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• Enhancing underwater images by measuring the proportional and color degradations.

• Quantifying the proportional degradation via Inception-inspired multi-scale features.

• Recovering color information by adaptive channel-wise attention weighting.



DICAM: Deep Inception and Channel-wise Attention Modules for
Underwater Image Enhancement
Hamidreza Farhadi Toliea, Jinchang Rena,∗ and Eyad Elyanb

aNational Subsea Centre, Robert Gordon University, Aberdeen, AB21 0BH, UK.
bSchool of Computing, Robert Gordon University, Aberdeen, AB10 7GJ, UK.

A R T I C L E I N F O

Keywords:
Underwater Image Enhancement
Deep Learning
Inception Module
Channel-wise Attention Module

A B S T R A C T

In underwater environments, imaging devices suffer from water turbidity, attenuation of lights,
scattering, and particles, leading to low quality, poor contrast, and biased color images. This has
led to great challenges for underwater condition monitoring and inspection using conventional vision
techniques. In recent years, underwater image enhancement has attracted increasing attention due
to its critical role in improving the performance of current computer vision tasks in underwater
object detection and segmentation. As existing methods, built mainly from natural scenes, have
performance limitations in improving the color richness and distributions we propose a novel deep
learning-based approach namely Deep Inception and Channel-wise Attention Modules (DICAM)
to enhance the quality, contrast, and color cast of the hazy underwater images. The proposed
DICAM model enhances the quality of underwater images, considering both the proportional
degradations and non-uniform color cast. Extensive experiments on two publicly available underwater
image enhancement datasets have verified the superiority of our proposed model compared with
several state-of-the-art conventional and deep learning-based methods in terms of full-reference and
reference-free image quality assessment metrics. The source code of our DICAM model is available
at https://github.com/hfarhaditolie/DICAM.

1. Introduction
With the fast growth in marine engineering and ecosystem
developments toward Net-Zero, automatic exploration, pro-
tection, and monitoring of subsea resources have become an
active topic in recent years. Underwater images and videos
can provide promising information for many engineering
and research tasks including but not limited to the condition
monitoring of energy infrastructures, visual mapping of
seabed [1, 2], trash detection [3], or detection and classi-
fication of underwater objects and events [4, 5] (e.g., fishes,
species, pipeline failure). However, due to various noises
introduced by water turbidity, attenuation of lights, and
particles in the underwater world, raw Underwater Images
(UIs) and videos suffer severely from visual distortions
resulting from non-uniform color deviation and blurring
effects, especially the low degree of quality, contrast, and
brightness [6, 7, 8].

To address these problems and improve the visibility of
UIs for better practical usage, various Underwater Image
Enhancement (UIE) methods have been proposed [10, 11].
UIE methods tend to obtain a clearer image by improving
the contrast and color distribution whilst removing blurring
effects. Early research focused on contrast enhancement
methods such as Histogram Equalization (HE) and Contrast
Limited Adaptive Histogram Equalization (CLAHE) [12]
on UIs. However, the degradation of the captured UI is
proportionally dependent on the distance between the object
and camera [13]. For instance, as shown in Fig. 1. (a), the
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Figure 1: Raw (a) and enhanced (b) underwater images taken from
the UIEB dataset [9]. The raw image suffers from both proportional
degradation and low color richness, where the content of the
highlighted block is not clearly visible compared with the regions
closer to the camera, while in the enhanced image (b) its visibility
has improved.

content of the highlighted area in the raw underwater image,
which is far from the camera, is not clearly visible compared
with the central areas, which are closer to the camera. How-
ever, in the enhanced version the visibility of the content is
further improved. Therefore, the conventional enhancement
approaches fail to properly enhance the UIs [9]. Hence, it
is urgent to propose practical enhancement methods spe-
cially designed for UIs, where existing UIE methods, as
detailed below, can be categorized into three groups, i.e.
non-physical model-based, physical model-based, and deep
learning-based methods.

1.1. Non-physical model-based methods
This category includes methods that focus on modifying the
intensity values of image pixels for enhancement. Iqbal et
al. proposed the Integrated Colour Model (ICM) [14], in
which they enhance the image by first stretching the im-
age’s contrast in the Red Green Blue (RGB) color space
and then stretching the image’s saturation and intensity in
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the Hue Saturation Intensity (HSI) color space. Unsuper-
vised Colour Correction Method (UCM) [15], proposed by
Iqbal et al., applies contrast correction on the RGB image to
increase the Red color and decrease the Blue color. Similar
to ICM [14], it corrects the contrast of the saturation and
intensity in HSI color space. In 2012. Ancuti et al. [16] pro-
posed a multi-scale fusion strategy over contrast-enhanced
and color-corrected images to produce the enhanced image.
In [17], based on the human visual system, Fu et al. utilized
a variational Retinex-based approach to decompose the
reflectance and illumination from the color-corrected UI to
generate the enhanced image. Inspired by [17], Zhang et
al. [18] introduced the CIELAB (LAB)-color space Multi-
Scale Retinex (LAB-MSR). Compared with the original
Retinex, LAB-MSR [18] fuses bilateral and trilateral filters
instead of the Gaussian filter in the CIELAB color space to
enhance the raw UIs.

Moreover, Zhuang et al. [19] introduced an edge-
preserving filtering Retinex algorithm, where guidance
reflection and illumination are produced and fused with
the guided image filtering for optimized enhancement.
In Zhuang et al. [20], a Bayesian Retinex method was
proposed to enhance the underwater images using the multi-
order gradient priors. More recently, Zhou et al. [21]proposed
an enhancement method based on the light scattering
characteristic. They first categorize the color cast into five
groups based on the average intensity values in RGB chan-
nels and then utilize the optical attenuation characteristic to
compute the color information loss, followed by a multi-
scene and a block-based histogram stretching approach to
enhance the color and contrast of the underwater images.

These methods suffer from different noises, artifacts,
and unpleasant color distortions due to their reliance on
the observed data (i.e., pixel-level modifications) without
any further consideration of the underwater environment’s
complexity and lighting conditions [22]. Also, as these
methods rely on empirically set parameters, they lack a
generalization ability for various underwater conditions.

1.2. Physical model-based methods
Physical model-based methods often utilize a mathematical
model to describe the degradation of the image based on
prior information and solve it as a reverse problem. Numer-
ous methods used the Image Formation Model (IFM) [23,
24] to describe an UI as a combination of a clear im-
age and the background light weighed by a transmission
map [25, 26, 27, 28]. Moreover, several studies derived
the transmission map based on prior information, such as
Dark Channel Prior (DCP) [29]. Inspired by DCP, Drews
Jr. et al. [30] proposed the Underwater Dark Channel Prior
(UDCP) method, in which the blue and green channels
of the raw RGB UI were used as the information source
of underwater images. Peng et al. [24] proposed an IFM-
based underwater image restoration method using an Image
Blurriness and Light Absorption (IBLA) model, which
utilized the UI’s blurriness and light absorption to measure
the background light, scene depth, and transmission maps

rather than DCPs. Song et al. [31] proposed a scene depth
estimation model based on the Underwater Light Atten-
uation Prior (ULAP) to correctly restore the true image.
Zhou et al. [32] utilized the color-line model on a local
scale, i.e. small patches, to recover their color line and
estimating a transmission map to restore the UIs. Yang et
al. [33] presented an UI restoration model based on lighting
estimation of the local backscattering and the reflection-
illumination decomposition to provide better edge restora-
tion and colorfulness in recovered images. Liang et al. [34]
introduced an UIE method to improve the low contrast and
color cast of UIs, using a hierarchical searching technique
to estimate the backscattered light and generalize the UDCP
method toward generating a more robust transmission map.

Due to the ill-posed nature of the IFM problem, it
requires different assumptions and priors (e.g., DCP) to
estimate the transmission map. On the other hand, since
the parameter estimation is complex, this has limited the
performance of the physical model-based methods. In fact,
most physical-based methods are time-consuming, visually
unpleasing, and sensitive to different types of underwa-
ter images (e.g., oceanic or coastal) and the degradation
level [22]. Thus it makes the physical model-based method
highly challenging and complex.

1.3. Deep learning-based methods
In recent years, with the automatic and hierarchical fea-
ture extraction of deep learning models [35], which are
invariant to the small changes of input data [36], several
deep learning-based UIE methods have been developed.
These include the Generative Adversarial Networks (GAN)-
based, the Convolutional Neural Networks (CNN)-based,
and the encoder-decoder-based neural networks. In 2019,
Liu et al. [37] employed the residual networks to propose
the Underwater ResNet (UResNet) and train it with their
proposed Edge Difference Loss (EDL) alongside the well-
known mean square error loss function. Later, Li et al. [9]
introduced a CNN-based UIE method called Water-Net [9],
which enhances the underwater images by using CNNs to
extract features from the raw, gamma-corrected, histogram-
equalized, and white-balanced underwater images before
fusing them using their predicted confidence maps. More-
over, Islam et al. [38] proposed a conditional GAN-based
method, namely Fast Underwater Image Enhancement Gan
(FUnIE-GAN), with an U-NET [39] architecture-inspired
generator network that utilizes the global content, color,
local texture, and style information as a perceptual loss
function to supervise the training of the model. In 2021,
Wang et al. [40] proposed a CNN-based UIE method called
UIEC∧2-Net by incorporating two color spaces. UIEC∧2-
Net [40] employs the CNN architecture to extract features
from the RGB and Hue Saturation Value (HSV) color spaces
and combine them to produce an enhanced version of the
raw UI. More recently, Sharman et al. [41], inspired by
wavelength-based attributed deep networks, used convolu-
tional layers and Convolutional Block Attention Modules
(CBAM) in their proposed WaveNet method. WaveNet [41]
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Figure 2: Framework of the proposed DICAM model.

Figure 3: Modules of the proposed DICAM model. From left to right: (a) Inception (Inc) Module, (b) Channel-wise Attention Module (CAM).

separately processes the color channels of the raw images
and fuses them in three steps by employing shortcut con-
nections to preserve the extracted information from each
channel at the previous step to construct the enhanced
image.

Most deep learning-based UIE methods are either weakly
supervised GAN-based or commonly used CNN archi-
tectures. However, due to the non-uniform attenuation of
colors and proportional degradations of UIs, it is crucial
to extract features with different ratios from each color
channel. Moreover, as the red light disappears faster than the
green and then the blue light, utilizing an adaptive weighting
strategy to combine them to get the final enhanced image
will ensure the accurate color correction of the method.
Furthermore, since the light attenuation is non-uniform,
the information loss will occur at different levels, and the
existing objects and particles will also affect the attenuation
rate. Thus, to address the aforementioned limitations and
issues regarding underwater images, we propose to use
a semi-adaptive feature size to extract meaningful and
effective features from raw underwater images.

The major contributions of our proposed approach can
be highlighted as follows: (1) Multi-scale channel-wise fea-
ture extraction using an inception module to simultaneously
quantify the color and distance-related proportional degra-
dation, loss of color and content information, and color rich-
ness; (2) Adaptive fusion-based recovery and enhancement
process, incorporating the Channel-wise Attention Module

(CAM). Our approach enables us to generate high-quality
enhanced images with a better color cast and richness,
yielding a more visually pleasing and natural appearance
through a dedicated color correction stage. Subsequent ex-
periments have verified the superior performance of the pro-
posed model in terms of image quality metrics, histogram
comparison measures, and run-time.

2. The proposed method
Generally, underwater images suffer from two main de-
fects: (1) proportional degradations and (2) non-uniform
light attenuation leading to low visibility and color in-
formation loss. Proportional degradation, as illustrated in
Fig. 1, mainly affects the visibility ratio of the content (e.g.,
objects, particles, etc.) in different regions of the image in a
way that the content closer to the camera has better visibility
than the distant ones, implying different degradation rates
across various regions in underwater images. On the other
hand, non-uniform light attenuation makes the majority of
the captured UIs look bluish or greenish. Therefore, to ad-
dress the aforementioned quality degradations and enhance
the UIs accordingly, we designed a deep neural network
architecture inspired by the inception [42] and attention
modules [43] with three stages, namely, Channel-level color
recovery, Color correction, and Dimension reduction shown
in Fig. 2 as follows.
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2.1. Channel-level color recovery
As mentioned earlier, underwater images suffer from non-
uniform light attenuation as the color light dissolves at dif-
ferent rates after crossing the surface of the ocean. Accord-
ing to [44], the colors attenuate based on their wavelengths,
where the red color dissolves at a significantly faster rate
than the green and blue colors, respectively. Thus to measure
the color information loss, we proposed to extract features
from each color channel separately and then adaptively
weigh them to construct the enhanced image.

In addition to the non-uniform light attenuation, under-
water images suffer from proportional color degradation.
To address this issue, a multi-scale feature extractor is em-
ployed to detect the color degradations at various scales and
regions within the image. As the degree of color degradation
is channel dependent, we extract features from each channel
separately. By fusing together these channel-based features
with an attention mechanism in a supervised learning pro-
cess, our model gains the ability to discern the degree of
information loss in the spatial domain of the image with
respect to its color channel. This enables the model to assign
appropriate weights to capture the amount of information
loss from each color channel, thereby enhancing the overall
quality of the results.

As shown in Fig. 2, to capture the proportional degrada-
tions from each color channel at different scales effectively,
we have conducted the well-known Inception (Inc) mod-
ule [42], shown in Fig. 3-(a), for feature extraction. As seen,
Inc allows us to represent the input image with structural
feature maps at different scales (i.e., 1×1 (pixel-wise), 3×3,
and 5×5), in addition to its contour information obtained
by the Max-Pooling layer. However, the degradation ratios
of the 3×3, 5×5, and contour information are not equal.
Thus, inspired by [43], by using the Channel-wise Attention
Module (CAM), illustrated in Fig. 3-(b), we have weighed
the extracted feature maps. The proposed strategy can fur-
ther improve the enhancement performance and content
representation by considering both the color channel-level
and various structural scale quality degradation.

2.2. Color correction
In addition to the proportional degradation, the distortion of
colors, such as a bluish or greenish appearance, is further
caused by the attenuation of the light. Hence, the extracted
feature maps require adaptive weighting to recover the real
color. After concatenating the extracted feature maps in the
second stage, we extract features from the combined color
feature maps to capture the degradation at a higher level and
weigh them using the CAM. In this stage, CAM helps the
model to retrieve the lost color information and do the color
correction accordingly by using an adaptive weighting of
the red, green, and blue channel features.

2.3. Dimension reduction
To generate a RGB output image, it is essential to reduce
the dimensionality of the extracted feature maps. In our
study, as we maintained the spatial resolution of the input

Table 1
The inception module architecture in both the channel-level
color recovery and color correction stages.

Kernel Stride Padding Output
Channels

output

1 × 1 1 0 64 64 × 256 × 256

3 × 3 1 1 64 64 × 256 × 256

5 × 5 1 2 64 64 × 256 × 256

Max-Pooling 1 1 64 64 × 256 × 256

Concatenation - - - 256 × 256 × 256

image throughout the feature extraction process, the focus
is solely on how to reduce the number of features. To
achieve this whilst retaining the restored lost information,
we have introduced a gradual approach for dimension re-
duction. Actually, the proposed DICAM model decreases
the dimensionality of the resulting high-dimensional feature
map by progressively reducing the number of channels.
Subsequently, a Sigmoid activation function is utilized to
ensure that the intensity values of the enhanced image fall
within the range of [0, 1]. It is noteworthy that, as illustrated
in Fig. 2, a 3 × 3 convolution kernel is used in the initial
step of dimension reduction. This can help to safeguard the
preservation of information while decreasing the number of
feature maps in the output dimension.

2.4. The network architecture
Table 1 describes the architecture of our Inc module. The
convolutional layers with a kernel size of 3×3 and 5×5 and
a stride of 1 within the Inc module enable the proposed
architecture to capture the proportional degradation in UIs.
Each convolution layer here is followed by a LeakyReLU
activation function. Also, we have set the number of filters
in the convolutional layers to 64 in both channel-level color
recovery and color correction stages. Utilizing strides of 1
and 64 filters will make the Inc modules’ output to have a
size of 256×256×256 (filters, (i.e., 4×64)×H×W, where H
and W are the height and width of the input image and 4
is the number of feature sets being concatenated, i.e. 1×1,
3×3, 5×5, and Max-Pooling). With 64 filters in each layer,
the output of the concatenation layer will have 256 filters.

Inspired by the Convolutional Block Attention Mod-
ule (CBAM) [45] and the SQUEEZE-AND-EXCITATION
proposed [43], we have proposed the CAM for fast and
effective refinement of the extracted feature maps based
on their global statistical information, i.e. average value.
Technically, the CAM maps each input feature to a sin-
gle coefficient. To this end, it uses the Global Average
Pooling (GAP) to initialize the coefficients. Then, as seen
in Fig. 3. (b), CAM utilizes the EXCITATION strategy
proposed in [43] to map GAP to the weighting coefficients.
Specifically, the𝐺𝐴𝑃 ∈ ℝ𝑀 is generated by shrinking each
feature map through its spatial dimension, i.e. 𝐻 × 𝑊 as
follows.
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𝐺𝐴𝑃𝑚 = 1
𝐻 ×𝑊

𝐻
∑

𝑖=1

𝑊
∑

𝑗=1
𝐹𝑚(𝑖, 𝑗), 𝑚 = {1, 2, ...,𝑀} (1)

where 𝐹𝑚 is the 𝑚-th feature map extracted using the Inc
module.

To remove the linearity of the obtained global infor-
mation and have a multiple-channel weighting rather than
an ad-hoc representation, we reduced the dimension of
the global information with a ratio of 𝑟, i.e. which was
empirically set to 4, and then increased the dimension to
the original one. Formally the final coefficient vector is
calculated as follows:

𝐶𝑜𝑒𝑓𝑓𝑚 = 𝜓(𝐶2𝜓(𝐶1𝐺𝐴𝑃𝑚)) (2)

where 𝜓 indicated the 𝑆𝑜𝑓𝑡𝑠𝑖𝑔𝑛 function, and the 𝐶1 ∈
ℝ

𝑀
𝑟 ×𝑀 and 𝐶2 ∈ ℝ𝑀×𝑀

𝑟 declare the coefficient of the fully
connected layers used for dimension reduction and increase
namely, SQUEEZE-AND-EXCITATION.

The dimension reduction helps the CAM to learn non-
linear weighting coefficients and the dimension increase
returns the determined non-linear weight coefficients to
the channel dimension. Also, unlike those in [43], after
both reducing and increasing the dimension we utilized
the 𝑆𝑜𝑓𝑡𝑠𝑖𝑔𝑛 activation function to make the obtained
weight coefficients in [-1, +1]. This helps the model to also
learn negative weights for better adjustment of the obtained
feature maps.

Utilizing the CAM in the first stage of our proposed
architecture can guide the network to weigh those feature
maps that are more compatible with the input color chan-
nel. In other words, it would tune the extracted feature
maps at different scales from color channels to capture the
proportional degradations effectively. On the other hand,
using CAM in the color correction stage would force the
model to put more weight on feature maps corresponding
to color channels with a higher rate of information loss.
The aforementioned feature maps refinement is done by
multiplying the learned coefficients with the input feature
maps as follows:

𝐹𝑚 = 𝐹𝑚 ⊗𝐶𝑜𝑒𝑓𝑓𝑚, 𝑚 = {1, 2, ...,𝑀} (3)

Compared with the original CBAM [45], CAM has
fewer parameters to learn, due to the removed spatial at-
tention module and simplified refinement by just using the
average pooling, which decreases the time for learning and
inference of the model and increases the quality of the
enhanced image. Also, by utilizing the 𝑆𝑜𝑓𝑡𝑠𝑖𝑔𝑛 instead
of the 𝑅𝑒𝐿𝑈 and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 functions proposed in [43], it
allows the network to also consider the negative weights on
the feature maps for color correction and refinement. The
proposed negative weighting can help to suppress certain
color channels allowing the model to better balance and
refine the colors. The negative weighting strategy not only
reduces the apparent blue and green colors but also uses

them more freely and effectively to produce realistic colors,
leading to improvement in the appearance and realism of the
generated image.

2.5. Training procedure
To train our proposed DICAM model, we have incorpo-
rated three loss functions, namely, L1, Structural SIMilarity
(SSIM) [46], and Perceptual loss [47]. We indicate the
ground-truth UI as 𝐺 and the generated UI as �̂�. The total
loss function is defined as follows:

 = 𝜄1 + 𝑆𝑆𝐼𝑀 + 𝑝 (4)

In most image-to-image translation models, it is com-
mon to utilize the pixel-level differences such as Mean
Squared Error (MSE) and L1 loss functions for training [37,
48]. Since the values of L1 loss are more compatible with
the SSIM loss function, we have used it both directly and in
the perceptual loss function as below:

𝜄1 = ‖�̂� − 𝐺‖1 (5)

Although the pixel-level difference-based loss functions
make the model achieve a higher Peak Signal-to-Noise
Ratio (PSNR) [49], they all suffer from blurriness artifacts
and thus make the enhanced image details too smooth.
Therefore, to tackle this issue and take higher-level infor-
mation like structure and contrast into account, we have also
used the SSIM [46] and Perceptual loss [47] functions.

More precisely, to compute the structural and textural
similarity between the generated and ground-truth images,
we have incorporated the SSIM similarity score as follows:

𝑆𝑆𝐼𝑀(𝑥) =
2.𝜇𝑚.𝜇𝑛 + 𝑐1
𝜇2𝑚 + 𝜇2𝑛 + 𝑐1

.
2.𝜎2𝑚𝑛 + 𝑐2
𝜎2𝑚 + 𝜎2𝑛 + 𝑐2

(6)

where m and n are 11×11 patches from the G and �̂�
images around each pixel x, respectively, 𝜇, 𝜎, and 𝜎𝑚𝑛
denote the mean, standard deviation, and covariance, 𝑐1 and
𝑐2 are small positive parameters to stabilize the division.
Considering that the SSIM computes the similarity between
images, to use it in a minimization problem in which we
intend to minimize the dissimilarity, the SSIM loss function
can be written as follows:

𝑆𝑆𝐼𝑀 = 1 − 1
𝑁

𝑁
∑

𝑖=1
𝑆𝑆𝐼𝑀(𝑥𝑖) (7)

To retain the high-frequency information of the image,
inspired by [47, 40, 41], we have utilized the Perceptual
loss. Technically, each time the generated UI and ground-
truth image are separately fed to the pre-trained VGG19
network over the ImageNet dataset [50], and we compute
the L1 norm between the relu_4_3 features obtained from
the VGG network. Using Perceptual loss will help the
model to preserve the high-level information of the image by
measuring how close the extracted relu_4_3 features from
the enhanced image are to the ground-truth image.
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Figure 4: Qualitative comparison of 6 underwater images taken from the UIEB and EUVP datasets. Images in the first four rows are from
UIEB, and images in the fifth and sixth rows are from the EUVP dataset. From left to right: raw image, enhanced images of CLAHE, ICM,
DCP, Fusion-based, UDCP, Retinex-based, IBLA, ULAP, FUnIE-GAN, Water-Net, UIEC∧2-Net, WaveNet, DICAM, and the reference image.

Table 2
Performance comparison of our DICAM with conventional UIE methods over the testing subset of the UIEB dataset.

(a) full-reference IQA (b) reference-free IQA

Method SSIM ↑ PCQI ↑ PSNR ↑ MSE ↓ UIQM ↑ UCIQE ↑ MSE_UIQM ↓ MSE_UCIQE ↓

CLAHE 0.8673 0.9266 18.71 0.0183 2.57 0.5271 0.3219 0.0032

ICM 0.8397 0.7008 18.77 0.0188 2.26 0.5160 0.4721 0.0030

DCP 0.7037 0.6244 14.23 0.0476 1.73 0.4659 1.0880 0.0117

Fusion-based 0.8916 0.8868 22.10 0.0119 2.51 0.5599 0.2186 0.0019

UDCP 0.5300 0.5797 11.05 0.0902 1.46 0.4534 1.4961 0.0130

Retinex-based 0.8199 0.8079 17.68 0.0207 2.76 0.5473 0.1462 0.0013

IBLA 0.7086 0.7054 15.72 0.0423 1.49 0.5118 1.9894 0.0050

ULAP 0.7578 0.7493 16.32 0.0331 1.66 0.5259 1.2022 0.0037

DICAM 0.9375 0.9007 24.43 0.0060 3.06 0.5547 0.1188 0.0012

3. Experimental results
We evaluate the performance of the proposed DICAM
underwater image enhancement method over two pub-
licly available datasets and compare its performance with
state-of-the-art non-physical model-, physical model-, and
deep learning-based methods. The compared non-physical
model and physical model-based methods are CLAHE [12],
ICM [14], DCP [29], fusion-based method [16], UDCP [30],
Retinex-based method [17], IBLA [24], and ULAP [31].
Moreover, FUnIE-GAN [38], Water-Net [9], UIEC∧2-Net [40],
and WaveNet [41] are the compared deep learning-based
methods. To make a fair comparison, the results are reported
over the same testing subsets of each dataset. Our extensive
experiments demonstrate the superiority of the proposed
DICAM method in terms of reference (full-reference) and
reference-free image quality metrics, histogram comparison
measures, and run-time.

3.1. Datasets
To evaluate the performance of our proposed method, we
conducted experiments on two publicly available under-
water image enhancement datasets: Underwater Image En-
hancement Benchmark (UIEB) [9] and Enhancing Under-
water Visual Perception (EUVP) [38]. UIEB contains 950
UIs, of which 890 are with their corresponding ground-
truth images, and 60 have no reference images. EUVP
includes three types of UIs, including underwater dark,
ImageNet, and scenes. EUVP has 5550 paired dark, 3700
ImageNet, and 2185 underwater scene images for training
purposes. For validation purposes, it contains 570 dark,
1270 ImageNet, and 130 underwater scene images. Also,
it has 515 test images containing images from all three
categories.

3.2. Implementation details
To train the proposed model over each of UIEB [9] and
EUVP [38] datasets, we resize the input images to size
256×256. The proposed DICAM model is then trained using
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Table 3
Performance comparison of our DICAM with deep learning-based UIE methods over the testing subset of the UIEB dataset.

(a) full-reference IQA (b) reference-free IQA

Method SSIM ↑ PCQI ↑ PSNR ↑ MSE ↓ UIQM ↑ UCIQE ↑ MSE_UIQM ↓ MSE_UCIQE ↓

FUnIE-GAN 0.8010 0.6256 18.14 0.0219 2.93 0.5084 0.2135 0.0034

Water-Net 0.8332 0.6194 20.69 0.0107 2.99 0.4726 0.1268 0.0033

UIEC∧2-Net 0.9215 0.8706 24.27 0.0054 3.10 0.5435 0.1915 0.0009

WaveNet 0.9199 0.8491 23.30 0.0063 2.83 0.5406 0.0892 0.0012

DICAM 0.9375 0.9007 24.43 0.0060 3.06 0.5547 0.1188 0.0012

Table 4
Performance comparison of our DICAM with conventional UIE methods over the testing subset of the EUVP dataset.

(a) full-reference IQA (b) reference-free IQA

Method SSIM ↑ PCQI ↑ PSNR ↑ MSE ↓ UIQM ↑ UCIQE ↑ MSE_UIQM ↓ MSE_UCIQE ↓

CLAHE 0.8021 0.8307 17.41 0.0205 2.70 0.5542 0.1071 0.0029

ICM 0.8000 0.6982 20.69 0.0110 2.40 0.5317 0.1326 0.0012

DCP 0.7473 0.6434 17.58 0.0217 1.75 0.4668 0.9287 0.0027

Fusion-based 0.8088 0.7924 17.62 0.0204 2.56 0.5705 0.1220 0.005

UDCP 0.6197 0.5824 14.51 0.0452 1.64 0.4721 1.2137 0.0029

Retinex-based 0.7213 0.6864 15.96 0.0298 2.92 0.5461 0.2760 0.0033

IBLA 0.7573 0.7169 19.00 0.0225 1.74 0.5371 1.0899 0.0057

ULAP 0.7964 0.7439 19.62 0.0131 1.94 0.5373 0.7368 0.0015

DICAM 0.9131 0.7392 25.13 0.0040 2.78 0.5056 0.0786 0.0003

the ADAM optimizer with a learning rate of 0.0008. The
batch size and the number of epochs are set to 5 and 120
for both UIEB and EUVP datasets. These parameters are set
and tuned experimentally based on the best-obtained results.
Also, we implemented the proposed architecture in Pytorch
deep learning framework on Nvidia Quadro RTX 6000/8000
GPU.

3.3. Evaluation metrics
We have employed both the full-reference and reference-
free Image Quality Assessment (IQA) metrics with his-
togram comparison indicators for a fair and robust com-
parison. Reference-based methods use both the generated
and ground-truth images to assess the quality, while the
reference-free methods only need the generated image to

compute its quality. The representative methods are well-
known reference-based SSIM, Patch-based Contrast Qual-
ity Index (PCQI) [51], PSNR, and MSE and reference-
free Underwater Image Quality Measure (UIQM) [52] and
Underwater Color Image Quality Evaluation (UCIQE) [53]
methods. Following [40, 41, 54, 55], we initially calculated
the metrics mentioned above for each image within the
testing subset. Subsequently, we reported the mean value
of each metric for comparison. The higher SSIM, PCQI,
PSNR, UIQM, and UCIQE values and a lower MSE value
indicate better performance. Technically, SSIM measures
the similarity between the reference (ground-truth) and the
generated images in terms of the luminance, contrast, and
structural components. PCQI locally estimates the contrast
quality. PSNR and MSE represent image quality by calculat-
ing the image’s content corruption level. On the other hand,
UIQM and UCIQE are reference-free measures designed for

Table 5
Performance comparison of our DICAM with deep learning-based UIE methods over the testing subset of the EUVP dataset.

(a) full-reference IQA (b) reference-free IQA

Method SSIM ↑ PCQI ↑ PSNR ↑ MSE ↓ UIQM ↑ UCIQE ↑ MSE_UIQM ↓ MSE_UCIQE ↓

FUnIE-GAN 0.8718 0.7058 23.53 0.0061 2.70 0.5265 0.0741 0.0006

Water-Net 0.8048 0.7662 18.39 0.0186 2.84 0.4676 0.1495 0.0044

UIEC∧2-Net 0.8310 0.7520 18.84 0.0159 2.97 0.5518 0.2481 0.0032

WaveNet 0.8953 0.6944 24.67 0.0044 2.87 0.5031 0.1296 0.0005

DICAM 0.9131 0.7392 25.13 0.0040 2.78 0.5056 0.0786 0.0003
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UIs. UIQM measures the UI’s colorfulness, sharpness, and
contrast. UCIQE quantifies the non-uniform color cast, blur-
ring, and low-contrast characteristics by linearly combining
the chroma, saturation, and contrast components of UIs.

Moreover, to compare the histograms of the ground-
truth and generated UIs, we first convert the UIs from
the RGB to the HSV color space, then compute the Kull-
back–Leibler (KL) divergence distance and the Chi-squared [56]
statistics over each channel to see how close the histograms
of the generated and ground-truth images are. Lower KL
divergence and Chi-squared statistics values indicate better
performance. For all metrics, we highlight the best- and
second-best results in red and blue, respectively.

3.4. Performance comparison
Table 2 reports the objective comparisons of the state-
of-the-art non-physical model and physical model-based
UIE methods and our proposed DICAM method over the
testing subset of the UIEB dataset (800 images are randomly
selected for training and 90 images are randomly selected
for testing). According to the results, the proposed DICAM
method yields the highest SSIM, PSNR, and UIQM values
and the lowest MSE value. In terms of UCIQE, which
measures the color cast, it has the second-best results.
However, the subjective analyses show that the color cast of
the images produced by DICAM is better than existing UIE
methods. As shown in Fig. 4, compared with the enhanced
images from the fusion-based method [16], which has the
highest UCIQE score as shown in Table 2, the DICAM-
generated enhanced images are much visually similar to
the reference images with better color richness. Hence,
it can be interpreted that UCIQE is not fully capable of
quantifying the color distribution of UIs. Therefore, we
separately computed the UIQM and UCIQE scores of both
the reference and generated images and then reported their
MSE in Table 2 to see how the UIQM and UCIQE scores
of the generated images are close to their reference images.
According to the obtained results, in terms of MSE of
the UCIQE and UIQM, the proposed DICAM performs
the best, which means it is fully capable of enhancing the
quality and color distribution of UIs. From Table 2, it is
clear that the MSE_UIQM scores confirm the UIQM results.
Therefore, it can be concluded that UIQM is more accurate
than the UCIQE metric in assessing the quality of UIs.

Moreover, compared with the deep learning-based meth-
ods, as listed in Table 3, DICAM achieves the best results
under SSIM, PCQI, PSNR, and UCIQE and second-best
under MSE and UIQM metrics. Furthermore, as illustrated
in Fig. 4, the DICAM-enhanced images are also better
than the state-of-the-art deep learning-based UIE methods.
It should be noted that we have used the trained model
of FUnIE-GAN on the EUVP dataset to enhance the test
images of the UIEB dataset.

Tables 4 and 5 present the quantitative comparison of
our proposed DICAM model with the state-of-the-art non-
physical model-, physical model-based, and deep learning-
based methods on the EUVP dataset, respectively. Note that

regarding the results of the UIEC∧2-Net, due to compu-
tational complexity and a large number of training sam-
ples of the EUVP dataset, we could not train it over the
training subset of the EUVP dataset. Hence, we used its
publicly available trained model over a combination of
the UIEB and a synthetic dataset called NYU-v2 RGB-
D [57]. Regarding Water-Net, we could not train the model
over the EUVP dataset, and since the model was only
trained over UIEB, we used the same model to report
the results on the EUVP dataset. It can be observed that
the proposed DICAM model outperforms the traditional
non-physical model- and physical model-based methods
in terms of full-reference IQA metrics except the PCQI.
Compared with deep models, it has the best results under
the three compared full-reference IQA metrics. Based on
the compared reference-free IQA metrics, DICAM has the
second-best performance under the UIQM metric compared
with the non-deep learning-based methods. For the UCIQE
metric, DICAM achieves competitive results. For both the
UIQM and UCIQE metrics, we again reported the mean
MSE values for both metrics. From the results in Table 4
and Table 5, it is clear that, like UIEB results, DICAM has
a similar color cast to the reference images of the EUVP
dataset as it yields the best MEAN_UCIQE results for both
deep and non-deep learning-based methods. Also, for mean
MSE values of UIQM (i.e., MEAN_UIQM), DICAM has
the best and second-best results compared with non-deep
and deep learning-based UIE methods, respectively.

3.5. Histogram comparison
As discussed earlier, despite the efforts made in objective
quality evaluation of underwater images, existing IQA met-
rics, especially reference-free metrics, are not fully capable
of assessing UIs’ quality scores. As shown in Fig. 4 and
obtained results in Tables 2 through 5, the predicted scores
of reference-free IQA metrics are inconsistent with the
visual perception of UIs. Therefore, in this study, we have
incorporated the KL divergence and Chi-squared metrics for
histogram comparison to evaluate the enhancement/color
correction performance on the Hue, Saturation, and Value
components of the HSV color space.

In Tables 6 and 7, we have compared and reported the
histogram comparison results of deep learning-based meth-
ods on both UIEB and EUVP datasets. The obtained results
in Table 6 show that DICAM has the best results in terms
of both metrics for the Hue and Saturation components of
UIEB images, and it has the second-best results for the
Value component in terms of the KL divergence metric.
In fact, in terms of KL divergence, DICAM improves the
performance of the recently proposed WaveNet method on
Hue, Saturation, and Hue by 31.70%, 34.98%, and 99.51%,
respectively. Under the Chi-squared test, DICAM improves
the WaveNet by 46.51%, 25.22%, and 93.58%, for Hue,
Saturation, and Value. From Table 7, it can be seen that over
the EUVP dataset, the proposed DICAM model’s results are
the best and at least the second-best for all three components
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Table 6
Histogram comparisons of the Hue (H), Saturation (S), and Value (V) components of HSV color space in terms of the KL
divergence and Chi-squared statistics on the testing subset of the UIEB dataset.

(a) KL divergence (b) Chi-aquared

Method H-Channel ↓ S-Channel ↓ V-Channel ↓ H-Channel ↓ S-Channel ↓ V-Channel ↓

FUnIE-GAN 2.0447 1.3464 0.0024 0.4445 0.2888 0.0005

Water-Net 0.9359 0.5233 0.0009 0.1727 0.1396 0.0005

UIEC∧2-Net 1.3825 0.5773 0.0009 0.2259 0.1202 0.0005

WaveNet 0.9879 0.5522 0.2914 0.2683 0.1423 0.0078

DICAM 0.6703 0.3747 0.0014 0.1435 0.1064 0.0005

Table 7
Histogram comparisons of the Hue (H), Saturation (S), and Value (V) components of HSV color space in terms of the KL
divergence and Chi-squared statistics on the testing subset of the EUVP dataset.

(a) KL divergence (b) Chi-aquared

Method H-Channel ↓ S-Channel ↓ V-Channel ↓ H-Channel ↓ S-Channel ↓ V-Channel ↓

FUnIE-GAN 1.8400 1.1268 0.0407 0.1996 0.1356 0.0016

Water-Net 6.1842 1.7728 0.0049 0.3726 0.2235 0.0023

UIEC∧2-Net 7.9321 1.9995 0.0047 0.4298 0.2584 0.0023

WaveNet 2.2756 0.9950 0.0049 0.2878 0.2110 0.0022

DICAM 2.0449 0.8058 0.0041 0.2526 0.1644 0.0016

Table 8
Ablation study of the core modules of our DICAM enhance-
ment network on the UIEB dataset.

Method SSIM ↑ PCQI ↑ PSNR ↑ MSE ↓

No CAMs 0.9042 0.8262 20.27 0.0132

No color corrections 0.9313 0.8471 22.92 0.0074

Image-level Inception 0.9147 0.8509 23.17 0.0076

Image-level Inception w/o CAMs 0.8904 0.8205 20.49 0.0128

Inception + CBAM 0.9153 0.8289 23.78 0.0068

1 × 1 convolutions 0.9093 0.8282 22.78 0.0076

3× 3 convolutions 0.9215 0.8785 24.38 0.0063

5× 5 convolutions 0.9222 0.8748 24.01 0.0060

MaxPooling 0.8232 0.6300 21.75 0.0088

DICAM 0.9364 0.8705 24.90 0.0058

and two metrics. This shows that compared with the FUnIE-
GAN, which obtained the best results on Hue in terms of KL
divergence and on Hue, Saturation, and Value components
in terms of Chi-squared, DICAM is more consistent and
stable. Furthermore, from Fig. 4, it can be also observed that
the enhanced images of FUnIE-GAN suffer from blockiness
distortions, which results in lower structural similarity with
the reference images.

3.6. Ablation study
3.6.1. Component analysis
To further verify and analyze the effectiveness of the mod-
ules in the proposed architecture, ablation studies are con-
ducted on the UIEB dataset as it contains images with
a complex and rich content of underwater sceneries and

species. To this end, we removed the core modules (i.e.,
CAM module and color correction stage) of the DICAM
network to analyze their role in performance results as
follows: (a) All CAM modules are removed; (b) Color
Correction stage is removed. In all compared variations of
the DICAM model, we keep the Inc module for feature
extraction with 60 training epochs. Given the resource
constraints and the extended training time required for the
proposed model, we opted to perform the ablation study
using a reduced number of epochs, i.e. 60. Table 8, reports
the performance results after removing the aforementioned
modules in terms of the full-reference IQA methods to
demonstrate the similarity of the produced enhanced images
to their corresponding reference underwater images. The
obtained results show that removing the CAM module
can significantly decrease the performance of our DICAM
method compared with the original version. Moreover, com-
paring the results of the DICAM version without the color
correction stage, it seems that the color correction will only
lead to a slightly dropped accuracy in comparison with the
original DICAM version.

In addition to the previous analysis, to validate the
effectiveness of the channel-level feature extraction, we
have compared the results by applying the Inc module on the
whole input image with and without the CAM module. The
results in Table 8 demonstrate a lower performance when the
features are extracted from the image-level, compared with
our proposed DICAM with channel-level feature extraction.
We have evaluated our DICAM model’s performance by
combining the inception module with the CBAM module to
further verify the superiority of the proposed CAM module
over the CBAM.
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Figure 5: Three sample raw underwater images (a) and their enhanced versions (b)-(f) produced by different variations of the DICAM
model, i.e (b) without the CAM modules, (c) without the color correction stage, (d) original DICAM with 60 epochs, (e) original DICAM with
120 epochs, and (f) the reference image.

Table 9
Cross-dataset evaluation results of our DICAM and deep learning-based UIE methods on the UIEB and EUVP datasets.

(a) Training with UIEB (b) Training with EUVP

Method SSIM ↑ PCQI ↑ PSNR ↑ MSE ↓ SSIM ↑ PCQI ↑ PSNR ↑ MSE ↓

FUnIE-GAN - - - - 0.8010 0.6256 18.14 0.0219

Water-Net 0.8048 0.7662 18.39 0.0186 - - - -

UIEC∧2-Net 0.8310 0.7520 18.84 0.0159 - - - -

WaveNet 0.8235 0.7939 18.31 0.0176 0.8541 0.6218 18.83 0.0166

DICAM 0.8390 0.7516 19.46 0.0143 0.8570 0.6613 18.75 0.0180

Also, to highlight the effectiveness of the Inc module,
we evaluated the model’s performance by only utilizing one
of the branches within the module. The results indicate that
the branch with 3 × 3 convolution layers achieves superior
mean PCQI and PSNR values on the testing subset, while
the branch with 5 × 5 convolution layers produces better
mean SSIM and MSE values. However, it is noteworthy that
their performance, especially concerning the SSIM metric,
falls short of the DICAM with all branches used. This has
verified the significance of combining these branches for
improved feature extraction, leading to an overall better
performance. This observation demonstrates the efficacy of
multi-scale feature extraction in addressing the challenge of
proportional color degradation in this context.

Furthermore, two sample images enhanced by the DICAM
variations are illustrated in Fig. 5. As seen, the produced
images from DICAM with all modules have the highest
color richness, clearest visibility, and a more natural-looking
appearance. Note that increasing the number of training

epochs from 60 to 120 can significantly improve the color
cast/richness in the image. As the color richness of the
enhanced images is better than the reference image, it
shows the effectiveness of the color correction stage and the
generalization ability of the proposed DICAM model. Based
on the obtained UCIQE scores as highlighted in Fig. 5, the
generated enhanced images via the variations of the DICAM
model achieve better performance compared with the raw
image, demonstrating its capability to improve the color
richness. Note that, although the enhanced images of the
second and third samples in (d) seem to have better UCIQE
scores, they are not visually as pleasant as the generated
images using the model trained with 120 epochs. This is
due to the limitations associated with the current underwater
image quality metrics. Overall, the ablation study verifies
the effectiveness of utilizing the CAM and color correction
stages, which are essential for the adaptive weighting of the
color channels and their extracted feature maps.
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Table 10
Performance of the ablation study of the loss functions on
the UIEB dataset.

𝑀𝐴𝐸 𝑆𝑆𝐼𝑀 𝑝 SSIM PCQI PSNR MSE

✓ × × 0.9200 0.8764 24.03 0.0061

✓ ✓ × 0.9317 0.8583 24.02 0.0062

✓ ✓ ✓ 0.9364 0.8705 24.90 0.0058

3.6.2. Loss function
To validate the efficacy of the incorporated loss functions,
we assessed the performance of our method through training
over 60 epochs, employing the following combinations of
loss functions: (a) 𝑀𝐴𝐸 , (b) 𝑀𝐴𝐸 + 𝑆𝑆𝐼𝑀 , and (c)
𝑀𝐴𝐸 + 𝑆𝑆𝐼𝑀 + 𝑝. It is crucial to note that excluding
𝑀𝐴𝐸 adversely affects the model’s performance, empha-
sizing its indispensability in our training procedure. Thus,
we performed various training by combining the other loss
functions with 𝑀𝐴𝐸 . Table 10 presents the results, indi-
cating that the incorporation of 𝑆𝑆𝐼𝑀 and 𝑝 (perceptual
VGG loss) leads to a slight decrease in performance accord-
ing to the PCQI metric. However, this trade-off is deemed
necessary to enhance the visual perception of the model.
Specifically, 𝑆𝑆𝐼𝑀 contributes to a 1.27% improvement in
the SSIM metric, while the combination of 𝑝 with the other
two results in an additional 0.50% improvement in SSIM.

Beyond the detailed quantitative analysis provided ear-
lier, we have visually demonstrated the impact of the speci-
fied combination of loss functions on a sample image and
its enhanced version in Fig. 6. Evidently, the proposed
combination balances color distribution and enhances the
contrast of the image.

3.7. Cross-dataset evaluation
To validate the generalizability of the proposed DICAM
model, we have employed the commonly used cross-dataset
technique. We trained the DICAM and compared peer
models on one dataset, then tested their performance on
the other. Table 9 compares the results of the cross-dataset
evaluation of four deep learning-based UIE models. As
the trained models of FUnIE-GAN on the UIEB dataset,
and UIEC∧2-Net and Water-Net on the EUVP are un-
available, we could not report their corresponding cross-
dataset performance. For the rest of the models, The column
of Training with UIEB shows their testing results on the
EUVP dataset when their models are trained on the UIEB.
Also, The column of Training with EUVP reports the test
results on the UIEB dataset when the models are trained
on the EUVP dataset. The best and second-best results
are highlighted in red and blue, respectively. Based on the
results, DICAM has superior performance for seven of the
eight compared indices, which demonstrates its generaliz-
ability and stability.

3.8. Run-time comparison
To evaluate the computational run-time of the DICAM
model, we applied each method on the testing subset of the

Figure 6: Visual results of ablation study with different loss
functions.

UIEB dataset, which has 90 test images, and reported the
average run-time (i.e., divide the total run-time by the total
number of test images). Table 11 lists the average run-time
of the proposed and four compared deep learning-based
UIE models. According to the results, the DICAM model
obtains the second-best run-time, whereas the FUnIE-GAN
method has the lowest run-time. However, in terms of
IQA metrics, as discussed earlier, DICAM outperforms the
method proposed in FUnIE-GAN.

In addition to reporting the computational run-time, we
have provided insights into the computational complexity of
each model measured in terms of the Floating Point Opera-
tions Per Second (FLOPS). FLOPS offers an estimation of
the floating-point operations required for the forward pass
through the network. According to our analysis, the FUnIE-
GAN model exhibits a lower FLOPS count, translating to
faster run-time performance. Although the DICAM model
has a significantly higher FLOPS count, it still secures the
second-best in the compared models. This is attributed to
the relatively lightweight nature of the incorporated mod-
ules, particularly when comparing Channel-wise Attention
Module (CAM) to Convolutional Block Attention Module
(CBAM).

4. Conclusion
In this paper, we proposed a novel UIE model, called
DICAM, by addressing the proportional degradations and
non-uniform color cast. To this end, we first use inception
modules over each color channel to extract feature maps
on three scales, then we weigh the extracted feature maps
using the introduced CAM to capture the importance of
degradations occurring in different ratios. Next, to refine
the color distribution, we combine the extracted feature
maps and apply the CAM to improve the color richness of
the image. Obtained full-reference IQA (i.e., SSIM, PSNR,
MSE) and measurements demonstrate the superior, effec-
tive, and accurate performance of the proposed DICAM
model to produce enhanced images similar to the ground-
truths on both datasets. Also, in terms of no-reference IQA,
histogram comparisons, and run-time we got competitive
results. In the future, potential works could be to de-
velop models which can not only enhance the degradations
caused by natural artifacts such as light attenuation but also
can consider the distortions that occur during storing and
transmission of images. Additionally, leveraging regional
relationships [58, 59] in information retrieval, coupled with
content-oriented enhancement [60], can contribute to the
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Table 11
Average run-time comparison of DICAM and four deep learning-based UIE methods on the testing subset of the UIEB dataset.

Method FUnIE-GAN Water-Net UIEC∧2-Net WaveNet DICAM

Time (Seconds) 0.0014 0.4839 0.0440 0.0573 0.0248

FLOPS (Billion (G)) 3.591G 71.42G 26.16G 72.59G 53.13G

production of improved images. This enhancement, in turn,
has the potential to increase the accuracy of object detection
methods. Moreover, it is vital to develop reference-free
metrics to evaluate the quality of underwater images and
compare the performance of the compared methods.
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