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Abstract. The Hamming Distance has been largely used to calculate the dis-
similarity of a pair of correspondences (also known as labellings or matchings)
between two structures (i.e. sets of points, strings or graphs). Although it has the
advantage of being simple in computation, it does not consider the structures
that the correspondences relate. In this paper, we propose a new distance
between a pair of graph correspondences based on the concept of the edit
distance, called Correspondence Edit Distance. This distance takes into con-
sideration not only the mapped elements of the correspondences, but also the
attributes on the nodes and edges of the graphs being mapped. In addition to its
definition, we also present an efficient procedure for computing the correspon-
dence edit distance in a special case. In the experimental validation, the results
delivered using the Correspondence Edit Distance are contrasted against the
ones of the Hamming Distance in a case of finding the weighted means between
a pair of graph correspondences.

Keywords: Graph correspondence � Hamming distance � Edit distance �
Weighted mean

1 Introduction

A graph correspondence (or simply referred as a correspondence) is defined as a
bijective function which designates a set of element-to-element mappings between the
nodes of a pair of graphs. It can be generated either manually or automatically, with the
purpose of finding the similarity between these two graphs. In the case that a
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correspondence is obtained through an automatic method; the process is most com-
monly done through an optimisation process called error-tolerant graph matching.
Several graph matching methods have been proposed in recent years [1–3] and
therefore, it is possible to generate more than one correspondence between a single pair
of graphs. In these scenarios, it may be interesting to know how different the generated
correspondences are with respect to a ground truth correspondence, or also to analyse
how different two correspondences are, and thus the requirement of a specifically
designed distance between correspondences. So far in literature, the most commonly
used distance between correspondences is the Hamming Distance (HD), which mea-
sures the number of mappings that are different between two correspondences. This
distance has been used either to measure the accuracy of graph matching algorithms
[4, 5] or to perform classification [6]. Nonetheless, the HD falls short on truly repre-
senting the dissimilarity between a pair of correspondences.

To justify this claim, consider the following toy example. Assume that three sep-
arate parties (human experts or automatic systems) deduce respectively three corre-
spondences f 1, f 2 and f 3 between two graphs G and G0 as shown in Fig. 1 (numbers in
nodes represent their attribute). Notice that if the HD is used to calculate the dissim-
ilarity between these correspondences, the result is HD f 1; f 2ð Þ ¼ 2 and HD f 1; f 3ð Þ ¼ 2,
implying that both f 2 and f 3 are equally dissimilar with respect to f 1. Nonetheless, if
we consider the cost of matching nodes on G and G0 as the Euclidean distance between
the attributes, then it can be seen that Cost f 1ð Þ ¼ 1þ 0þ 1þ 1 ¼ 3, Cost f 2ð Þ ¼
1þ 0þ 1þ 3 ¼ 5 and Cost f 3ð Þ ¼ 6þ 5þ 1þ 1 ¼ 13. Notice that the HD fails at
reflecting that the cost difference between f 1 and f 3 is larger than between f 1 and f 2.

The rest of the paper is structured as follows. The next section briefly introduces the
basic definitions. In Sect. 3, we present the newly proposed distance between a pair of
correspondences. In Sect. 4, we contrast the new distance against the Hamming dis-
tance in the case of finding the weighted mean correspondences. Finally, Sect. 5 is
reserved for conclusions and further work.

Fig. 1. A first example of two correspondences f 1 and f 2 between two graphs.
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2 Basic Definitions

Let us represent an attributed graph as a four-tuple G ¼ ðV ;E; c; lÞ, where elements
vi 2 R represent the set of nodes, elements ei 2 E represent the set of edges, and c and
l are functions that assign a set of attributes to each node or edge respectively. Such
graph may contain a specific kind of nodes called “null nodes”, which are an additional
set of nodes which have differentiated attributes (i.e. distinct values to the range of the
original attribute values). Moreover, given a pair of graphs G ¼ ðV ;E; c; lÞ, and
G0 ¼ ðV 0;E0; c0; l0Þ, of the same order n (naturally or due to the presence of null nodes),
we define the set T of all possible correspondences, such that each correspondence in T
maps all nodes of G to nodes in G0, f : V ! V 0 in a bijective manner. Let f 1 and f 2

denote two arbitrarily selected correspondences in T . We can calculate how similar
these two correspondences are through the Hamming distance (HD) between f 1 and f 2

HD f 1; f 2
� � ¼

Xn
i¼1

1� @ v0a; v
0
b

� �� � ð1Þ

Where a and b are defined such that f 1 við Þ ¼ v0a and f 2 við Þ ¼ v0b, and @ is the
well-known Kronecker Delta function

@ðx; yÞ ¼ 0 if x 6¼ y
1 if x ¼ y

�
ð2Þ

One of the most widely used frameworks to evaluate the distance between two data
structures is the edit distance. This concept has been concretised in the literature as
string edit distance [7], tree edit distance [8] and graph edit distance [9–11]. The edit
distance is defined as the minimum amount of required operations that transform one
object into the other. To this end, several distortions or edit operations, consisting of
insertion, deletion and substitution of elements are defined. Edit cost functions are
introduced to quantitatively evaluate the edit operations. The basic idea is to assign a
penalty cost to each edit operation considering the amount of distortion that it intro-
duces in the transformation. Substitutions simply indicate element-to-element map-
pings. Deletions are transformed to assignments of a non-null element of the first
structure to a null element of the second structure. Insertions are transformed to
assignments of a non-null element of the second structure to a null element of the first
structure. Given two graphs G and G0 and a correspondence f between them, the edit
cost would be

Graph EditCost G;G
0
; f

� �
¼

X
vi2V

DV vi; v0a
� �þ

X
eij2E

DE eij; e
0
ab

� �
ð3Þ

where f við Þ ¼ v
0
a, f vj

� � ¼ v
0
b, and DV and DE the distances between nodes and edges

respectively. In the case that one of the nodes is a null node, then DV vi; v0a
� � ¼ Kv,

which is the assigned penalty cost for nodes. Similarly for edges, DE eij; e
0
ab

� � ¼ Ke in
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case that one of the edges is a “null edge” (i.e. non-existing edge). If both nodes and
adjacent edges are null, these functions return a zero. In the case that both nodes or both
edges are non-null, these functions are application dependent. For instance, if the
attributes of the nodes and edges are in Rn, it is usual to apply the Euclidean distance or
the weighted Euclidean distance.

Thus, the graph edit distance (GED) is defined as the minimum cost under any
bijection in T

GED G;G0ð Þ ¼ min
f2T

Graph EditCost G;G0; fð Þf g ð4Þ

Several algorithms have been presented in the literature to compute the GED in an
exact or an approximate From this vast pool of options, one of the most widely used
algorithms to calculate the GED based on the local substructures [12–14] of the graphs
is the bipartite graph matching(BP) framework [15–19].

3 Correspondence Edit Distance

In this section, we present a first step towards a concretisation of an edit distance for
correspondences, which we have called Correspondence Edit Distance (CED). In
contrast to the HD, the CED aims to consider both the attributes and the local sub-
structure of the nodes mapped by the correspondences. Given G and G

0
and two cor-

respondences f 1 and f 2 between them, the elements to be considered by the CED must
be the elements within the correspondence (mappings) within f 1 and f 2. To that aim,
correspondences f 1 and f 2 are defined as sets of mappings f 1 ¼ m1

1; . . .;m
1
i ; . . .;m

1
n

� �
and f 2 ¼ m2

1; . . .;m
2
a; . . .;m

2
n

� �
, where m1

i ¼ vi; f 1ðviÞð Þ and m2
a ¼ va; f 2ðvaÞð Þ. This

means that we do not intend to compute the distance between G and G
0
, but rather the

distance between f 1 and f 2 while also considering the attributes of graphs G and G
0
.

Figure 2 (left) shows an illustrative example of our proposal using two graphs with
no edges, four nodes each (in both graphs, the fourth node is a null node marked as /
and /0) and two correspondences between them: f 1 (blue) composed of m1

1, m
1
2, m

1
3 and

m1
4, and f 2 (red) composed of m2

1, m
2
2, m

2
3 and m2

4. Notice that m
1
4 and m2

4 map the null
node of G, and thus will be onwards referred as “null mappings”. Figure 2 (right)
shows a bijective function h ¼ fh1; h2; h3; h4g (green) between f 1 and f 2. Then, the
cost of h is calculated as the sum of distances between all mapping-to-mapping rela-
tions in h. For this example, the cost yielded by the mappings in h1 is zero, given the
two mappings are the same. For the rest of cases, depending on the attributes and the
penalty costs Kv;Ke, the substitution costs would be calculated for the mappings
involved.

Notice that for the CED it is important to first define a bijective function h 2 H
between mappings, where H is the set of all possible bijections between a pair of
correspondences. Given such a bijective function h, the edit cost function
Corr EditCost is defined in terms of the distances between mappings
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Corr EditCost G;G
0
; f 1; f 2; h

� �
¼

X
m1

i 2f 1
DM G;G

0
;m1

i ; hðm1
i

� �
Þ ð5Þ

where DM is the distance (cost) between two mappings related by h. Then, the CED is
defined in a similar way as the GED, that is

CED G;G
0
; f 1; f 2

� �
¼ min

h2H
Corr EditCost G;G

0
; f 1; f 2; h

� �n o
ð6Þ

Due to the combinatorial nature, the computation of CED is not easy in general. In
the following we thus consider a special case which enables an efficient CED com-
putation. If the aim of defining h is to relate the mappings which may resemble the
most, then the most straightforward solution is to set all mapping-to-mapping relations
in h as hj : m1

j ! m2
j . Figure 2 shows an example of this solution. In this case, the DM

(Eq. 5) becomes the distance between the local substructures DS of the nodes being
mapped, that is

DM G;G
0
;m1

i ;m
2
i

� �
¼ DS G

0
; f 1ðviÞ; f 2ðviÞ

� �
ð7Þ

Notice that a key difference between Graph EditCost (Eq. 3) and Corr EditCost
(Eq. 5) is that in the first case, the distance functions DV and DE are defined between
the nodes and adjacent edges of G and G0, while in the second case, the distance
between local substructures DS is obtained between nodes and adjacent edges on the
same graph G0. In other words, to compute DS it is only necessary to compute the
distance (cost) between the local substructure being mapped by f 1 in G

0
and the local

substructures being mapped by f 2 in the same G
0
.

For this special case, the computation of the CED is presented in Algorithm 1. If
the ith pair of mappings of f 1 and f 2 is equal, then it is excluded from the CED
calculation. Moreover, the exclusion also prevails for the cases that two null mappings
are paired, or that the two mappings refer to a null node (/) in G0.

Fig. 2. Left: Two graphs G and G
0
and two correspondences f 1 and f 2 between them. Right:

A bijective function h between f 1 and f 2. (Color figure online)
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4 Validation

To demonstrate in the most practical way that the use of either the HD or the CED
produces different outcomes, we propose to use the scenario of calculating the
weighted mean between a pair of correspondences. The concept of the weighted mean
between two elements x and y has been largely used on data structures such as strings
[20], graphs [21] and data clusters [22] to find an element z such that

Dist x; yð Þ ¼ Dist x; zð ÞþDist y; zð Þ ð8Þ

In practice, the weighted mean is used to implement methods that approximate
towards the generalised median [23] of a set of strings [24–26], graphs [27], data
clusters [28] or correspondences [29], as well as to define frameworks such as the

Fig. 3. Correspondences f 1 (top) and f 2 (bottom) between the graphs. (Color figure online)
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“consensus” calculation between a set of correspondences, where the aim is to find the
most accurate representative prototype from a pool of set-of-points correspondences or
graph correspondences [30–33].

Using the first two images of the “BOAT” sequence in the “Tarragona Rotation
Zoom” database [6], we randomly select 7 out of the 50 original nodes provided.
A node represents a salient point in the image and the normalised SURF features [34]
are its attribute. Afterwards, a graph is constructed using these nodes with edges
conformed through the Delaunay triangulation. Two correspondences f 1 and f 2 are
generated using two different matching algorithms. Notice that since graphs have been
enlarged with a null node each to create mutually bijective correspondences, both have
a total of eight mappings, with 7 of them being different one from the other (green
lines) and one being equal (red line). The result of this process is shown in Fig. 3.

Fig. 4. All weighted means between f 1 and f 2 excluding the first and last one.
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To find all weighted mean correspondences, we have implemented an A� search
algorithm which generates all possible correspondences between the two graphs and
selects the ones that hold

Dist f 1; f 2
� � ¼ Dist f 1;�f

� �þDist f 2;�f
� � ð9Þ

Using either HD or CED, the algorithm obtains the same weighted means, but with
a different numerical value. For this test, the algorithm found the set of correspon-
dences W ¼ �f1; . . .�f12, as weighted means, where two of them are the original f1 and f2,
thus �f1 ¼ f 1 and �f12 ¼ f 2. Figure 4 shows the correspondences �f2; . . .�f11, in W.

Figure 5 shows the distance value using HD (+) or CED (O) (KV ¼ KE ¼ 0:2)
between each of the 12 weighted means towards f1, normalised by the distance between
f1 and f2, that is

ai ¼ Dist f1;�fið Þ
Dist f1; f2ð Þ ; 1� i� 12 ð10Þ

Notice that using the HD for the weighted means in W achieves seven different
distance values, with repetitions such as a3 ¼ a4 ¼ a5 ¼ 0:�3 and a8 ¼ a9 ¼ a10 ¼ 0:�6.
Conversely, all weighted means inW deliver different distance values when the CED is
used. The main conclusion drawn from this validation is that CED can deliver more
diverse distance values than HD since it considers the attributes of the nodes and edges
of the graphs being mapped. This characteristic allows to find better distributed
weighted means when intending to use algorithms that aim at approximating towards
the generalised median.

Fig. 5. Normalised distances of the 12 weighted means considering HD (+) and CED (O). The
horizontal axis represents the different weighted means �fi; 1� i� 12.
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5 Conclusion and Further Work

In this paper, we present a first approach towards a new distance between a pair of
correspondences called Correspondence Edit Distance (CED), based on the
well-known concept of the edit distance. In contrast to the classic HD, CED is defined
through the attributes of the nodes and their local substructure from the graphs being
mapped. This characteristic allows more flexibility and versatility in cases such as
obtaining the weighted mean correspondences for their use in algorithms that approach
towards the generalised median or the consensus correspondence. In a near future, we
intend to present an algorithm to calculate the generalised median correspondence
through the use of the CED.
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