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ABSTRACT
Thousands of offshore oil and gas structures worldwide are ap-
proaching the end of their operating lifespan. Decommissioning
processes are expensive and normally take years to finish as vari-
ous options need to be analysed based on numerous stakeholders’
preferences. Despite recent and significant progress in machine
learning and data-driven applications in the oil and gas industry,
very little work has been done in the area of using machine learning
to inform the decommissioning processes and operations. This can
be attributed to the lack of relevant public datasets with sufficient
samples. In this paper, we present a new oil and gas decommission-
ing dataset comprised of 708 real samples extracted from over a
hundred company proposals and reports. A supervised learning al-
gorithm was applied to the dataset to predict the decommissioning
option. Experiments and results suggest that a machine learning
approach can greatly help shorten the traditional analysis process
while providing decent accuracy. The classification results of this
work serve as a baseline to motivate further experiments and enable
the research community to broaden and advance the knowledge in
this prominent and timely topic.

CCS CONCEPTS
• Computing methodologies→Machine learning; • Applied
computing → Decision analysis.
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1 INTRODUCTION
Decommissioning is currently a challenging topic in the oil and gas 
industry. The number of offshore installations worldwide is rapidly 
growing to over 12,000, many of which are soon to be removed 
[7]. Tens of billions US dollars of expenses is expected as all re-
lated costs could be approximately half of the oil and gas industry’s 
total debt [6]. Decommissioning projects are not only expensive 
but also complicated and extremely time-consuming. Making a 
decision of dismantling, completely removing or leaving in place 
the facility involves several stakeholders, who pull their preferred 
decommissioning option in multiple different directions [9]. The 
process of engaging stakeholders is labour intensive and takes years 
to complete [19]. An example of a Shell’s Brent field decommission-
ing programme lasted ten years before sufficient information was 
gathered from stakeholders to generate the consultation draft [1].

Current regulatory frameworks in many jurisdictions require 
those who are undertaking oil and gas decommissioning activities 
to extensively engage stakeholders [33]. Fig. 1 shows this large 
quantum of oil and gas decommissioning stakeholders discussed in 
the literature [14, 34]. Accordingly, in a decommissioning project, 
there will be a large number of stakeholders’ preferences to take 
into consideration. To handle this, multi-criteria decision analysis 
(MCDA) tools are used to produce the decommissioning option. 
Well-known MCDA tools include Comparative Assessment (CA), 
Net Environmental Benefit Analysis (NEBA) and Best Practicable 
Environment Outcome (BPEO) [20, 27]. However, these existing 
tools are formula-based [23], where the user needs to empirically 
input the threshold and assign a score for each parameter. The 
output is prone to manipulation by the user as there is no clear 
prescriptive guidance for scoring and assessing. This may result in 
inaccurate decommissioning decisions. Such a problem can lead to 
devastating economic, environmental and societal consequences 
as evident by a past event of Brent Spar [11] and a recent one of 
Echo Yodel [26]. These affect the performance of oil and gas organ-
isations and also the well-being of stakeholders.

Despite extensive research in the field of oil and gas decom-
missioning, very little progress on the use of machine learning as 
a decision support tool has been made [24]. Supervised machine
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Figure 1: Oil and gas decommissioning stakeholders

learning has proved its usefulness in discovering patterns and pro-
viding accurate predictive outputs of complex problems [13, 36, 38].
To the best of our knowledge, only recent work of Martins et al.
[24] has evidenced the employment of machine learning algorithms
in the problem of oil and gas decommissioning. However, their ex-
periment was based on a very small number of real-world samples,
which could result in biased or inaccurate conclusions. This sug-
gests the lack of sufficient training data in this field, which is often a
requirement to produce well-performing models [10]. Such an issue
may explain the limited number of research work in this problem
domain.

In this paper, we present a new real-world dataset of oil and gas
decommissioning activities. The dataset consists of 708 unique sam-
ples, each of which represents the decommissioning information of
an offshore structure. Compared to the previous work [24], which
considered 14 real-world samples, our dataset will contribute to the
research community further. Moreover, we propose the use of ma-
chine learning techniques with our introduced dataset to develop
a predictive model for oil and gas decommissioning. The learned
features will not include manually assigned assessment scores used
in MCDA tools, rather, structure information is considered.

The rest of this paper is structured as follows. Section 2 elaborates
the discussion of relevant literature including existing MCDA tools
and the use of machine learning in oil and gas decommissioning.
In Section 3, the dataset is presented along with the description
of the classification method and experimental setup. Results and
discussion are provided in Section 4. Finally, Chapter 5 concludes
the work and suggests potential future directions.

Figure 2: The comparative assessment process

2 DECOMMISSIONING STAKEHOLDERS
ANALYSIS

While the process of decommissioning an oil and gas appears to be
simple from a theoretical point of view, amongst other considera-
tions, there is wide range of different stakeholders that have signif-
icant interests in decommissioning decisions [32, 34]. As shown in
Fig. 1, several groups of stakeholders are involved [14, 34]. It is chal-
lenging to manage these different stakeholder groups as they have
different interests and concerns. Their preferred decommissioning
options are often pulled in multiple directions [32, 34]. Commercial
fishermen, for example, prefer oil and gas facilities to be removed
in order to ensure safety in navigation [30]. On the other hand,
some environmental organisations prefer them to be left in place
to prevent damaging existing marine ecosystems [25].

To handle such complex requirements, MCDA tools are used.
Quantitative and qualitative data from stakeholders are input into
an MCDA tool to determine the decommissioning option [23]. Dif-
ferent choices of tools are preferred in different regions. For ex-
ample, in UK, the Offshore Petroleum Regulator for Environment
and Decommissioning (OPRED) recommends oil and gas operators
to use CA [4]. Meanwhile, BPEO is a mandatory requirement for
regulatory approval in Thailand [8]. Since UK is among the world’s
most mature oil and gas landscapes [21], it can be said that CA is
one of the most commonly-used MCDA tools for determining the
decommissioning option of oil and gas infrastructures [15, 33].

Fig. 2 illustrates the five aspects considered in CA. These are
technical, safety, environmental, societal and financial aspects [28].
The assessment of these criteria, however, heavily relies on the
appraisers’ judgement [24, 28, 33]. The users empirically input
scores of different attributes without clear prescriptive guidance
[18]. Thus, the resulting decommissioning option can be subjective.
Another main issue of using MCDA tools is an extensive amount of
resources and time spent to collect sufficient data from stakeholders.
Employing machine learning techniques in this problem domain
has shown to help scale down these issues [24].

While the application of machine learning has been explored
extensively in various aspects of oil and gas exploration and pro-
duction [16, 17], its application in decommissioning has only been
recently seen though the work of Martin et al. [24]. The authors pro-
posed to use machine learning techniques to reduce the problem’s
dimension and learn the patterns to predict the decommissioning
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option. The finding of this work suggests that using machine learn-
ing is a viable approach in generating the decommissioning decision.
However, several limitations need to be addressed. Firstly, their ex-
periments were based on 14 real-world samples. The use of small
sample size is known to cause errors and overfitting in classification
tasks [35]. Although they applied bootstrapping on the 14 samples
to obtain 1,313 synthetic samples, a large generalization error in
classification is likely to occur [22]. Secondly, the attributes used
in model training also included the assessment scores of the five
aspects in CA. This practice does not help reducing the resources
and time in collecting stakeholders’ preferences. In addition, the
problem of assigning assessment scores has not been tackled.

3 METHODOLOGY
This section presents our novel dataset of oil and gas decommis-
sioning activities. First, a brief description of how the dataset was
collected is given. This is followed by a detailed description and
characteristics of the dataset. Then, a brief discussion related to the
classification method used to benchmark this dataset is provided.

3.1 Data Collection and Extraction
We collected data on offshore decommissioning activities from 111
oil and gas decommissioning programme reports. These reports
were published on the government official website of the UK’s
OPRED [4]. Only the approved decommissioning programmes were
considered as they had been authorised by the experts. Each report
was examined and analysed by content analysis, a well-proven
qualitative analysis research technique [31], to extract relevant
information regarding (i) the technical specifications of the offshore
pipeline and (ii) the final decommissioning decision. The approvals
of these programmes were granted between 2000 and 2020. These
include the reports of over 30 well-known oil and gas companies
such as Shell, Repsol Sinopec, Chrysaor, TAQA, Canadian Natural
Resources Company, Spirit Energy, ConocoPhillips, etc. The reason
for conducting this study in the UK landscape is that its oil and
gas decommissioning is much more mature compared to other
landscapes around the world [21]. As such, there is more data
available, allowing creation of more accurate machine learning
models.

Typically, different criteria for determining the decommissioning
options are used for different types of offshore structures[2]. In this
work, we are interested in pipelines, which is the most common
type of structures [33] and hence has the most samples available
[4]. There are a total of 708 pipelines structures addressed in these
111 reports. Their decommissioning decision analyses were based
on CA. Interestingly, each of the five aspects described in Section 2
of all 708 pipeline structures has the same analysed value. That is,
Full Removal for the technical, environmental and societal aspects;
Partial Removal for the safety aspect; and Leave In-situ for the
financial aspect. This is because the analysis of the five attributes
is highly dependent on the type of structures [33]. In the view of
the project assessors, the final proposed decommissioning options
of pipelines structures with identical values in the five attributes
can be different. Similarly, in the machine learning point of view,
the five attributes, therefore, do not contribute to the final decision,
and hence we have dropped them.

Figure 3: Class distribution in the dataset

Based on the review of decommissioning guidelines offered by
various industrial representative bodies around the world [2, 3, 5],
the decommissioning option was found to be influenced by struc-
ture’s size, weight, material (e.g. steel, concrete or plastic), residues
(e.g. hydrocarbons, chemicals), and burial status (e.g. surface laid
and buried). Therefore, we selected the following features for the
classification task: diameter, length, material, residue, burial status.

3.2 Dataset
The dataset is comprised of 708 unique samples with 10 attributes
and the class label. Each sample represents the technical specifica-
tions of an offshore pipeline structure (attributes) and its decommis-
sioning option (class label). The distribution of the classes, namely
Full Removal, Leave In-situ and Partial Removal is displayed in Fig. 3.
Table 1 shows some samples of the dataset, where the description
of each attribute is given in Table 2.

As can be seen in Table 2, we have transformed some categorical
variables, e.g. structure’s materials, type of residual fluid, into binary
variables. This is because some machine learning algorithms can
learn only numerical data and not categorical data [29]. To avoid
biases in recognising different values of a categorical variable as
different numbers, an encoding technique was applied. The one-hot
encoding technique, one of the most widely used encoding schemes
[29], was employed for this purpose. The technique transforms a
categorical variable with n distinct values into n binary variables,
each of which indicates the presence or absence of the new binary
variable. There are 12 missing values in Diameter and 2 in Length.
We have made this dataset publicly accessible for benchmarking
purposes (See GitHub). Please kindly cite this paper when making
use of the dataset.

https://github.com/fonkafon/OilGas/blob/main/dataPipeline.csv
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Table 1: A selection of samples from the dataset

Structure Diameter Length Metal Plastic Concrete Chemicals Hydrocarbon Bury DecommissioningOption

PL23837 0.5 0.1 0 1 0 1 0 0 PartialRemoval
PL1057 12 19.8 1 0 1 0 1 1 LeaveInSitu
PL1059.1-2 8 0.1 1 0 0 0 1 0 LeaveInSitu
PL1099 4 15.1 1 1 0 0 0 1 PartialRemoval
PL111 8 5.28 1 0 1 1 0 1 LeaveInSitu
PL112A 6 1.55 1 1 0 0 1 1 PartialRemoval
PL115 16 19.1 1 0 1 0 1 0 PartialRemoval
PL126A 12.75 0.08 1 1 0 0 1 0 FullRemoval

Table 2: Attribute descriptions

Feature Description
Structure Name of the structure
Diameter Diameter of pipeline (inch)
Length Length of pipeline (km)
Metal The structure was made of metal: 0 = no, 1 = yes
Plastic The structure was made of plastic: 0 = no, 1 = yes
Concrete The structure was made of concrete: 0 = no, 1 = yes
Chemicals The residual fluid (if any) was chemicals: 0 = no, 1 = yes
Hydrocarbon The residual fluid (if any) was hydrocarbons: 0 = no, 1 = yes
Bury Burial status of the structure: 0 = surface, 1 = buried
DecommissioningOption Outcome of the CA process: full removal, partial removal, leave in-situ

4 CLASSIFICATION METHOD AND SETUP
To demonstrate the use of machine learning on the novel dataset
to build a predictive model, Random Forest (RF) was chosen. It is
important that a proper and well-performed baseline for future
studies on this oil and gas decommissioning dataset is provided.
This justifies the choice of RF, which is among the top perform-
ing traditional learning algorithms that often provide promising
classification results [12] and is accessible to any researchers, for
the baseline model. To serve such a purpose, the default param-
eter settings of RF in caret package in R was used. This includes
the setting of the number of trees (mtree) to 500. The number of
features determined at each split, mtry, was automatically tuned
as we applied 10-fold cross-validation during model training. This
allows plenty of rooms for improvement on the results for further
research.

The dataset was partitioned into training and testing sets at
the ratio of 70 to 30. The training set was then split into 90% and
10% for training and validation purposes. The testing set was only
used for model evaluation and result report in Section 5. Numerical
variables, Diameter and Length in particular, were scaled using
standard scores. Missing values in the two variables were handled
using mean imputation.

5 EXPERIMENTAL RESULTS AND
DISCUSSION

Our classification of the decommissioning option achieved the over-
all accuracy of 77.88%. Table 3 shows the classification results. Ta-
ble 4 provides more detailed performance of the predictive model

across different classes in terms of sensitivity, specificity, precision,
F1-score, and balanced accuracy.

It can be seen in Table 4 that the dominating class in the dataset,
which is Full removal, had the highest class accuracy of 85.98%. The
prediction accuracy in Leave in-situ and Partial removal classes were
71.11% and 67.86%, respectively. Considering the distribution ratio
of the three classes, which are 363:152:193 for Full removal:Leave
in-situ:Partial removal, the difference in the class accuracies could
be attributed to the unequal class distribution. This is because tra-
ditional learning algorithms are generally designed to maximise
the overall accuracy [37]. Accordingly, the accuracy of the domi-
nating class will likely to be higher than those of minority classes.
This issue is recognised in the literature as the problem of class
imbalance [37]. Similarly, the performance of our model in other
metrics as shown in Table 4 could be explained by the imbalance
situation. The results in precision and F1-score were in the same
direction as sensitivity. Although the results in specificity were in
the opposite direction of the class distribution, this is not surprising
as the metric considers the prediction results on instances of the
other classes.

Despite no optimisation or parameter tuning, we have shown
promising classification results using machine leaning practices.
Moreover, it was prove that favourable results can yet be obtained
even with the exclusion of some features used in the traditional
analysis process. Specifically, we found that assessment scores from
the CA process, which are one of the key factors to be considered in
the traditional approach, do not at all contribute to the classification
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Table 3: Classification results

Actual Class
Full Removal Leave In-situ Partial Removal

Predicted
Full Removal 92 8 8
Leave In-situ 2 32 10
Partial Removal 13 5 38

Table 4: Performance across the decommissioning options

Decommissioning Option Sensitivity Specificity Precision F1-score Balanced Accuracy
Full Removal 85.98 84.16 85.19 85.58 85.07
Leave In-situ 71.11 92.64 72.73 71.91 81.87
Partial Removal 67.86 88.16 67.86 67.86 78.01

since the given scores in the five aspects are dependent on the type
of structures.

Furthermore, these results are comparable to the results reported
by Martin et al. [24]. However, our results were based on 708 real
data of oil and gas decommissioning activities as compared to 14
real sample in their work. This is highly likely to make our decision
support model more generalised to real-world problems. Another
main different of our approach to their approach is that we do not
consider any assessment scores from the CA process, which usually
takes years to complete. Thus, the time and cost in producing the
decommissioning option can be significantly reduced.

6 CONCLUSIONS
In this paper, we presented a new oil and gas decommissioning
option dataset to the machine learning research community. The
dataset was collected and extracted from over a hundred reports of
UK oil and gas companies. It contains information of 708 pipeline
offshore infrastructures including the approved decommissioning
decisions. Moreover, we demonstrated the use of this dataset to
build a classification model for suggesting the decommissioning op-
tion. The model achieved 77.88% overall accuracy with the highest
per-class accuracy of 85.98%. These results were comparable to the
previous work reported. However, our model was trained based on
a significantly higher number of real samples. This allows better
generalisation of the model in the real-world oil and gas decommis-
sioning problem. Another advantage of our method is that we have
excluded the assessment scores from the CA process in developing
the decision support tool. By doing so, human biases in assigning
assessment scores are eliminated. Also, the cost and time required
in the comparative assessment or any other MCDA processes will
be greatly reduced. Despite the growing interests in oil and gas
decommissioning worldwide, there is a lack of research and data in
this topic in the field of machine learning. No real-world dataset
with sufficient samples for machine learning tasks has been avail-
able before. We see the importance of making our dataset publicly
available and demonstrating a machine learning-driven approach
for oil and gas decommissioning. This serves as a baseline to the
research community and motivate further experiments to broaden
the knowledge and research in this field. Potential future direction
will include improving the performance of the predictive model by
addressing the class imbalance problem. Emerging methods such as

evolutionary algorithms and GANs may be utilised as resampling
techniques to tackle the imbalanced distribution of data. Another
interesting future direction is to expand the work by also consider-
ing other types of oil and gas infrastructures. This will enable the
development of machine learning-based decision support tools to
be more generalised across the problem domain.
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