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Abstract. Centralised machine learning approaches have raised con-
cerns regarding the privacy of client data. To address this issue, privacy-
preserving techniques such as Federated Learning (FL) have emerged,
where only updated gradients are communicated instead of the raw client
data. However, recent advances in security research have revealed vulner-
abilities in this approach, demonstrating that gradients can be targeted
and reconstructed, compromising the privacy of local instances. Such at-
tacks, known as gradient inversion attacks, include techniques like deep
leakage gradients (DLG). In this work, we explore the implications of gra-
dient inversion attacks in FL and propose a novel defence mechanism,
called Pruned Frequency-based Gradient Defence (pFGD), to mitigate
these risks. Our defence strategy combines frequency transformation us-
ing techniques such as Discrete Cosine Transform (DCT) and employs
pruning on the gradients to enhance privacy preservation. In this study,
we perform a series of experiments on the MNIST dataset to evaluate
the effectiveness of pFGD in defending against gradient inversion attacks.
Our results clearly demonstrate the resilience and robustness of pFGD to
gradient inversion attacks. The findings stress the need for strong privacy
techniques to counter attacks and protect client data.

Keywords: Gradient Inversion Attacks · Federated Learning · Frequency
Transformation.

1 Introduction

The widespread adoption of Machine Learning (ML) and the increasing need for
large-scale privacy sensitive data have led to the emergence of Federated Learn-
ing (FL) [5]. FL provides a decentralised approach to train ML models, enabling
privacy preservation in the process. In a typical FL setting there will be a server
which orchestrates the federated rounds where each client contributes a local
model update trained on their private data. With this process the client’s pri-
vate data never leaves their device which gives a strong privacy guarantee. This
privacy-preserved nature of FL has gathered significant attention and interest
from various domains, including healthcare, finance, and smart devices.
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The decentralised nature of FL ensures that clients only communicate their
local updates, such as gradients or local model parameters, which significantly
enhances the safety of the process compared to sharing raw data with a cen-
tral system. However, recent research on attack scenarios has revealed potential
vulnerabilities even when only local updates are shared [12]. Such attacks are
known as gradient inversion attacks which is an active area of research in FL.
Some of the suggested defence strategies for gradient inversion attacks includes
adding noise, gradient compression, training with large batch sizes and complex
models. We note that methods like compression can be advantageous overall for
the FL setting as well as to defend such attacks. A key challenge identified in
recent literature is the trade off between model performance and communication
efficiency [10].

This work aims to explore and establish a novel research direction that utilises
the frequency space as a means to defend against gradient inversion attacks in
FL. By investigating and positioning the potential of utilising frequency space in
this context, we aim to provide valuable insights and propose an effective strategy
to counter the vulnerabilities posed by gradient inversion attacks within the FL
setting. This paper presents two key contributions. Firstly, it introduces pFGD,
a straightforward yet highly effective defense strategy specifically designed to
mitigate gradient inversion attacks in FL. Secondly, the paper conducts a com-
prehensive comparative study, evaluating the performance and efficacy of pFGD
against two commonn gradient inversion attacks.

2 Background

2.1 Federated Learning

FL setting introduced a paradigm to perform ML model training in a decen-
tralised manner. FL became widely known and adapted due to its privacy pre-
served manner, where client training data is never exposed or communicated to
the server. This privacy preserved nature enabled to do ML model training on
sensitive data like healthcare and finance. A typical FL setting consists of a server
and a large number of clients participating in many communication rounds. The
FL process typically commences at round t = 0, where the server distributes
an initial global model (w0) to all participating clients. At each communication
round t, the server selects K clients to engage in local training. Each client k
independently conducts training on its private data and, upon completion, com-
municates the updated model parameters or gradients back to the server. The
server then aggregates these models using methodologies such as FedAvg [6] and
FedSim [6], resulting in an updated global model at t+1. Since the clients data
is never communicated to the server there is a natural privacy guarantee with
FL setting.

2.2 Attacks in Federated Learning

In FL setting the threat surfaces are more exposed unlike in traditional ML set-
ting. The network of clients and the communication layer in FL setting can be
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considered the largest threat surface [2]. A taxonomy presented by [2] organises
attacks in FL setting into two types; model performance and privacy attacks.
Model performance attacks are performed during the training phase using poi-
soning attacks. By poisoning (i.e. manipulating) the model or local data it is
possible to degrade the overall performance of the model.

Privacy attacks in FL is a widely researched area due to the impact and risk of
exposure. FL is considered to be a privacy-preserved machine learning paradigm
as the private training data never leaves the client-side. Security researchers
have demonstrated attacks to extract such private data in the communication
stage or aggregation stage at the server (as demonstrated in Figure 1). These
types of attacks can be categorised further more as gradient inversion, member-
ship inference and generative adversarial network (GAN) reconstruction attacks.
Gradient inversion attacks have demonstrated the capability to reconstruct the
classes and individual data instances just by using the communicated client gra-
dients [8, 11, 12]. In this work we explore defending privacy attacks in FL and
specifically gradient inversion attacks.

2.3 Gradient Inversion Attacks in FL

A recent survey [9] proposed a taxonomy for gradient inversion attacks charac-
terising into two paradigms. The two paradigms are iteration and recursion based
attacks. Iteration based attacks first generates a pair of random (dummy) data
and labels, then by performing forward and backward propagation iteratively
the gradients can be optimised for data recovery. The reconstruction of private
data is viewed as an iterative process using gradient descent. When the distance
between the original and the generated gradients are close the private data can
be extracted. The second paradigm is when the attacker recursively calculate
the input of each layer by finding the optimal solution with minimised error. We
focus on the iteration-based attacks due to their adaptability and higher risk of
exposing client privacy. There is a growing list of gradient inversion attacks, few
of the widely used and studied methods include Deep Leakage from Gradient
(DLG) [12], improved-DLG (iDLG) [11], Client Privacy Leakage (CPL) [8] and
Inverting Gradients [1]. In this study, we employed DLG and iDLG techniques
to investigate the impact of our proposed method.

2.4 Frequency Space Transformation in FL

Frequency space transformation techniques have long been utilised in data com-
pression, with notable examples such as the Discrete Cosine Transform (DCT),
Discrete Fourier Transform (DFT), Fast Fourier Transform (FFT), and Princi-
pal Component Analysis (PCA). Most commonly used technique is the DCT,
mainly due to its computational efficiency and compact representation [7]. Pre-
vious work using the frequency space in FL are focused on compressing the data
instance and not the communication of updated gradients. In this study we use
DCT as the the frequency space transformation function to explore a practical
defence to gradient inversion attacks in FL.
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Fig. 1: Potential risks of gradient inversion attacks in FL

2.5 Attack Scenario

Threat Model We consider two potential attack surfaces to apply the proposed
method. As a network eavesdropper: Communication from a clients device to the
server can be compromised on the network layer by an attacker. As a curious
server, the FL server can be compromised or honest-but-curious, potentially
exploiting client training data. Figure 1 presents the threat model with respect
to the FL setting. The attack surfaces are presented with a red border.

Adversarial Goal In the gradient inversion attacks the goal is to reconstruct
client’s private data and its class label through the communicated gradients.

3 Method

Recent work on gradient inversion attacks like DLG [12] and iDLG [11] has
demonstrated the risk to privacy by exposing client private data. Both attacks
attempt to reconstruct client data instances and labels using a gradient match-
ing objective. In a typical FL setting gradients are shared to the server by clients
after a local training step. If an attacker obtains such gradients they can recon-
struct training instances (there are assumptions on these methods as discussed
in their methods). Gradient inversion attacks can be performed at any round in
the FL process, even before model convergence. In this section we discuss the
attack methods and present the proposed defense method, referred to as pFGD.

3.1 Attack Methods

In this work we use two attack methods from literature which are iteration-
based attacks. The selected attacks are DLG [12] and iDLG [11] which aim to
reconstruct (steal) a FL client’s local data instances using the communicated
∆W gradients. The attacker generates a pair of dummy data x′ and dummy
labels y′ which are used to generate dummy gradients ∆W ′. Then by optimising
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the dummy gradients to be close to the client gradients the dummy data will
be close to the real data. Equation 1 demonstrates the objective of the selected
gradient inversion attacks. Where W is the shared global model, F (.) shared
optimisation function and x′∗, y′∗ are the optimised results (i.e. reconstructed
data).

x′∗, y′∗ = argmin
x′,y′

||∆W ′ −∆W ||2 = argmin
x′,y′

||∂l(F (x′,W ), y′)

∂W
−∆W ||2 (1)

A key difference between DLG and its improved version iDLG is that the
way they extract the ground truth labels. Results presented by iDLG authors
suggest a 100% accuracy rate on generating the label from the gradients unlike
the DLG which are around 79%-90% on the same experiments.

3.2 Proposed Defence Method

We propose Pruned Frequency-based Gradient Defence (pFGD) which
can act as a defence mechanism to such attacks while preserving model per-
formance for FL setting. pFGD is a client-side frequency space based defence
mechanism against DLG and iDLG. Once the local training is performed the
updated gradients will be transformed into the frequency space ∆Ŵ using trans-
formation function T (.). Then pruned by a pruning function P (.) controlled by
α percentage. Figure 2 visually illustrates the workflow taking place on the client
side, providing a clear representation of the various steps involved in pFGD.

Fig. 2: Client-side workflow in pFGD

As discussed in Section 2.5 we assume the clients are honest and not a threat
to the FL setting. Client communication of pruned frequency gradients prevents
model inversion through noise and parameter reduction. pFGD transmission
from the client mitigates risks from curious servers and network eavesdroppers.

Frequency Space Transformation Based on our preliminary study, we have
chosen DCT-IV as the transformation function, denoted as T (.). DCT-IV has
been found to strike a balance between preserving model performance and en-
hancing communication efficiency through pruning on the frequency space. After
the gradients undergo transformation into the frequency space using the DCT,
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the resulting coefficients are structured to preserve the necessary information for
model aggregation. Additionally, the utilisation of the frequency space enables
efficient pruning, as it allows for identifying and discarding coefficients with lower
magnitudes without significantly compromising the overall model performance.

Parameter Pruning To defend against model inversion attacks such as DLG,
incorporating noisy gradients can be beneficial. However, a significant challenge
lies in determining an appropriate threshold for pruning gradients. The objec-
tive is to strike a balance where the pruned gradients introduce sufficient noise
to thwart such attacks while still maintaining comparable performance. In the
pruning function, denoted as P (.), within our proposed method, we adopt a
straightforward approach. We set the coefficients with the least frequency (cor-
responding to small magnitudes) obtained from the DCT transformation to zero.
By zeroing out these coefficients, we effectively prune the model, reducing its size
while aiming to retain essential information contained in the remaining coeffi-
cients.

3.3 Improving Resilience in FL
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Fig. 3: Adapting pFGD to existing FL methodologies

The objective of this work is to introduce a method that strengthens the
resilience of federated learning approaches against gradient inversion attacks.
These attacks have the potential to compromise the fundamental benefits of
FL, which is the preservation of client privacy. By incorporating the proposed
method, pFGD, resilience can be achieved through the utilisation of a generalis-
able technique such as the frequency domain (the frequency space) and pruning.
The pFGD method addresses the vulnerability to gradient inversion attacks by
leveraging the inherent properties of the frequency space and pruning. Overall,
the aim of this work is to establish a resilient FL methodology that effectively
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combats gradient inversion attacks, thus enabling the continued protection of
client privacy, which is a core principle of FL.

Figure 3 illustrates the adaptation of pFGD to existing FL methodologies.
This adaptation introduces Steps 5 and 6, specifically designed to enhance re-
silience against model inversion attacks in the FL setting. Step 8 is used to
inverse the frequency space model to raw space before model aggregation. In
Figure 3, Steps 2 and 7 represent the communication between the client and
server, highlighting the potential vulnerability where an attacker can intercept
and compromise the privacy of the system.

3.4 pFGD Algorithm

Based on the aforementioned considerations, Algorithm 1 outlines the workflow
required to implement pFGD. Note that the algorithm incorporates a reference
to the attacker method, which assumes the attacker possesses knowledge of in-
verting the DCT through the inverse transformation function T̂ (.).

Algorithm 1 Pruned Frequency-based Gradient Defence

Require: W : global model, α: Pruning Rate
Require: T (.) DCT Function, P (.) Pruning Function
1: ∆W ← update W using SGD on local data
2: procedure pFGD(∆W , α)

3: ∆Ŵ = T (∆W ) ▷ DCT transformation

4: ∆Ŵp = P (∆W,α) ▷ Tranformed Space Pruning

5: return ∆Ŵp

6: end procedure
7: procedure Attacker(∆Ŵp)

8: ∆W ← T̂ (∆Ŵp) ▷ Inverse DCT transformation
9: DLG(∆W ) or iDLG(∆W ) ▷ Perform Attack Scenario
10: end procedure

4 Experiment Setup

In this introductory study, we aim to introduce and examine the potential of
adapting the proposed pFGD to defend against gradient inversion attacks. First
we study the impact on privacy on communicating client gradients in the fre-
quency space, then we explore to what extent can parameter pruning in the
frequency space can defend gradient inversion attacks. To evaluate the impact
on privacy by communicating model parameters in the frequency space we use
two attack methods and one image dataset. DLG [12] and iDLG [11] are selected
to study the performance of pFGD. The two methods will be compared with and
without the DCT transformation during the communication phase.
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Dataset We select MNIST [3] dataset which is a 10-class handwritten digit
recognition image dataset. A single image dimensions are 28x28 and has one
channel. MNIST is commonly used in FL and security benchmarks as it provides
a realistic setting. MNIST’s single-channel images aid performance assessment
due to sensitivity to variations. Selecting MNIST for comparison with prior works
enhances understanding of the approach against gradient inversion attacks.

Configuration We adopt the experimental settings from [11,12] to ensure con-
sistency and comparability. For the attack scenarios, we utilize LBFGS [4] with
a learning rate of 1, batch size of 1 and 100 attack iterations. To mitigate the
influence of random bias, we conduct 1000 runs of the experiments on LeNet
models randomly initialised (i.e. 1000 random initiliased models on a unique
data instance). Experiments will terminate at the 100th iteration or if the loss
is below 0.000001.

Pruning As highlighted in Section 3.2, pruning plays a significant role in in-
troducing noise to the gradients, thereby diminishing the effectiveness of the at-
tacks. In our experiments, we ensure consistency by using a fixed pruning rate of
α = 1%, resulting in the pruning of 133 parameters. Additionally, we performed
secondary experiments with a 0.1% pruning rate (11 parameters pruned) to en-
sure fair comparison and assess pruning’s impact on pFGD’s defense against
gradient inversion attacks.

4.1 Comparative Study

To gain a comprehensive understanding of the impact of pFGD technique, we
explore multiple variants of the selected baselines. Specifically, for the DLG and
iDLG attack methods, we consider the following four variants: 1. Vanilla (original
method without modifications), 2. Vanilla with pruning (pruning applied to the
vanilla method), 3. DCT (applying only DCT transformation) and 4. DCT with
pruning (pruning applied to the DCT transformed gradients) By examining these
different variants, we can assess the effectiveness and comparative performance of
pFGD in various configurations and scenarios. The experiment setup is publicly
accessible on GitHub1 for reproducibility.

Evaluation Metrics We log the Mean Squared Error (MSE) of the recon-
structed instance and the original image at each iteration. These MSE values
are used to analyse and evaluate the behaviour of the proposed method. By
counting the number of successful bypasses at each threshold, we gain insights
into the effectiveness of the different variants in defending against the respective
attacks. By considering the minimum MSE value from each experiment ensures
that we capture the reconstruction’s performance under various conditions and
iterations.

1 https://github.com/chamathpali/pFGD
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5 Results and Discussion

We conducted a comparative study of the four variants on two attack methods.
Figure 4 visually presents the reconstructed images at different MSE threshold
points, allowing for an assessment of their readability. By observing these visual

1.018258 0.592077 0.106574 0.032460 0.010582 0.004824 0.001336

0.0001100.000425 0.0000010.0000130.000089 0.000035 Original

Fig. 4: Reconstructions of digit 9 are displayed at various MSE points, indicated
above each image, ranging from higher to lower values. The final image presents
the original digit 9 for comparison.

representations, we can assess the success of the reconstructions and identify
any potential leakage of private information. At MSE= 0.001 (red text color in
Figure 4), the digit 9 becomes discernible upon closer examination. The results
are presented in Figure 5, which illustrates the number of experiments that were
able to surpass different MSE thresholds. In Figure 5 the bar plots consists of
two colours, blue and orange which is for DLG and iDLG experiments respec-
tively. Plots with the squared pattern represent the pruned variants and with
diagonal patterns represent the DCT variants. In the graph legend, the notation
‘ P’ represents the pruned variants. We observe when MSE= 1 there are only 24
and 12 experiments passing the threshold for DLG and iDLG respectively when
DCT with pruning is applied. Additionally, we found that there were no recon-
structions of DCT with pruning when the MSE was less than 0.9. In contrast,
we found that reconstructions were identified even when the MSE reached a low
value of 0.005 for pruning on the vanilla methods.

When using pruning on vanilla gradients without DCT there is still a high
risk of leaking privacy sensitive information. With our experiments we were able
to visually identify these reconstructions as the original image. For the MNIST
dataset to properly identify a digit having a reconstructed image with MSE value
of approximately 0.001 is sufficient for accurate digit identification. This cutoff
point can differ from dataset to dataset and for different individuals eyesight. But
our key observation is having pruning of α = 1% is still able to be reconstructed
on vanilla gradients. Additionally, we performed experiments with a pruning rate
of α = 0.1%, results and plots are available on the GitHub repository.
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Fig. 5: Number of reconstructions at different MSE thresholds on MNIST dataset
with α = 1% with 4 variants on DLG and iDLG

The results obtained in our study provide compelling evidence that the com-
bination of DCT with pruning techniques has significantly enhanced the defense
against gradient inversion attacks. Throughout the 1000 experiment runs, we
did not observe any reconstructions when applying DCT with pruning (pFGD)
with an MSE below 0.9. These reconstructions lacked readability, rendering them
essentially non-existent. In contrast, our research findings reveal that the appli-
cation of pruning alone to the vanilla gradients, in the absence of employing
the DCT, still poses a considerable risk of privacy breaches. For the MNIST
dataset, our findings indicate that achieving a reconstructed image with an MSE
of approximately 0.001 is sufficient for accurate digit identification. Around the
MSE value of 0.005, we noticed a significant indication of a digit with potential
lines emerging in the reconstructions. However, it is important to note that this
threshold may vary across datasets and individual visual strengths. Our exper-
iments visually demonstrated the identification of reconstructed images as the
original ones in such cases. Taken together, these results highlight the resilience
and efficacy of the proposed pFGD in countering gradient inversion attacks.

6 Conclusion

In this study, we introduced pFGD, a defense mechanism designed to mitigate
gradient inversion attacks in federated learning. By applying frequency transfor-
mation using DCT on the updated gradients and incorporating pruning before
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communication, pFGD effectively enhances the resilience of FL models against
such attacks. In our initial investigation, we conducted a comparative study in-
volving two attack scenarios and four variants for each on the MNIST dataset.
Our experimental results provide compelling evidence that utilising pFGD of-
fers superior protection against gradient inversion attacks compared to pruning
with raw gradients alone. Additionally, we observed that the implementation of
pFGD using the frequency space does not lead to any performance degradation.
One of the notable advantages of pFGD is its practicality, as it can be easily
applied to different FL methodologies with minimal modifications.

Moving forward, we intend to expand our study by incorporating additional
datasets and baselines to further evaluate the generalisability and robustness of
pFGD. Overall, our findings highlight the effectiveness and potential of pFGD as
a defence mechanism against gradient inversion attacks in FL. We anticipate that
further exploration and refinement of pFGD will contribute to strengthening the
security and privacy of FL setting.
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