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Abstract
The innovative computing idea of Internet-of-Things (IoT) architecture has
gained tremendous popularity over the last decade, resulting in an exponen-
tial increase in the connected devices and the data processed in the IoT net-
works. Since IoT devices collect a massive amount of sensitive information
exchanged over the traditional internet, security has become a prime concern
due to the more frequent generation of network anomalies. A network-based
anomaly detection system can provide the much-needed efficient security solu-
tion to the IoT network by detecting anomalies at the network entry points
through constant traffic monitoring. Despite enormous efforts by researchers,
these detection systems still suffer from lower detection accuracy in detect-
ing anomalies and generate a high false alarm rate and false-negative rate in
classifying network traffic. To this end, this paper proposes an efficient Multi-
stage Spectrogram image-based network Anomaly Detection System (MS-ADS)
using a deep convolution neural network that utilizes a short-time Fourier
Transform to transform flow features into spectrogram images. The results
demonstrate that the proposed method achieves high detection accuracy of
99.98% with a reduction in the false alarm rate to 0.006% in classifying network
traffic. Also, the proposed scheme improves predicting the anomaly instances
by 0.75% to 4.82%, comparing the benchmark methodologies to exhibit its effi-
ciency for the IoT network. To minimize the computational and training cost
for the model re-training phase, the proposed solution demonstrates that only
40500 network flows from the dataset suffice to achieve a detection accuracy
of 99.5%.

1 INTRODUCTION

The Internet-of-Things (IoT) has emerged as a novel, revolutionary, and ground-breaking computing idea over the previ-
ous few years that has been widely welcomed by the technological sectors, such as smart cities having smart homes, smart
healthcare, smart industries, smart grids, smart transportation, etc. to name a few.1 It contains many IoT devices (called
Things) that have limited storage, computation, and communication capabilities and are embedded with various types of
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sensors and actuators to gather and share sensitive information over the conventional Internet.2 The IoT market is pre-
dicted to generate massive revenue over the next decade, starting with 2 billion U.S. dollars in 2020 to grow to 8.131 trillion
U.S. dollars by 2030.3 This prediction attracts stakeholders, such as suppliers, vendors, corporations, manufacturers, etc.,
to invest in such ground-breaking technology.1,4

In an IoT network, a massive amount of critical and sensitive data is captured by the IoT devices and then exchanged
over the internet with other IoT devices or cloud data centers for storage and processing purposes. For instance, in the
smart healthcare sector, the patient’s health information, such as heart rate, blood pressure, etc., is gathered by IoT
devices and then exchanged over the internet with healthcare centers.5 Similarly, smart cars are equipped with many
sensors that continuously collect sensitive information about the car and its surroundings in the smart transportation
industry. This critical information is then shared with the neighboring vehicles to help ensure road traffic safety and fuel
consumption improvement by optimizing the journey times.6 Hence, the technological paradigm of connecting smart
devices to the internet for communication is quite significant and has improved the quality of living efficiently and
cost-effectively.7

However, security and privacy from malicious threats are needed due to the sensitive and critical nature of the data col-
lected and processed within the IoT network. For instance, any compromise to the patient’s health records by an attacker
may cause a risk to their lives.1 Similarly, compromises to the smart car Wi-Fi system may risk the in-car data, devices,
and road safety messages.7 To provide the required security to IoT networks against security threats, various security pro-
cedures, such as firewalls, authentication methods, different encryption schemes, and antiviruses are currently adopted
as the first protection shield.8 However, due to the integration of many connected IoT devices and the massive volume of
data production, new anomalies that can be either novel or the mutation of an old anomaly are frequently generated. For
strengthening the IoT network security, a second protection shield provided by an intrusion detection system (IDS) can be
deployed.2,4 An IDS is a system that can detect intrusions by constantly monitoring the network traffic for any malicious
behavior.9 It can be classified into different types based on its deployment or detection strategy. Regarding the deployment
strategies, the IDS can be host- or network-based. While in terms of detection strategy, the IDS can be signature-based,
anomaly-based, specification-based, or hybrid detection-based.10

Although the idea of IDS was first coined in 1980 by Jim Anderson, many IDS products have evolved to satisfy net-
work security needs.11 However, immense technological growth has resulted in a significant expansion of network size,
interconnected devices, and the applications and the data handled, thereby has demanded an improvement in the current
IDS systems, which have shown inefficiency in detecting new malicious security threats by monitoring the vast network
traffic behavior. Hence resulting in a decline in the detection accuracy in detecting security attacks and a rise in the false
alarm rate (FAR) and false negative rate (FNR).12

Researchers have recently explored integrating IDS with artificial intelligence (AI) methods such as machine learning
(ML) and deep learning (DL) to address these issues. ML and DL techniques are extremely powerful tools that have gained
significant popularity over the last decade due to the invention of very powerful Graphics Processing Units (GPUs).13,14

Recent studies have highlighted the importance of ML, and DL approaches for network-based IDS (NIDS) in effectively
processing the network traffic data and learning the meaningful patterns to help predict them as benign or anomaly
flows. The ML approaches heavily rely on feature engineering for learning valuable features from the network flow.15 In
contrast, DL approaches are promising in automatically learning the needful features due to the deep architecture without
requiring feature engineering and human involvement, making DL an ideal tool that can be integrated with the NIDS for
improving anomaly prediction in an IoT network.

This research mainly focuses on the network-based IDS (NIDS) deployment strategy to secure the entry points of
the IoT network from all types of intrusions by adopting the anomaly detection-based detection scheme. A multistage
spectrogram image-based anomaly detection system is proposed using a deep convolution neural network (CNN) that
utilizes a short-time Fourier Transform (STFT) to transform flow features into spectrogram images. Deep CNN then
processes these images to perform the efficient anomaly prediction task. This research extends our previous works16,17

based on the spectrogram approach for anomaly detection systems (ADS). The proposed works used a single-stage DL
approach for the traditional network16 and IoT network,17 respectively.

The main contributions of this study are four-fold. (1) To extensively discuss the state-of-the-art DL-based net-
work anomaly detection methodologies. (2) To propose a multistage effective anomaly detection method for an
IoT network using spectrograms and deep CNN. (3) To generate a Spectrogram images dataset from the BoT-IoT
dataset (4) To evaluate the effectiveness of MS-ADS using the BoT-IoT dataset against different ADS models based
on supervised DL algorithms. We also extensively compared MS-ADS with some of the recent state-of-the-art
ADS works.
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The rest of the paper is organized as follows: Section 2 provides the recent works on DL-based ADS solutions
for IoT. Section 3 details the preliminary concepts, followed by the system model explanation in Section 4. Section 5
extensively discusses the dataset, experimental setup, and simulation results. Finally, Section 6 concludes this research
article.

2 RELATED WORK

Researchers have widely utilized AI methods over the last decade to propose efficient ADS. Most of the proposed ADS
solutions for an IoT network are ML-based. These solutions have improved the accuracy and minimized the FAR and
FNR. However, their performance will be saturated at a certain point due to the gigantic volume of information collected
by IoT devices. So DL-based is the preferable choice in such IoT scenarios due to its ability to learn optimal features
automatically from the raw data to predict efficiently.18

Aversano et al.19 proposed a hybrid Autoencoder (AE) and DNN-based IDS to protect IoT networks from secu-
rity threats such as DoS/DDoS, Scanning, Mirai, and malware attacks. The AE performs the feature space reduc-
tion task followed by traffic prediction and classification using DNN. The methodology exhibited a lower detec-
tion accuracy for Benign and Mirai traffic. Another DL-based ADS is proposed by Wei Ma using the improved
method of activation function in Recurrent Neural Network (RNN) for the cloud computing system.20 The pro-
posed optimized RNN-based detection system improved the detection rate, and effectively reduce the detection time
and cost.

Similarly, another hybrid method is proposed by Popaala et al.21 using AE arranged in Long Short-Term Mem-
ory (LSTM) arrangement (LAE) and bidirectional LSTM (BLSTM). The LAE task is to perform feature extraction
for dimensionality reduction. At the same time, the BLSTM is used to perform the classification task by predict-
ing the anomalies. Again, the accuracy for detecting Benign flows declined by 6.6% compared to the anomaly
flows.

Another DL-based IDS is proposed using the deep recursive recurrent neural by Almiani et al.22 for IoT network pro-
tection from different intrusions, particularly DoS, Privilege Escalation (R2L and U2R), and probe anomalies. It comprises
two main engines: traffic analysis engine and classification engine. The system can be deployed at the fog computation
layer close to IoT devices and the end-users. Using two stages of network packet filtering helps to detect the anomalies
undetected by the first detection level, which improves detection accuracy. However, their proposed methodology is eval-
uated using a very old NSL-KDD dataset collected from the traditional network flows. The detection accuracy for the
minority class anomalies, such as Privilege Escalation anomalies, was on the lower side, exhibiting only 77% and 65%
detection accuracy for U2R and R2L anomalies.

Similarly, Diro et al.23 proposed a distributed DNN-based attack detection system for securing the IoT network. They
proposed deploying the attack detection system at the fog nodes as these are closer to the smart infrastructure of the IoT
in a distributed fashion. They also used a coordinating master node deployed at the edge of the distributed fog network
for efficient parameter sharing.

Thamilarasu et al.24 proposed a three-stage IDS framework using Deep Belief Network to fabricate the feed-forward
DNN as the perceptual learning model for IoT network prevention. The model is evaluated using real network traces and
simulation to show the superiority of the proposed solution in detecting blackhole, opportunistic service, DDoS, sinkhole,
and wormhole attacks.

Sriram et al.25 proposed a DL-based IoT botnet attack detection framework based on network traffic flows. The pro-
posed solution captures the network flows, transforms them into connection records, and uses a DL-based solution to
detect anomalies from compromised IoT devices. A real-time hybrid anomaly and specification-based IDS is proposed by
Bostani et al.26 to detect routing attacks such as sinkhole and selective-forwarding attacks in IoT networks. Reddy et al.27

proposed a novel DL-based framework for classifying anomalies from normal behaviors based on the type of attack in
the Distributed Smart Space Orchestration System traffic traces data set. The proposed solution exhibits a noticeable
improvement for most of the attacks within the dataset.

The literature suggests that many proposed solutions were effective in detecting most of the considered anomalies.
However, the detection accuracy was not very promising for a few anomalies. Also, some DL-based methodologies exhib-
ited lower detection accuracy for Benign traffic, comparing the anomalies causing extra overhead to the detection model.
Literature shows a tradeoff between the model’s complexity and detection accuracy. A few studies also exhibited that the
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detection accuracy is improved at the cost of increased model complexity, considering training time and the resource con-
sumed. Also, DL research is still in its early phase for the ADS for IoT scenarios, with excessive research room available
that needs to be explored by researchers to improve IDS efficiency in detecting both new and old attacks efficiently and
correctly. To this end, we explore using a CNN to propose our efficient MS-ADS solution utilizing the spectrogram images
generated from the IoT network flows.

3 PRELIMINARY CONCEPTS

This section furnishes the details about the convolutional neural network and the spectrogram and IoT hierarchical
architecture concepts that are an integral part of MS-ADS.

3.1 Convolutional Neural Network

CNN is one of the promising feed-forward DL mechanisms that has proven its effectiveness in processing the specific
arrangement of data in an array-like topology (e.g., time series data) or grid-like topology (e.g., an image with a grid-like
pixel arrangement).28,29 CNN employs a specialized linear mathematical operation called convolution in at least one of
its layers. A typical CNN comprises an input layer, a stack of a convolutional layer (CL) with a specific activation function
and a pooling layer (PL), the fully connected layer (FCL), and a final classification output layer, as depicted in Figure 1.
The multiple layers of the CL and PL stack arrangement perform the feature extraction and feature map reduction tasks.
At the same time, the FCLs and classification output layer handle the classification and prediction tasks.16 The different
layers of CNN are discussed in the following text.

3.1.1 Convolutional layer

A CL constitutes the core of the CNN that adopts the convolution operations for extracting the useful features from the
input image. This layer incorporates the convolution operation by utilizing the dot product between the input image and
the convolution kernel (filter) to learn features and generate the feature map. The operations performed in this layer can
be shown mathematically,30,31

Fm = bm +
∑

n
(Xn ∗ Knm) (1)

where Fm is the mth feature map, bm is the mth bias function, and Xn is the nth input. Knm is a convolutional kernel
connecting nth input with mth output. The symbol ∗ represents the convolution operation. The feature maps are then
passed through an activation function 𝜎 to generate layer output Ym.

Ym = 𝜎 (Fm) (2)

F I G U R E 1 Deep CNN block diagram.
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After the back-propagation step during CNN training, the biases and weights adjustment constitute competent feature
detection filters.

Activation functions
In a neural network, the activation functions control the layer’s output. These functions can be linear or nonlinear depend-
ing upon the type of application used. This study employs ReLU as an activation function for the CL, while sigmoid and
softmax as activation functions for the final classification layer for binary and multiclass classification and prediction,
respectively. Mathematically, these activation functions for any given input x are given as,

ReLU(x) = max(0, x) (3)

sigmoid(x) = 1
1 + e−x (4)

softmax(x)k =
exk

∑N
i=1exi

for k = 1, … ,N (5)

3.1.2 Pooling layer

The PL follows the CL layer to reduce the feature maps using the nonlinear down-sampling process (such as maximum
over a nonoverlapping subset of the feature map employed in this research). This process effectively reduces the image size
to improve memory usage, eventually reducing the number of parameters to help avoid model overfitting. Also, dropout
is employed as the regularization technique to enhance the model’s accuracy by preventing its overfitting.

3.1.3 Fully connected layers

FCLs typically follow the multiple layers of the CL and PL stack. It first converts the stack output image, the reduced 2-D
image matrix, to a 1-D vector and then passes it through the network of dense layers to prepare it for classification.

3.1.4 Classification layer

The last layer of the CNN is generally a classification layer that employs a specific activation function to classify network
traffic by performing prediction tasks. Sigmoid is the activation function when network traffic is classified as benign or
an anomaly. At the same time, softmax is the activation function when the network flows are classified as benign and one
of the specific anomaly classes.

3.2 Spectrogram

A spectrogram is a pictorial representation of the signal’s visual details. It depicts the signal’s frequency with time in the
form of an image by representing the magnitude of the frequency at a specific time contained in the signal by varying the
color heatmaps against the vertical frequency axis to express the energy.32 Spectrograms are very efficiently utilized in
different fields, for instance, speech analysis33 and the medical field for ECG analysis.34 In this study, we adopted the STFT
technique for performing the time-frequency analysis to obtain the spectrogram images from the available discrete data.
The STFT will first divide the discrete-time signal into small chunks using windowing techniques such as the Hanning
window, etc., and then compute each chunk’s Fourier transform individually. The STFT of a discrete-time signal x[n] is
mathematically given as,34,35

STFT{x[n]} = X(m, 𝜔) =
∞∑

n=−∞
x[n]w[n −m]e−j𝜔n (6)
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where X(m, 𝜔) is the STFT of the discrete-time data samples x[n] represented as STFT{x[n]}. Also, m is the reference
time indicating the location in the time domain signal, while 𝜔 is the angular frequency. The w[n] is the analysis window
function that is only non-zero during the interval [0,N − 1] and is used to divide x[n] into small chunks, The spectrogram
is then calculated as,

Spectrogram (m, 𝜔) = |STFT{x[n]}|2 = |X(m, 𝜔)|2 (7)

where the energy is distributed and visualized in the form of heatmaps in the two-dimensional time-frequency plane.36

3.3 IoT hierarchical architecture

The IoT has revolutionized networking in recent years with the potential to enhance the overall quality of life. It contains
a vast network of interconnected internet-enabled devices equipped with sensors, storage, computational, and communi-
cation capabilities. It generates a vast amount of sensitive data that is shared over the unpredictable internet and needs to
be secured. This study proposes the ADS for the typical three-layered IoT architecture,4,37 as depicted in Figure 2. It con-
sists of a perception layer, network layer, and application layer. The perception layer is the lowest, also called the physical
layer. It involves the hardware equipment and devices, such as sensors, actuators, etc., that regularly collect data and then
exchange it using various communication standards and protocols like Bluetooth, Wi-Fi, ZigBee, 6LowPAN, etc. The per-
ception layer performs the task of device-to-device communication, anomaly detection, and sending/receiving the data
to and from the network layer.38

F I G U R E 2 A typical three-layered hierarchical IoT architecture. Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
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The network layer is the gateway layer to ensure the routing of data packets using different communication standards
such as 4G, 5G, Wi-Fi, ZigBee, IPv6, etc. It controls the communication between the perception layer and the application
layer. The perception layer also performs the task of device-to-device transmission, anomaly detection, and sending and
receiving data from the application and perception layers.38

The final application layer, also called the software layer, processes the data for visualization for end users’ applica-
tions, for example, smart health monitoring. This layer is also responsible for handling the cloud-based activities of the IoT
network. Some protocols used in this layer are the Constrained Application Protocol (CoAP) and Data Distribution Ser-
vice (DDS). The application layer provides services to the end-user, application-to-application communication, anomaly
detection, and sending and receiving data to the network layer.38

4 PROPOSED SOLUTION

We adopted a NIDS-based anomaly detection strategy to secure the IoT network from all possible anomalies. The proposed
multistage spectrogram image-based anomaly detection system using a deep convolutional neural network (MS-ADS)
is deployed at the entry points of an IoT network, for example, at the edge router considering the network layer of a
three-layered IoT architecture. Also, MS-ADS will use the cloud or network fogs to maintain the network flow definitions
and perform the training in the cloud servers or network fogs to ease the computational and storage requirements. The
MS-ADS, as depicted in Figure 3, is a multistage security solution comprised of four main stages: the Data acquisition
and preparation stage, the Spectrogram dataset generation stage, the Deep CNN-based Anomaly Detection stage, and the
continuous learning stage.

F I G U R E 3 Proposed MS-ADS model.
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4.1 Data acquisition and preparation stage

This stage will acquire the network data packets, extract the useful features, and then process them to remove any redun-
dant information to prepare for the next stage. The network traffic will be intercepted either within the network, such
as traffic from the IoT devices, or from outside the IoT network through the internet. For this study, we assume that all
the communication by the IoT devices within the IoT network is routed through the edge router where our proposed
MS-ADS is deployed.

The network traffic data can be intercepted using network sniffing tools such as TCPdump, Wire-
shark, Ettercap, Argus, EtherApe, etc. The main tasks of the sniffing tools are to acquire, examine, analyze,
and visualize the network packets.39 The sniffer thoroughly analyzes the captured network flows to gen-
erate the raw packet features. These features are then stored to form a dataset which is the first step in
the generation of the feature set, which will be used to train the DL model in the last stage of MS-ADS.
Assume that Dnm represents the data stored as a dataset with n network packet records of m features each
such as,

Dnm =

⎡
⎢
⎢
⎢
⎢
⎢⎣

f11 f12 · · · f1m

f21

⋮

fn1

f22 · · ·

⋮ ⋱

fn2 · · ·

f2m

⋮

fnm

⎤
⎥
⎥
⎥
⎥
⎥⎦

(8)

The dataset is then passed to the Data preparation stage to pre-process by first removing redundant records with null
or infinite features. Then encoding of the categorical features is performed using a one-hot encoding mechanism followed
by normalizing the numerical features based on each feature value between 0 and 1.

4.2 Spectrogram dataset generation stage

The main task of this stage is to generate the spectrogram images using the Dnm dataset prepared in stage 1. To for-
mulate the spectrogram generation process, we consider a single record k within the dataset as a discrete-time vector
Dkm = xk[n] = {fk1, fk2, · · · , fkm}with features values considered as sample values for each discrete time vector. These sam-
ples are then passed to the STFT block to find the frequency representation of the signal for time-frequency analysis,
such as,

Xk(m, 𝜔) =
∞∑

n=−∞
xk[n]whn[m − n]e−j𝜔n (9)

where Xk is the STFT of the signal xk[n] using the Hanning window function whn[n], that is mathematically represented
as,

whn[n] =
1
2

(
1 − cos

(
2𝜋 n

N

))
, 0 ≤ n ≤ N − 1 (10)

where N indicates the time observation length. Now to generate the spectrogram, the square of the magnitude of the Xk
is calculated as,

Spectrogram (m, 𝜔) = |Xk (m, 𝜔)|2 (11)

Similarly, spectrogram images of all the network traffic records in the dataset are generated. All the spectrograms
generated are then re-processed to remove both x-axis (time) and y-axis (frequency) values to treat them as a specialized
image. These images are then stored in another dataset called the Spectrogram Images Dataset, which will be used in be
next stage to train the CNN model for efficient prediction.
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4.3 Deep CNN-based anomaly detection stage

This stage is the heart of MS-ADS to detect anomalies in an IoT network. It is further subdivided into two substages.
Substage-1 will perform the initial screening of the data packets by performing the binary classification to predict network
packets as either benign or anomaly. The benign packet can then proceed to the network without further action. In
contrast, the predicted anomaly packet is forwarded to substage-2, and an initial alarm signal is generated to notify the
administrator. Substage-2, once it receives the anomaly packet, will predict the exact type of the anomaly to help the
administrator take timely action.

For substage-1, CNN is chosen because of its ability to process, learn and predict efficiently from the images. The
image from the spectrogram images dataset will be input into the deep CNN network. The spectrogram image is input as
(28× 28× 3) images. The first layer of CNN is the CL which will perform the convolution task on the given spectrogram
image using the convolutional kernel of dimension (3× 3), with the stride of 1, and the padding is kept as same to keep
the same spatial dimensions as the input. Stride describes the number of pixels that shift over the image matrix. Also, the
padding process means adding empty pixels around the image to help preserve the original image dimensions. For the
CL, ReLU is used as an activation function. The CL will transform the spectrogram into the image into (28× 28× 32) due
to 32 learning filters.

The PL will follow the CL layer to reduce the size of the CL feature maps. The PL strategy followed in this study is the
Max pooling that will choose the highest value in each patch of the feature map. The pooling layer filter is (2× 2) with
the stride of 1 and keeps the padding the same to match the input spatial dimension. As a result of PL, the feature map is
transformed and reduced to (14× 14× 32), which is then forwarded to the classification block for the binary classification.
The classification block is constructed from the flatten layer followed by a dense neural network to prepare it for the
prediction task as shown in Figure 1. The flatten layer will convert the 2-D matrix into a 1-D array of 3136, which is
then passed through a fully connected dense network. This study uses a single FCL with 128 neurons for substage-1. The
activation operation considered in the FCL is ReLU. The last layer of substage-1 is the classification layer, with only two
neurons representing either the flow as benign or anomaly. The sigmoid is used as an activation function for the binary
classification layer.

The substage-2 will be engaged only once an anomaly packet is detected by MS-ADS. In that case, an alarm will be
sent to the network administrator to notify about the anomaly flow. Also, the detected anomaly flow will be processed in
substage-2 to find out the exact nature of the anomaly. The main motive behind allowing benign traffic to pass through
directly without activating substage-2 is to reduce the complexity of the MS-ADS. For this study, we focus on detect-
ing four different types of anomalies as DoS, DDoS, Reconnaissance, and information theft. The main architecture of
the CNN used for substage-2 is almost similar but has more feature extraction and classification block layers. The spec-
trogram image of the detected anomaly flow is then forwarded to the substage-2 as (28× 28× 3) image, which will be
transformed to (28× 28× 32) and (14× 14× 32) feature map by the first set of CL and PL layer. Again, ReLU is the acti-
vation function used for the CL layer. Also, the used filters for CL and PL are (3× 3) and (2× 2), respectively, with stride
one and the same pooling to keep the same spatial dimension as the input. The second set of CL and PL layers transform
the feature maps into (14× 14× 64) and (7× 7× 64) feature maps using 64 filters of (3× 3) and (2× 2) each for CL and PL,
respectively.

The (7× 7× 64) feature map is first flattened into a 1-D vector of 3136 in the classification block. Then it is passed
through a 2-layer dense FCL with 128 neurons each. Finally, it is passed through the classification layer with four neu-
rons, one each for DDoS, DoS, Reconnaissance, and information theft anomaly, to perform the multiclass prediction
task. The softmax activation function is used in this study for the multiclass classification task to find the exact type
of anomaly, which can help the network administrator to take necessary actions based on the nature and intensity of
the threat.

4.4 Continuous learning stage

This stage is an important block for the MS-ADS and will help keep the detection model up to date with the new anomaly
patterns. In the context of IoT, network threats are increasing daily with the more frequent generation of anomalies that
are either the mutation of an old anomaly or new ones. So, to make MS-ADS more efficient in detecting all anomalies and
flexible for deployment, a continuous learning stage is included,40 as depicted in Figure 4. It will update the model in the
offline mode in the cloud servers/fog nodes by the network administrator.
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10 of 21 AHMAD et al.

F I G U R E 4 Flow diagram for continuous learning stage.

This study considers the different conditions to initiate the model learning process. These conditions include
checking whether it is a regular learning process, a new anomaly detected, or a pattern added by the network admin-
istrator, the ADS profile updated by an administrator, or if the model generates enough false positives and false
negatives.

5 RESULTS AND ANALYSIS

5.1 Dataset

This study utilizes the BoT-IoT dataset41 to evaluate MS-ADS. The dataset is by the Cyber Range Lab, UNSW Can-
berra, Australia, using the realistic network environment for the IoT network. The Bot-IoT dataset is generated using a
testbed consisting of Virtual machines, simulated IoT scenarios, and feature extracting and analytic tools. The dataset
contains network traces from five different IoT scenarios from a smart home system: a weather station, smart fridge,
motion-activated light, smart garage door, and a smart thermostat. The dataset files are publicly available in the PCAP
and CSV formats. The CSV file contains 46 features, but it lacks flow-based features. The feature set is improved by Ullah
et al.42 by extracting more network and flow-based features from the PCAP file provided in the Bot-IoT dataset and is
made publicly available in the CSV format. For this study, we adopted 82 features of different data types, such as integer,
float, and categorial.

The Bot-IoT dataset contained the network traces for the five different classes: the Benign class and the Benign,
DDoS anomaly, DoS anomaly, Reconnaissance (Information gathering) anomaly, and Information theft anomaly classes.
Each anomaly class also contains a subcategory under which the network flows for other types of anomalies are gath-
ered. The dataset’s DDoS and DoS anomaly traces are collected considering TCP, UDP, and HTTP protocols. While the
Information theft anomaly flows are collected considering Data theft and Keylogging instances. Also, the Reconnais-
sance anomaly instances include the traces of Service Scanning and OS Fingerprinting. Our focus in this study is to
detect and predict only the main category of anomalies. Since, for IoT networks, all four considered anomalies can cause
severe threats to the network, detecting and reporting the main anomaly category will be sufficient to prevent IoT net-
works. Adding another block to detect the subcategories will add more overhead for the IoT network. However, to extract
each anomaly category, an equal number of flows from different subcategories is included for fair prediction tasks. The
detailed number of flows included in this study for the binary and multiclass classification tasks considering the benign
and the anomaly (DDoS, DoS, Reconnaissance, and Information Theft) classes are detailed in Table 1. All extracted
features are cleaned to remove the infinite, empty, and duplicate entries, followed by the encoding and normalization
process.
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AHMAD et al. 11 of 21

T A B L E 1 BoT-IoT dataset distribution.

Binary classification Multiclass classification

Category No. of instances Category No of instances

Benign 30 000 Benign 30 000

Anomaly 105 000 DDoS 30 000

DoS 30 000

Reconnaissance 30 000

Information theft 15 000

Total flows 135 000 Total flows 135 000

F I G U R E 5 Samples from spectrogram images dataset.

T A B L E 2 A confusion matrix.

Predicted class

Anomaly Benign

Actual class Anomaly True positive (TP) False negative (FN)

Benign False positive (FP) True negative (TN)

5.1.1 Spectrogram images dataset

This study focuses on training the DL algorithms in the deep CNN Anomaly Detection stage using spectrogram images.16

For that, spectrogram images of the pre-processed dataset are generated using Equations (9)–(11) and are stored as another
dataset called the spectrogram images dataset. Figure 5 depicts each class’s random spectrogram image sample from the
spectrogram images dataset.

5.2 Evaluation metrics

This study’s performance evaluation metrics include accuracy, Precision, Recall, F1-Score, True Negative Rate, FAR, and
FNR. These metrics are calculated from the different fields of the standard confusion matrix given in its binary version in
Table 2. A confusion matrix is a two-dimensional matrix that details the actual ground classes and the predicted classes
based on the experiment’s results. TP and TN are the correctly predicted anomaly and benign instances, whereas FN
and FP are the incorrect prediction of the classifier as benign and anomaly, respectively. The formal definition and the
mathematical formula of different evaluation metrics considered in this study are43 as follows:

5.2.1 Accuracy

Accuracy represents the ratio of the correctly predicted instances (both benign and anomaly instances) to the total number
of test instances. It measures the overall effectiveness of the model. Mathematically, the Accuracy is calculated as,
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12 of 21 AHMAD et al.

Accuracy = TP + TN
TP + TN + FP + FN

(12)

5.2.2 Precision

Precision denotes the ratio of correctly predicted anomaly instances to all the samples predicted as anomalies. Mathemat-
ically, the Precision is calculated as,

Precision = TP
TP + FP

(13)

5.2.3 Recall

The recall is also called the detection rate and is equivalent to the true positive rate (TPR). It is denoted as the ratio of all
the correctly classified anomaly samples to all the anomaly samples. Mathematically, Recall is calculated as,

Recall = TP
TP + FN

(14)

5.2.4 F1 score

F1 score is the harmonic mean of the Precision and Recall and provides a statistical technique for examining the accuracy
of a system. Mathematically F1 score is calculated as,

F1 score = 2 ×
(Precision × Recall

Precision + Recall

)
(15)

5.2.5 True negative rate

True negative rate (TNR) is defined as the ratio of the number of correctly classified benign samples to all the samples
labeled as benign. Mathematically TNR is given as,

TNR = TN
FP + TN

(16)

5.2.6 False alarm rate

The false alarm rate (FAR), also called the false positive rate (FPR), is defined as the ratio of wrongly predicted
anomaly instances to all the instances labeled as benign. It reflects the probability that a false alarm will be raised. It is
mathematically given as,

FAR = FPR = FP
FP + TN

(17)

5.2.7 False negative rate

False-negative rate (FNR) denotes the miss rate and shows the possibility of the classifier missing the anomaly instances.
It is denoted as the ratio of wrongly predicted benign instances to all the actual anomaly instances.

FNR = FN
TP + FN

(18)
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AHMAD et al. 13 of 21

In terms of Accuracy, Precision, Recall, F1 score, and TNR, the higher the evaluation metric score is, the better the
DL algorithms in terms of that evaluation metric. While in terms of FAR and FNR, the lower the evaluation metric score
is, the better the DL algorithm.

5.3 Experimental setup

For this research, we performed all the experiments on an H.P. Laptop with 8 G.B. of RAM, Intel Core I7-8550U, and
NVIDIA GeForce MX150 with a 64-bit Windows 10 operating system. MATLAB 2019a and Python (version 3.6.9) are
the tools used to implement the proposed solution. MATLAB 2019a generates a spectrogram of the considered dataset
while the Python Deep Learning library Keras library is used as the main programming tool to implement and eval-
uate the proposed and other DL methodologies in the Google Colab environment with GPU selected as hardware
accelerator.44

5.4 Results and discussion

For performing experiments, we updated the dataset by combing all the anomalies into a single anomaly class for binary
classification since the first stage of the detection block performs only the initial screening of packets. Also, the dataset
is divided into the train and test datasets by a random split ratio of 75% and 25%, respectively. The performance of
SCNN is compared with five different supervised DL methods as Deep Neural Network (DNN), one-dimensional Con-
volutional Neural Network (CNN-1D), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated
Recurrent Unit (GRU). The optimum hyperparameters used in this study for implementing all supervised DL-based ADS
methodologies are detailed in Table 3.

To find the optimum number of hidden layers for all the DL-based ADS, we perform different experiments to
calculate the detection accuracy by considering different batch sizes and the number of hidden layers. All the DL
models are trained for 100 epochs to find the appropriate number of hidden layers and batch sizes. We observe
the initial trend that our proposed spectrogram-based CNN detection model (SCNN) model achieves a high detec-
tion accuracy comparing the other DL models for binary and multiclass classification. Figure 6 shows the average
accuracy percentage scores for the SCNN by varying batch sizes by considering different layers for binary and mul-
ticlass classification scenarios. The SCNN model exhibited a higher detection accuracy for two layers (one pair of
CL and PL and a single FCL), considering the batch size of 256 for binary classification. Similarly, for multiclass
classification, four layers of SCNN (Two pairs of CL and PL and two FCL) achieved higher accuracy for the batch
size of 256.

Table 4 summarizes the percentage evaluation metrics scores achieved by different DL-based ADS methodologies for
binary and multiclass classifications. It is observed that SCNN exhibits superior performance in terms of all the consid-
ered evaluation metrics for binary and multiclass classification scenarios. In particular, SCNN exhibited a high detection
accuracy of almost 99.90%,with the lowest FAR of 0.09% and 0.03%, respectively, for the binary and multiclass scenarios.
Also, SCNN recorded the lowest FNR of 0.10% and 0.09% for both scenarios. We observe that both DNN and CNN-1D
performed almost identically for binary/multiclass classification. CNN-1D-based ADS approach performed slightly bet-
ter in terms of Accuracy, Recall, F1 score, and FNR, while DNN performs slightly better in precision, TNR, and FAR
considering binary classification.

T A B L E 3 Optimum hyperparameters used for DL algorithms.

Parameter Value

Learning Rate 0.001

Optimizer Adam

Loss Function binary cross-entropy, categorical cross-entropy

Activation ReLU, Sigmoid, Softmax

Batch size
{

26
, 27
, 28
, 29}
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14 of 21 AHMAD et al.

F I G U R E 6 SCNN: Accuracy percentage per batch size using different layers for Binary (B) and Multiclass (M) classification scenarios.

T A B L E 4 Binary/multiclass classification: Performance evaluation metric score (%).

Binary Classification Multiclass Classification
DL
Algorithm Accuracy Precision Recall F1 score TNR FAR FNR Accuracy Precision Recall F1 score TNR FAR FNR

DNN 98.16 98.71 97.45 98.07 98.82 1.18 2.56 99.18 99.22 99.26 99.24 99.79 0.21 0.74

CNN-1D 98.34 98.16 98.39 98.27 98.30 1.70 1.61 98.53 98.63 98.66 98.64 99.63 0.38 1.34

RNN 96.17 96.51 95.47 95.99 96.81 3.19 4.53 97.67 97.66 97.80 97.72 99.41 0.59 2.20

LSTM 95.63 93.27 97.97 95.56 93.48 6.52 2.03 95.92 95.95 95.87 95.91 98.97 1.03 4.13

GRU 96.86 96.58 96.88 96.73 96.84 3.16 3.12 97.92 97.95 98.02 97.97 99.47 0.53 1.99

SCNN 99.90 99.91 99.90 99.91 99.91 0.09 0.10 99.90 99.90 99.91 99.91 99.98 0.03 0.09

Similarly, for multiclass classification, CNN-1D performs slightly better in the Accuracy, Recall, precision, and F1
score, while DNN performs slightly better in TNR, FAR, and FNR. It is also noted that RNN, LSTM, and GRU performed
almost similarly by exhibiting the lowest evaluation scores. LSTM scored high FAR for binary/multiclass scenarios and
FNR for multiclass classification. RNN performed worst in terms of FNR for binary scenarios.

Figure 7 depicts the percentage improvement in the performance of the SCNN comparing other considered DL-based
ADS solutions. It is noticed that SCNN performed well by exhibiting an improvement of 1.56%–4.27% in terms of the
model’s detection accuracy while at the same time reducing the FAR by 1.08%–6.43%. It is also observed that the highest
improvement is observed comparing the LSTM-based ADS in terms of detection accuracy and FAR. It is also observed
that RNN based approach has a higher miss rate for predicting benign traffic, and SCNN achieved a 4.4% improvement
in reducing the miss rate. So, based on the metric evaluation performance, SCNN is chosen as the suitable DL approach
to be adopted in substage-1 of the MS-ADS detection stage for the initial screening of the network traffic.

Figure 8 shows the percentage improvement in the performance exhibited by the SCNN comparing the other DL-based
detection methodologies. It is observed that SCNN improved by 0.71%–3.98% in the model’s detection accuracy and
reduced the FAR by 0.18%–1%. It is also observed that the highest improvement is observed by the SCNN comparing
the LSTM-based ADS in terms of all the considered performance evaluation metrics. So, based on the evaluation met-
ric performance scores for the multiclass classification scenario, SCNN is chosen as the suitable DL approach to be
adopted in substage-2 to classify the anomaly flows into one of the DoS, DDoS, Reconnaissance, or information theft
anomalies.

5.5 Evaluation of MS-ADS

The performance of the MS-ADS is compared with the three benchmark methods LAE-BLSTM,21 D-RNN,22 and
AE-DNN.19 For a fair comparison among the MS-ADS with other benchmark methods, we evaluated all the methods
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F I G U R E 7 Binary classification: SCNN performance improvement comparing other DL-based detection methodologies.
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F I G U R E 8 Multiclass classification: Improvement in SCNN performance comparing other DL schemes.

under the same common condition, for example, using the same dataset and simulation settings, as it is rather mis-
leading to claim that one technique is better than the other by merely comparing the performance metrics listed in the
related original publications. We performed different experiments to find the best possible combination of the hyper-
parameters, as in Table 5, resulting in higher detection accuracy. It is observed that LAE-BLSTM and D-RNN used
eight hidden layers to achieve higher accuracy, while AE-DNN needed 11 hidden layers to achieve higher detection
accuracy.

Table 6 summarizes the evaluation metric scores of LAE-BLSTM, D-RNN, AE-DNN, and MS-ADS. It is noted that
for the considered scenario, MS-ADS exhibited its superiority in the performance comparing the benchmark methods
by achieving a higher evaluation score in terms of all the evaluation metrics considered. It is also noted that among the
benchmark methods, AE-DNN exhibited better performance comparing LAE-BLSTM and D-RNN. Also, the performance
evaluation scores for the D-RNN are worst comparing all the considered methodologies. It is observed that considering
the accuracy metric, 99.98% of the time, MS-ADS correctly predicted the network flows to be either benign or one of the
anomalies flows. Also, considering the precision, it is observed that when MS-ADS predicts that the flow is an anomaly
flow, the model is correct 99.98% time. MS-ADS also correctly identified the anomaly flows by achieving a Recall score of
99.98%, exhibiting the higher detection rate among all the methods. We also observed that the MS-ADS model achieved a
high F1 score of 99.98% to statistically exhibit the model’s accuracy. Results also show that almost all the models correctly
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16 of 21 AHMAD et al.

T A B L E 5 Hyperparameters for benchmarks.

Methodology

Hyperparameters LAE-BLSTM D-RNN AE-DNN MS-ADS

Hidden Layers 8 (LAE= 3, BLSTM= 5) 8 (Level-1= 3, Level-2= 5) 11 (AE= 6, DNN= 5) 6 (Substage-1= 2, Substage-2= 4)

Learning Rate 0.001 0.001 0.01 0.001

Loss Function Adam Adam Nadam Adam

Activation ReLU, Softmax ReLU, Softmax ReLU, Softmax ReLU, Sigmoid, Softmax

Batch size 256 256 512 256

T A B L E 6 Performance comparison (%) of MS-ADS w.r.t. benchmark methods.

Performance evaluation metric

Methodology Accuracy Precision Recall F1 score TNR FAR FNR

LAE-BLSTM 98.726 98.874 98.814 98.827 99.673 0.327 1.186

D-RNN 96.208 96.689 95.161 95.788 99.024 0.976 4.839

AE-DNN 99.230 99.188 99.229 99.208 99.806 0.194 0.771

MS-ADS 99.981 99.980 99.980 99.980 99.994 0.006 0.020
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F I G U R E 9 Improvement in MS-ADS performance comparing benchmarks.

detected the Benign flows, with MS-ADS achieving the higher score of 99.99%. The MS-ADS also reduced FAR to 0.006%
and FNR to 0.02% exhibiting its effectiveness for IoT networks.

The percentage improvement in the metric evaluation performance of MS-ADS against benchmarks is depicted in
Figure 9. It is observed that MS-ADS improved the detection accuracy by 0.75%–3.77% while at the same time reducing
the FAR by 0.18%–0.96%. The figure also depicts that the MS-ADS improves the detection rate by 0.75%–4.82% exhibiting
its efficiency for the IoT network. Also, MS-ADS exhibited a very high improvement in the miss rate by minimizing it
by 0.75%–4.82%, which exhibited the proposed solution superiority in reducing the miss rate to classify the anomalies to
their specific types correctly.

Figure 10 depicts the confusion matrix for the MS-ADS. Since our proposed solution is a 2-stage DL solution where the
first DL substage performs the binary classification task to predict the network flows into benign and anomaly traffic. The
anomaly flows are then transferred to the second DL substage to find out the exact type of anomaly. Figure 10A depicts
the confusion matrix for the first substage. It is observed that the model predicted both anomaly and benign classes with
99.9% efficiency. The number of benign flows wrongly predicted as an anomaly is more than the anomaly flows wrongly
predicted as benign flows. It is observed that the number of FN flows is less than the FP flows, so it causes little threat to
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F I G U R E 10 Confusion Matrix (MS-ADS).
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F I G U R E 11 Training time (s) for DL-based detection methodologies.

the IoT network. Figure 10B shows the confusion matrix of substage-2, which only classifies the transferred anomalies as
DDoS, DoS, Reconnaissance, or Information theft anomalies. Again, the confusion matrix shows that the model correctly
predicted the specific type of anomaly with 99.9% efficiency. Also, the model’s wrong prediction of any individual class
spans over the remaining classes.

Training time is the time needed to build the DL model by training it using the training samples. Training time for
the model depends on many factors, for example, type of the dataset, size of the dataset, type of the DL algorithm, no. of
hidden layers, no. of epochs, batch sizes, etc. For this study, we measured the model’s training time for each methodology
considering 100 epochs. Figure 11 depicts the training time in seconds for MS-ADS and the benchmarks. It is observed
that AE-DNN is the more efficient model in terms of training time to generate the trained model. It is observed that
the proposed MS-ADS performed well in training comparing D-RNN and LAE-BLSTM models by finishing the training
early by 993 and 4423 s, respectively. Comparing the efficient model AE-DNN, the MS-ADS took 130 s (2.16 min) more
for training, which is a reasonable training time due to the presence of two similar types of the DL methodology in a
multistage setting for MS-ADS. Also, this slight increase in training time results in better detection accuracy than AE-DNN
exhibiting an improvement of 0.75%.

Table 7 details the training time in seconds considering 100 epochs to achieve 95%–99.5% accuracy. It is observed that
the proposed MS-ADS methodology outperforms the benchmark detection methodologies in training time to achieve
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18 of 21 AHMAD et al.

T A B L E 7 Training time (s) to achieve different accuracies.

Training time (s) to achieve accuracy (95%–99.5%)

Methodology 95% 96% 97% 98% 99% 99.5%

LAE-BLSTM 301.17 481.76 903.30 2107.70 – –

D-RNN 259.21 1555.20 – – – –

AE-DNN 29.38 44.07 73.45 367.25 1028.30 –

MS-ADS 15.9 31.98 47.97 63.96 111.93 367.99
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F I G U R E 12 MS-ADS: Dataset size effect on the performance evaluation.

T A B L E 8 Average training time (s) w.r.t. dataset size.

Dataset size (%) 10% 20% 30% 40% 50% 75% 100%

Training Time (s) 231.6 459.7 423.0 529.7 729.7 981.3 1598.7

accuracy in the range of 95%–99.5%. Only MS-ADS is observed to achieve more than 99.5% accuracy among all the detec-
tion. Also, D-RNN detection accuracy was the lowest, with 96% accuracy achieved in 1555.2 s. D-RNN can achieve 96.21%
accuracy in 2592 s considering 100 epochs. It is also observed that LAE-BLSTM is the more time taking methodology dur-
ing the training process by consuming more time in training to get the desired accuracy comparing the other detection
methodologies.

The dataset is an important factor considering the DL model training, which requires a regular update to keep the
model up to date with the latest anomaly patterns. We want to find a more feasible dataset size for re-training MS-ADS in
this context. Figure 12 illustrates the feasible size of the dataset by comparing it with the two important evaluation metrics
such as detection accuracy and FAR. It is obvious from the figure that detection accuracy improved with the increase in
the dataset size. Also, the FAR has shown a reasonable reduction with increased dataset size. We observe that by only
using roughly 40% of the dataset, we still can achieve the detection accuracy of 99.53% with the FAR of 0.35%, which
makes it a reasonable choice of dataset size for the re-training to update the model with the new patterns to make it more
effective and efficient for anomaly detection.

We observe from Table 8 that the training time increases as the size of the complete dataset increases. If we con-
sider using only 40% of the dataset size (40 500 flows), then we only need to train the model for 529.7 s (8.8 min),
which is an improvement of 17.8 min comparing training the whole dataset. Training of the model can be done in the
off-time mode, and then the trained model can be replaced with the old model to use an updated model for detection
purposes.
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6 CONCLUSIONS

This research has developed a Multistage Spectrogram image-based Anomaly Detection System (MS-ADS) to ensure the
security of the IoT network from DoS, DDoS, Reconnaissance, and Information theft anomalies. The proposed solution
utilizes CNN as the DL algorithm in the detection module and uses two variants of CNN arranged in sequence to per-
form the anomaly prediction tasks on multiple levels. The CNN models are trained using spectrogram images, generated
from the IoT network flows using STFT to improve detection accuracy and reduce FAR and FNR. Also, the usage of the
second-level CNN algorithm only if an anomaly is detected minimizes the overall overhead on the system in terms of
computation. Moreover, the continuous learning module of the MS-ADS improves the model’s effectiveness in accurately
detecting new anomalies to minimize the FAR and FNR by periodically updating the model with the latest anomaly pat-
terns. The results demonstrate that the proposed method achieves high detection accuracy of 99.98% with a reduction
in the FAR to 0.006% and FNR to 0.020% in classifying network traffic showing the model efficiency for the IoT net-
work. MS-ADS outperforms the benchmark methodologies by improving the detection accuracy of AE-DNN by 0.75%,
LAE-BLSTM by 1.25%, and D-RNN by 3.77%. Also, MS-ADS reduced the FAR and FNR for AE-DNN by 0.18% and 0.75%,
LAE-BLSTM by 0.32% and 1.16%, and D-RNN by 0.96% and 4.82%. Also, MS-ADS improves the detection rate of AE-DNN
by 0.75% and D-RNN by 4.82%, exhibiting its efficiency for the IoT network. To minimize the computational and training
cost for the model re-training phase, the proposed solution demonstrates that only 40 500 network flows from the dataset
suffice to achieve a detection accuracy of 99.5%.

For future work, we will extend this research by testing its performance and effectiveness by implementing it in the
real-time IoT environment. We will also extend our proposed idea for the unsupervised DL-based methods to make the
proposed solution more effective in automatically processing the huge amount of IoT data.
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