily implies
T (0) = F (0) when Gm(0) = G(0). Furthermore,

Gm(0)
1
2

[
CHY C

>
H

]
Gm(0)

1
2 = 1

2Im ⇔ Gm(0)
1
2C(0)

Gm(0)
1
2 = 1

2Im ⇔ Gm(0)−1F (0)
[
I + F (0)

]−1
=

1
2Gm(0)−1 ⇒ F (0) = I. This hence ensures that yss =
lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sT (s)R(s) = lim
s→0

sF (s)

R(s) = F (0) lim
s→0

sR(s) = rss, since F (0) = I and on

noting that lim
s→0

sR(s) = rss is constant. �

Remark 7 Lemma 4 proves that the NI-based IMC
scheme proposed via Theorem 2 facilitates perfect steady-
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state reference tracking, when r(∞) exists, despite a
model mismatch [i.e. when Gm(s) = G(s)] as long as
Gm(0) = G(0). This is not an overly restrictive assump-
tion because, in practice, it is possible to measure the
steady-state gain (i.e. the DC-gain) of a plant accurately.
In that case, it is also possible to identify a reasonably
accurate plant model Gm(s) having the same DC-gain
as that of the real plant. However, the robust stability of
the IMC scheme (in Fig. 4) remains unaffected in the
presence of a model mismatch as long as G(0) ≤ Gm(0)
since the closed-loop stability depends only the DC loop
gain condition λmax[C(0)G(0)] < 1, as established in
Theorem 2.

3.4 Guidelines on how to choose the polynomial d(s)

The choice of the stable polynomial d(s) that we will
now suggest is based on empirical analysis rather than
a theoretical analysis. We have considered four differ-
ent models Gm1

(s), Gm2
(s), Gm3

(s) and Gm4
(s) of a

cantilever beam conforming with the practical setup
shown in Fig. 2. The first model is a second-order sys-
tem Gm1(s) = 1

s2+0.2s+1 , which has its resonant mode

at ω = 1 rad/s. The next model is still a second-order
system Gm2(s) = 13

s2+0.1s+358 , but it has a higher reso-

nant frequency of ω = 19 rad/s. After that, we consider
a fourth-order model Gm3(s) = 1

s2+0.2s+2 + 4
s2+0.23s+9

having two resonant modes at ω = 1.41 rad/s and ω =
3 rad/s respectively. Finally, we take a sixth-order model
Gm4

(s) = 1
s2+0.2s+2 + 4

s2+0.23s+9 + 7
s2+0.15s+13 having

three resonant modes at ω = {1.37, 2.93, 3.6} rad/s
respectively.

For each of the four plant models, we have taken thirty
different d(s) candidates as mentioned in Tables 1–4
[Appendix A] and accordingly, found thirty controller
transfer functions {C1(s), C2(s), · · · , C30(s)} using
the LMI-based design algorithm. Fig. 5a shows the
Bode plots of the set of thirty closed-loop transfer

functions Ti(s) =
Gm1

(s)Ci(s)

1−Gm1 (s)Ci(s)
∀i ∈ {1, 2, . . . , 30}

corresponding to {d1(s), d2(s), · · · , d30(s)} chosen for
Gm1(s). Similarly, Fig. 6a, Fig. 7a and Fig. 8a show
the Bode plots of the three sets of closed-loop transfer

functions Tj(s) =
Gm2

(s)Cj(s)

1−Gm2
(s)Cj(s) ∀j ∈ {1, 2, . . . , 30};

Tk(s) =
Gm3

(s)Ck(s)

1−Gm3 (s)Ck(s) ∀k ∈ {1, 2, . . . , 30}; and

Tl(s) =
Gm4

(s)Cl(s)

1−Gm4 (s)Cl(s)
∀l ∈ {1, 2, . . . , 30}. Whereas,

Fig. 5b, Fig. 6b, Fig. 7b and Fig. 8b show the impulse
responses of each of the above four sets (each set con-
sists of thirty transfer functions) of the closed-loop sys-
tems Ti(s), Tj(s), Tk(s) and Tl(s). The choice of each
set of polynomials {d1(s), d2(s), · · · , d30(s)} depends
primarily on the resonant modes of the plant model.
They are constructed such that some of the roots are
real and slower, some of them are real and faster, and
the remaining are complex. This wide range of test

cases and their comparative study with respect to the
time-domain performance criteria (e.g. peak overshoot,
settling/decaying time, damping, etc.) help us to sug-
gest useful guidelines for selecting an appropriate d(s)
for a given plant model.
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Fig. 5. (a) Bode plots of the closed-loop transfer functions

Ti(s) =
Gm1 (s)Ci(s)

1−Gm1
(s)Ci(s)

∀i ∈ {1, 2, . . . , 30} corresponding to

{d1(s), d2(s), · · · , d30(s)} as mentioned in Table 1; (b) Im-
pulse responses of Ti(s) for all i.

Below, we summarize our findings on the effect of d(s) on
the closed-loop response of the NI-based IMC scheme:

• Bandwidth: A leftward-shift of the negative real
roots of d(s) or an increase in the natural frequency
of complex roots increases the bandwidth of the
closed-loop system;

• Settling time: A leftward-shift of the roots of d(s)
decreases the settling time of the step (resp. impulse)
response. However, a substantial left-shift may also
increase the settling time as the closed-loop system
becomes more oscillatory. On the other hand, chang-
ing the imaginary parts of the complex roots of d(s)
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Fig. 6. (a) Bode plots of the closed-loop transfer functions

Tj(s) =
Gm2

(s)Cj(s)

1−Gm2
(s)Cj(s)

∀j ∈ {1, 2, . . . , 30} corresponding to

{d1(s), d2(s), · · · , d30(s)} as mentioned in Table 2; (b) Im-
pulse responses of Tj(s) for all j.

whilst keeping the real parts unchanged does not have
any significant impact on the settling time;
• Peak overshoot: A leftward-shift of the negative real

roots of d(s) or an increase in the natural frequency
of complex roots increases the speed of the step and
impulse responses, but at the cost of an higher peak
overshoot;
• Fastest controller pole: A leftward-shift of the real

or complex roots of d(s) drives the controller poles
to be faster. However, this causes an increase in the
control input demand.

Let ‘r’ be the relative degree ofGm(s) [i.e. lim
s→∞

siGm(s) =

0 ∀i ∈ {0, 1, 2, . . . , r − 1} and lim
s→∞

srGm(s) 6=
0]. D

[
Gm(s)

]
denotes the polynomial whose roots

are the fastest ‘r’ poles of Gm(s). For example, if

Gm(s) =

 s+z1
(s+p1)(s2+a1s+a0)

k1
(s2+a1s+a0)

k2
(s2+a1s+a0)

s+z2
(s+p2)(s2+a1s+a0)

, then
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Fig. 7. (a) Bode plots of the closed-loop transfer functions

Tk(s) =
Gm3

(s)Ck(s)

1−Gm3
(s)Ck(s)

∀k ∈ {1, 2, . . . , 30} corresponding

to {d1(s), d2(s), · · · , d30(s)} as mentioned in Table 3; (b)
Impulse responses of Tk(s) for all k.

D
[
Gm(s)

]
= (s + p1)(s + p2)(s2 + a1s + a0). From the

extensive simulation studies shown in Fig. 5a–8a and
Fig. 5b–8b and Tables 1–4, we observe that a choice
of d(s) = (s + a)D

[
Gm(s)

]
, where the parameter a is

selected as the frequency of the first resonant mode
of Gm(s), offers an acceptable trade-off between the
speed of response and the settling time. It does not
also result in too-fast controller poles, which inevitably
demand higher control effort. However, this choice may
increase the peak overshoot of the impulse response. In
applications where a reduction in the peak overshoot
is preferable over the other time-domain performance
criteria, one could choose the real root s = −a of d(s)
at one or two decade(s) below the frequency of the first
resonant mode of Gm(s).

Remark 8 In the LMI-based IMC design approach,
the formulation H(s) = 1

d(s)Gm(s)−1 introduces the in-

verse dynamics of the model Gm(s) into the controller
C(s) = H(s)Σ(s). If the Gm(s) has poorly damped ze-
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Fig. 8. (a) Bode plots of the closed-loop transfer functions

Tl(s) =
Gm4

(s)Cl(s)

1−Gm4
(s)Cl(s)

∀l ∈ {1, 2, . . . , 30} corresponding to

{d1(s), d2(s), · · · , d30(s)} as mentioned in Table 4; (b) Im-
pulse responses of Tl(s) for all l.

ros or highly resonant interlacing pole-zero pairs, we
can choose d(s) = (s + a)p instead of the earlier choice
d(s) = (s + a)D

[
Gm(s)

]
. The parameter a is selected

as the frequency of the first resonant mode of Gm(s) as
before and p ≥ r + 1 such that 1

d(s)Gm(s)−1 remains

strictly proper (preferably with relative degree equal to
one). This choice of d(s) results in a reduced peak over-
shoot of the closed-loop step/impulse response, but at the
cost of compromising the speed.

4 Case study on a vibration suppressor: Simu-
lation results with experimental validation

This section will apply the proposed NI-based IMC
scheme for the vibration control of a lightweight can-
tilever beam attached to a fixed end. The custom-made
vibration suppressor system shown in Fig. 9a consists
of a lightweight aluminium beam clamped at one end
and mounted on a solid plate. The plate sits on top

of a moving rail powered by a 12 V, 251 rpm metal-
geared DC motor. The beam is equipped with a pair of
collocated Macro Fibre Composite (MFC) sensor and
actuator patches.

4.1 System identification of the vibration suppressor

(a)
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Fig. 9. (a) Closed-loop control set-up of the vibration sup-
pressor using the dSPACE platform; and (b) Bode plots of
the physical plant G(s) and its identified model Gm(s).

For the system identification purpose, we used the Mat-
lab System Identification Toolbox to transform the time-
series data (experimentally generated or obtained) into
frequency-domain and obtained a fourth-order model of
the system given by

Gm(s) =
30050 (s2 + 1.996s+ 7631)

(s2 + 1.108s+ 6350)(s2 + 28.43s+ 2.21× 105)
.

Gm(s) is indeed a stable and minimum-phase transfer
function having relative degree 2. Fig. 9b reveals that
the identified model Gm(s) is truly a good replica of the
physical plant (i.e. the vibration suppressor shown in
Fig. 2), especially at the low-frequency range. Moreover,
the identified model Gm(s) is stable NI, as confirmed by
the red-coloured Bode plot in Fig. 9b.
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4.2 NI-based internal model controller (IMC) design

This subsection will design the NI-based IMC con-
trollers for the vibration suppressor system following the
frequency-domain and LMI-based design methodologies
introduced in Sections 3.1 and 3.2. After that, we will
examine the feasibility, effectiveness and performance
of the designed controllers via simulation case studies
and hardware experiments. A performance comparison
between the two methodologies is also provided.

4.2.1 Frequency-domain approach

We first decompose the plant model as Gm(jω) =
Nm(jω)

Dm(jω)
=

Nmr(ω) + jNmi(ω)

Dmr(ω) + jDmi(ω)
where Dmr(ω) =

ω4 − 2.272 × 105ω2 + 1.41 × 109, Dmi(ω) = 4.017 ×
105ω − 29.75ω3, Nmr(ω) = 2.293 × 108 − 30050ω2 and
Nmi(ω) = 5.998× 104. Since Gm(s) has relative degree

2, we choose the filter function F1(s) =
k

(s2 + bs+ k)

and the controller C1(s) =
kDm(s)

Nm(s)(s2 + bs+ 2k)
follow-

ing Lemma 3. The controller parameters b, k > 0 need
to be selected such that C1(s) becomes SNI (resp. stable
NI). Via Lemma 3, C1(s) is SNI (resp. stable NI) if

2k2(−8.34× 105ω5 + 5.27× 109ω3 − 7.5× 1012ω)+

ωkb(−30050ω6 + 7.06× 109ω4 − 9.45× 1013ω2+

3.23× 1017) + ω2k(8.34× 105ω5 − 5.27× 109ω3+

7.5× 1012ω) > 0 (resp. ≥ 0) ∀ω ∈ (0,∞).

The polynomial in the left-hand side of the above in-
equality can be rearranged in a convenient form as

(8.34× 105k − 30050kb)ω7+

(7.06× 109kb− 1.67× 106k2 − 5.27× 109k)ω5+

(1.05× 1010k2 − 9.45× 1013kb− 7.5× 1012k)ω3+

(3.23× 1017kb− 1.50× 1013k2)ω,

which remains positive ∀ω ∈ (0,∞) if the coefficients
of all the ω terms take on positive values. This can be
mathematically formulated as

0 30050

1.67× 106 −7.06× 109

−1.05× 1010 9.45× 1013

1.51× 1013 −3.23× 1017


[
k

b

]
≤


8.34× 105

−5.27× 109

−7.5× 1012

0

 .

This can be treated as a constrained, linear, least-square
estimation problem, which can readily be solved using
the Matlab-based SDP solver packages. We set the lower
bounds for k and b as 100 and 20, respectively, so that

the filter poles can be placed at s1,2 = −10. This is en-
tirely an arbitrary choice to ensure that the closed-loop
system is neither too sluggish nor too fast. Solving the
above least-square estimation problem in CVX [13], we
get feasible upper bounds of k and b as k ≤ 4.2891×105

and b ≤ 20. The filter is then constructed as F1(s) =
100

s2 + 20s+ 100
and the desired SNI controller is ob-

tained as
C1(s) = α1(s)/β1(s), (15)

where α1(s) = 3.3278 × 10−3(s2 + 1.108s + 6350)(s2 +
28.43s+ 2.21× 105) and β1(s) = (s2 + 20s+ 200)(s2 +
1.996s + 7631). We then verify the DC loop gain con-
dition C1(0)Gm(0) = 3.0599 × 0.1634 = 0.4999 < 1.
Hence, the NI-based IMC scheme shown in Fig. 4 is guar-
anteed to be asymptotically stable via Theorem 1.

4.2.2 LMI-based approach

To proceed with the IMC design following Theorem 2,
we choose the polynomial d(s) = (s + 80)D

[
Gm(s)

]
=

(s+ 80)(s2 + 28.43s+ 2.21× 105) since the plant model
Gm(s) has the first resonant peak at approximately ω =
80 rad/s. This choice of d(s) is based on the guidelines
presented in Section 3.4 as it offers an acceptable trade-
off between speed of response and settling time. Also,
choosing d(s) in such a manner helps to avoid fast poles
in the controller dynamics. Upon solving the set of LMI
conditions (5a)–(5e), we obtain the desired SSNI con-
troller

C2(s) =
14.383(s+ 1429)

(s+ 80)(s+ 83.97)
. (16)

It can be readily verified that the DC loop gain is less
than one [C2(0)G(0) = C2(0)Gm(0) = 3.0599×0.1634 =
0.5000 < 1], which guarantees the closed-loop stability
of the IMC scheme shown in Fig. 4.

4.3 Matlab simulation results

This subsection provides a comprehensive Matlab sim-
ulation study on the performance of the designed con-
trollers C1(s) and C2(s) under an ideal situation [i.e.
when G(s) = Gm(s)] and a perturbed condition [i.e.
when G(s) 6= Gm(s)]. The primary control objective of
this case study is to reduce the vibration induced in the
cantilever beam externally.

4.3.1 Under ideal situation [i.e. when G(s) = Gm(s)]

This subsection shows and analyses the regulatory (via
pulse response) and tracking (via step response) perfor-
mances of the NI-based IMC scheme achieved by the
controllers C1(s) and C2(s). The open-loop pulse and
step responses are respectively shown in Fig. 10a and
Fig. 10b. Fig. 10d shows that in the ideal case, bothC1(s)
and C2(s) achieve a perfect steady-state tracking. In ad-
dition, C1(s) results in a well-damped closed-loop re-
sponse with no overshoot, while the closed-loop response
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Fig. 10. [When G(s) = Gm(s)] (a) Open-loop response to a
pulse input; (b) Open-loop response to a unit step input; (c)
Closed-loop pulse responses achieved by the controllers C1(s)
[via frequency-domain approach] and C2(s) [via LMI-based
approach]; (d) Closed-loop unit step responses achieved by
C1(s) and C2(s).

with C2(s) exhibits little oscillations. However, the lat-
ter offers a remarkable improvement in the settling time
(0.29 s) over the former (0.58 s). To analyse the distur-
bance rejection capacity (subject to a pulse disturbance
input), Fig. 10c shows that C2(s) observes a decay time
of 0.62 s and a peak overshoot of 0.3537 cm. In contrast,
C1(s) causes a peak overshoot of 0.2789 cm and a settling
time of 2.56 s. Note that the peak overshoot [resulted by
C2(s)] can be further reduced by choosing a more ap-
propriate d(s), as outlined in Subsection 3.4, but at the
cost of increased settling time. Hence, we can conclude
that the performance achieved by the frequency-domain
design technique is not that appealing compared to the
LMI-based design methodology.

4.3.2 Under perturbed condition [when G(s) 6= Gm(s)]

Now, we consider the case where the identified model is
not identical to the physical plant [i.e. G(s) 6= Gm(s)].
To handle such situations, we impose a reasonable and
practically feasible assumption G(0) = Gm(0). Our ob-
jective is to test the robustness of the designed con-
trollersC1(s) andC2(s) against the model mismatch [i.e.
G(s) 6= Gm(s)]. To induce a difference betweenG(s) and
Gm(s), we choose a slightly perturbed transfer function
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Fig. 11. Bode plot of the cantilever beam Gδ(s) that is dif-
ferent from Gm(s).

of the cantilever beam, denoted as Gδ(s), given below:

Gδ(s) =
1502.5(s2 + 1.996s+ 3816)

(s2 + 2.108s+ 1270)(s2 + 10.43s+ 2.763× 104)
.

(17)
It can be readily verified that this Gδ(s) is still a

minimum-phase SNI transfer function. Its Bode plot
(shown in Fig. 11) also confirms its SNI property.
The closed-loop stability of the positive feedback IMC
scheme remains preserved for both C1(s) and C2(s)
since the DC loop gain condition holds in both the
cases: C1(0)Gδ(0) = 3.0599 × 0.1634 = 0.5000 < 1 and
C2(0)Gδ(0) = 3.0599× 0.1634 = 0.5000 < 1.

Fig. 12a–Fig. 12d show the open-loop and closed-loop re-
sponses of the perturbed plantGδ(s) subject to the same
pulse and unit step inputs applied in Fig. 10a–Fig. 10d.
The time responses in Fig. 12c and Fig. 12d show that
the achieved transient performance has slighted deteri-
orated compared to Fig. 10c and Fig. 10d due to the in-
duced model mismatch. Fig. 12c reveals that although
the reduction in the peak value in the closed-loop re-
sponse is negligible, the decay of oscillation is signifi-
cant. Besides, it also reveals that C2(s) performs better
thanC1(s). Fig. 12d indicates that bothC1(s) andC2(s)
achieve perfect steady-state tracking although C2(s) of-
fers a faster dynamic performance than C1(s). Note that
both C1(s) and C2(s) have been able to achieve perfect
nominal steady-state tracking despite the model mis-
match (as reflected in Fig. 12d) only due to the fact that
Gm(0) = Gδ(0). If Gm(0) 6= Gδ(0), to eliminate the in-
evitable steady-state error, an additional feed-forward
control input can be designed following the ideas given
in [12] and [24].

4.4 Experimental validation results

This subsection will test the feasibility and performance
of the NI-based IMC controller C2(s) given in (16) on
a vibration control problem of a lightweight cantilever
beam. A custom-made vibration suppressor shown in
Fig. 3 was considered for the experimental validation
purposes. The complete closed-loop control setup is
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Fig. 12. [When G(s) 6= Gm(s)] (a) Open-loop response to a
pulse input; (b) Open-loop response to a unit step input; (c)
Closed-loop pulse response using the controllers C1(s) [via
frequency-domain approach] and C2(s) [via the LMI-based
approach]; (d) Closed-loop unit step response using the con-
trollers C1(s) and C2(s).

shown in Fig. 9a. The cantilever beam we considered for
experimental validation has a SISO configuration, that
is, a single pair of collocated force actuator and position
sensor. Both the sensor and actuator use MFC patches
glued with the beam.

4.4.1 Regulatory response (disturbance rejection per-
formance) under nominal condition

The regulatory response (under a nominal operating
condition) of the vibration suppressor system was tested
by shaking the base unit (which acts as a disturbance) of
the system through the belt-pulley-motor arrangement.
A PWM signal was applied to the input of the motor for
a duration of 0.5 s to produce a jerk that induces a vibra-
tion in the beam. The disturbance rejection performance
is evident from Fig. 13a, which reveals that the controller
C2(s) has significantly attenuated the vibration caused
by the external disturbance produced by the belt-pulley-
motor assembly. The figure also compares the regulatory
response with the open-loop response subject to the dis-
turbance. The regulatory response has a decay time of
2.17 s and a peak overshoot of 2.036 cm compared to
the open-loop response having a decay time of 11.50 s
and a peak overshoot of 3.2190 cm. Please access the fol-
lowing web links https://youtu.be/CljRUaelS6Q and
https://youtu.be/io4a4JXfFDI to watch the experi-
mental demonstration clips.
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Fig. 13. [Experimental validation results: Regulatory re-
sponse achieved by C2(s)] (a) under nominal operating con-
dition; and (b) when an external weight was attached to the
beam.

4.4.2 Regulatory response (disturbance rejection) un-
der perturbed condition

To test the robustness of the proposed NI-based IMC
scheme against a deliberate model mismatch [i.e. when
G(s) is significantly different from the Gm(s)], we at-
tached an external weight of 5 g mass to the existing
beam at the middle position. The beam has a mass of
30 g, making the total mass of the beam and weight
35 g. This hardware change shifts the unperturbed reso-
nant modes of the beam. Then, the same experiment as
done in Subsection 4.4.1 was carried out. Fig. 13b shows
the disturbance rejection capability of C2(s) in the per-
turbed situation. It can be noticed that the controller
produces satisfactory performance even in this case also.

4.4.3 Effect of changes in d(s) on the transient perfor-
mance of the controller

This subsection analyses the effect of changing the real
root of the polynomial d(s) = (s + a)D

[
Gm(s)

]
on the

closed-loop performance tested in experimentation. We
took two different choices a1 = 0.8 and a2 = 8, fixed
respectively at two decades and one decade below the
first resonant mode (at ω = 80 rad/s) of the identi-
fied plant model Gm(s). We seek to redesign the IMC
controller via the LMI-based design methodology (i.e.
Theorem 2) corresponding to the two new polynomials
d2(s) = (s+0.8)D

[
Gm(s)

]
and d3(s) = (s+8)D

[
Gm(s)

]
.

The new controllers are obtained as:

C3(s) =
5.9357(s+ 0.8385)

(s+ 0.8)(s+ 2.033)
(18)

and

C4(s) =
10.941(s+ 12.56)

(s+ 8)(s+ 5.615)
. (19)

Note that C3(s) and C4(s) contain slower poles than
C2(s), which have been dictated by the factors (s+ 0.8)
in d2(s) and (s+8) in d3(s), respectively. The closed-loop
stability of the IMC scheme is still guaranteed since both
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C3(s) and C4(s) satisfy the DC loop gain condition, as
verified here: C3(0)Gm(0) = 3.0592×0.1618 = 0.4950 <
1 and C4(0)Gm(0) = 3.0596× 0.1618 = 0.4951 < 1.
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Fig. 14. Experimental validation results – Regulatory re-
sponses (Disturbance rejection capability) achieved by the
new IMC controllers: (a) C3(s) and (b) C4(s).

Fig. 14a and Fig. 14b portray the regulatory responses
(which reflects the disturbance rejection capability)
achieved by the new controllers C3(s) and C4(s). Com-
paring Fig. 14a, Fig. 14b and Fig. 13a, it can be as-
serted that C2(s) offers the best vibration attenuation
performance. The decay time (considering a 2% toler-
ance band) in case of C2(s) is even smaller than 2 s,
in contrast to 8.5 s achieved by C3(s) and 4 s achieved
by C4(s) respectively. Therefore, we conjecture that as
the real root (at s = −a) of d(s) moves farther in the
left-hand side of the s-plane, the speed of response im-
proves. Regarding the vibration-amplitude reduction,
C4(s) and C2(s) reduce the open-loop peak vibration
of 3.2 cm to 1.95 cm (shown in Fig. 14b) and 2.095 cm
(shown in Fig. 13a) respectively. However, the degree of
vibration attenuation in the case of C3(s) is much less
than that achieved by C2(s) and C4(s). The experimen-
tal results suggest that the real root (at s = −a) of d(s)
should not be placed more than a decade below the first
resonant mode of the plant model Gm(s).

5 Conclusions

This paper has introduced a Negative Imaginary (NI)
controller synthesis technique based on a positive feed-
back Internal Model Control framework (see Fig. 4). A
frequency-domain and an LMI-based design methodol-
ogy are proposed for generating the NI controller. The
frequency-domain design technique offers two specific
controller forms and solves a constrained least-square
estimation problem to find the controller parameters.
While the LMI-based methodology relies on the choice
of a stable polynomial d(s), which plays a crucial role
in constructing the auxiliary filter F (s) = Gm(s)Q(s)
that governs the shape of the closed-loop time response.
A systematic set of guidelines is provided for choosing
the polynomial d(s). Both synthesis techniques ensure
closed-loop stability, even in the presence of model-
mismatch, and achieve perfect steady-state tracking.

Simulation studies accompanied by experimental re-
sults are given, which advocate the feasibility and effec-
tiveness of the proposed NI-based IMC scheme in the
vibration attenuation of a lightweight cantilever beam.
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teresis nonlinearities: A negative-imaginary theory
based approach. International Journal of Control,
92(8):1903–1913, 2019.

[9] A. Ferrante, A. Lanzon, and L. Ntogramatzidis.
Foundations of not necessarily rational nega-
tive imaginary systems theory: Relations between
classes of negative imaginary and positive real sys-
tems. IEEE Transactions on Automatic Control,
61(10):3052–3057, Oct 2016.

[10] A. Ferrante, A. Lanzon, and L. Ntogramatzidis.
Discrete-time negative imaginary systems. Auto-
matica, 79:1–10, May 2017.

[11] A. Ferrante and L. Ntogramatzidis. Some new re-
sults in the theory of negative imaginary systems

14



with symmetric transfer matrix function. Automat-
ica, 49(7):2138–2144, July 2013.

[12] C.E. Garcia and M. Morari. Internal model con-
trol: A unifying review and some new results. In-
dustrial and Engineering Chemistry Process Design
and Development, 21(2):308–323, April 1982.

[13] M. Grant and S. Boyd. CVX: Matlab software for
disciplined convex programming, version 2.1. http:
//cvxr.com/cvx, March 2014.

[14] J. Hu, B. Lennox, and F. Arvin. Robust for-
mation control for networked robotic systems us-
ing negative imaginary dynamics. Automatica,
140(110235):1–9, June 2022.

[15] S. Kurawa, P. Bhowmick, and A. Lanzon. Dynamic
output feedback controller synthesis using an LMI-
based α-strictly negative imaginary framework. In
Proceedings of 27th Mediterranean Conference on
Control and Automation, pages 81–86, July 2019.

[16] A. Lanzon and P. Bhowmick. Characterisation of
input-output negative imaginary systems in a dis-
sipative framework. IEEE Transactions on Auto-
matic Control, 68(2):959–974, Feb 2023.

[17] A. Lanzon and H-J. Chen. Feedback stability of
negative imaginary systems. IEEE Transactions on
Automatic Control, 62(11):5620–5633, Nov 2017.

[18] A. Lanzon and I. R. Petersen. Stability robustness
of a feedback interconnection of systems with nega-
tive imaginary frequency response. IEEE Transac-
tions on Automatic Control, 53(4):1042–1046, May
2008.

[19] A. Lanzon, Z. Song, S. Patra, and I. R. Petersen. A
strongly strict negative-imaginary lemma for non-
minimal linear systems. Communications in Infor-
mation and Systems, 11(2):139–152, 2011.

[20] C. Li, J. Wang, J. Shan, A. Lanzon, and I. R. Pe-
tersen. Robust cooperative control of networked
train platoons: A negative-imaginary systems’ per-
spective. IEEE Transactions on Control of Network
Systems, 8(4):1743–1753, Dec 2021.

[21] K-Z. Liu, M. Ono, X. Li, and M. Wu. Robust
performance synthesis for systems with positive-
real uncertainty and an extension to the negative-
imaginary case. Automatica, 82:194–201, 2017.

[22] M. Liu and J. Xiong. Properties and stability anal-
ysis of discrete-time negative imaginary systems.
Automatica, 83:58–64, Sep 2017.

[23] M. A. Mabrok, A. G. Kallapur, I. R. Petersen, and
A. Lanzon. Generalizing negative imaginary sys-
tems theory to include free body dynamics: Con-
trol of highly resonant structures with free body
motion. IEEE Transactions on Automatic Control,
59(10):2692–2707, Oct 2014.

[24] M. Morari and E. Zafiriou. Robust Process Control.
Prentice Hall, Englewood Cliffs, New Jersey, USA,
1st edition, 1989.

[25] N. Nikooienejad and S. O. Reza Moheimani. Con-
vex synthesis of SNI controllers based on frequency-
domain data: MEMS nanopositioner example.
IEEE Transactions on Control Systems Technology,

30(2):767–778, March 2022.
[26] I. R. Petersen. Negative imaginary systems the-

ory and applications. Annual Reviews in Control,
42:309–318, Sep 2016.

[27] C. Scherer, P. Gahinet, and M. Chilali. Multi ob-
jective output-feedback control via LMI optimiza-
tion. IEEE Transactions on Automatic Control,
42(7):896–911, 1997.

[28] K. Shi, I. R. Petersen, and I. G. Vladimirov. Out-
put feedback consensus for networked heteroge-
neous nonlinear negative-imaginary systems with
free-body motion. IEEE Transactions on Auto-
matic Control, 68(9):5536–5543, Sep 2023.

[29] Z. Song, A. Lanzon, S. Patra, and I. R. Petersen.
Towards controller synthesis for systems with nega-
tive imaginary frequency response. IEEE Transac-
tions on Automatic Control, 55(6):1506–1511, 2010.

[30] Z. Song, A. Lanzon, S. Patra, and I. R. Petersen. A
negative-imaginary lemma without minimality as-
sumptions and robust state-feedback synthesis for
uncertain negative-imaginary systems. Systems &
Control Letters, 61(12):1269–1276, 2012.

[31] Z. Song, A. Lanzon, S. Patra, and I. R. Pe-
tersen. Robust performance analysis for uncertain
negative-imaginary systems. International Journal
of Robust and Nonlinear Control, 22(3):262–281,
2012.

[32] Y. Su, P. Bhowmick, and A. Lanzon. Cooperative
control of multi-agent negative imaginary systems
with applications to UAVs, including hardware im-
plementation results. In Proceedings of the 2023 Eu-
ropean Control Conference, pages 1–6, June 2023.

[33] Y. Su, P. Bhowmick, and A. Lanzon. A negative
imaginary theory-based time-varying group forma-
tion tracking scheme for multi-robot systems: Ap-
plications to quadcopters. In Proceedings of the
2023 IEEE International Conference on Robotics
and Automation, pages 1435–1441, May-June 2023.

[34] Y. Su, P. Bhowmick, and A. Lanzon. Properties
of interconnected negative imaginary systems and
extension to formation-containment control of net-
worked multi-UAV systems with experimental val-
idation results. Asian Journal of Control, pages 1–
18, Dec 2023.

[35] V. P. Tran, M. A. Garratt, and I. R. Pe-
tersen. Multi-vehicle formation control and ob-
stacle avoidance using negative-imaginary systems
theory. IFAC Journal of Systems and Control,
15(100117):1–23, March 2021.

[36] J. Xiong, J. Lam, and I. R. Petersen. Output feed-
back negative imaginary synthesis under structural
constraints. Automatica, 71:222–228, Sep 2016.

[37] J. Xiong, I. R. Petersen, and A. Lanzon. A negative
imaginary lemma and the stability of interconnec-
tions of linear negative imaginary systems. IEEE
Transactions on Automatic Control, 55(10):2342–
2347, Oct 2010.

15



Appendix A

Let Γ(s, zi) = (s+ zi)(s+ z̄i).

Table 1: Quantitative information of the performance parameters of the closed-loop impulse response of the plant
model Gm1

subject to the choice of the pole polynomials {d1(s), d2(s), · · · , d30(s)}.

Choice of d(s) Bandwidth
Impulse response

settling time
Peak of impulse

response
Farthest controller

pole

d1(s) = (s+ 0.5)Γ(s, 0.5 + j) 1.018 26.474 0.484 −5.911

d2(s) = (s+ 0.5)Γ(s, 0.5 + 2j) 1.052 35.207 0.545 −34.710

d3(s) = (s+ 0.5)Γ(s, 0.5 + 3j) 0.964 38.718 0.499 −32.533

d4(s) = (s+ 0.5)Γ(s, 0.5 + 4j) 0.981 38.272 0.512 −39.526

d5(s) = (s+ 1)Γ(s, 1 + j) 1.051 34.994 0.538 −36.433

d6(s) = (s+ 1)Γ(s, 1 + 2j) 0.991 37.108 0.511 −34.295

d7(s) = (s+ 1)Γ(s, 1 + 3j) 0.858 43.075 0.440 −56.949

d8(s) = (s+ 1)Γ(s, 1 + 4j) 0.883 42.331 0.461 −63.009

d9(s) = (s+ 2)Γ(s, 2 + j) 0.448 42.349 0.484 −75.035

d10(s) = (s+ 2)Γ(s, 2 + 2j) 0.881 42.153 0.455 −77.485

d11(s) = (s+ 2)Γ(s, 2 + 3j) 0.891 41.910 0.463 −81.548

d12(s) = (s+ 2)Γ(s, 2 + 4j) 0.776 47.642 0.400 −152.346

d13(s) = (s+ 3)Γ(s, 3 + j) 0.888 42.220 0.463 −112.141

d14(s) = (s+ 3)Γ(s, 3 + 2j) 0.717 45.156 0.363 −225.809

d15(s) = (s+ 3)Γ(s, 3 + 3j) 0.847 44.215 0.442 −156.8465

d16(s) = (s+ 3)Γ(s, 3 + 4j) 0.574 48.655 0.286 −458.572

d17(s) = (s+ 4)Γ(s, 4 + j) 0.569 49.046 0.283 −523.863

d18(s) = (s+ 4)Γ(s, 4 + 2j) 0.559 49.712 0.278 −569.341

d19(s) = (s+ 4)Γ(s, 4 + 3j) 0.534 51.637 0.262 −683.768

d20(s) = (s+ 4)Γ(s, 4 + 4j) 0.535 51.756 0.263 −691.803

d21(s) = (s+ 5)Γ(s, 5 + j) 0.597 53.713 0.301 −617.6388

d22(s) = (s+ 5)Γ(s, 5 + 2j) 0.606 53.183 0.307 −597.666

d23(s) = (s+ 5)Γ(s, 5 + 3j) 0.618 52.458 0.313 −576.443

d24(s) = (s+ 5)Γ(s, 5 + 4j) 0.605 53.389 0.306 −599.979

d25(s) = (s+ 1)D
[
Gm(s)

]
1.054 24.714 0.491 −15.136

d26(s) = (s+ 1)3 0.997 27.596 0.486 −7.511

d27(s) = (s+ 0.5)3 1.048 29.637 0.488 −9.414

d28(s) = (s+ 2)3 0.865 42.384 0.445 −74.781

d29(s) = (s+ 3)3 0.877 42.664 0.457 −114.690

d30(s) = (s+ 4)3 0.858 43.775 0.449 −185.911
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Table 2: Quantitative information of the performance parameters of the closed-loop impulse response of the plant
model Gm2

subject to the choice of the pole polynomials {d1(s), d2(s), · · · , d30(s)}.

Choices of d(s) Bandwidth
Impulse response

settling time
Peak of impulse

response
Farthest controller

pole

d1(s) = (s+ 15)Γ(s, 15 + j) 0.087 37.684 0.162 −15

d2(s) = (s+ 15)Γ(s, 15 + 2j) 0.087 37.641 0.162 −15

d3(s) = (s+ 15)Γ(s, 15 + 3j) 0.088 37.573 0.163 −15

d4(s) = (s+ 15)Γ(s, 15 + 4j) 0.088 37.473 0.163 −15

d5(s) = (s+ 16)Γ(s, 16 + j) 0.162 20.262 0.304 −16

d6(s) = (s+ 16)Γ(s, 16 + 2j) 0.162 20.252 0.304 −16

d7(s) = (s+ 16)Γ(s, 16 + 3j) 0.162 20.240 0.304 −16

d8(s) = (s+ 16)Γ(s, 16 + 4j) 0.162 20.220 0.304 −16

d9(s) = (s+ 17)Γ(s, 17 + j) 0.171 19.200 0.320 −17

d10(s) = (s+ 17)Γ(s, 17 + 2j) 0.171 19.186 0.321 −17

d11(s) = (s+ 17)Γ(s, 17 + 3j) 0.171 19.164 0.321 −17

d12(s) = (s+ 17)Γ(s, 17 + 4j) 0.171 19.130 0.322 −17

d13(s) = (s+ 18)Γ(s, 18 + j) 0.181 18.114 0.340 −18

d14(s) = (s+ 18)Γ(s, 18 + 2j) 0.181 18.101 0.340 −18

d15(s) = (s+ 18)Γ(s, 18 + 3j) 0.181 18.077 0.340 −18

d16(s) = (s+ 18)Γ(s, 18 + 4j) 0.182 18.042 0.341 −18

d17(s) = (s+ 19)Γ(s, 19 + j) 0.177 18.558 0.332 −19

d18(s) = (s+ 19)Γ(s, 19 + 2j) 0.177 18.553 0.332 −19

d19(s) = (s+ 19)Γ(s, 19 + 3j) 0.177 18.541 0.332 −19

d20(s) = (s+ 19)Γ(s, 19 + 4j) 0.177 18.525 0.332 −19

d21(s) = (s+ 20)Γ(s, 20 + j) 0.190 17.223 0.357 −20

d22(s) = (s+ 20)Γ(s, 20 + 2j) 0.190 17.224 0.357 −20

d23(s) = (s+ 20)Γ(s, 20 + 3j) 0.190 17.224 0.357 −20

d24(s) = (s+ 20)Γ(s, 20 + 4j) 0.190 17.223 0.357 −20

d25(s) = (s+ 19)D
[
Gm(s)

]
1.671 5.585 2.372 −19

d26(s) = (s+ 15)3 0.087 37.689 0.162 −15

d27(s) = (s+ 16)3 0.162 20.261 0.304 −16

d28(s) = (s+ 17)3 0.171 19.204 0.320 −17

d29(s) = (s+ 18)3 0.181 18.119 0.340 −18

d30(s) = (s+ 19)3 0.177 18.561 0.332 −19
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Table 3: Quantitative information of the performance parameters of the closed-loop impulse response of the plant
model Gm3

subject to the choice of the pole polynomials {d1(s), d2(s), · · · , d30(s)}.

Choices of d(s) Bandwidth
Impulse settling

time
Peak of impulse

response
Farthest controller

pole

d1(s) = (s+ 0.5)Γ(s, 0.5 + j) 0.187 21.613 0.180 −0.500

d2(s) = (s+ 0.5)Γ(s, 0.5 + 2j) 1.113 9.935 0.438 −2.204

d3(s) = (s+ 0.5)Γ(s, 0.5 + 3j) 0.933 10.962 0.378 −2.788

d4(s) = (s+ 0.5)Γ(s, 0.5 + 4j) 0.994 11.247 0.399 −3.160

d5(s) = (s+ 1)Γ(s, 1 + j) 1.258 11.625 0.547 −2.398

d6(s) = (s+ 1)Γ(s, 1 + 2j) 0.938 10.981 0.380 −2.875

d7(s) = (s+ 1)Γ(s, 1 + 3j) 0.819 15.026 0.387 −4.3269

d8(s) = (s+ 1)Γ(s, 1 + 4j) 1.013 25.767 0.535 −13.631

d9(s) = (s+ 2)Γ(s, 2 + j) 1.035 24.387 0.533 −14.170

d10(s) = (s+ 2)Γ(s, 2 + 2j) 1.051 24.261 0.539 −14.418

d11(s) = (s+ 2)Γ(s, 2 + 3j) 1.000 31.285 0.559 −19.215

d12(s) = (s+ 2)Γ(s, 2 + 4j) 0.948 31.772 0.559 −21.571

d13(s) = (s+ 3)Γ(s, 3 + j) 0.971 31.574 0.572 −23.823

d14(s) = (s+ 3)Γ(s, 3 + 2j) 0.711 37.441 0.412 −49.524

d15(s) = (s+ 3)Γ(s, 3 + 3j) 0.703 44.379 0.424 −58.237

d16(s) = (s+ 3)Γ(s, 3 + 4j) 0.720 43.426 0.438 −58.267

d17(s) = (s+ 4)Γ(s, 4 + j) 0.753 41.711 0.462 −60.540

d18(s) = (s+ 4)Γ(s, 4 + 2j) 0.750 42.160 0.461 −61.670

d19(s) = (s+ 4)Γ(s, 4 + 3j) 0.765 41.233 0.472 −60.913

d20(s) = (s+ 4)Γ(s, 4 + 4j) 0.798 44.505 0.499 −62.081

d21(s) = (s+ 5)Γ(s, 5 + j) 0.736 49.277 0.470 −148.413

d22(s) = (s+ 5)Γ(s, 5 + 2j) 0.742 48.953 0.475 −147.945

d23(s) = (s+ 5)Γ(s, 5 + 3j) 0.754 47.966 0.484 −146.765

d24(s) = (s+ 5)Γ(s, 5 + 4j) 0.640 49.269 0.381 −174.383

d25(s) = (s+ 1.41)D
[
Gm(s)

]
1.445 20.512 0.846 −15.706

d26(s) = (s+ 1.41)3 0.955 11.146 0.384 −3.056

d27(s) = (s+ 3)D
[
Gm(s)

]
1.445 16.041 0.839 −32.709

d28(s) = (s+ 3)3 0.974 31.521 0.572 −23.508

d29(s) = (s+ 1.41)2(s+ 3) 0.995 11.387 0.398 −3.458

d30(s) = (s+ 1.41)(s+ 3)2 1.062 27.553 0.547 −15.706
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Table 4: Quantitative information of the performance parameters of the closed-loop impulse response of the plant
model Gm4

subject to the choice of the pole polynomials {d1(s), d2(s), · · · , d30(s)}.

Choices of d(s) Bandwidth
Impulse response

settling time
Peak of impulse

response
Farthest controller

pole

d1(s) = (s+ 0.5)Γ(s, 0.5 + j) 1.197 15.725 0.438 −7.769

d2(s) = (s+ 0.5)Γ(s, 0.5 + 2j) 0.745 16.0688 0.330 −15.272

d3(s) = (s+ 0.5)Γ(s, 0.5 + 3j) 0.899 25.163 0.427 −30.813

d4(s) = (s+ 0.5)Γ(s, 0.5 + 4j) 0.906 30.061 0.450 −40.171

d5(s) = (s+ 1)Γ(s, 1 + j) 0.921 15.558 0.390 −12.305

d6(s) = (s+ 1)Γ(s, 1 + 2j) 0.573 21.040 0.255 −23.090

d7(s) = (s+ 1)Γ(s, 1 + 3j) 0.856 26.372 0.405 −34.181

d8(s) = (s+ 1)Γ(s, 1 + 4j) 0.518 41.412 0.242 −97.868

d9(s) = (s+ 2)Γ(s, 2 + j) 0.755 24.216 0.358 −54.891

d10(s) = (s+ 2)Γ(s, 2 + 2j) 0.636 28.746 0.300 −88.390

d11(s) = (s+ 2)Γ(s, 2 + 3j) 0.587 36.184 0.271 −87.837

d12(s) = (s+ 2)Γ(s, 2 + 4j) 0.582 39.256 0.281 −104.549

d13(s) = (s+ 3)Γ(s, 3 + j) 0.642 34.516 0.295 −86.870

d14(s) = (s+ 3)Γ(s, 3 + 2j) 0.617 42.560 0.295 −115.381

d15(s) = (s+ 3)Γ(s, 3 + 3j) 0.483 45.954 0.239 −180.854

d16(s) = (s+ 3)Γ(s, 3 + 4j) 0.476 47.855 0.248 −190.276

d17(s) = (s+ 4)Γ(s, 4 + j) 0.485 45.965 0.240 −199.757

d18(s) = (s+ 4)Γ(s, 4 + 2j) 0.428 51.235 0.207 −347.180

d19(s) = (s+ 4)Γ(s, 4 + 3j) 0.386 46.667 0.181 −404.683

d20(s) = (s+ 4)Γ(s, 4 + 4j) 0.261 48.585 0.112 −779.683

d21(s) = (s+ 5)Γ(s, 5 + j) 0.306 53.346 0.134 −685.419

d22(s) = (s+ 5)Γ(s, 5 + 2j) 0.424 63.030 0.217 −729.551

d23(s) = (s+ 5)Γ(s, 5 + 3j) 0.437 61.940 0.226 −714.432

d24(s) = (s+ 5)Γ(s, 5 + 4j) 0.377 59.740 0.183 −739.188

d25(s) = (s+ 1.37)D
[
Gm(s)

]
1.418 20.982 0.998 −30.837

d26(s) = (s+ 1.37)3 0.645 15.785 0.289 −14.587

d27(s) = (s+ 2.93)D
[
Gm(s)

]
1.445 16.041 0.839 −32.709

d28(s) = (s+ 2.93)3 0.523 33.702 0.238 −119.702

d29(s) = (s+ 3.6)D
[
Gm(s)

]
1.430 20.048 1.101 −83.771

d30(s) = (s+ 3.6)3 0.501 44.872 0.250 −181.865
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