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Abstract

With the growth in utilizing desktop sharing and
remote control applications in recent years for many
purposes like online education and remote working,
quality assessment (QA) of screen images has become
a hot topic. It could be used to enhance the user’s
quality experience. Currently, most screen image QA
methods require a reference image, and the existing
blind/no-reference methods do not consider both
the image’s content and chrominance degradations.
This paper proposes a novel blind quality assessment
method for screen content images (SCIs) through
block-based content representation, which extracts
content- and chromatic-based features on local,
semi-global, and global scales. Our proposed edge
histogram descriptor- and statistical moments-based
(EHDSM) method divides the image into 16 blocks
and then describes each block using its local edge
and semi-global chrominance features. It also takes
the global chrominance features into account to
investigate how the image’s color information is
changed in the presence of chrominance distortions.
Local features are extracted using edge histogram
descriptor, while the semi-global and global features
are measured by computing the statistical moments.
Next, the quality assessment is achieved by training
a support vector regression (SVR) model. Extensive
experiments on three commonly-used SCI datasets
have verified the superiority of our proposed EHDSM
method compared with the state-of-the-art blind
screen content image quality assessment methods.
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1 Introduction
The popularity of screen content images (SCIs) has risen by
their utilization in applications such as online gaming, mo-
bile Web browsing, screen sharing, and remote controls [1].
SCIs are basically a combination of natural scene images
(NSIs) and computer-generated graphics, shapes, and texts.
Thus, compared with NSIs, they usually have sharp edges,
high contrast, and limited colors in specific regions [2, 3].
However, similar to NSIs, they lose their quality during the
processing, compression, or transmission. Therefore, ex-
isting natural scene image quality assessment methods can-
not efficiently evaluate the quality of SCIs, and their quality
needs to be assessed using specifically designed SCI quality
assessment (SCIQA) methods [4].

On the other hand, the original or reference image is un-
available in most cases, such as the remote screen sharing
and transmission applications. As a result, no-reference or
blind image quality assessment (BIQA) methods are the only
choices. Several BIQA methods are designed to assess the
perceptual quality of NSIs. Representative methods include
natural image quality evaluator (NIQE) [5], integrated lo-
cal NIQE (ILNIQE) [6], blind/referenceless image spatial
quality evaluator (BRISQUE) [7], and gradient magnitude
and the Laplacian of Gaussian (GM-LoG) [8]. Specifically,
NIQE [5] uses natural scene statistics (NSS) to derive statis-
tical features from the image. ILNIQE [6] improves NIQE
by designing and training a multivariate Gaussian model us-
ing five types of NSS features. BRISQUE [7] uses the lo-
cally normalized luminance coefficients of an image to cal-
culate its NSS. GM-LoG [8] proposes the joint statistics of
two features including gradient magnitude and Laplacian
of Gaussian to calculate the NSS of an image. However,
these models cannot effectively evaluate the quality of the
SCIs [9, 10] due to their distinct characteristics of computer-
generated graphics, shapes, and texts. Yang et al. [11] also
demonstrate that the intensity distribution of the SCIs and
NSIs are remarkably different. Hence, researchers have re-
cently proposed several specifically designed blind SCIQA
(BSCIQA) methods to assess the perceptual quality of SCIs.
These methods can generally be classified into three cat-
egories, namely, feature extraction-based, codebook-based,
and neural network-based methods.

The first category includes methods that extract features
capable of capturing the characteristics of SCIs. Representa-
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tive blind methods include the blind quality measure for SCIs
(BQMS) [2], screen image quality evaluator (SIQE) [3], no-
reference luminance and texture-based method (NRLT) [12],
BSCIQA by orientation selectivity mechanism (OSM) [13],
the hybrid region features fusion method (HRFF) [14], the
perceptual quality measure by spatial continuity (PQSC) [9],
and quality assessment of SCIs via Fisher Vector Coding
(FVC) [15]. BQMS extracts screen content-based features
via free energy theory [16] and structural degradation model.
SIQE extracts four types of features, including image com-
plexity, screen content statistics, global brightness quality,
and sharpness of details. NRLT exploits statistical lumi-
nance features in the form of histograms and also extracts
statistical texture features by employing the local binary pat-
terns (LBP) descriptor [17]. OSM employs the orientation
selectivity mechanism [18] to extract the orientation infor-
mation to describe the distorted SCIs. It also uses structure
features as complementary information to further describe
SCIs. HRFF first segments SCIs into sharp edge patches
(SEPes) and non-SEPes, then extracts features such as en-
tropy, contrast, and sharpness loss. It finally combines these
features with global features extracted by the BRISQUE [7]
method. PQSC extracts statistical chromatic and texture fea-
tures to represent the chromatic continuity and degree of tex-
ture variation in SCIs. FVC employs the fisher vector coding
technique to represent SCIs using offline-generated Gaussian
mixture models. To assess the SCI’s quality, these meth-
ods usually train a machine learning model such as SVR
[2, 9, 15] using the subjective scores, also known as mean
opinion scores (MOSs) which are the mean value of sub-
jects’ ratings, as the ground truth. Also, sometimes differ-
ence mean opinion scores (DMOSs) are used as the ground
truth which are the difference in quality between images
[11, 19, 20, 21].

The second category includes methods that employ dic-
tionary learning algorithms to create and learn a codebook
or dictionary, which will be used to predict the quality of
SCIs. Representative blind methods include content-specific
codebooks (CSC) [22] and macro-micro modeling of ten-
sor domain dictionary (MMMTDD) [23]. The CSC method
learns a codebook by training the K-singular value decom-
position (K-SVD) dictionary learning algorithm [24] over
small pictorial and textual patches. It then uses the sparse
representation to effectively encode the patches via learned
codebooks. Finally, it employs a pooling scheme to aggre-
gate these patch-based codebooks to describe distorted SCIs.
MMMTDD employs tensor decomposition to learn a dictio-
nary with the principal components. It then uses a macro-
micro model to automatically generate micro and macro fea-
tures in the dictionary space. Micro features describe the
particularity of the statistical distribution of sparse codes and
macro features describe the relationship between the statisti-
cal distribution and quality degradation of SCIs. Both CSC
and MMMTDD methods use SVR with the radial basis func-
tion (RBF) kernel to produce the quality score for a distorted
SCI image.

The third category includes methods that employ neural
networks and deep learning to assess the quality of SCIs.
Representative blind methods include pseudo-natural input
convolutional neural network (PICNN) [25], blind SCI qual-
ity assessment using stacked auto-encoders (BSCIQA-SAE)
[26], and quadratically optimized model based on the deep

convolutional neural network (QODCNN) [27]. PICNN em-
ploys a naturalization module to make SCIs more similar
to natural images to extract deeper information. BSCIQA-
SAE trains two SAEs and two regressors on hand-crafted
features extracted from pictorial and textual regions to pre-
dict the quality of pictorial and textual areas separately. The
two predicted scores are fused to produce the final perceptual
quality score. QODCNN pre-trains a CNN model on some
SCI patches and fine-tunes the pre-trained model with se-
lected distorted image patches. An adaptive pooling scheme
is then used to combine the quality scores from patches to
measure the quality of an image.

Earlier feature extraction-based BSCIQA methods [2, 3]
generally assume that the features follow certain distribu-
tions and utilize parametric models to extract quality-aware
features [9]. Parametric models-based IQA methods assume
that the extracted features for representing the image con-
tent follow a certain mathematical model or distribution [9],
which may lead to information loss and inconsistency with
human judgments. Furthermore, the majority of BSCIQA
methods do not consider the chrominance information of an
image, which has proven to be effective in both the blind and
full-reference (FR) SCIQA or other areas of image quality
assessment [9, 28, 29] since the human visual system (HVS)
is highly sensitive to such information [30]. The codebook-
based methods usually evaluate the quality of SCIs by au-
tomatically extracting and aggregating features from SCIs.
However, the feature aggregation approach (e.g., percentage-
based pooling [22] and log-normal distribution-based local
pooling [23]) is still the bottleneck of these methods and
has not been effectively resolved yet. Neural network-based
methods highly depend on the availability of comprehen-
sive SCI datasets. A majority of existing neural network-
based SCIQA methods [25]-[27] focus on proposing prac-
tical training approaches to tackle the issues of the lack of
large SCI datasets. However, these practical training ap-
proaches are not entirely successful.

Figure 1: Framework of the proposed EHDSM
method. ⊕ indicates the concatenation operation.
feati(i = 1, 2, .., 16) is the concatenated local and
semi-global feature vector of the i-th block, which
are further concatenated with the global features
featglobal to form the final feature vector.

Considering the HVS-compatible statistical details of an
image [31] and the importance of zero-crossing at multi-
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ple scales [32], we propose an edge histogram descriptor-
and statistical moments-based (EHDSM) method to ad-
dress the aforementioned limitations associated with feature
extraction-based BSCIQA methods. EHDSM incorporates
the histogram of edges and chrominance information at three
scales (i.e., local, semi-global, and global scales) to extract
quality-aware features without using a parametric model.
Specifically, it converts a distorted SCI to the Y CbCr color
space and divides it into non-overlapping 4 × 4 blocks, as
shown in Figure 1. The Y CbCr color space is more com-
patible with SCI’s characteristics and therefore yields bet-
ter assessment results [28, 10]. It is also suggested by ITU-
R BT.601 for video broadcasting (i.e., visuals displayed on
screens). Next, it extracts features at local and semi-global
scales from each block and at the global scale from the whole
image. Particularly, local features are derived using the edge
histogram descriptor (EHD) by computing the frequency of
five types of edges. Semi-global and global scale features are
chrominance information computed using first- and second-
order statistical moments (i.e., mean and standard deviation).

The proposed EHDSM method makes the following con-
tributions: 1) Introducing a blind block-based image qual-
ity assessment method to extract local content-based and
semi-global and global chrominance features to effectively
capture the effects of different distortion types and levels
of SCIs; 2) Describing the content variation (i.e., picto-
rial and textual content) within an image with the HVS-
compatible edge histogram descriptor on a local scale; 3)
Extracting chromatic information using the statistical mo-
ments based on the content variation of an image (i.e., semi-
global features) and its global statistics; 4) Achieving supe-
rior accuracy and computational run-time on three common
SCI datasets compared with four NSI BIQA methods, seven
state-of-the-art BSCIQA methods, and eight variant methods
of the EHDSM.

The rest of this paper is organized as follows: Section 2
presents the proposed EHDSM blind SCIQA method. Sec-
tion 3 compares the performance of the proposed method
with state-of-the-art BSCIQA methods on three publicly
available SCI datasets. Section 4 draws the conclusion.

2 Proposed Method
Edges and edge histograms are important and powerful fea-
tures that have been commonly used for quality assessment
for a large variety of images ranging from NSIs to SCIs
[33]. Due to the high correlation of edge features with most
structural distortions, a number of IQA techniques employ
edges to represent the image content toward capturing the
effect of distortions [34, 35]. For example, FR SCIQA meth-
ods such as gradient similarity score (GSS) [36], edge sim-
ilarity (ESIM) [37], and multi-scale difference of Gaussian
(MDOG) [38] use edge width, contrast, strength, and direc-
tion to measure the image quality. To improve efficiency
and generalizability, normalization techniques can be further
employed to make edge histograms invariant to translation,
scale, and rotation and therefore enrich edge features to rep-
resent an image and capture its quality [39, 40].

As mentioned earlier, many studies employ edges and his-
tograms to represent images. However, the integration of
content descriptor-based edge histograms with the chromi-

nance features have not been fully explored in BSCIQA
and there is room for improvement. Unlike histogram or
moments-based methods, which often treat images as a set
of independent pixels, the proposed method takes into ac-
count the spatial arrangement of pixels by calculating the
distribution of the proposed five edge types through the im-
age blocks. Furthermore, by computing statistical moments
across each channel of the entire image as well as its con-
stituent blocks, our model gains the capability to compre-
hensively measure the overall changes in both content and
chrominance information throughout the image. Our pro-
posed blind screen content quality assessment method uti-
lizes edge histograms (i.e., EHD) to capture edge variations
in image blocks instead of the whole image to effectively
describe the content of each block and the content varia-
tions among blocks. To the best of our knowledge, cur-
rent BSCIQA methods have rarely considered the chromi-
nance information loss when constructing feature extraction-
based metrics for quality measurement. Therefore, the per-
formance of the state-of-the-art content-based IQA methods
drops when color distortions are introduced. For instance,
their performance is very poor in presence of the color sat-
uration change (CSC) distortion (refer to Table 4). Our
EHDSM blind SCIQA method proposes an integrated hierar-
chical content and color feature extraction scheme to capture
the content’s clarity and variation (i.e., textual and pictorial
contents) alongside the chrominance richness to effectively
describe SCIs distorted under different distortion types and
levels.

Observing SCIs often contain a variety of content includ-
ing natural scenes, shapes, text, and graphics, we uniquely
extract local EHD features [41] from the Y channel in the
Y CbCr color space to capture changes in brightness, which
usually result in edges within various content. These local
EHD features represent the frequency and the directionality
of the brightness changes in an image and distinguish how
the image content is distributed. Furthermore, the HVS is
highly sensitive to the chrominance information of an im-
age [28]. Therefore, we use the first and second statistical
moments from both Cb and Cr channels to extract chromi-
nance features at semi-global and global scales to measure
the image’s quality. These two kinds of features comple-
ment each other and are fused in the proposed method to
provide highly discriminative power to assess the quality of
the image. The SVR with the RBF kernel is trained to map
the extracted quality-aware features to their corresponding
subjective quality scores. In the following subsections, we
explain how to extract features at different scales in more
detail.

2.1 Local features: EHD
Local features have been used in many IQA studies to rep-
resent the frequency and directionality of the brightness
changes in an image and distinguish how the image content
is distributed. However, our work focuses on describing the
pictorial and textual content of an image via five types of
edge patterns. In other words, we employ edge histograms
to describe the content of each block and the content varia-
tions among blocks to more accurately represent SCIs. To
this end, we convert an SCI image to the Y CbCr color space
and divide the Y channel of the distorted SCI into nonover-
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Figure 2: Filter coefficients corresponding to 5 edge
types.

lapping 4 × 4 blocks (i.e., 4 blocks in the row direction and
4 blocks in the column direction) to ensure 16 blocks are
produced regardless of the image size. This is done to get a
fixed-size feature vector for each image. For each block, we
then extract non-overlapping 2× 2 image patches (i.e., local
scale). For each patch, we check the presence of five edge
types via the following equation:

max{mv,mh,md45,md135,mnd} > Tedge (1)

where Tedge is a threshold parameter (empirically set to 16)
and mv , mh, md45, md135, and mnd are the edge magni-
tudes of vertical, horizontal, 45-degree diagonal, 135-degree
diagonal, and non-directional edges, respectively. Eq. 1 in-
dicates that the patch contains significant edge information
when the maximum value of the five computed edge mag-
nitudes is greater than the threshold. Otherwise, the patch
contains little edge information. The edge magnitude mdir

(dir = {v, h, d45, d135, nd}) corresponding to one edge
direction is computed by applying the respective edge filter
shown in Figure 2 on a given image patch as follows:

mdir = |
2∑

i=1

2∑
j=1

P (i, j)× edir(i, j)| (2)

where P is the 2 × 2 image patch and edir is the edge filter
corresponding to one of the five directions (dir ={v, h, d45,
d135, nd}) shown in Figure 2.

For each block at the local scale, we construct two 5-bin
histograms, where each bin contains information regarding
each of the five edge types. One 5-bin histogram EHDA con-
tains the count of each edge type and another 5-bin histogram
EHDB contains the magnitudes of each edge type. When any
patch within a block contains significant edge or non-edge
information measured by the predetermined threshold pa-
rameter Tedge, the corresponding histogram bin of the dom-
inant edge type in EHDA and EHDB increases by 1 and by
the magnitude of the dominant edge, respectively. The total
number of all patches in a block and the sum of the domi-
nant edge magnitude within a block are respectively used to
normalize EHDA and EHDB to achieve more invariance and
robustness. The i-th image block is described by a 10-bin
local EHD feature featilocal as follows:

featilocal = [EHDiA , EHDiB ] (3)

where EHDiA and EHDiB are the normalized EHDA and
EHDB of the i−th image block, respectively.

Figure 3 presents two samples of SCI blocks with differ-
ent content types and their corresponding normalized his-
tograms showing distributions of five kinds of edge types at
vertical, horizontal, 45-degree diagonal, 135-degree diago-
nal, and non-directional orientations in EHDA and EHDB . It
shows that non-directional edge types are the common edge
types for both SCI blocks. However, the block with textual

Figure 3: SCI blocks with different content types and
their histograms by concatenating two normalized 5-
bin histograms EHDA and EHDB . Top row: a sam-
ple SCI block with only textual content and its his-
togram. Bottom row: a sample SCI block with only
pictorial content and its histogram.

content clearly has more vertical and horizontal edge types
(i.e., bin numbers 1 and 2 in both normalized EHDA and
EHDB or bin numbers 1, 2, 6, and 7 in the local 10-bin EHD,
a concatenated histogram) than other directional edge types
due to its sharp edges of the textual content in both vertical
and horizontal directions. The block with pictorial content
tends to have more horizontal edge types (i.e., bin number
2 in both normalized EHDA and EHDB or bin numbers 2
and 7 in the local 10-bin EHD) than the remaining direc-
tional edge types (i.e., vertical, 45-degree diagonal, and 135-
degree diagonal). They also tend to be equally distributed
due to the sharp edges of pictorial content in all orientations.
These two examples demonstrate that the local 10-bin EHD
of an SCI block captures the distribution of edge orientations
and therefore captures the differences among various con-
tent types within a block. Since the objects within an image
mainly occur at larger scales (i.e., image blocks), the edge
histogram of a block differs according to the object content
and different blocks capture various content types of differ-
ent objects. As a result, the local EHD features capture the
content within a block better and lead to a meaningful de-
scription of objects at different locations and different scales.

2.2 Semi-global and global chrominance
features: statistical moments

The formulated local information, as explained in the previ-
ous section, has been proven to be an efficient way to rep-
resent the content of an image. In addition, local statistics
are proper features to capture distortions since they are usu-
ally altered with the change of distortions, specifically the
luminance change [42]. However, local statistics cannot ef-
fectively represent the whole image since some distortions
affect the chrominance channels and some distortions de-
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grade the entire image. For instance, color saturation change,
which occurs when sharing a screen between different de-
vices [28], alters the color instead of the structural informa-
tion of an image.

To capture distortions at different scales, we propose to
extract semi-global and global chrominance features to quan-
tify and characterize the chrominance information of a dis-
torted SCI. Instead of extracting the statistical information
only from an entire image, we extract and combine the sta-
tistical information from both the non-overlapping image
blocks and the entire image. This enables us to capture the
color degradation in different regions of an image. Inspired
by the study in [43], we compute the first- and second-order
statistical moments (i.e., mean and standard deviation) to de-
scribe the semi-global chrominance features of each block
and the global chrominance features of an image. Specifi-
cally, we use the statistical moments of each non-overlapping
4 × 4 block from both Cb and Cr channels to represent the
chrominance features of an image on the semi-global scale.
For the i-th block (i = 1, ..., 16), the mean µi and standard
deviation σi of each channel are computed by:

µi =
1

Ni

∑
(x,y)

BLi(x, y) (4)

σi =

√∑
(x,y)(BLi(x, y)− µi)2

Ni
(5)

where BLi is the i-th block of an SCI in the Cb or Cr chan-
nel, (x, y) is the coordinate location for the pixels in the i-th
block, and Ni is the total number of pixels in the i-th block.
Each image block is described by a 4-bin semi-global feature
as follows:

featisemi−global = [µiCb
, µiCr

, σiCb
, σiCr

] (6)

where µiCb
and µiCr

are respectively the mean value of the
i-th image block in the Cb and Cr channels, and σiCb

and
σiCr

are respectively the standard deviation of the i-th im-
age block in the Cb and Cr channels. Similarly, we use the
same statistical moments of the whole image from all three
channels (i.e., Y , Cb , and Cr) to represent the chrominance
features of an image at the global scale as follows:

featglobal = [µY , µCb , µCr , σY , σCb , σCr ] (7)

where µY , µCb , and µCr are respectively the mean value of
an image in the Y , Cb, and Cr channels, and σY , σCb , and
σCr are respectively the standard deviation of an image in
the Y , Cb, and Cr channels.

It should be noted that both semi-global and global fea-
tures are normalized by dividing their mean and standard de-
viation statistics by the maximum intensity value (i.e., 255).

The final feature vector of a distorted SCI is obtained by
concatenating the 10-bin local and 4-bin semi-global feature
vectors of all 16 blocks with the 6-bin global feature vector
as follows:

feature = [feat1, feat2, ..., feat16, featglobal] (8)

where feati is the concatenated local and semi-global fea-
ture vector [featilocal , featisemi−global ] of the i-th image
block.

As a result, we obtain a 230-dimensional feature vector to
describe a distorted SCI from its corresponding 16 blocks,
where 160 values are for local features (i.e., 80 (16×5) val-
ues are for normalized EHDA and 80 (16×5) values are for
normalized EHDB), 64 (16×4) values are for semi-global
features, and 6 values are for global features from the entire
image.

To enhance the edge patterns with small magnitudes and
ensure features with high and low values would contribute
equally without any biases, we use the square root operation
to normalize the final 230-dimensional feature vector [44]
by:

F = [
√

f1,
√

f2, ...,
√

fi, ...,
√

f230] (9)

where fi is a value in the final 230-dimensional feature vec-
tor.

2.3 Quality regression
After feature extraction, similar to [12, 9, 45], we use SVR
provided by the LIBSVM package [46] to map the extracted
230-dimensional quality-aware features F to their corre-
sponding subjective quality scores. We choose SVR in our
method since it automatically learns to differentiate the effect
of various distortions and gives us the flexibility to define ac-
ceptable errors and find an appropriate hyperplane to fit the
data. We use the RBF with gamma = 1, cost = 128, and ep-
silon = 1 since these are optimal values used in NRLT [12]
and PQSC [9]. To ensure a fair evaluation, we randomly di-
vide each dataset into training and testing subsets 1000 times
and use 80% of the data for training SVR and the rest for test-
ing. The median of the 1000 results is reported as the overall
performance.

3 Experimental Results
We evaluate the IQA performance of the proposed EHDSM
method on three publicly available SCI datasets and com-
pare its performance with seven state-of-the-art BSCIQA
methods using three common evaluation metrics. Our ex-
tensive experiments demonstrate the superiority of the pro-
posed EHDSM method in terms of accuracy, monotonicity,
consistency, and computational run-time.

3.1 The testing datasets
We evaluate the proposed EHDSM method by conducting
experiments on three publicly available SCI datasets: screen
content image quality assessment database (SIQAD) [11],
screen content image database (SCID) [47], and quality as-
sessment of compressed SCI (QACS) [48]. SIQAD contains
20 reference SCIs and 980 distorted images degraded by
seven types of distortions, including Gaussian noise (GN),
Gaussian blur (GB), motion blur (MB), contrast change
(CC), JPEG, JPEG 2000 (J2K), and layer segmentation-
based coding (LSC), each of which includes seven different
levels. SCID contains 40 reference SCIs with a resolution
of 1280 × 720 and 1800 distorted images degraded by nine
types of distortions, including GN, GB, MB, CC, JPEG, J2K,
color saturation change (CSC), high efficiency video coding
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Table 1: Comparison of the performance of the proposed EHDSM using different block sizes on SIQAD, SCID,
and QACS datasets.

Dataset Criteria Size: 2× 2 Size: 4× 4 Size: 6× 6 Size: 8× 8

PLCC 0.9151 0.9157 0.8925 0.8576
SIQAD SRCC 0.9034 0.9073 0.8869 0.8521

RMSE 5.7579 5.75261 6.4426 7.3066

PLCC 0.9192 0.9371 0.9101 0.8700
SCID SRCC 0.9162 0.9367 0.9095 0.8646

RMSE 5.5689 4.9468 5.8627 6.9867

PLCC 0.9461 0.9442 0.9296 0.9168
QACS SRCC 0.9393 0.9376 0.9205 0.9091

RMSE 0.7139 0.7268 0.8140 0.8804

(HEVC) and its extension for screen content coding (SCC)
indicated as HEVC-SCC, and color quantization with dither-
ing (CQD), each of which includes five different levels. The
QACS dataset contains 24 pristine reference SCIs of a reso-
lution of 2560 × 144, 1920 × 1080, and 1280 × 720, cov-
ering wide application scenarios and 492 distorted images
degraded by two types of distortions, including HEVC and
SCC.

3.2 Evaluation metrics and parameter
setting

We use three common metrics [49] including Pearson’s lin-
ear correlation coefficient (PLCC), Spearman’s rank-order
correlation coefficient (SRCC), and root mean squared er-
ror (RMSE), to measure the prediction accuracy, monotonic-
ity, and consistency [50, 10] of the eight compared BSCIQA
methods, respectively. PLCC represents the linear corre-
lation between the objective and subjective scores. SRCC
represents the rank-order correlation between the objective
and subjective scores. RMSE measures the deviation be-
tween the objective and subjective scores. A higher PLCC
value (close to 1), a higher SRCC value (close to 1), and a
smaller RMSE value (close to 0) indicate better performance
(i.e., high degree of consistency between the objective qual-
ity evaluation algorithm and subjective ratings). Following
the same procedures used in [9, 10] and [49], we apply a
non-linear logistic regression with five parameters to remove
the non-linearity of objective quality predictions before cal-
culating the above three evaluation metrics as follows:

Zi = κ1{
1

2
− 1

1 + exp [κ2(si − κ3)]
}+ κ4si + κ5 (10)

where si is the perceived quality score of the i-th distorted
SCI computed by an IQA model, Zi is the corresponding
mapped predicted objective score, and κ1, κ2, κ3, κ4, and
κ5 are the five parameters that are fitted during the curve
fitting process.

The proposed EHDSM method has two main parameters
that need to be properly set to extract the final normalized
quality-aware features. The first and most important param-
eter is the block size, which allows the proposed method to
extract a fixed-size feature vector (e.g., 230 values when the

block size is 4 × 4) from an image of any resolution. The
second parameter is the threshold value required to catego-
rize a patch as edge or non-edge content. In the following,
we investigate the sensitivity of the proposed method to the
parameter setting by varying one parameter and fixing the
other one each time.

We evaluate the performance of the proposed EHDSM
method with different block sizes to empirically set the op-
timal block size with respect to the obtained accuracy and
computational run-time. Since a larger block size leads to
more blocks in row and column directions, it results in a
larger feature vector and longer training and testing time of
the SVR model. For example, for a block size of 8 × 8, we
obtain a 902-dimensional feature vector to describe a dis-
torted SCI from its corresponding 64 blocks, where 640 val-
ues are for local features (i.e., 320 (64 × 5) values are for
normalized EHDA and 320 (64 × 5) values are for nor-
malized EHDB), 256 (64 × 4) values are for semi-global
features, and 6 values are for global features from the entire
image. Its feature length is almost 4 times of the length of the
final normalized quality-aware feature obtained from 4 × 4
blocks. So, we limit the largest block size to be 8 × 8 and
evaluate the performance of the proposed EHDSM method
with four different block sizes of 2 × 2, 4 × 4, 6 × 6, and
8 × 8. Table 1 lists the median PLCC, SRCC, and RMSE
values obtained by evaluating the SVR model 1000 times
on the SIQAD, SCID, and QACS datasets using the pro-
posed EHDSM method with each of four block sizes and the
threshold value of 16. It demonstrates that the two smallest
block sizes (i.e., 2 × 2 and 4 × 4) achieve the best compa-
rable results in terms of three metrics on all three datasets.
Specifically, the block size of 4× 4 leads to the best perfor-
mance on SIQAD and SCID datasets, and the block size of
2 × 2 leads to the best performance on the QACS dataset.
We empirically choose the block size of 4 × 4 in the pro-
posed method due to its superior performance on SIQAD
and SCID datasets. Since SCID contains the largest number
of reference and distorted images in a mid-resolution (i.e.,
1280 × 720) among the three datasets, it makes the infer-
ence of the trained machine learning model more reliable
and generalizable and supports the compatibility and capa-
bility of the block size of 4 × 4 to represent SCIs in IQA
tasks.

In addition, according to Table 1, while the block size

6



4 × 4 yields better results across the three datasets, the per-
formance of the proposed method drops on all datasets when
the block size increases from 4 to 6 and increases from 6 to 8.
This is mainly because increasing the block size significantly
increases the number of blocks, which subsequently leads to
the image being represented by a vast variety of contents. For
example, when the block size is equal to 4, an image would
be represented using 16 blocks with different content vari-
ations. When increasing the block size to 6 or 8, an image
would be represented using 36 (6× 6) or 64 (8× 8) blocks,
respectively. Moreover, it also increases the dimension of lo-
cal features (36× 10 and 64× 10 for block sizes of 6 and 8,
respectively) and semi-global features (36×4 and 64×4 for
block sizes of 6 and 8, respectively). Therefore, considering
a limited number of images in SCI datasets, learning an ac-
curate mapping from the extracted high-dimensional features
to the subjective scores is quite challenging and it decreases
the performance of the proposed method.

Figure 4: Plots of different metrics obtained by the
proposed EHDSM method using different threshold
values on the SIQAD dataset. (a) PLCC and SRCC
values; (b) RMSE values.

We evaluate the performance of the proposed EHDSM
method with different threshold values to empirically set
the optimal threshold with respect to the obtained accuracy.
Patches with useful and effective content information tend to
have high PLCC and SRCC and low RMSE values. How-
ever, patches with noisy information tend to be incorrectly

recognized as useful edges, which may lead to inaccuracy
in IQA results. As a result, a relatively small threshold is
preferred to not only select useful and effective content in-
formation but also eliminate the noise impacts. Since it is
crucial to capture and balance the effects of different con-
tent types and noise levels, we experiment with 11 thresh-
olds (i.e., 0, 5, 10, 11, 12, 13, 14, 15, 16, 18, and 20) and
select an optimal smallest threshold that leads to the high-
est SRCC and PLCC and lowest RMSE values with small-
est impact from noises. Figure 4. (a) and (b) plot median
PLCC, SRCC, and RMSE values obtained by evaluating the
SVR model 1000 times on the SIQAD dataset using the pro-
posed EHDSM method with each of 11 thresholds and the
block size of 4× 4. It shows that EHDSM achieves improv-
ing IQA performance when the threshold increases. How-
ever, the highest IQA performance in terms of the PLCC,
SRCC, and RMSE metrics is achieved when the threshold is
16. Further increasing the threshold leads to decreasing IQA
performance. Based on the results shown in Figure 4, we
empirically choose a threshold of 16 in the proposed method
since it is the smallest threshold that captures and balances
the effects of different content types and noise levels. It is
noteworthy that there is not a huge performance gap between
different threshold values. This indicates that the proposed
method is less sensitive to this parameter and can accurately
capture the edge distribution of both content and noise in the
testing stage.

3.3 Performance comparison
Table 2 compares the proposed EHDSM method with four
NSI BIQA methods, including NIQE [5], ILNIQE [6],
BRISQUE [7], and GM-LOG [8] and seven state-of-the-art
BSCIQA methods including BQMS [2], SIQE [3], NRLT
[12], OSM [13], HRFF [14], PQSC [9], and FVC [15] on
three publicly available datasets SIQAD, SCID, and QACS
in terms of three metrics PLCC, SRCC, and RMSE. The
source codes of these methods, except for OSM, HRFF,
and FVC, are obtained from their author’s websites. To
make a fair comparison, we choose the same sets of train-
ing and testing images and perform the same testing proce-
dure for all compared methods that have source codes. Per-
formance results of OSM, HRFF, and FVC are copied from
their respective published papers. The best value of each
of the three evaluation metrics is highlighted in bold. Table
2 clearly shows that the proposed EHDSM method yields
the highest overall PLCC and SRCC values and the lowest
overall RMSE values on all three datasets. It also signifi-
cantly outperforms the other methods on the SCID dataset
that contains chrominance distortions (e.g., color saturation
change and color quantization with dithering) since it is the
only method that extracts semi-global and global chromi-
nance features to quantify and characterize the chrominance
information of the distorted SCI. In addition, the top four
BSCIQA methods, namely, EHDSM, PQSC, NRLT, and
FVC, outperform all four NSI BIQA methods on three SCI
datasets. All BSCIQA methods outperform two NSI BIQA
methods, namely, NIQE and ILNIQE, on three SCI datasets.

Table 3 lists the scores of three metrics PLCC, SRCC,
and RMSE when employing eight variants of the proposed
EHDSM method, namely, EHDA only variant 1, EHDB

only variant 2, local (EHDA+EHDB) only variant 3, semi-
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Table 2: Comparison of PLCC, SRCC, and RMSE obtained by applying four BIQA methods, seven state-of-
the-art BSCIQA, and the proposed EHDSM method on each of three publicly available datasets (i.e., SIQAD,
SCID, and QACS).

Dataset Criteria NIQE ILNIQE BRISQUE GM-LOG BQMS SIQE NRLT OSM HRFF PQSC FVC EHDSM
PLCC 0.3749 0.3854 0.8113 0.7608 0.8419 0.8225 0.9137 0.8306 0.852 0.9101 0.9014 0.9157

SIQAD SRCC 0.3568 0.3212 0.7749 0.7035 0.8348 0.8059 0.9024 0.8007 0.8320 0.8997 0.8915 0.9073
RMSE 13.1520 13.2085 8.2565 9.2530 7.6760 8.1286 5.7879 7.9331 7.4150 5.8885 6.1684 5.7261
PLCC 0.3904 0.4079 0.7696 0.7883 0.7592 0.7208 0.8648 - - 0.9142 0.8681 0.9371

SCID SRCC 0.3712 0.3546 0.7448 0.7619 0.7416 0.7150 0.8454 - - 0.9111 0.8550 0.9367
RMSE 12.9827 12.8425 9.0143 8.6754 9.2087 9.8060 7.0881 - - 5.7450 7.0170 4.9468
PLCC 0.4240 0.2374 0.8421 0.9002 0.8622 0.8821 0.9004 0.7068 - 0.9354 0.9239 0.9442

QACS SRCC 0.3701 0.2603 0.8201 0.8903 0.8557 0.8708 0.8926 0.6804 - 0.9275 0.9198 0.9376
RMSE 1.7091 1.8395 1.0959 0.9656 1.1126 1.0404 0.9594 1.5301 - 0.7804 0.8434 0.7268

Table 3: Comparison of PLCC, SRCC, and RMSE obtained by applying the proposed EHDSM method and its
eight variants on each of three publicly available datasets (i.e., SIQAD, SCID, and QACS).

Dataset Criteria EHDA EHDB local SG global local+SG local+global SG+global EHDSM
PLCC 0.9068 0.8948 0.9152 0.5075 0.2440 0.9145 0.9175 0.5980 0.9157

SIQAD SRCC 0.8966 0.8778 0.9057 0.4756 0.2144 0.9055 0.9076 0.5705 0.9073
RMSE 5.9912 6.3701 5.7397 12.2986 13.8178 5.7539 5.6804 11.4196 5.7261

PLCC 0.8475 0.8625 0.8721 0.5135 0.2955 0.9338 0.9265 0.5750 0.9371
SCID SRCC 0.8189 0.8342 0.8462 0.4764 0.2463 0.9330 0.9251 0.5505 0.9367

RMSE 7.4939 7.1490 6.9110 12.1198 13.5104 5.0587 5.3350 11.5781 4.9468
PLCC 0.9469 0.935 0.9430 0.8282 0.3460 0.9433 0.9433 0.8395 0.9442

QACS SRCC 0.9400 0.9269 0.9355 0.8136 0.2813 0.9373 0.9370 0.8246 0.9376
RMSE 0.7113 0.7818 0.7332 1.2338 2.0668 0.7281 0.7335 1.2005 0.7268

global (SG) only variant 4, global only variant 5, local+semi-
global (local+SG) only variant 6, local+global only variant 7,
and semi-global+global (SG+global) only variant 8, on three
publicly available datasets SIQAD, SCID, and QACS. Table
3 shows that content descriptor-based edge histograms cap-
turing edge variations are the most important features in IQA
since both variant 1 (i.e., EHDA only) and variant 2 (i.e.,
EHDB only) achieve high performance for three metrics on
three datasets. Variant 3 (i.e., Local (EHDA+EHDB) only)
outperforms variant 1 and variant 2 on SIQAD and SCID
datasets and outperforms variant 2 on the QACS dataset. In
other words, both EHDA and EHDB features are necessary
and contribute to the superiority of the proposed method. On
the other hand, variant 4 (i.e., SG only), variant 5 (i.e., global
only), and variant 8 (i.e., SG+global only) do not achieve
high performance in terms of three metrics on three datasets
since they only capture chrominance distortions. However,
local+SG only variant 6 (combining local features with SG
features) and local+global only variant 7 (combining local
features with global features) tend to improve the variant 3
(i.e., local only) on all three datasets, especially they lead
to significant improvement over variant 3 on the SCID since
both SG and global features capture chrominance distortions
in images from the SCID dataset. These experimental re-
sults indicate the influence of each feature is significant and
all the local, semi-global, and global features are needed to
correctly evaluate the quality of a distorted SCI. The results

in Table 3 also demonstrate that the best performance on the
SIQAD, SCID, and QACS datasets is achieved by variant
7, the proposed EHDSM method that combines local, semi-
global, and global features, and variant 1, respectively. Since
the SIQAD dataset does not contain any chrominance distor-
tions, combining the semi-global chrominance features with
variant 7 slightly drops the performance. Moreover, variant 1
leads to the best performance on the QACS dataset since this
dataset only includes compression-related distortions, which
degrades the structural information of an image rather than
its statistical moments. Similarly, fusing the semi-global
and global features with the local features slightly decreases
the performance. However, the performance improvement
is significant on the SCID dataset when fusing all features,
which allows the model to assess the quality of degraded im-
ages under chrominance distortions. As a result, we propose
to utilize all three feature variations to represent the SCIs.

3.4 Performance comparison of distor-
tion types

We conduct a set of performance experiments on SCID,
which contains more SCIs and a wide range of distortions,
to comprehensively analyze the effectiveness of the proposed
EHDSM method in terms of PLCC, SRCC, and RMSE under
distortions. Table 4 presents the PLCC, SRCC, and RMSE
values obtained by the proposed EHDSM and five state-of-
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Table 4: PLCC, SRCC, and RMSE results of the proposed method and five peer methods on distorted SCIs in
SCID.

Criteria Distortion BQMS SIQE NRLT PQSC FVC EHDSM

GN 0.8395 0.6989 0.9753 0.9611 0.959 0.9691
GB 0.7464 0.8336 0.9264 0.9325 0.967 0.9222
MB 0.7963 0.9325 0.9290 0.9541 0.939 0.9504
CC 0.6733 0.4215 0.7766 0.7605 0.936 0.8651

PLCC JPEG 0.8679 0.6932 0.9366 0.9425 0.93 0.9574
J2K 0.7820 0.8235 0.9392 0.9506 0.927 0.9564
CSC 0.3099 0.2938 0.2695 0.7791 - 0.9492

HEVC-SCC 0.6434 0.6431 0.7857 0.9012 - 0.9220
CQD 0.6512 0.6949 0.8956 0.8512 0.941 0.9182
GN 0.8216 0.6781 0.9626 0.9451 0.953 0.9539
GB 0.6944 0.8120 0.9161 0.9253 0.953 0.9142
MB 0.7633 0.9116 0.9145 0.9386 0.933 0.9323
CC 0.4821 0.3145 0.5969 0.6296 0.930 0.7648

SRCC JPEG 0.8386 0.6527 0.9255 0.9248 0.924 0.9348
J2K 0.7392 0.7801 0.9045 0.9124 0.923 0.9277
CSC -0.1216 -0.1009 -0.0248 0.7602 - 0.9403

HEVC-SCC 0.5283 0.5338 0.7068 0.8740 - 0.9094
CQD 0.6185 0.6515 0.8407 0.8298 0.936 0.8995
GN 6.6764 8.7800 2.7457 3.4321 3.516 3.0325
GB 6.8995 5.7087 3.9077 3.7459 3.011 4.0108
MB 6.4919 3.8802 3.9726 3.2438 4.137 3.3416
CC 6.4058 7.9356 5.5531 5.7286 4.253 4.4064

RMSE JPEG 7.3384 10.6357 5.1646 4.9591 3.86 4.2690
J2K 9.6903 8.9020 5.4034 4.8695 3.752 4.5990
CSC 9.2109 9.2254 9.2347 6.0070 - 3.0655

HEVC-SCC 10.4661 10.3733 8.4252 5.9319 - 5.3055
CQD 9.5168 8.9806 5.5814 6.6143 3.893 5.0076

the-art peer methods on nine distortions on the SCIs in SCID,
respectively. Four of the five compared methods, namely,
BQMS, SIQE, NRLT, and PQSC, provide their source codes
online so we can run the same experiments with the same se-
tups to obtain their results under distortions. One of the five
compared methods (i.e., FVC) provides the PLCC, SRCC,
and RMSE values on seven distortions and does not pro-
vide their results on CSC and HEVC-SCC distortions. So we
use “-“ to reflect these missing results in Table 4. We high-
light the best- and second-best performance values in red and
blue, respectively. The results in Table 4 clearly show that
the proposed EHDSM method more precisely assesses the
quality of SCIs under various distortions due to its utiliza-
tion of combined content and chrominance-based features.
Specifically, it overally performs the best under JPEG, J2K,
CSC, and HEVC-SCC distortions and performs the second-
best under GN, MB, CC, and CQD distortions. Compared
with the five BSCIQA methods, EHDSM has superior per-
formance on SCID for eight of nine distortion types (i.e.,
best performance on four distortions and second-best results
on four distortions). It ranks the 4th on SCID for GB dis-
tortion mainly because the blurring operation directly affects
the edges of an image. Since the proposed EHDSM method

uses the local edge descriptor to represent an image’s con-
tent, it is challenging to distinguish the degradation on the
image’s content resulted from GB distortion. However, we
still achieve a comparable result on the GB distortion due
to the fusion of multiple complementary features. In sum-
mary, our experimental results clearly demonstrate the gen-
eralizability and stability of the proposed method regarding
various distortions.

3.5 Analysis of feature sets
Inspired by PQSC [9], we employ the t-distributed stochas-
tic neighbor embedding (t-SNE) method [51] to validate
the effectiveness of the proposed feature space (i.e., local,
semi-global, and global features) in assessing quality degra-
dations resulting from different distortions. t-SNE is an
algorithm used for dimension reduction. It models each
high-dimensional sample using a two-dimensional or three-
dimensional point in a way that similar samples are mapped
to similar points close to each other and dissimilar samples
are mapped to distant points. As a result, it is capable of
preserving the global information of the actual feature space
[51] and visualizing the samples using their corresponding
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Figure 5: t-SNE scatter plots of the proposed feature representation on SIQAD: data points are colored by
distortion types (left plot) and DMOS scores (right plot).

Figure 6: t-SNE scatter plots of the proposed feature representation on SCID: data points are colored by distor-
tion types (left plot) and MOS scores (right plot).

Figure 7: t-SNE scatter plots of the proposed feature representation on QACS: data points are colored by
distortion types (left plot) and MOS scores (right plot).
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feature maps in the reduced dimension. Here, we employ
the t-SNE method to visually analyze the effectiveness of the
proposed features in two dimensions since it is impossible to
visualize the high-dimensional features of size 230 extracted
by the proposed EHDSM method.

Figures 5, 6, and 7, show two scatter plots on SIQAD,
SCID, and QACS, respectively. The one on the leftside is
the t-SNE scatter plot of the extracted quality-aware features
of the proposed EHDSM method in two dimensions colored
by different distortion types. The one on the rightside is
the same t-SNE scatter plot shown in leftside, in which data
points are colored by their respective MOSs or DMOSs. In
all six scatter plots, each data point represents an SCI, and
different colors represent distortion types or distortion lev-
els. The scatter plots on the leftside of Figures 5 through 7
show that the proposed features are able to cluster the dis-
tortions with similar artifacts. For example, the left scat-
ter plot in Figure 5 shows that SCIs from SIQAD, which
are distorted by GN, GB, and MB, are grouped around their
corresponding clusters and are almost separated from other
clusters. The left scatter plot in Figure 6 shows that the
SCIs from SCID, which are distorted by GN and GB, are
grouped around their corresponding clusters and are almost
separated from other clusters. Since GN and CQD distor-
tions add some noise to the reference images, the quality-
aware features of their distorted SCIs are well separated from
others and are grouped quite close together. Since the re-
maining distortions (i.e., CC, JPEG, J2K, CSC, HEVC-SCC,
and LSC) introduce the same artifacts (e.g., compression and
blurring effects), their distorted SCIs tend to be clustered to-
gether in the proposed feature space. The scatterplots on the
rightside of Figures 5 through 7 show that distorted SCI im-
ages of almost the same MOS or DMOS values are grouped
together. For example, red or blue points represent SCI im-
ages whose subjective scores are close to each other. Overall,
the efficiency of the proposed feature sets is clearly demon-
strated in the distinction of both the distortion types and lev-
els.

3.6 Cross-dataset evaluation
Cross-dataset evaluation is commonly used to validate the
generalizability of the proposed method. Considering the
number of images and common distortion types in publicly
available datasets, we select the SIQAD and SCID datasets
as training and testing datasets. Specifically, we train the
proposed and compared peer methods on one dataset and
test their performance over the other dataset. This process is
done with six types of distortion (GN, FB, MB, CC, JPEG,
and J2K) that are common in both datasets.

Table 5 compares experimental results of the cross-dataset
evaluation of five BSCIQA methods. The column of training
with SIQAD (Table 5. (a)) shows the testing results of each
compared method on SCID when it is trained over six se-
lected distortions of SCIs in SIQAD. The column of training
with SCID (Table 5. (b)) shows the testing results of each
compared method on SIQAD when it is trained over six se-
lected distortions of SCIs in SCID. The best and second-best
results are highlighted in red and blue, respectively. Pre-
vious studies [15, 23, 52] report cross-dataset validation of
their proposed methods over the common distortions in two
datasets. Here, we report the cross-dataset validation results

of the proposed EHDSM and four state-of-the-art BSCIQA
methods to not only validate the generalizability of each
compared method but also compare their generalizability.

Based on the experimental results shown in Table 5, we
observe the following: 1) All compared methods achieve
better cross-dataset validation results when they are trained
over six selected distortions of SCIs in SCID. The vast size
and complexity of SCID may make the machine learning
model more generalizable and stable, which leads to better
cross-dataset performance on SIQAD. 2) The cross-dataset
performance of almost all BSCIQA methods is worse than
their in-dataset performance, mainly due to the diverse con-
tents of the SCIs in training and testing datasets. 3) The
NRLT achieves the best cross-dataset performance, and the
proposed EHDSM method achieves the second-best perfor-
mance. The block-based feature extraction strategy of the
proposed method may make the model more dependent on
imagery contents compared with NRLT. However, this could
be tackled by utilizing diverse image contents in the learning
process and increasing the training samples.

3.7 Influence of training sizes
To evaluate the influence of training sizes on the IQA perfor-
mance, we use five training sizes (i.e., 40%, 50%, 60%, 70%,
and 80% of SCIs in SIQAD) to train the corresponding ma-
chine learning model of the proposed EHDSM method and
four state-of-the-art BSCIQA methods and test the perfor-
mance of these compared methods on the remaining SCIs in
SIQAD. Figure 8 presents the SRCC values of the five com-
pared methods by training their respective machine learning
models on 392, 490, 588, 686, and 784 SCIs in SIQAD. It
is clear that the performance of all methods improves when
the training size increases. The proposed EHDSM method,
NRLT, and PQSC achieve the top three SRCC values un-
der each of the five trainings. They also achieve satisfactory
SRCC values of above 0.85 even with a low training size of
392 images. Both EHDSM and NRLT become steady with
growth in training sizes. For example, SRCC value of NRLT
improves 0.79%, and the SRCC value of EHDSM improves
1.31% when using 588 images (60% training size) and 784
(80% training size) images to train the respective machine
learning model. The two properties of the top three methods,
namely, satisfactory testing performance with a small train-
ing set and the steadiness with growth in training size, are
attractive in practice due to the lack of SCI training images.

3.8 Computational time
To evaluate the computational time of the BSCIQA methods,
we apply each method to all distorted SCI images in a dataset
to calculate its average run-time (i.e., divide the total run-
time by the total number of images in the dataset). Figure
9 compares the average run-time of the proposed EHDSM
method and four state-of-the-art BSCIQA methods on three
datasets, SIQAD, SCID, and QACS. It clearly shows that
our proposed EHDSM method has the fastest average run-
time, which is a significantly low computational run-time of
less than 2.5 seconds. Specifically, its run-time is less than
one-third of the run-time of the second-fastest method (i.e.,
NRLT) on all three datasets. It is also interesting to note that
the average run-time is not correlated with the feature-length.
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Table 5: Cross-dataset evaluation results of the proposed and four BSCIQA methods for SCIs of six types of
distortions in SIQAD and SCID.

(a) Training with SIQAD (b) Training with SCID
PLCC SRCC RMSE PLCC SRCC RMSE

BQMS 0.3793 0.3730 12.3448 0.5726 0.5595 12.0440
SIQE 0.3741 0.3649 12.3735 0.3747 0.3850 13.6205
NRLT 0.6226 0.6229 10.4411 0.7851 0.7742 9.0990
PQSC 0.5469 0.5494 11.1700 0.6912 0.6466 10.6160

EHDSM 0.5990 0.5841 10.6834 0.7061 0.6503 10.4023

Figure 8: SRCC results of the proposed and four
BSCIQA methods for SCIs in SIQAD using different
training sizes.

Figure 9: Comparison of average run-time of the
proposed and four BSCIQA methods on three SCI
datasets

For example, the length of the features for each SCI extracted
by the proposed BQMS, SIQE, NRLT, PQSC, and our pro-
posed EHDSM method is 13, 15, 270, 520, and 230, respec-
tively. Even though BQMS and SIQE have the shortest fea-
ture length, their average run-times are the slowest due to
their complicated computational cost to extract the features.
In summary, the proposed EHDSM method is more effective
in terms of prediction accuracy, monotonicity, and consis-
tency and more efficient in terms of run-time compared to
four recently proposed state-of-the-art BSCIQA methods.

4 Conclusion and Future Work

We propose a BSCIQA method that extracts edge and
chrominance features in local, semi-global, and global scales
using the EHDSM from a distorted SCI in the Y CbCr color
space. Our major contributions are as follows: 1) Extracting
quality-aware features at three scales (i.e., local, semi-global,
and global scales) to effectively capture the effects of differ-
ent distortion types and levels of SCIs. 2) Employing EHDs
at local scales to describe the content of an image to accu-
rately represent the characteristics of SCIs. 3) Using statisti-
cal moments at both semi-global and global scales to effec-
tively quantify the content and color degradations of a dis-
torted SCI. Experimental results on three common datasets,
including SIQAD, SCID, and QACS, demonstrate the supe-
riority of the proposed EHDSM method over its eight variant
methods, four NSI BIQA methods, and seven state-of-the-art
BSCIQA methods in terms of three common metrics (i.e.,
PLCC, SRCC, and RMSE) under all distortions and under
each specific distortion, visualization of features in a reduced
dimension, cross-dataset evaluation, training sizes, and the
average run-time. The novelty of our proposed EHDSM
method includes employing EHD to capture the frequency
and directionality of edges at local scales (i.e., in image
patches within each image block) and employing first- and
second-order statistical moments to capture chrominance in-
formation at semi-global scales (i.e., in image blocks) and at
global scales (i.e., in the entire image). The integration of
local, semi-global, and global features sufficiently perceives
the quality of SCIs.

Currently, the extracted features are stacked together
without any further analysis. Therefore, the performance
of the proposed EHDSM method drops when assessing the
quality of images that are less seen in the training stage.
In the future, we would like to carry out research on in-
vestigating the pre- and post-assessment fusion strategies to
distinguish the best strategy that yields the highest perfor-
mance. Similar to our proposed approach, we intend to an-
alyze the possible combination of features such as addition,
multiplication, concatenation, weighted fusion, etc. before
making the final quality evaluation (i.e. pre-assessment fu-
sion). Moreover, we plan to study the effect of fusing the
assessed qualities from the individual feature sets (i.e., post-
assessment fusion).

Furthermore, we are interested in exploring more accu-
rate color information descriptors. As screen content images
consist of both pictorial and textural content, the impact of
color degradation varies on each particular content. Thus,
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we plan to devise a new color information descriptor based
on the content of the image.
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