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Abstract
The existing equivalent modeling methods reported in literature focuses mainly on 
the battery cells and do not take the packing consistency state into consideration, 
which exists on the internal connected cells of the lithium- ion battery pack. An im-
proved equivalent circuit model is constructed and reported in this manuscript for the 
first time, which can be used to characterize the working characteristics of the pack-
ing lithium- ion batteries. A new equilibrium concept named as state of balance is 
proposed as well as the calculation process, which is realized by considering the 
real- time detected internal battery cell voltages. In addition, this new equilibrium 
concept aims to obtain more information on the real- time consistency characteriza-
tion of the battery pack. The improved adaptive equivalent circuit model is investi-
gated by using the improved splice modeling method, in which the statistical noise 
properties are corrected and the additional parallel resistance- capacitance circuit is 
introduced. The parameter correction treatment is carried out by comparing the esti-
mated and experimental detected closed circuit voltages. Furthermore, the tracking 
error is found to be 0.005 V and accounts for 0.119% of the nominal battery voltage. 
By taking the packing consistency state and temperature correction into considera-
tion, the accurate working characteristic expression is realized in the improved 
equivalent circuit modeling process. Finally, the model proposed in this manuscript 
presents a great number of advantages compared to other methods reported so far, 
like has the high accuracy, and the ability to protect the security of the lithium- ion 
battery pack in the power supply application.
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1 |  INTRODUCTION

The voltage and capacity of the single lithium- ion battery cell 
is very limited as a result they should be connected together 
and used as packs that are suitable for the industrial energy 
power supplies, especially for the Unmanned Aerial Vehicles 
(UAVs).1 As the material and process variations cannot be 
avoided, the imbalance phenomena exits among the internal 
connected cells of the lithium- ion battery pack,2 which makes 
the balance state evaluation to be necessary for power supply 
applications.3 As a result, it is quite difficult to obtain ac-
curate working state descriptions of the lithium- ion battery 
packs using the current power supply conditions.4 The ex-
isting modelling methods reported in literature so far cannot 
resolve the life shortening, thermal runaway and other issues 
in the lithium- ion battery packs for reliable power supply 
purposes.5 The existing research has carried out a great work 
by improving the safety level of the lithium- ion battery pack 
effectively.

Considering the high specific energy and safety demands, 
the lithium cobalt oxide batteries have been investigated ex-
tensively for the auxiliary power application6 because of its 
equity and environmental protection advantages.7 Moreover, 
it can be used in high temperature conditions with a high 
degree of safety.8 The battery cell voltage can describe the 
working state to a certain extent9 and the internal equilibrium 
state of the lithium- ion battery pack can be characterized, 
which can improve its safety in the industrial power supply 
applications.10 The iterate calculation modeling was obtained 
by using the co- estimator,11 according to which the on- line 
working state estimation could be also investigated.12 Then, 
the on- line remaining energy status named as State of Charge 
(SOC) was also predicted,13 which plays an important role 
in the Battery Management System (BMS). Multi- timescale 
power and energy assessment was also investigated for the 
lithium- ion battery and supercapacitor hybrid systems.14 The 
working state estimation was investigated for the lithium- ion 
battery pack, in which the equilibrium state was consistent by 
implying the battery cell voltages, reflecting its actual energy 
state adequately.15 Because of the difficulty in the packing 
state estimation of the lithium- ion batteries, the real- time per-
formance and its adaptability are not precise enough.

Moreover, a great number of research papers have been 
extensively reported to overcome the balance state secu-
rity issues. The power capability evaluation was conducted 
by investigating the multi- parameter constraints estimation 
constraints.16 An online frequency- tracking algorithm was 
proposed17 and the dynamic estimation process was also ob-
tained.18 The state- space model with noninteger order deriva-
tives was constructed19 along with the H- infinity- filter- based 
SOC estimation method.20 The estimation method was also 
studied by using the stress measurement.21 The electrochemi-
cal model- based estimation algorithm was also investigated.22 

The improved SOC estimation method was conducted by con-
sidering the current dependence on the internal resistance.23 
Other research groups as well as our research team have car-
ried out in- depth research to enhance the lithium- ion battery 
pack safety by using the associated BMS equipment. However, 
there are still some parameters that cannot be considered fully 
because of the real- time imprecise complex requirement as 
well as the dynamic adaptability defects, which are mainly 
due to its indirect measurement characteristics. The reliability 
of the SOC estimation method was calculated by using the 
smooth variable structure filter24 and the online internal re-
sistance measurement.25 Furthermore, the polynomial equiv-
alent circuit model was constructed26 for the electrochemical 
impedance spectroscopy of the lithium- ion batteries. The 
comparative optimization methods were analyzed for the 
parameter identification using different Equivalent Circuit 
Models (ECMs) for lithium- ion batteries.27

The related research work was concentrated on the energy 
transferring consumption policies28 and the SOC determina-
tion methods were analyzed.29 A data- driven bias- correction- 
based lithium- ion battery modeling was conducted30 and the 
estimation process was also investigated by using the non-
linear fractional model.31 The space representational degra-
dation was considered along with the impedance modeling32 
and a simplified electrochemical model was built.33 The it-
erate calculation was obtained by conducting the evolution-
ary Gaussian mixture regression34 and the advanced BMS 
equipment was designed for the smart grid infrastructure.35 
Moreover, the maximum available power state estimation was 
conducted by using the Particle- filtering (PF) algorithm36 and 
it was also achieved by using the temperature- compensated 
model.37 The SOC estimation method was obtained for a la-
tent heat storage38 and a neural network- based observer was 
designed.39 Furthermore, the dual sliding mode observer was 
built40 and a comparative study was conducted for different 
ECMs.41 These studies expanded the theoretical and experi-
mental study of the energy transformation for the lithium- ion 
battery packs.

Mounts of equivalent modeling strategies were carried 
out as well, proposing a variety of circuit topologies. A novel 
thermoelectric model was investigated,42 attracting a great 
protection circuit progress. A mixed estimation algorithm 
was proposed, in which high accuracy values can be achieved 
in various driving patterns of Electrical Vehicles (EVs).43 
The discrete wavelet transform- based feature extraction was 
analyzed for the lithium- ion battery consistency by using the 
experimental voltage signals.44 The real- time SOC estimation 
method was conducted in the thermal storage vessels and ap-
plied to the smart polygene ration grid.45 It was also investi-
gated by using the dual exponential function46 and the impact 
on the Open Circuit Voltage (OCV) tests were conducted.47 
The temperature- compensated models were conducted by 
using the Extended Kalman Filter (EKF), which were used 
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as the implantable charger.48 The co- estimation method was 
studied for the SOC determination, in which the mixed strat-
egist dynamics was proposed along with the maximum en-
tropy principles.49 The electrochemical model was conducted 
by using the charging optimization50 and the dynamic model 
was investigated incorporating electro- thermal and aging as-
pects.51 A rapid screening and regrouping approach was pro-
posed to manage the large- scale retired lithium- ion battery 
cells in second- use applications by using the neural network 
algorithm.52 Therefore, it is necessary to construct the adap-
tive model based on the internal mechanism theory, which 
can achieve the optimum life for f lithium- ion battery packs, 
protecting the instantaneous power supply capacity and im-
proving its energy utilization.

An improved equivalent circuit model is constructed, 
which can be used to characterize the working characteris-
tics of the packing lithium- ion batteries. A new equilibrium 
parameter named as State of Balance (SOB) is constructed, 
which is introduced into the packing equivalent circuit mod-
eling process. The consistency among the internal connected 
battery cells in the lithium- ion battery pack is characterized 
by using this equilibrium parameter. An adaptive model is 
built by conducting the battery internal principle along with 
the working state analysis, in which the information acquisi-
tion and model- building methods are introduced to establish 
the working state expression model.

2 |  MATHEMATICAL ANALYSIS

The mathematical methods are studied by considering the 
key factors of voltage, current and temperature, which can 
improve the energy management effect and safety of the 
power lithium- ion battery packs. The parametric method is 
conducted by establishing the equilibrium state evaluation 
model. The key issues of the adaptive equilibrium param-
eters are effectively studied to achieve the working state 
description. A scientific evaluation of the equilibrium pa-
rameters and the adaptive models are investigated. Then, the 
SOB evaluation is embedded into it by using the adaptive 
model building method, which can provide a basis of reliable 
lithium- ion battery packing power supply applications.

2.1 | Equivalent circuit description
According to the working state description requirement of 
the lithium- ion battery pack, the Splice- Equivalent Circuit 
Model (S- ECM) is constructed by considering the charac-
terization accuracy and computational complexity, which 
is realized by the combined empirical treatment of existing 
equivalent models. In order to obtain the accurate math-
ematical expression of the working characteristics, the 
different internal effects are simulated by the proposed 

S- ECM model, aiming to adapt the lithium- ion battery 
packs at various conditions of the internal battery cells 
cascade. Considering the working characteristics of the 
lithium- ion battery pack together with its internal composi-
tion, the improved equivalent circuit model is constructed 
to build the model framework. Furthermore, the effective 
state- space equation of the S- ECM can be described by 
conducting the experimental analysis along with its pa-
rameter identification. The equivalent mechanism can be 
described as follows:

1. The electromotive force is derived by using the ideal 
voltage source UOC. The parallel-connected large resis-
tance Rs can be added next to the electromotive force 
to characterize the self-discharge effect, which can de-
crease the equivalent modeling error caused by the 
self-discharge phenomenon. The Ohm effect is charac-
terized by the serially connected internal resistance Ro.

2. The one-order Resistance-Capacitance (RC) paralleled 
circuit is used to characterize the polarization effect. The 
parallel resistance circuit connected with reverse diodes 
are used on the equivalent modeling basis, aiming to char-
acterize the charge-discharge resistance difference. The 
resistances of Rd and Rc paralleled circuit connected with 
reversed diodes are utilized, which will furthermore im-
prove the working state description accurately.

3. The mathematical description of the SOB influence can be 
carried out by considering the consistency difference be-
tween the internal connected battery cells in the packing 
equivalent model. Uδ is used by conducting the reverse-
tandem treatment, which is serially connected with the 
OCV source UOC to describe the variation on the output 
voltage UL(t) that shortens the range of the working volt-
age period, including upper and lower limits. The time-
variable resistance Rδ is used to describe this influence 
effect of the accumulative increase in the internal resist-
ance Ro, which will increase the heating effect gradually.

By considering the comprehensive effect of these factors, a 
more effective solution can be provided for the existing work-
ing state characterization problems of the lithium- ion battery 
packs. In this way, a novel S- ECM model is constructed for the 
lithium- ion battery packs together with its state- space equation 
as shown in Figure 1.

Because of its high accurate and easy calculation advan-
tages, the simulation modeling complexity can be simplified. 
According to the application conditions and characteristics 
of the lithium- ion battery pack that are obtained from the ex-
perimental analysis, the improved equivalent model can be 
constructed. The working characteristic expression effect can 
be improved by using the S- ECM model, which is obtained 
by improving the original battery equivalent circuit model. 
The parameters in the model are shown as follows:
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1. UOC is used to describe the OCV varying situation of 
the lithium-ion battery pack.

2. Rs is utilized to indicate the self-discharge effect.
3. Ro is employed to characterize the voltage drop between 

the positive and negative poles in the discharge and charge 
process of the lithium-ion battery pack that is caused by 
the Ohm effect.

4. The one-order RC parallel circuit is utilized to simulate 
the relaxation effect on the working process, in which Rp 
is employed to characterize the polarization resistance 
and Cp is the polarization capacitance. The parallel cir-
cuit of Rp and Cp reflect the production and elimination 
process of polarization effect in the lithium-ion battery 
pack.

5. Rd represents the internal resistance difference in the dis-
charge process, and Rc is used to characterize the internal 
resistance difference in the charging process.

6. Uδ and Rδ are used to characterize the equilibrium state 
influence due to the difference in the cell-to-cell consist-
ency of the internal connected battery cells.

7. UL(t) is the Closed Circuit Voltage (CCV) between the 
positive and negative poles when the lithium-ion battery 
pack is connected to the external circuit and IL(t) is the 
incoming or outgoing current.

2.2 | State of balance evaluation
The consistency characterization method is studied for the 
lithium- ion battery pack and the structure of the proposed 
relationship management is constructed in the equalization 
state evaluation, according to which the correction adjust-
ment is carried out. As the cell voltage is the most direct 
and effective parameter to be detected for each battery 
cells, it is used to evaluate the overall balance state in the 
lithium- ion battery pack. Compared with the capacity and 

internal resistance, the voltage detection has real- time, fast 
and easy- implementation advantages, which is quite suit-
able to investigate the online state evaluation. Therefore, 
the SOB evaluation of the lithium- ion battery pack can 
be obtained by using the battery cell voltage Uc, in which 
the expected voltage value can be calculated as shown in 
Equation 1.

In the above expression, Uci is the i- th battery cell voltage, 
and n represents the number of the internal connected lithium- 
ion battery cells. The calculation result E(Uc) represents the 
expected voltage value of all the internal connected lithium- 
ion battery cells. The standard deviation δ is an important 
index to express the difference, so the SOB evaluation re-
search of the lithium- ion battery pack can be conducted by 
using the standard deviation measurement method with the 
probability distribution, in which the quantized balance eval-
uation index can be obtained and applied to the equivalent 
modeling process. In order to obtain the equilibrium state 
quantifying target, the inconsistent equilibrium degree pa-
rameter can be defined by using the probability and statistical 
theory. The square value of the standard difference δ can be 
used to calculate the mathematical description as shown in 
Equation 2.

where in, δ2 is used to characterize the variance CCV value of 
each cell in the lithium- ion battery packs (Uc1, Uc2,…Ucn), 
which then describes the voltage inconsistency of the battery 
cells. According to the difference degree evaluation target, 
the variation coefficient θ is used to describe the voltage fluc-
tuation influence accurately. The calculation process can be 
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obtained by the standard deviation ratio and its average value, 
which is shown in Equation 3.

The physical meaning of the symbols for the above ex-
pression can be described as follows: θ is used to describe the 
voltage variation coefficient of the internal connected battery 
cells and Uci indicates the detected i- th battery cell voltage 
value. The average voltage value can be calculated to obtain 
the above evaluation parameters, which can be used to de-
scribe the consistency level of the lithium- ion battery pack. 
The standard deviation can express the discrete degree of the 
battery cells in the lithium- ion battery pack. When the stan-
dard deviation value is small during the SOB evaluation pro-
cess, the voltage discrete degree of each battery cell is small 
and the consistency state of the battery cells becomes good.

The equilibrium state of the lithium- ion battery pack can 
be characterized by the variance calculation along with its 
coefficient. The variance change describes the distribution 
of the battery working voltages, in which the variation co-
efficient is used to characterize the internal battery states 
of the lithium- ion battery pack. The equilibrium state can 
be described by introducing SOB into the working state de-
scription of different voltage conditions. For the calculation 
process, the square value of the variation coefficient θ is 
named as ε which is finally used to evaluate the consistency 
condition of the lithium- ion battery pack, as the square- root 
parameter θ will increase the calculation complexity, which 
is shown in Equation 4.

In the above expression, ε is used to describe the extent 
of the voltage inconsistency among the internal connected 
battery cells in the lithium- ion battery pack and θ char-
acterizes the variation coefficient. Uci is used to describe 
the i- th measured battery cell voltage, and n indicates the 
number of the battery cells in the lithium- ion battery pack. 
The research methods of various key elements are utilized 
as parts of the technical design in the evaluation model. 
The parameter correlation method is studied to improve 
the performance of the lithium- ion battery pack, which 
is conducted by using the different charge- discharge cur-
rent rates. The equilibrium state evaluation is studied by 
conducting the equivalent circuit analysis along with the 
parameter changes. The preliminary studies are conducted 
by investigating the experiments, according to which var-
ious correlated equilibrium parameters can be identified. 

Aiming to realize the adaptive multi- input parameter iden-
tification, the parametric model- building framework is 
used to address the equilibrium issue.

The mathematical description of the implementation 
process is obtained without introducing complex math-
ematical models. The unique characteristic of the afore-
mentioned equation is that provides a greater feasibility 
for rapid error analysis to identify results. The observation 
equation describes the state of the CCV signal in the bat-
tery pack. As can be known from the OCV- based parameter 
identification process, the identification result is closely 
related to the CCV value. In order to achieve the accurate 
identification of the target parameters, the CCV is defined 
as an output parameter of the battery pack. Considering the 
influence of operating current and temperature conditions, 
the parameters of the ECM model are analyzed and identi-
fied for the battery pack. Combining the state equation and 
the observation equation, the state space equation needed 
can be constructed for the working estimation as shown in 
Equation 5.

By conducting the above parameter identification princi-
ple and process analysis, the parameter identification model 
can be constructed. The general knowledge of covariance and 
noise can be taken as a priori known condition, and the ad-
ditional considerations are made in dependent submodules. 
After establishing the state equation structure, each factor of 
the equation needs to be determined experimentally. The pa-
rameter identification equation and the identification process 
are implemented in separate modules. The model parameter 
values can be calculated through the voltage and current. By 
constructing its internal working status monitoring structure, 
the application characterization process is achieved, and 
the battery operating characteristic information is obtained 
through the experimental research. The working characteris-
tics and parameter identification of the battery pack are stud-
ied, in which each coefficient of the model parameter and 
its variation rules can be obtained. The initialization of the 
model parameters in the SOC estimation model are achieved 
as well.

2.3 | Model building
According to the structure of the equivalent circuit model, 
the simulation model is built using the Matlab/Simulink plat-
form. Parameter verification and experimental results are 
taken into the calculation process as shown in Figure 2.
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It is obtained by considering the real- time varying parame-
ters in the recursive calculation process, which is used to obtain 
the adaptive time- varying capacity. The model parameter varia-
tion law of the S- ECM is analyzed for the applied research of the 
lithium- ion battery pack to explore the online parameter identi-
fication method. According to the judgment and establishment 
of the working conditions together with the overall imbalance 
state evaluation, the adjustment can be carried out according 
to the comprehensive state determination, which is obtained 
by using the best decision method to find out the first prior-
ity battery that needs equalization. Finally, the energy transfer-
ring speed and the energy transfer direction is determined by 
the positive and negative values. The equilibrium parameter is 
built with battery voltages, in which the parametric equalizer is 
constructed to analyze the comparative results. The experimen-
tal effect is analyzed and compared with other methods, which 
verifies the constructed equilibrium evaluation effect.

3 |  EXPERIMENTAL ANALYSIS

The modeling effect on the experiments is completed to ver-
ify the proposed equivalent circuit model. The model param-
eters are studied to solve the shortened life expectancy, low 
capacity utilization and low instantaneous power supply de-
gree problems, which have caused frequent thermal imbal-
ance issues. The operating characteristics are analyzed by 
using the equivalent resistance and capacitance, according 

to which the parametric variation is prepared for the equilib-
rium state evaluation. Furthermore, the parameter variation 
on the interaction is analyzed by using the SOB evaluation 
among the group working battery cells. The experiments are 
designed to test the established equivalent model by the pa-
rameter correlation and variation characteristics.

3.1 | Platform construction
The electronic and digital power supplies are introduced along 
with other digital devices. The process field- bus technology 
has been taken into the experimental Battery Maintenance 
and Test System (BMTS) platform for the packed lithium- 
ion batteries. The control strategy is obtained by using the 
Industrial Personal Computer (IPC), in which the Human 
Machine Interface (HMI) is used as the monitoring interface. 
The input components of keyboard and mouse are introduced 
into the system in order to obtain the manual control. In the 
BMTS platform, the fourteen- digital- power- charging- supply 
module is employed for the balance charging purpose and 
two large power supplies of Taiwan are used for the series 
charging maintenance. After then, the protection unit is de-
signed to ensure the real- time security protection purpose. 
The experimental platform has been designed and verified by 
using the ternary lithium- ion battery packs. The structure is 
shown in Figure 3.

Aiming to achieve the condition monitoring target of 
the lithium- ion battery pack in the UAVs, a suitable BMS 

F I G U R E  2  The simulation model of the improved equivalent circuit model
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equipment is designed and implemented, in which the STM32 
and integrated chip sampling modular are used. The total size 
of the BMS equipment is set as 50*80 mm, which is smaller 
than a mobile phone screen and supports the subsequent net-
work expansion. The AVIC lithium battery CFP50AH (rated 
capacity 50AH, charge cut- off voltage 4.2 V, discharge cut- 
off voltage 2.75 V) is taken as the experimental object of the 
Aviation Industry Corporation in China, Ltd. The designed 
BMS equipment obtains the high- precision real- time de-
tection of each single- battery cell voltage and its accuracy 
is 1 mV, which features low power consumption and high 
 integration advantages.

3.2 | Parameter identification
The typical UAV lithium- ion battery pack is selected as the 
experimental samples, in which the working state estimation 
and monitoring process are carried out for the consistency 
parameter monitoring target. In this way, its characterized ac-
curacy is verified, which improves the equivalent modeling 

accuracy of the lithium- ion battery pack. Experimental bat-
tery packs with different structures are considered in the 
modeling process, in which its functionality and performance 
data are introduced into the comparative analysis of different 
model parameters. And then, the adaptive capacity, correc-
tion and optimization of the model parameters are observed, 
in which the simulated varying current working condition 
is constructed for the input parameters. The Hybrid Pulse 
Power Characterization (HPPC) experiments are conducted 
for the input parameters of the SOC estimation model, which 
are shown in Figure 4.

The detection time period of the experiment is 600s, in 
which the pulse width value is 50% and the phase delay is 
−120. Another current generator is set with the amplitude 
value of 45*7/4, the period value of 600, the pulse width 
value of 20% and the phase delayed value of −120. The 
lithium- ion battery pack is treated as a single battery cell with 
higher voltage and capacity in the HPPC test to obtain the 
parameter identification of the packing S- ECM. The param-
eter values and variation laws are taken into the state- space 
mathematical description of the ECM. In order to analyze the 
parameter varying characteristics, the on- line identification 
method is considered by conducting the explored implemen-
tation mechanisms. The parameter identification results are 
shown in Figure 5.

The credibility is analyzed by conducting the input pa-
rameter and the influence of the degree analysis, in which the 
statistical state- space model is used to improve the working 
state characterization accuracy.

3.3 | Temperature correction
The Coulomb efficiency effect and temperature correction 
treatment is introduced into the regulating process to analyze 
the current correction. The capacity and temperature correc-
tion model is built to consort the working environment, in 

F I G U R E  3  The experimental platform

F I G U R E  4  The Hybrid Pulse Power Characterization experimental test results



   | 553WANG et Al.

which the capacity characteristics are obtained by analyzing 
the experimental results. Considering the ground to altitude 
changing process, there will be a great temperature change 
in the lithium- ion battery pack. Therefore, the working char-
acteristic analysis is conducted at different temperatures and 
current rates of the lithium- ion battery pack. The discharg-
ing characteristics are implemented in different ambient tem-
peratures, including −20.00, −10.00, 0, 10, 20 and 60°C, as 
well as different currents of 9, 90, 180 and 225.00 A, to study 
the capacity variation of the test samples. The acquisition of 
battery capacity can be achieved by the discharging treat-
ment, in which the latest full charged state is turned into the 

terminal discharge voltage. The discharging capacity law of 
the lithium- ion battery pack is obtained by the discharging 
treatment from the full charge state to the empty charge state. 
The experimental results are shown in Figure 6.

The CC mode discharging capacity restricts the final dis-
charge capacity of the battery cell, which has a huge impact 
on the total discharging capacity of the lithium- ion battery 
packs. Under the premise known effect, the specific perfor-
mance can be obtained through the cycling charge- discharge 
experiments under high and low temperature conditions. The 
experimental results show that the battery capacity varies 
little along with the discharging current rate diversification 

F I G U R E  5  The parameter identification results

F I G U R E  6  The capacity variation toward temperature

40℃
20℃
0℃
–10℃
–20℃
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when the ambient temperature is high. However, the capacity 
will decrease obviously along with the low ambient tempera-
ture. At the low temperature, little electricity can be released 
when the discharging ratio of the lithium- ion battery pack 
is high. In this way, the ambient temperature influences on 
the capacity of the lithium- ion battery pack studied by con-
ducting these experiments. When the ambient temperature is 
high, the discharge capacity of the battery pack is large. The 
impact on the discharging capacity of the 1C5A current is ob-
tained, in which the significant difference exists on different 
current rates and temperatures. And the discharging capacity 
level decreases when the temperature decreases, the amount 
of which is also reduced when the temperature is higher than 
40°C. The voltage changing characteristics in the charging- 
discharging process can be obtained together with the voltage 
variation rule toward temperature.

The experimental results show that the CC discharging 
process can be divided into three stages along with the volt-
age and SOC variation. The first stage is the initial discharge 
with a slow- down circuit voltage, which is a certain period  
of the discharge time along with the obvious voltage drop. 
The second stage can be observed when it enters into the volt-
age platform along with the slow voltage variation. The third 
stage can be described as the discharge stage with the back- 
end franked treatment (SOC<0.20) toward the dramatic volt-
age drop, in which the CCV value varies along with different 
temperatures.

3.4 | Modeling effect analysis
The CCV- tracking results can be analyzed according to 
the time- varying voltage and current in the experiments, in 
which the rated capacity of the internal connected battery 
cell is analyzed together with the parameter sampling inter-
val. Taking the experimental current data as the input sig-
nal, the CCV- SOC value is obtained by conducting the Ah 

integration method. The parameter values of UOCV, RO, RP, 
and CP are obtained through a functional relationship at this 
time point, in which the simulated terminal voltage is calcu-
lated by using the Thevenin function. The experimental CCV 
value in the HPPC test is compared with the estimated termi-
nal voltage. The time- varying current is conducted in the dis-
charging process by using the 1C5A current rate. Comparing 
the CCV value of UL(t) and the calculated CCV value based 
on the model operation, the voltage- tracking effect of the out-
put voltage can be obtained as shown in Figure 7.

In the above Figure, U1 is the HPPC experimental ter-
minal voltage and U2 is the CCV value obtained by the ex-
perimental HPPC current data as the input signal through 
the model. In the main continuous discharging process, the 
voltage simulation error increases significantly and the peak 
appears in the intermittent discharging process after the 9th 
HPPC test. At this time, the estimated terminal voltage  
was lower than the real voltage about 0.065 V. The HPPC 
experimental data and estimation data is taken when 
SOC = 0.9 was intercepted, in which the comparative anal-
ysis can be obtained in the right part of the Figure. The 
battery weight presets the equalization process to improve 
the interaction network, and the combination of multi- 
parameter validation, dynamic change and adaptive opti-
mization are investigated to achieve the improved modular 
results. The temperature simulation model is constructed, 
in which the calculation and adjustment can be achieved 
by using the real- time detection parameters obtained by 
the charge- discharge variation analysis of the lithium- ion 
battery pack. The various comparative parameter analysis 
is conducted to adjust the improvement degree. As can be 
known from the experimental results, the estimation effect 
is acceptable and there is no obvious error. As a result, the 
HPPC experiments are taken as a test set and the voltage- 
tracking results can reflect the variation characteristics of 
the lithium- ion battery pack.

F I G U R E  7  The Closed Circuit Voltage- tracking effect of the output voltage
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4 |  CONCLUSION

A novel equivalent circuit model is proposed and conducted 
for the power lithium- ion battery pack, in which the equilib-
rium parameter SOB has been built in order to achieve the 
security protection, which is the basis of its reliable power 
supply application. Firstly, the correlation relationship has 
been investigated between the working performance and 
its real- time detection parameters of the lithium- ion bat-
tery pack. Afterword, the equivalent model of S- ECM has 
been constructed successfully, according to which the theo-
retical analysis is carried out for these various measured 
parameters. An improved equivalent modelling construc-
tion method is investigated and the recursion calculation is 
designed and obtained, in which the model parameters are 
also identified with the correlative experiments. Then, the 
correction treatment of the parameter model is conducted 
in the experimental data acquisition process and the state 
diversification is monitored in its charge- discharge process. 
Meanwhile, the mathematical model is built to simulate the 
effect of the analysis. Finally, the performance of the ex-
perimental analysis is tested, in which the same type and 
batch of the lithium- ion battery pack is chosen under the 
same conditions. The maximum estimated voltage error 
in the estimated terminal voltage output is 0.065 V com-
pared with the measured terminal voltage under the HPPC 
working condition and the current is taken as the input in-
formation, which is used for the subsequent power supply 
applications.
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