PALANTIMUTHU, N., SUBRAMANIAM, M.R., P, M.A., SHARMA, P.K., RAMALINGAM, V., PERAMAIAH, K., RAMAKRISHNAN, S., GU, G.H., YU, E.H. and YOO, D.J. 2024. Surface area-enhanced cerium and sulfur-modified hierarchical bismuth oxide nanosheets for electrochemical carbon dioxide reduction to formate. *Small* [online], 20(40), article number 2400913. Available from: https://doi.org/10.1002/smll.202400913

Surface area-enhanced cerium and sulfurmodified hierarchical bismuth oxide nanosheets for electrochemical carbon dioxide reduction to formate.

PALANTIMUTHU, N., SUBRAMANIAM, M.R., P, M.A., SHARMA, P.K., RAMALINGAM, V., PERAMAIAH, K., RAMAKRISHNAN, S., GU, G.H., YU, E.H. and YOO, D.J.

2024

This is the peer reviewed version of the following article: PALANTIMUTHU, N., SUBRAMANIAM, M.R., P, M.A., SHARMA, P.K., RAMALINGAM, V., PERAMAIAH, K., RAMAKRISHNAN, S., GU, G.H., YU, E.H. and YOO, D.J. 2024. Surface area-enhanced cerium and sulfur-modified hierarchical bismuth oxide nanosheets for electrochemical carbon dioxide reduction to formate. Small [online], 20(40), article number 2400913, which has been published in final form at https://doi.org/10.1002/smll.202400913. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited. Supplementary materials are appended after the main text of this document.

This document was downloaded from https://openair.rgu.ac.uk SEE TERMS OF USE IN BOX ABOVE

Surface Area-Enhanced Cerium and Sulfur-Modified Hierarchical Bismuth Oxide Nanosheets for Electrochemical Carbon Dioxide Reduction to Formate

Naveenkumar Palanimuthu,¹ Mohan Raj Subramaniam,¹ Muthu Austeria P.,² Preetam Kumar Sharma,^{3,4} Vinoth Ramalingam,⁵ Karthick Peramaiah,⁶ Shanmugam Ramakrishnan,⁷ Geun Ho Gu,² Eileen Hao Yu,⁴ Dong Jin Yoo,^{1,8},

- 1 Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- 2 Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Republic of Korea
- 3 Institute for Materials Discovery, University College London, Malet Place, London, WC1E 7JE, UK
- 4 Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, UK
- 5 School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen, AB10 7GJ, UK
- 6 Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, Singapore, 138634, Singapore
- 7 School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE17RU, UK
- 8 Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea E-mail: djyoo@jbnu.ac.kr

Jeonbuk National University Research Ministry of Education : 2023RIS-008 National Research Foundation of Korea Ministry of Science, ICT and Future Planning : NRF-2020R1A2B5B01001458 UK Research and Innovation : EP/V011863/1

Abstract

Electrochemical carbon dioxide reduction reaction (ECO₂RR) is a promising approach to synthesize fuels and valueadded chemical feedstocks while reducing atmospheric CO₂ levels. Here, high surface area cerium and sulfur-doped hierarchical bismuth oxide nanosheets (Ce@S-Bi₂O₃) are developed by a solvothermal method. The resulting Ce@S-Bi₂O₃ electrocatalyst shows a maximum formate Faradaic efficiency of (FE) 92.5% and a current density of 42.09 mA cm⁻² at -1.16 V versus RHE using a traditional H-cell system. Furthermore, using a three-chamber gas diffusion electrode (GDE) reactor, a maximum formate FE of 85% is achieved in a wide range of applied potentials (-0.86 to -1.36 V vs RHE) using Ce@S-Bi₂O₃. The density functional theory (DFT) results show that doping of Ce and S in Bi₂O₃ enhances formate production by weakening the OH* and H* species. Moreover, DFT calculations reveal that *OCHO is a dominant pathway on Ce@S-Bi₂O₃ that leads to efficient formate production. This study opens up new avenues for designing metal and element-doped electrocatalysts to improve the catalytic activity and selectivity for ECO₂RR.

Keywords

bismuth oxide; density functional theory; electrochemical CO2 reduction; formate; surface area

1. Introduction

Increasing atmospheric carbon dioxide (CO₂) levels from fossil fuel combustion and industrial activities is one of the most important global climate challenges.^[1] Carbon capture and utilization technologies represent a potential solution for mitigating the CO₂ levels in the atmosphere.^[2] Electrochemical CO₂ reduction (ECO₂RR) is a promising strategy to transform CO₂ into a wide range of useful fuels and chemicals such as carbon monoxide, methane, formate, methanol, and ethanol.^[3] Among various CO₂-reductant products, formate is considered one of the most valuable products. Formate is an essential feedstock for the pharmaceutical industry, a hydrogen (H₂) energy carrier for fuel cells, and fuel for direct electricity generation with high economic benefits.^[4] Based on previously reported studies, several metal-based catalysts (e.g., Pd, In, Sn, Bi, Pb, Tl, Hg, and Cd), and metal oxides (e.g., In₂O₃, SnO₂, Bi₂O₃, and CuO) have been reported to convert CO₂ to formate through ECO₂RR.^[5] However, many heavy metals (Pb, Cd, Hg, and Tl) are highly toxic and environmentally hazardous and are not recommended for practical applications.^[6] In this regard, Bi-based electrocatalysts have been widely investigated due to their non-toxic nature, low-cost effectiveness, and earth abundance.^[7] Bi-based materials such as $Bi_2O_3^{[8]}$ and $Bi_2S_3^{[9]}$ have gained significant attention for their efficiency and selectivity in converting CO₂ to formate. However, most of these Bi electrocatalysts have limited activity (current density <40 mA cm⁻²) and low selectivity for formate (< 80%) due to the significance of H₂ evaluation at higher current densities.^[10] Numerous strategies have been introduced for Bi₂O₃ catalyst design to improve the activity and selectivity of ECO₂RR, such as nanostructures,^[11] crystal facet control,^[12] defect engineering,^[13] tailoring the band structure,^[14] metal doping,^[15] and use with other materials. Based on that, modified Bi₂O₃ hierarchical nanostructures have recently gained widespread acceptance due to their excellent catalytic performance.^[16] Specifically, the nanostructure has a large specific surface area and abundant active sites that interact with the reactants and promote catalytic activity. The hierarchical nanostructure surfaces with high indices contain many coordinately unsaturated sites, edge sites, and structural defects, which play a crucial role in stabilizing key *OCHO intermediate species.^[17] This stabilization mechanism enhanced the catalytic activity of the Bi site, leading to increased production of formate.^[18]

Moreover, modifying the electron density of the catalytic active site through heteroatom doping can further improve the catalytic efficiency of these nanostructures.^[19-22] Specifically, the doped heteroatoms (such as N and S) can regulate the electron density of the catalyst, which modifies the electronic configurations of active sites to achieve the ideal adsorption energy with reaction intermediates for formate production in ECO₂RR.^[23] For instance, sulfur (S) doping creates a large number of oxygen vacancies and increases the adsorption intensity of CO₂, which could enhance the electrocatalytic activity.^{[24}] Similarly, metal atom doping in Bi₂O₃ electrocatalysts has been explored for the ECO₂RR to formate.^[21,25,26] The inclusion of metal dopants can accelerate the charge transfer within the electrocatalyst, a crucial factor for optimizing the efficiency of electrochemical reactions and elevating reaction rates.^[27] Metal doping has a role in modifying the electronic structure and surface defects, which is beneficial for producing formate in ECO₂RR.^[28] Recently, rare-earth-doped Bi₂O₃ was used in ECO₂RR. Yan et al., demonstrated that Eu-Bi doping resulted in enhanced selectivity and stability in a wide range of potentials in ECO₂RR.^[29] In a separate study, Zhou et al., demonstrated these benefits in the bimetal Ag-Bi-S-O catalyst, achieving exceptional formate selectivity >94% FE and a 12.5 mA cm⁻² current density with a wide range of potentials in ECO₂RR.^[30] Recently, the modified metal S-O has proved to be a better electrocatalyst for formate production in ECO₂RR.^[31] Furthermore, the selectivity in electrochemical CO₂ reduction depends on the relative confinement of the reaction intermediates (*OCHO, *HCOOH,*CO, and *H2) on the surface.^[32] In this regard, modification strategies for optimizing the binding of intermediates on the electrocatalysts surface are essential for improving ECO2RR performance.^[33]

In this work, we report the synthesis of Ce and S-modified hierarchical nanosheet Bi_2O_3 electrocatalysts for the ECO₂RR. The combined effect of Ce and S-doping, along with unique hierarchical nanosheet morphology, significantly enhances formate production. The prepared Ce@S-Bi₂O₃ electrocatalyst displays Faradaic efficiency of formate (FE_{formate}) > 90% in a wide potential window (-0.76 to -1.36 V vs RHE) in both analyzed H-cell and GDE reactor methods. Further, the density functional theory (DFT) calculations demonstrated the presence of Ce@S-Bi₂O₃ and showed that the S and Ce modification reduced the energy barrier for forming the key *OCHO intermediate, resulting in a highly optimized ECO₂RR. This study offers a simple and effective strategy to design metal and heteroatom- doped Bi₂O₃ electrocatalysts for ECO₂RR.

2. Results and Discussion

2.1 Structural Evaluation of the Synthesized Catalyst

Figure 1a illustrates a schematic representation of $Ce@S-Bi_2O_3$ hierarchical nanosheet synthesis through a onestep solvothermal process. During the reaction process Bi^{3+} ions in the metal precursor react with thioacetamide (S^{2-}) ions and Ce^{3+} ions to form hierarchical nanosheets of $Ce@S-Bi_2O_3$.^[34] Briefly, bismuth (III) nitrate, cerium (III) nitrate, and thioacetamide were dissolved in a 1:2 ratio of ethylene glycol (EG) and ethanol solvent. The homogeneous solution was treated at 170 °C for 6 h by a solvothermal method. Bi_2O_3 and $S-Bi_2O_3$ electrocatalysts were synthesized through a similar method. The prepared catalysts were used for ECO₂RR.

Figure 1

Synthesis and morphological characterization of the Ce@S-Bi₂O₃ electrocatalyst. Figure 1, a) Schematic illustration of the Ce@S-Bi₂O₃ catalyst synthesis process. b,c) FE-SEM images of Ce@S-Bi₂O₃ demonstrate the hierarchical nanosheet morphology. d) TEM images of Ce@S-Bi₂O₃ show that the hierarchical nanosheet. e,f) HR-TEM images and SAED pattern with crystal planes (111) of Ce@S-Bi₂O₃ hierarchical nanosheet.

The morphology of the prepared catalysts was analyzed using FE-SEM technique. Figures S1 and S3 (Supporting Information) shows the FE-SEM images of Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ catalysts and their corresponding energy dispersive X-ray spectroscopy (EDS) element maps. This reveals the formation of a 2–3 μ m average size hierarchical microsphere structure in all synthesized catalysts with uniform distribution of the Bi, Ce, S, and O elements. Figure 1b,c shows an FE-SEM image of the Ce@S-Bi₂O₃ catalyst, which confirmed the formation of a hierarchical nanosheet structure upon addition of Ce and S with bare Bi₂O₃. Moreover, magnified FE-SEM images (Figure 1c) elucidated the origin of hierarchical microsphere growth, which occurred by assembling a hierarchical nanosheet structure with a uniform spacing of 102.1 ± 21.7 nm. Further, the nanosheet assembly thickness was measured using ImageJ software and was in the range of 10.41 ± 3.05 nm. During the solvothermal reaction, EG unambiguously directs the formation of a hierarchical nanosheet of Bi₂O₃ due to its chelating ability.^[35] When Bi(NO₃)₂·5H₂O and Ce(NO₃)₂·6H₂O are dissolved in EG, they chelate with glycols and form a respective alkoxide. Moreover, the

formation of these alkoxides can reduce the concentration of Bi³⁺ and Ce³⁺ ions in solution to form a uniform hierarchical nanosheet.^[36] This phenomenon effectively prevents aggregation, facilitating the growth of even, well-defined hierarchical nanosheets with controlled thickness and desired properties. Furthermore, inductively coupled plasma-optical emission spectroscopy (ICP-OES) results reveal the doping percentages of Ce (3.3 at%) and S (1.2 at%) in the prepared Ce@S-Bi₂O₃ catalysts, which agree with the EDS results from FE-SEM (Figure S3c, Supporting Information). We performed transmission electron microscopy (TEM) and high-angle annular dark field scanning TEM (HADDF-STEM) analysis to understand the hierarchical nanosheet formation in Ce@S-Bi₂O₃. The TEM image (Figure 1d) elucidates the presence of folded, nanosheet assemblies of Ce@S-Bi₂O₃ electrocatalyst. A magnified TEM image (Figure S4b, Supporting Information) displays the formation of hierarchical nanosheets by orderly connected Ce and Bi nanoparticles, which induce the formation of a large nanosheet assembly. Some of the nanosheets were partially folded, and the fold lines exhibited darker features due to the accumulation of dense Bi and

Ce metal nanoparticles, which led to the formation of hierarchical nanosheets.^[37] An HR-TEM image (Figure 1e) shows the presence of highly crystalline catalysts with clear lattice fringes all over the catalysts. The associated FFT (fast Fourier transform) image shown in Figures 1f and S4 (Supporting Information) obtained from the HR-TEM image indicates that the obtained lattice fringes were related to the (111) plane with an interplanar spacing of

0.318 nm, which matches the formation of Bi_2O_3 (JCPSD: 27–0052).^[38] Notably, (HAADF-STEM) examination showed that these distinct nanosheet interactions and overlapping interactions were largely consistent, leading to the formation of foldable nanoparticles attached

to the surface of hierarchical nanosheets represented in Figure 1g,h.^[24] However, some discontinuities might exist in the inherited lattice defects, while oxide layers appeared due to

partial oxidation of the Bi catalyst.^[39] STEM-EDS mapping demonstrated the uniform distribution of Bi and Ce and S, O elements along the hierarchical nanosheet as represented in Figure 1i–l, and (Figure S5, Supporting Information). The hierarchical nanosheets provide a platform for efficient CO₂ conversion by providing a larger number of active site and enhanced mass transport so it is more beneficial for catalytic activity surfaces in Ce@S-Bi₂O₃ electrocatalysts. Moreover, the hierarchical nanosheet structure enhances catalytic performance by exposing a substantial surface area with numerous active sites and enabling

easy electrolyte penetration and diffusion in electrochemical activity.^[40] Also, HAADF-STEM shows a hierarchical nanosheet folded edge in the image (Figure S6, Supporting Information). These Bi₂O₃ nanosheets exposed large quantities of nanoparticles arranged in nanosheets.^[37,41] This is accompanied by breaking of Bi–O bonds and the formation of Bi nanosheets. As a result, structural defects in bismuth can significantly improve its electrochemical performance.^[39,42] Moreover, Brunauer–Emmett–Teller (BET) surface area measurements of the synthesized Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ (obtained using a Microtrac, BELsorp-mini II) from nitrogen-adsorption-desorption isotherms are shown in Figure S7a–c (Supporting Information). The hierarchical nanosheets of sulfur-modified S-Bi₂O₃ and Ce@S-Bi₂O₃ (30.40 m² g⁻¹). The abruptly improved surface area (>40%) would be expected to improve catalyst reaction kinetics during the ECO₂RR. The high-surface-area mesoporous S-doped Bi₂O₃ might be due to the presence of SO_x gases evolved during the solvothermal reactions with addition sulfur source (C₂H₃NS).^[43] Further, the obtained mesoporous pore diameter (21.52 nm) and enhanced pore volume (0.2716 cm³g⁻¹) (inset Figure S7a–c and

Table S1, Supporting Information) clearly revealed the formation of highly active Ce@S- Bi_2O_3 porous materials in this reaction. All the all active sites in Bi are available to the reactant due to the high mesoporosity, which could enhance charge transfer rate during the electrochemical reaction.^{[34].}

Figure 2

Crystal structure and chemical states of the attained (Ce@S-Bi₂O₃) electrocatalyst. a) XRD patterns of Bi_2O_3 , S-Bi₂O₃, and Ce@S-Bi₂O₃ of electrocatalysts. b) High-resolution survey spectrum of (Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalyst). c) High-resolution XPS spectra of Bi 4f. d) O1s XPS spectrum of Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalyst.

The crystal patterns of the synthesized Bi₂O₃ hierarchical nanosheets were determined by XRD analysis (Figure 2a). Diffraction peaks noted at 22.74°, 27.94°, 32.38°, 46.44°, and 55.08° correspond to (1 1 0), (1 1 1), (2 0 0), (2 2 0), and (3 1 1) lattice planes, respectively, which confirmed that the prepared Bi₂O₃ had a cubic phase with a space group Pn3m.^[28] The predominant peak \approx 27.94° corresponds to the (111) plane of Bi₂O₃. The observed XRD results agree with the JCPDS number of 27–0052, indicating the formation of the cubic phase α -Bi₂O₃.^[38] Moreover, after undergoing S-doping, the peaks became broader. These specific

changes can be attributed to the reduced crystallinity. This indicates that the S modification led to a less ordered and reduced crystallite size in te S-Bi₂O₃ electrocatalyst. Apart from α -Bi₂O₃ phase, no additional peaks appeared in S-Bi₂O₃, suggesting the existence of either a small proportion or amorphous nature of S within the S-Bi₂O₃ electrocatalyst. ^[43b] Furthermore, the electrochemical study indicates the enhanced catalytic activity of the amorphous nature of S-doped Bi₂O₃ compared to the undoped electrocatalyst. Moreover, when S was added to Bi₂O₃, the peaks in the crystal structure were separated, possibly due to S having a similar lattice parameter to α -Bi₂O₃. This analysis further confirmed the importance of S-doping in the Bi₂O₃ nanostructures. The slight positive shift of 2 θ ensures the incorporation of Ce in S-Bi₂O₃^[44] No diffraction reflections other than those for α -Bi₂O₃ were detected, which indicated the formation of a highly pure α -Bi₂O₃ phase.

Furthermore, X-ray photoelectron spectroscopy (XPS) measurements were carried out to investigate the elemental compositions and chemical states of Bi2O3, S-Bi2O3, and Ce@S- Bi_2O_3 electrocatalyst as shown in Figure 2b. Figure 2c presents the Bi $4f_{7/2}$ and Bi $4f_{5/2}$ peak pair at 159.0 and 164.2 eV for Bi₂O₃, which was ascribed to Bi species. Compared to assynthesized Bi₂O₃, a positive shift of approximately 0.3 eV was observed for the Ce@S-Bi₂O₃ electrocatalyst.^[45] The XPS peak corresponding to S2p peak 159.8 eV shifts slightly toward higher binding energies, indicating enhanced S bond strength. This observation is highlighted the ability of heteroatom doping to effectively modulate the bonding strength of materials.^[46] Additionally, the S-doped Bi₂O₃ spectrum has a peak between core Bi at 159.7 eV. For S- Bi_2O_3 a slight peak of Bi $4f_{7/2}$ was observed and was assigned to S^{2-} in sulfides.^[47] This suggests that S was present at the weaker O sites of Bi_2O_3 , resulting in S bonding with the Bi site (Bi-S). Furthermore, the incorporation of S was shifted to 0.3 eV. Moreover, the Ce³⁺ ions and oxygen vacancy sites were located on the surface of Ce. The Ce@S-Bi2O3 showed a positive shift of 0.18 eV in the Bi sites compared with Bi₂O₃, indicating partial charge from Bi to Ce, and the electronic structure of Bi was tuned by the strong interaction with Ce.^[45] Figure S8 (Supporting Information) shows the deconvoluted Ce 3d core level spectrum, which revealed the valence states of both the Ce^{3+} and Ce^{4+} multiple d-splitting such as $3d_{3/2}$ and $3d_{5/2}$. The characteristic peaks of the mixed valence, such as $Ce^{4+} 3d_{5/2}$ and $Ce^{4+} 3d_{3/2}$, were located at binding energies of 916.7 and 898.6 eV, respectively. The Ce³⁺ ions consist of peaks located at binding energies of 901.6 and 881.3 eV, which were assigned to Ce³⁺ 3d_{3/2} and Ce³⁺ 3d_{5/2}, respectively.^[48] The mixed states of Ce ions were also indicated by additional satellite peaks (orbital "shake-up") located at 06.8 eV for Ce³⁺ 3d_{3/2} and 885.3 and 889.2 eV for Ce³⁺ 3d_{5/2}.^[49,50] The Ce 3d spectrum indicates that the concentration of Ce³⁺ ions increased, and their lattice parameters expanded because of the reduced electrostatic force derived from the increased concentration of Ce^{3+} ions. This result indicates the presence of Ce^{3+} , which could include O-vacancies.^[51-53] A decrease in lattice oxygen intensity was observed in the S and Ce-doped Bi₂O₃ electrocatalyst.

The O1s spectrum of the Bi₂O₃ and S-Bi₂O₃ and Ce@S-Bi₂O₃ catalyst can be deconvoluted into three peaks denoted as Bi-O bond (O_{lat}), an oxygen vacancy (O_{vac}), and adsorbed oxygen (O_{ads}) characteristics of oxygen atoms bonded to metals peaks at 529.8, 529.7, and 529.6 eV, respectively. Interestingly, the characteristic peaks of Ce@S-Bi₂O₃ shown at 531.1, 530.9, and 530.7 eV (O_{vac}) decreased compared to those of S- Bi₂O₃ at 530.7 eV. The high concentrations of O-vacancies and Ce³⁺ ions may enhance the electrocatalytic selectivity for facilitated adsorption of CO₂ with O-bonding.^[51a] The adsorbed oxygen (O_{ads}) peaks are located at 532.1, 531.6, and 531.3 eV in Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ catalyst, respectively, and the oxygen vacancy peak of 530.7 eV can be ascribed to the presence of Ce@S-Bi₂O₃ as shown in Figure 2d. Furthermore, Fourier transform infrared (FTIR) and Raman spectroscopy analysis were performed to understand the surface properties of the Ce@S-Bi2O3 catalyst. The FTIR spectra of Ce@S-Bi₂O₃ shows the peaks at 400 to 600 cm^{-1} and 1047. 1355, 2159, and 2972 cm⁻¹ are the characteristic groups of Bi-O, respectively (Figure S9a, Supporting Information).^[54] The peak at 3380 cm⁻¹ belongs to the adsorbed water and surface hydroxyl peaks O-H, extending vibrations over the surface of the electrocatalyst.^[55] Furthermore, the peak edge at 879 cm⁻¹ is assigned to the Bi-O-C bending vibrations of Bi₂O₃ in the presence of air adsorbed.^[56] In addition, the Raman characteristic bands at ≈980 to 1200 cm⁻¹ are ascribed to the doping of S presence in Bi–O. The band broadening at \approx 731 and 1046, 1248, and 1571 cm⁻¹ belongs to Ce-O.^[45,57] Hence, it is confirmed that incorporating S and Ce changes the surface area of the Bi2O3 nanosheet. To further understand the structure of the catalyst, we performed Raman analysis Figure S9b (Supporting Information). The peaks noted at 149192 and 307 cm⁻¹corresponds to the Bi-O outline representing various bending and, stretching modes in the Bi₂O₃ nanosheet.^[58] From the spectrum, the slight peak present in 465 cm^{-1} represents the Ce–O and, further the broad, penetrating peaks ≈ 437 cm^{-1} are typical peaks of Ce-O.^[59] In addition, the peak observed at 254 and 970 cm⁻¹ is attributed to the S in Bi₂O₃ nanosheet.^[60]

2.2 Electrochemical CO₂ Reduction Reactions

Electrochemical CO₂RR was carried out using an H-cell, as illustrated in Figure 3a. Further the Figures 3b and S10 (Supporting Information) show the linear sweep voltammetry (LSV) curves of Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalysts in N₂ and CO₂-saturated 0.5 M KHCO₃ electrolyte with a scan rate of 5 mV s⁻¹. The current density obtained for all three electrocatalysts in the CO₂-saturated electrolyte was significantly higher than that in N₂saturated conditions, which shows efficient ECO₂RR activity.^[61] Moreover, the obtained LSV curves of S-Bi₂O₃ and Ce@S-Bi₂O₃ electrocatalysts show a higher current density and positive onset potential than Bi₂O₃. Significantly, the Ce@S-Bi₂O₃ electrocatalyst was outperformed with more onset potential (-1.16 V vs RHE) and higher current density in wide potential ranges compared to other investigated electrocatalysts.^[17, 62, 63] Notably, for instance, Ce@S-Bi₂O₃ showed a current density of 42.07 and 6.01 mA cm⁻² at -1.16 V versus RHE in CO₂ and N₂-saturated electrolyte, respectively, a difference of 6.8 times higher compared to N₂-saturated conditions (Figure 3b). To clarify the performance of ECO_2RR , chronoamperometry (CA) curves (i-t) were obtained across various potentials ranging from -0.76 to -1.26 V versus RHE as shown in Figure 3c. Furthermore, the ECO₂RR intrinsic activity of Bi₂O₃ and S-Bi₂O₃ electrocatalysts was analyzed by a CA technique for 2 h at different applied potentials. The produced liquid product formate was identified using proton nuclear magnetic resonance spectroscopy (¹H-NMR), as shown in Figure S11 (Supporting Information). Figure 3d shows the FE of formate for Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalysts. In that, the Ce@S-Bi₂O₃ electrocatalyst achieved FE_{formate} over 92.5% at -1.16 V versus RHE, and it has a much higher formate selectivity compared to the Bi₂O₃ and S-Bi₂O₃, which had FE_{formate} values of 80% and 83%, respectively, at the same potentials. Among all three examined electrocatalysts, the Ce@S-Bi₂O₃ hierarchical nanosheets exhibited higher current density (49.9 mA cm⁻²) compared to Bi_2O_3 (25.3 mA cm⁻²) and S- Bi_2O_3 (27.02 mA cm⁻²) at -1.16 V versus RHE, as shown in Figure 3e. Also, the achieved higher FE_{formate} and j_{formate} of Ce@S-Bi₂O₃ electrocatalyst is comparable to the recently reported Bi-based electrocatalysts in an H-cell (Table S6, Supporting Information). In addition, electrocatalysts display much higher formate partial current densities

(j_{formate}) in the different potentials during CA analysis, as shown in Figure S12a,b (Supporting Information).

Figure 3

ECO₂RR performance of Ce@S-Bi₂O₃ electrocatalyst. a) Schematic diagram of H-cell. b) LSV curve of Ce@S-Bi₂O₃ electrocatalyst under N₂ and CO₂ saturated 0.5 M KHCO₃ electrolyte with a scan rate of 5 mV s⁻¹. c) Chronoamperometry measurements of Ce@S-Bi₂O₃ electrocatalyst at different applied potentials (from -0.76 to -1.26 V vs RHE) for electrochemical CO₂RR. d) FE_{formate} of Ce@S-Bi₂O₃ electrocatalyst. e) The partial current density of formate (j_{formate}) for Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalysts. f) Electrochemical impedance Spectra of ECO₂RR at the corresponding electrocatalyst, insert are equivalent circuits used for fitting, and g) Stability tests of Ce@S-Bi₂O₃ electrocatalysts at -0.96 V versus RHE in 0.5 M KHCO₃ electrolyte.

In addition, the Tafel slope (log (j mA cm⁻²) vs overpotential) as shown in Figure <u>S13a</u>– <u>c</u> (Supporting Information) the Ce@S-Bi₂O₃ (257 mv dec⁻¹) has a lower Tafel slope compared to Bi₂O₃ (286 mv dec⁻¹) and S-Bi₂O₃ (273 mv dec⁻¹), which confirmed the improved reaction kinetics of the Ce@S-Bi₂O₃ electrocatalyst over the other un-doped electrocatalysts in ECO₂RR.^[64] Also, the electrochemical active surface area was estimated from the double-layer capacitance (C_{dl}) to understand the activity of the prepared electrocatalyst during ECO₂RR. The results in Figure S14a-d (Supporting Information) show the C_{dl} values of Bi₂O₃, S-Bi₂O₃, and Ce@S- Bi_2O_3 (0.94, 0.87, and 1.12 mF cm⁻², respectively). ECSA was calculated from the C_{dl} values, and the results show that Ce@S-Bi₂O₃ exhibits a relatively higher active surface area of 28.0 cm⁻² compared to Bi₂O₃ (23.5 cm⁻²) and S-Bi₂O₃ (21.7 cm⁻²). This indicates that the highly efficient active surface area sites and mass transfer of Ce@S-Bi2O3 are more suitable for $ECO_2RR^{[65]}$ Furthermore, the turn over frequency (TOF) was calculated for Bi_2O_3 (0.0234) S^{-1}), $S-Bi_2O_3$ (0.0296 S^{-1}), and $Ce@S-Bi_2O_3$ (0.05624 S^{-1}) at the corresponding current potential (-1.16 V vs RHE). These results further indicate that the Ce@S-Bi₂O₃ hierarchical nanosheets are favorable for creating more abundant active sites on the electrocatalyst surface for improving the ECO2RR activity. Electrochemical impedance spectroscopy (EIS) was carried out to investigate the electron kinetics charge transfer resistance as shown in Figure 3f. The charge transfer resistance (R_{ct}) of Ce@S-Bi₂O₃ (3.3 Ω) shows better conductivity than that of S-Bi₂O₃ (3.6 Ω) and Bi₂O₃ (4.2 Ω) electrocatalysts, as demonstrated in the Nyquist plots. The corresponding fitted data using the equivalent circuit diagram are shown in insert Figure 3f. The lower R_{ct} values indicate better electronic conductivity and charge transfer process of the Ce@S-Bi2O3 electrocatalyst. These specific findings showed that the hierarchical nanosheets facilitate faster charge carrier migration to the Ce@S-Bi₂O₃ electrocatalyst surface.^[66-68] To evaluate the stability of the hierarchical nanosheet Ce@S-Bi2O3 electrode, CA analysis was performed at -0.96 V versus RHE for >25 h. The current density was stable at \approx 21 mA cm⁻², and the FE of formate remained unchanged $(86\% \pm 2\%)$ during CA analysis, as demonstrated in Figure 3g. The S has lower electronegativity than oxygen (O), thus reducing the Bi oxidation state in S-Bi₂O₃ electrocatalyst. The lower amount of S-doping enhanced the catalytic activity by modifying the surface electronic structure Bi-metal sites. Also, the S-doping decreased the energy barrier of intermediate and obstructed the adsorption *H, which suppressed the evaluation of H₂.^[69,46] Moreover, doping of S with Ce in Bi₂O₃ further enhanced the formate selectivity due to its better intrinsic activity. Specifically, the Ce doping created more numerous active Bi sites and facilitated the dissociation of H2O to form absorbed H* intermediate, eventually enhancing FE_{formate} during ECO₂RR.^[31,45] In addition, role of Ce and S- doping in Bi₂O₃ was theoretically investigated and discussed in DFT section.

2.3 Post Electrochemical Analysis

Additionally, FE-SEM and HR-TEM analyses were carried out after 2 h of the ECO₂RR to understand the structural and electrochemical stability of the Ce@S-Bi₂O₃ electrocatalyst. The results in Figures S15 and S16 (Supporting Information) show the appreciable surface structure and intensity of the elements in EDX analysis. HR-TEM images in Figure S15a,b (Supporting Information) show the retention of catalyst elements distributed uniformly without agglomeration. After ECO₂RR the electrocatalyst exhibits the d-spacing value of Bi (0.323 nm) corresponds to the (012) plane well match with metallic Bi⁰, which indicate the conversion of Bi³⁺ to metallic Bi^{0.[10]} Also, the SAED pattern in Figure S16c (Supporting Information) illustrates the improved crystallinity nature of Ce@S-Bi₂O₃ electrocatalyst. The EDS mapping in Figure S16d,e (Supporting Information) confirmed the uniform distribution of elements in the hierarchical nanosheets. Respective elemental maps confirmed the presence of Ce, S, and O elements with decreases in their respective concentration. Figure S16f (Supporting Information) shows the corresponding EDS spectrum with an appreciable intensity of all the elements and the metal composition in the selected mapping area. To understand the structural state of catalysts during the ECO₂RR process, we have performed time-dependent XRD analysis and shown in Figure S17a (Supporting Information). The analysis is performed under different reaction time at an applied potential of -1.16 V versus RHE. For the Ce@S-Bi₂O₃ electrode, with the increasing reaction time of ECO₂RR (from 120 s), the diffraction peaks of Bi₂O₃ (JCPDS#270052) reduce gradually. Furthermore, the diffraction peaks of Bi (JCPDS#85-1330) and Bi₂O₂CO₃ (JCPDS#41-1488) appear completely after 2 h.^[70,71] Furthermore XPS analysis performed after ECO₂RR and shown in Figure S17b (Supporting Information) to understand the elements state and chemical composition of the catalyst. In that, the Bi $4f_{7/2}$ and Bi $4f_{5/2}$ peaks initially at 159.2 and 164.5 eV were shifted to 158.1 and 163.3 eV (Bi $4f_{7/2} = 1.11$ eV and Bi $4f_{5/2} = 1.12$ eV), which agree with the obtained d-spacing values from the HR-TEM results. The reduced Bi3+ electrons are more beneficial for CO2 to formate conversion than their initial nature.^[72,73,8] After ECO₂RR Figure S17c (Supporting Information) revealed that the peak located at 530.2 eV in the O1s spectrum belongs to the Bi-O (O_{lat}), and the adsorbed oxygen peak (Oads) is located at 532.8 eV. After electrochemical CO2 reduction, the Ovacancy sites were entirely reduced to metallic Bi species.^[74,10] Furthermore, Figure S17d and Table S2 (Supporting Information) revealed that, in Ce 3d, the valence state of Ce⁴⁺ ions gradually reduced to Ce^{3+} ions, which are more favorable for formate selectivity during the ECO₂RR. As shown in Table S2 (Supporting Information), we have performed ICP-OES analysis for Ce@S-Bi₂O₃ electrocatalyst before and after ECO₂RR to study the changes in the composition of Bi, Ce, and S. The electrocatalyst after ECO₂RR showed a nominal decrease in the concentrations of Bi, Ce and S compared to fresh electrocatalyst. This decrease in the concentrations may be due to the leaching during a prolonged stability test.^[46] However, this does not affect the current density and selectivity of electrocatalytst throughout the stability test as evidenced from Figure 3g. Finally, the post ECO2RR investigations revealed that the optimized $Ce@S-Bi_2O_3$ electrocatalyst displays structural retention and formation of a promising chemical nature.

2.4 Electrochemical CO₂ Reduction in GDE Reactor

Evaluating ECO₂RR Ce@S-Bi₂O₃ electrocatalysts in three-chamber GDE reactors is an effective way to screen electrocatalysts, understand structure-performance relationships, and gain mechanistic insights, as in Figure 4a.^[75] The Ce@S-Bi₂O₃ represents a more positive onset potential and increases the current density compared to Bi₂O₃ and S-Bi₂O₃, suggesting it is a suitable catalyst for ECO_2RR . The obtained electrochemical reduction products corresponding to different applied potentials (-0.76 to -1.36 eV vs RHE) were measured using online gas chromatography and ion chromatography. The much higher $FE_{formate}$ was obtained for Ce@S-Bi₂O₃ than for S-Bi₂O₃ and Bi₂O₃ electrocatalyst in the analyzed potential region from -0.76 to -1.36 eV versus RHE. Notably, the highest FE_{formate} (88.9%) was obtained at -1.06 eV versus RHE (40.90 mA cm⁻²) in the Ce@S-Bi₂O₃ electrocatalyst. As shown in Figure 4d, formate is the dominant product from the electrochemical CO₂ reduction using Ce@S-Bi₂O₃ electrocatalyst. CO and H₂ gases were also detected as minority products in ECO₂RR. The Ce@S-Bi₂O₃ electrocatalyst demonstrated high FE (> 80%) toward formate in a wide potential window (of -0.76 to -1.36 eV) versus RHE. At a lower cathodic potential of -0.76 eV, significant H₂ evolution takes place with a corresponding FE of 32.4%. Upon obtaining the potential, the H₂ evolution is suppressed, and CO contribution starts to increase and reaches a maximum FE_{CO} of 13% at -1.16 eV. Notably, the S containing S-doped Bi₂O₃ and $Ce(@S-Bi_2O_3)$ electrocatalysts enhanced the dissociation of H₂O and increase the H⁺, which might react with CO_2 to form OCHO*, suppresses H_2 formation and promotes formate selectivity at low overpotentials (-0.76 to -1.36 eV vs RHE) in ECO₂RR.^[76] Also compared to single metal Bi-S-O catalysts Ce doped Ce-Bi-S-O catalyst exhibit more superior catalytic performance in the formate selectivity, it is clearly confirm from the obtained results shown in Figure 4d. At a higher potential of -1.36 eV, H₂ starts to rise again. The reason for enhanced H₂ evolution and at

a higher potential is the mass transport limitation of CO_2 to the electrode at higher currents. The current densities also increased with an increase in the potential. Although the FE at -1.36 V was slightly lower than at -1.26 V (due to the higher current at -1.36 V), the partial current density of formate is higher (54.13 mA cm⁻²) than the 49.93 mA cm⁻² for -1.26 V versus RHE under a CO₂ atmosphere increase in order, this results from the enhanced conductivity of the Ce@S-Bi₂O₃ catalyst shown in Figure 4d. In addition, gas phase products were measured through an online gas chromatogram, and no gas products other than CO and H_2 were observed on gas chromatography. The presence of formate is identified from the ion chromatogram from the Ce@S-Bi2O3 electrocatalyst. The products for S-Bi2O3 and Bi₂O₃ catalysts were also determined at -1.36 eV versus RHE. The FE_{formate} were slightly lower, with values of 83 and 81%, respectively. The partial current density toward formate for Bi₂O₃ was 41.4 mA cm⁻² and that for S-Bi₂O₃ was 43.0 mA cm⁻², which is much lower than that toward Ce@S-Bi2O3, as shown in Figure 4b,c. Through these experiments, it was determined that Ce@S-Bi₂O₃ is the best catalyst in the sequence for selective formate production by ECO₂RR. Notably, Ce@S-Bi₂O₃ electrocatalyst delivers a higher partial current density for formate than Bi₂O₃ and S-Bi₂O₃. Ce doped at the S-Bi₂O₃ provides a high formate current density in ECO₂RR. Moreover, all the investigated catalysts (Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃) showed the highest j_{formate} achieved at -1.06 eV versus RHE. Furthermore, the stability of the Ce@S-Bi₂O₃ electrocatalyst was evaluated in a GDE flow reactor at an applied potential of -1.2 V versus RHE, for a continuous reaction of up to 5 h. Figure S18b (Supporting Information) shows that there is no significant change in the current density during the stability analysis. The FE of formate is also sustained at over 72% for up to 4 h of reaction shown in Figure S18a (Supporting Information). However, after 4 h, the FE of formate decreased to 65% and H_2 FE increased to 28%, which could be due to the flooding of GDE.^[77] A similar phenomenon was observed in our previous study as well.^[78]

2.5 Theoretical Calculations

We conducted calculations to determine the optimal adsorption structures and energetics of *CO₂, *COOH, *OCHO, *CO, and *HCOOH species for the purpose of electrochemical CO₂ RR. These calculations were performed on the (111) plane of Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃, as shown in Figures S19 and S22 (Supporting Information). The Gibbs free energy (ΔG) associated with the creation of *COOH, which serves as an intermediary in the CO pathway, is greater than that of *OCHO, which serves as an intermediate in the HCOOH pathway in pure Bi₂O₃ as depicted in Figure 5a. Additionally, the introduction of S-doping on the surface of Bi₂O₃ effectively reduced the reaction route for the *OCHO intermediate, as illustrated in Figure 5b. On S-doped Bi sites, the Gibbs free energies (ΔG) for creating *OCHO and *HCOOH through the HCOOH pathway were 0.63 and 0.14 eV, respectively.

Figure 4

The Ce@S-Bi₂O₃ electrocatalyst performance and testing in three-chamber GDE reactor. a) Schematic illustration of GDE reactor cell used for the experiment. b–d) FE of products (formate, CO, and H₂) distributions at different potentials applied on Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ hierarchal nanosheet. e) The formate partial current density ($j_{formate}$) for Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalyst at corresponding potentials in the CO₂- saturated 0.5 M KHCO₃ electrolyte media.

Figure 5

a) Gibbs free energy diagrams for electrochemical CO₂RR to *CO and *HCOOH on Bi₂O₃ (111), and b) S-Bi₂O₃ (111) surface. c) Gibbs free energy diagrams for ECO₂RR to various intermediates form on the surface of Bi (111) and Ce sites, and d) Gibbs free energy diagrams for H₂ on the surface of Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ on top of Bi and Ce.

The introduction of S on Bi significantly reduced the Gibbs free energy for both. Furthermore, Ce and S were doped onto Bi_2O_3 , suggesting that the *OCHO pathway is more energetically favorable than the CO pathway, as shown in Figure 5c and Tables S3 and S4 (Supporting Information). The electrocatalyst of Ce@S-Bi₂O₃ was established to facilitate the conversion of CO₂ to *OCHO efficiently and readily with no barrier in the case of Ce@S-Bi₂O₃ electrocatalyst. We also performed several models of Ce and S-doped Bi₂O₃, as shown in Figure S23 and Table S5 (Supporting Information). This consistently demonstrates that the reactions involving formate (*OCHO) are endothermic, suggesting that the rate-determining step (RDS) for formate is favorable when Bi₂O₃ is doped with Ce and S.

Furthermore, the Gibbs free energy diagram illustrating the process of hydrogen evolution reaction (HER) on the surfaces of Bi_2O_3 , S- Bi_2O_3 , and Ce@S- Bi_2O_3 is depicted in Figure 5d. The lower formation of H* species means a higher activity of H₂O dissociation on the electrocatalytic surface.^[31,79] Energy barriers associated with HER on Ce@S- Bi_2O_3 are more significant compared to those on Bi_2O_3 and S- Bi_2O_3 surfaces. This indicates a significant inhibition of HER following the introduction of Ce and S-doping in Bi_2O_3 .These calculated parameters are well agreement with experimental ECO₂RR results of S and Ce modified Bi_2O_3

electrocatalyst (Figure 3d). In addition, the disparity in limiting potentials between the ECO₂RR and HER, denoted as UL(CO₂RR)-UL(H₂), was computed. This parameter has been established as a crucial indicator of ECO₂RR selectivity, with a more significant positive UL(CO₂)-UL(H₂) value corresponding to more considerable selectivity as shown in Figure S24 (Supporting Information). As anticipated, the Ce@S-Bi₂O₃ results in a higher positive UL (CO₂RR)-UL(H₂) compared to both S-doped Bi₂O₃ and pure Bi₂O₃ electrocatalysts,^[38,80] Experimental and computational results indicate that this is an impressive ECO₂RR for the Ce@S-Bi₂O₃ electrocatalyst. Considering all the parameters, the Ce@S-Bi₂O₃ group has a significant role in determining the free energy of reaction intermediates and CO₂ reduction activity.

3 Conclusion

In summary, we developed efficient Ce@S-Bi₂O₃ hierarchical nanosheets for ECO₂RR for formate production. The obtained structural and morphological results confirmed the formation of crystalline hierarchical nanosheets. Notably, the BET results confirmed the formation of largesurface area Bi₂O₃ (50.48 m² g⁻¹) during S modification. The Ce and S-doped Bi₂O₃ electrocatalyst showed improved electrocatalytic activity and long-term durability with FE_{formate} of 90% in a wide potential window of both fabricated H-cell and GDE reactor. The obtained XPS results confirmed that the S and Ce doping induced a modification in the Bi site electronic configuration that facilitated CO₂ adsorption and improved electron transfer to produce a high conversion rate of formate. Moreover, DFT calculations confirmed that Ce and S optimized the adsorption of *CO and *OCHO intermediates in the ECO₂RR. Including Ce in the S-Bi₂O₃, the electrocatalyst minimizes the energy barrier of intermediates on the Bi sites. Therefore, this study provides a new strategy in the development of highly efficient electrocatalysts for formate production by ECO₂RR.

4 Experimental Section

Materials

Bismuth nitrate pentahydrate (Bi (NO₃)₂·5H₂O, 99.99%), cerium nitrate hexahydrate (Ce (NO₃)₂·6H₂O, 99.99%), thioacetamide (TAA,98%), ethylene glycol (EG, 99.98%), potassium bicarbonate (KHCO₃, 99.7%), and Nafion solution (5 wt.%) were purchased from Sigma-Aldrich. Hydrochloric acid (HCl, 37%), sulfuric acid (H₂SO₄, 98%), and hydrogen peroxide (H₂O₂, 35%) were obtained from Daejung Chemicals and Metals. Ethanol (EtOH, 99.5%) and acetone (99.5%) were purchased from Samchun Pure Chemical Co. Ltd. and Duksan Reagents (South Korea), respectively.

Synthesis of Bi₂O₃ and S-Bi₂O₃

First, bismuth nitrate pentahydrate Bi $(NO_3)_2 \cdot 5H_2O$ (50 mM) and thioacetamide (3 mM) were dissolved in EtOH and EG (2:1% volume) aqueous solution. The mixed solution was stirred for 30 min, transferred to a 50 mL polytetrafluoroethylene (PTFE)-lined stainless-steel autoclave, and heated at 170°C for 6 h. After hydrothermal treatment, the precipitate was collected, centrifuged, and washed with deionized water and EtOH. The obtained product was dried in a vacuum oven at 70°C overnight. The

final product was labeled as S-Bi₂O₃. The Bi_2O_3 was prepared similarly except for adding thioacetamide (C₂H₅NS).

Synthesis of Ce@S-Bi₂O₃

The preparation of Ce@ S-Bi₂O₃ hierarchical nanosheets first involved adding Bi $(NO_3)_2$ ·5H₂O (45 mM) and Ce $(NO_3)_2$ ·6H₂O (5 mM) into a solution containing EtOH and EG (2:1%volume). After vigorous stirring for 30 min, the solution was transferred to a 70 mL stainless steel PTFE autoclave and heated at 170 °C (heating rate 5 °C min⁻¹) for 6 h in an air atmosphere. The products were collected and centrifuged with deionized water and EtOH several times. The obtained powder was dried in a vacuum overnight. The Ce@S-Bi₂O₃ hierarchical nanosheets were successfully prepared. During the synthesis, Ce and S ratios were optimized to obtain the highest electrocatalytic activity in terms of ECO₂RR to formate conversions. The ratios of the highest FE were reported in the synthesis protocols.

Electrochemical Analysis from an H-Cell

An ECO₂RR was performed using an electrochemical H-cell separated by a proton exchange membrane (Nafion-212). The reference electrode (Ag/AgCl) and working electrode were placed in the cathode compartment, and the counter electrode (Pt-mesh) was placed in the anode compartment. A 0.5 M KHCO₃ solution (pH 7.4) in electrolyte was used as a catholyte throughout the reaction. Before performing the ECO₂RR, the cathode compartment was saturated with CO₂ (gas) (99.99% purity, BOC) by purging at 0.04 MPa (40 mL min⁻¹) for 30 min throughout the electrolysis. All potentials measured against the reference electrode were converted to the RHE scale using E (vs RHE) = E (vs. Ag/AgCl) + 0.197 V + 0.0591xpH. The ECO₂RR activity was investigated using CA and LSV at a scan rate of 5 mV s⁻¹ at standard temperature and pressure.

Electrochemical CO₂RR Test in a GDE Reactor

Quantification of the products for various electrocatalysts was performed in a threechamber GDE reactor in a three-electrode mode described in the previous study.^[78] The current set-up consists of GDE as the working electrode, Pt nanoparticle-coated Ti mesh as a counter electrode, and Ag/AgCl (3 M NaCl) as the reference electrode. In addition, 0.5 M KHCO₃ was utilized as an electrolyte in both electrode chambers. The electrolyte chambers were separated by a cation exchange membrane (Sustainion X37-50, Dioxide Materials) to stop cross-over of the liquid products. For the usual measurements, the reactor was operated in a batch mode. Pure CO₂ gas (99.99% purity, BOC) flow was kept at 20 mL min⁻¹ and was controlled by a digital mass flow controller. The current densities were determined by dividing the current obtained by the GDE area by 2 cm².

Calculation of Faradic Efficiency in a GDE Reactor

The ECO₂RR products were analyzed by GC techniques. Gas products were measured by online GC using a Shin Carbon Micropacked column (Shimadzu Nexis GC-2030), where the outlet of the gas chamber was directly connected to the injection port of the GC, and samples

were collected at regular intervals. After ECO₂RR liquid products were analyzed, they were manually collected. Alcohols were analyzed using the above GC using a DB-wax column, and formate was analyzed using ion chromatography (Eco IC, Metrohm).^[78]

FE refers to the ratio of current used to produce a particular product, expressed by Equation (1):

$$FE = \frac{zn F}{Q}$$
(1)

Where z is the number of electrons required per mole of product, and n is the number of moles of product formed. F is Faraday's constant (96485 C mol⁻¹), and Q is the total charge passed through to the experiments. The total FE of the samples ranged from 80% to 91.5%. Gaseous products can affect the overall FE value, including side reactions of the catalytic reduction

during the CO₂ reduction process, crossing of products through the GDE and the membrane, and averaging of the obtained currents. Total FE was normalized by 100% to allow direct comparison between the catalysts. The total voltage measured was highest in formate observed at -1.06 V at 41 mA cm⁻², and the highest current density of 54 mA cm⁻² was observed at -1.36 V versus RHE for the Ce@S-Bi₂O₃ electrocatalyst.

Acknowledgements

This research work was supported by BK21 FOUR Program by Jeonbuk National University Research Grant. This research was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2023RIS-008). This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2020R1A2B5B01001458). The authors acknowledge the Korea Institute of Science and Technology Information (KISTI) for the computational resources provided for this research. This research work was partially supported by UKRI Circular Chemical Economy Centre (EP/V011863/1).

Conflict of Interest

The authors declare no conflict of interest.

- 1. J. Ni, Q. Cheng, S. Liu, M. Wang, Y. He, T. Qian, C. Yan, J. Lu, *Adv. Funct. Mater.* 2023, **33**, 2212483.
- 2. H. Liu, Y. Zhu, J. Ma, Z. Zhang, W. Hu, *Adv. Funct. Mater.* 2020, **30**, 1910534.
- 3. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, *Chem. Rev.* 2017, **117**, 9804.
- 4. H. Shen, Y. Zhao, L. Zhang, Y. He, S. Yang, T. Wang, Y. Cao, Y. Guo, Q. Zhang, H. Zhang, *Adv. Energy Mater.* 2023, **13**, 2202818.
- 5. a) D. Wu, G. Huo, W. Y. Chen, X. Z. Fu, J. L. Luo, *Appl. Catal., B* 2020, **271**, 118957. b) M. Prasanna, N. Logeshwaran, S. Ramakrishnan, D. J. Yoo, *Small* 2023, **20**, 2306165.
- 6. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, *Electrochim. Acta* 1994, **39**, 1833.
- 7. X. Zhang, Y. Zhang, Q. Li, X. Zhou, Q. Li, J. Yi, Y. Liu, J. Zhang, *J. Mater. Chem. A* 2020, **8**, 9776.

- 8. P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, *Angew. Chem., Int. Ed.* 2020, **59**, 10807.
- 9. Z. Wang, C. Wang, Y. Hu, S. Yang, J. Yang, W. Chen, H. Zhou, F. Zhou, L. Wang, J. Du, Y. Li, Y. Wu, *Nano Res.* 2021, **14**, 2790.
- 10. S. Liu, X. F. Lu, J. Xiao, X. Wang, X. W. Lou, *Angew. Chem., Int. Ed.* 2019, **58**, 13828.
- 11. J. Fan, X. Zhao, X. Mao, J. Xu, N. Han, H. Yang, B. Pan, Y. Li, L. Wang, Y. Li, *Adv. Mater.* 2021, **33**, 2100910.
- 12. Z. Wang, G. Yang, Z. Zhang, M. Jin, Y. Yin, ACS Nano 2016, 10, 4559.
- 13. T. Montini, M. Melchionna, M. Monai, P. Fornasiero, *Chem. Rev.* 2016, **116**, 5987.
- 14. Y. Shi, Y. Zhou, D. R. Yang, W. X. Xu, C. Wang, F. B. Wang, J. J. Xu, X. H. Xia, H. Y. Chen, *J. Am. Chem. Soc.* 2017, **139**, 15479.
- 15. D. Tan, W. Lee, K. T. Park, Y. E. Jeon, J. Hong, Y. N. Ko, Y. E. Kim, *Appl. Surf. Sci.* 2023, **613**, 155944.
- G. Wang, F. Wang, P. Deng, J. Li, C. Wang, Y. Hua, Y. Shen, X. Tian, *Mater. Rep.: Energy* 2023, 3, 100181.
- P. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H. Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen, X. M. Hu, K. Daasbjerg, T. Skrydstrup, N. Lock, *Adv. Funct. Mater.* 2020, **30**, 1910408.
- 18. X. Wang, X. Sang, C. L. Dong, S. Yao, L. Shuai, J. Lu, B. Yang, Z. Li, L. Lei, M. Qiu, L. Dai, Y. Hou, *Angew. Chem., Int. Ed.* 2021, **60**, 11959.
- 19. P. Chen, T. Zhou, M. Chen, Y. Tong, N. Zhang, X. Peng, W. Chu, X. Wu, C. Wu, Y. Xie, *ACS Catal.* 2017, **7**, 7405.
- 20. K. Xu, H. Cheng, H. Lv, J. Wang, L. Liu, S. Liu, X. Wu, W. Chu, C. Wu, Y. Xie, *Adv. Mater.* 2018, **30**, 1703322.
- 21. J. Wang, S. Ning, M. Luo, D. Xiang, W. Chen, X. Kang, Z. Jiang, S. Chen, *Appl. Catal., B* 2021, **288**, 119979.
- 22. S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, D. J. Yoo, *Appl. Catal., B* 2020, **279**, 119381.
- 23. T. TranPhu, R. Daiyan, Z. Fusco, Z. Ma, R. Amal, A. Tricoli, *Adv. Funct. Mater.* 2020, **30**, 1906478.
- 24. G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z. Bai, L. Yang, Z. Chen, *Adv. Energy Mater.* 2018, **8**, 1802427.
- 25. H. Wei, A. Tan, Z. Xiang, J. Zhang, J. Piao, Z. Liang, K. Wan, Z. Fu, *ChemSusChem* 2022, **15**, 202200752.
- 26. G. Zhang, X. Zheng, X. Cui, J. Wang, J. Liu, J. Chen, Q. Xu, *ACS Appl. Nano Mater.* 2022, **5**, 15465.
- 27. A.Zhang, Y. Liang, H. Li, X. Zhao, Y. Chen, B. Zhang, W. Zhu, J. Zeng, *Nano Lett.* 2019, **19**, 6547.
- 28. X. Li, N. Qian, L. Ji, X. Wu, J. Li, J. Huang, Y. Yan, D. Yang, H. Zhang, *Nanoscale Adv.* 2022, **4**, 2288.
- 29. J. Yan, Y. Guan, B. Marchetti, Y. Liu, F. Ning, J. Yi, X. D. Zhou, *Chem. Eng. J.* 2023, **467**, 143531.
- 30. J. H. Zhou, K. Yuan, L. Zhou, Y. Guo, M. Y. Luo, X. Y. Guo, Q. Y. Meng, Y. W. Zhang, *Angew. Chem., Int. Ed.* 2019, **58**, 14197.
- 31. W. Ma, S. Xie, X. G. Zhang, F. Sun, J. Kang, Z. Jiang, Q. Zhang, D. Y. Wu, Y. Wang, *Nat. Commun.* 2019, **10**, 892.

- 32. a) P. Li, F. Yang, J. Li, Q. Zhu, J. W. Xu, X. J. Loh, K. W. Huang, W. Hu, J. Lu, *Adv. Energy Mater.* 2023, **13**, 2301597. b) F. CalleVallejo, D. Loffreda, M. T. M. Koper, P. Sautet, *Nature Chemistry* 2015, **7**, 403.
- 33. A.Bagger, W. Ju, A. S. Varela, P. Strasser, J. Rossmeisl, *ChemPhysChem* 2017, **18**, 3266.
- 34. N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, *Nat. Commun.* 2018, **9**, 1320.
- 35. Y. Mi, S. Zeng, L. Li, Q. Zhang, S. Wang, C. Liu, D. Sun, *Mater. Res. Bull.* 2012, 47, 2623.
- 36. J. Bi, J. Che, L. Wu, M. Liu, *Mater. Res. Bull.* 2013, **48**, 2071.
- 37. Moorthy, M. R. Subramaniam, T. G. Manivasagam, D. Kumaresan, *Dalton Trans.* 2018, **47**, 8683.
- 38. S. Q. Liu, M. R. Gao, R. F. Feng, L. Gong, H. Zeng, J. L. Luo, ACS Catalysis 2021, 11, 7604.
- 39. M. Zhang, W. Wei, S. Zhou, D. D. Ma, A. Cao, X. T. Wu, Q. L. Zhu, *Energy & Environm. Sci.* 2021, **14**, 4998.
- 40. D. Liu, X. Yan, P. Guo, Y. Yang, Y. He, J. Liu, J. Chen, H. Pan, R. Wu, *ACS Catalysis* 2023, **13**, 7698.
- 41. X. Cao, Y. Tian, J. Ma, W. Guo, W. Cai, J. Zhang, Adv. Mater. 2023, 36, 2309648.
- 42. Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu, Z. Feng, Y. Li, W. Zhou, Y. Li, *Nat. Commun.* 2019, **10**, 2807.
- 43. a) L. Guo, F. Chen, X. Fan, W. Cai, J. Zhang, *Appl. Catal., B* 2010, **96**, 162; b) T. T. Le, V. C. Hoang, W. Zhang, J. M. Kim, J. Kim, G. Moon, S. H. Kim, *Chem. Eng. J. Adv.* 2022, **12**, 100371.
- 44. S. M. Yakout, *J. Environm. Chem. Eng.* 2020, **8**, 103644.
- 45. R. Yu, C. Qiu, Z. Lin, H. Liu, J. Gao, S. Li, Y. Yao, J. Yu, S. Yang, *ACS Mater. Lett.* 2022, **4**, 1749.
- 46. F. Liu, X. Ren, J. Zhao, H. Wu, J. Wang, X. Han, Y. Deng, W. Hu, *ACS Catalysis* 2022, **12**, 13533.
- W. D. Chen, X. Q. Li, L. H. Duan, X. L. Xie, Y. D. Cui, *Appl. Surface Sci.* 1996, **100–101**, 592.
- 48. H. Li, G. Wang, F. Zhang, Y. Cai, Y. Wang, I. Djerdj, *RSC Adv.* 2012, **2**, 12413.
- 49. Y. X. Duan, Y. T. Zhou, Z. Yu, D. X. Liu, Z. Wen, J. M. Yan, Q. Jiang, *Angew. Chem., Int. Ed.* 2021, **60**, 8798.
- 50. R. S. Kumar, S. Prabhakaran, S. Ramakrishnan, S. C. Karthikeyan, A. R. Kim, D. H. Kim, D. J. Yoo, *Small* 2023, **19**, 2207096.
- a) A. Hezam, K. Namratha, Q. A. Drmosh, D. Ponnamma, J. Wang, S. Prasad, M. Ahamed, C. Cheng, K. Byrappa, *ACS Appl. Nano Mater.* 2020, **3**, 138; b) D. Jiang, W. Wang, L. Zhang, Y. Zheng, Z. Wang, *ACS Catalysis* 2015, **5**, 4851.
- 52. P. H. Li, Z. Y. Song, M. Yang, S. H. Chen, X. Y. Xiao, W. Duan, L. N. Li, X. J. Huang, *Analyt. Chem.* 2020, **92**, 16089.
- 53. H. Shen, J. Bu, W. Wang, C. Wu, Y. Cao, B. Zhang, Q. Zhang, H. Zhang, *Chin. J. Chem.* 2020, **38**, 1353.
- 54. B. Cui, Y. Li, S. Li, Y. Xia, Z. Zheng, Y. Q. Liu, *Energy Fuels* 2020, **34**, 9932.
- 55. K. Masula, Y. Bhongiri, G. Raghav Rao, P. Vijay Kumar, S. Pola, M. Basude, *Opt. Mater.* 2022, **126**, 112201.
- 56. J. Henych, M. Št'astný, Z. Němečková, M. Kormunda, Z. Šanderová, Z. Žmudová, P. Ryšánek, Š. Stehlík, J. Ederer, M. Liegertová, J. Trögl, P. Janoš, ACS Appl. Nano Mater. 2022, 5, 17956.
- M. Prekajski, Z. Dohčević-Mitrović, M. Radović, B. Babić, J. Pantić, A. Kremenović, B. Matović, *J. Eur. Ceram. Soc.* 2012, **32**, 1983.

- 58. C. Silva, F. A. Sigoli, I. O. Mazali, *J. Phys. Chem. C* 2017, **121**, 12928.
- 59. J. Mei, T. Liao, G. A. Ayoko, Z. Sun, *ACS Appl. Mater. Interfaces* 2019, **11**, 28205.
- 60. S. Wu, M. Tian, Y. Hu, N. Zhang, W. Shen, J. Li, L. Guo, P. Da, P. Xi, C. H. Yan, *Inorganic Chemistry* 2023, **62**, 4088.
- 61. T. Tsujiguchi, Y. Kawabe, S. Jeong, T. Ohto, S. Kukunuri, H. Kuramochi, Y. Takahashi, T. Nishiuchi, H. Masuda, M. Wakisaka, K. Hu, G. Elumalai, J. Fujita, Y. Ito, *ACS Catalysis* 2021, **11**, 3310.
- 62. L. Fan, Z. Xia, M. Xu, Y. Lu, Z. Li, *Adv. Funct. Mater.* 2018, **28**, 1706289.
- 63. Z. Weng, X. Zhang, Y. Wu, S. Huo, J. Jiang, W. Liu, G. He, Y. Liang, H. Wang, *Angew. Chem., Int. Ed.* 2017, **56**, 13135.
- 64. R. Boppella, M. Austeria P, Y. Kim, E. Kim, I. Song, Y. Eom, D. P. Kumar, M. Balamurugan, E. Sim, D. H. Kim, T. K. Kim, *Adv. Funct. Mater.* 2022, **32**, 2202351.
- 65. S. Ramakrishnan, D. B. Velusamy, S. Sengodan, G. Nagaraju, D. H. Kim, A. R. Kim, D. J. Yoo, *Appl. Catal., B* 2022, **300**, 120752.
- 66. F. Yang, A. O. Elnabawy, R. Schimmenti, P. Song, J. Wang, Z. Peng, S. Yao, R. Deng, S. Song, Y. Lin, M. Mavrikakis, W. Xu, *Nat. Commun.* 2020, **11**, 1088.
- 67. D. Yao, C. Tang, A. Vasileff, X. Zhi, Y. Jiao, S. Z. Qiao, *Angew. Chem., Int. Ed.* 2021, **60**, 18178.
- 68. L. Lin, X. He, X. G. Zhang, W. Ma, B. Zhang, D. Wei, S. Xie, Q. Zhang, X. Yi, Y. Wang, *Angew. Chem., Int. Ed.* 2023, **62**, 202214959.
- 69. S. Liang, J. Xiao, T. Zhang, Y. Zheng, Q. Wang, B. Liu, *Angew. Chem., Int. Ed.* 2023, **62**, 202310740.
- 70. W. Ma, J. Bu, Z. Liu, C. Yan, Y. Yao, N. Chang, H. Zhang, T. Wang, J. Zhang, *Adv. Funct. Mater.* 2021, **31**, 2006704.
- 71. X. Ren, F. Liu, H. Wu, Q. Lu, J. Zhao, Y. Liu, J. Zhang, J. Mao, J. Wang, X. Han, Y. Deng, W. Hu, *Angew. Chem., Int. Ed.* 2024, **63**, 202316640.
- 72. a) X. Wang, W. Wang, B. Liu, Z. Song, Z. Ren, H. Fu, *Small* 2023, **19**, 2304084; b) Z. Gao, M. Hou, Y. Shi, L. Li, Q. Sun, S. Yang, Z. Jiang, W. Yang, Z. Zhang, W. Hu, *Chem. Sci.* 2023, **14**, 6860.
- 73. Y. Liu, Z. X. Lou, X. Wu, B. Mei, J. Chen, J. Y. Zhao, J. Li, H. Y. Yuan, M. Zhu, S. Dai, C. Sun, P. F. Liu, Z. Jiang, H. G. Yang, *Adv. Mater.* 2022, **34**, 2202568.
- 74. a) S. Ansari, M. S. Ansari, H. Devnani, S. P. Satsangee, R. Jain, *Sens. Actuat. B: Chem.* 2018, **273**, 1226. b) J. Wu, H. Xu, W. Yan, *Appl. Surface Sci.* 2016, **386**, 1.
- 75. H. Xiang, S. Rasul, K. Scott, J. Portoles, P. Cumpson, E. H. Yu, J. CO2 Util. 2019, 30, 214.
- 76. F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang, D. R. MacFarlane, J. Zhang, *Nano Energy* 2017, **31**, 270.
- 77. Y. Kong, H. Hu, M. Liu, Y. Hou, V. Kolivoška, S. Vesztergom, P. Broekmann, *J. Catal.* 2022, **408**, 1.
- 78. P. K. Sharma, S. Rasul, D. Li, E. H. Yu, *Materials Reports: Energy* 2023, **3**, 100196.
- 79. T. Shinagawa, G. O. Larrazábal, A. J. Martín, F. Krumeich, J. Pérez-Ramírez, *ACS Catalysis* 2018, **8**, 837.
- 80. H. Shang, T. Wang, J. Pei, Z. Jiang, D. Zhou, Y. Wang, H. Li, J. Dong, Z. Zhuang, W. Chen, *Angew. Chem., Int. Ed.* 2020, **59**, 22465.

Surface area-enhanced cerium and sulfur-modified hierarchical bismuth oxide nanosheets for electrochemical carbon dioxide reduction to formate

Naveenkumar Palanimuthu ^a, Mohan Raj Subramaniam ^a, Muthu Austeria P ^b, Preetam Kumar Sharma ^{c,d}, Vinoth Ramalingam ^e, Karthik Peramaiah ^f, Shanmugam Ramakrishnan ^{a,g}, Geun Ho Gu ^b, Eileen Hao Yu ^d, and Dong Jin Yoo ^{a, h*}

^a Graduate School, Department of Energy Storage/Conversion Engineering (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea

^b Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju, 58330, Republic of Korea

^c Institute for Materials Discovery, University College London, Malet Place, London, WC1E 7JE, United Kingdom

^d Department of Chemical Engineering, Loughborough University, Loughborough, LE11 3TU, United Kingdom

^e School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ, United Kingdom

^f Agency for Science, Technology, and Research, Institute of Sustainability for Chemicals, Energy and Environment, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore

g School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, NE17RU, United Kingdom

^h Department of Life Science, Jeonbuk National University, Jeollabuk-do 54896, Republic of Korea

*Corresponding Author Email ID: djyoo@jbnu.ac.kr (D.J. Yoo)

1 Material characterization

The morphological analysis of all prepared electrocatalysts was investigated by field emission scanning electron microscope with energy-dispersive X-ray spectroscopy (EDS) with SUPRA 40 VP; Carl Zeiss, Germany) and high-resolution transmission electron microscope (HR-TEM; JEM-ARM200F, JEOL). The X-ray diffraction (XRD) pattern of the prepared electrocatalyst was measured by using PANalytical (X'PERT-PRO Powder), (model) with Cu K α radiation ($\lambda = 0.154$ nm). Bi and Ce loading was evaluated by inductively coupled plasma–optical emission spectrometry (ICP-OES) with Thermo Fisher Scientific iCAP 7000 series. The chemical state of the as-obtained materials was examined by an X-ray photoelectron spectrometer (XPS; Axis-Nova, Kratos Inc.) at the Jeonju Center of the Korea Basic Science Institute (KBSI). The determination of the specific surface area and porous properties of the MG and MMGs, nitrogen adsorptiondesorption isotherms were measured volumetrically at 77 K (Microtrac, BELsorp-mini II). Product quantification was analyzed via nuclear magnetic resonance spectrometers (¹H-NMR) (AVANCE III 400, Bruker, USA) at the Future Energy Convergence Core Center (FECC).

2 Experimental section

2.1 Electrochemical active surface area

Furthermore, the electrochemical active surface area (ECSA) was calculated via the double-layer capacitance (C_{dl}) in the non-Faradaic region and TOF obtained from the formate current density. the electrochemical surface area (ECSA) was determined by the double-layer capacitance method using the equation:

$$ECSA = Cdl/Cs \tag{1}$$

where C_{dl} is the double-layer capacitance measured by the cyclic voltammetry (CV) method with different scan rates at 5 to 25 mV S⁻¹. The potential is from -0.8 to 1.27 V vs. RHE, and C_{dl} was determined from the plot slope of the double-layer charging current versus the scan rate. C_s is the specific capacitance whose value is 1.12 μ F cm⁻² used in this study.

2.2 Calculation of TOF in H-cell system

TOF and active sites calculation of those Bi₂O₃ electrocatalysts

The formate TOF per site of the Bi₂O₃ catalyst was calculated using the following equations (2):

$$TOF per site = \frac{\# total formate turnovers/cm^2 geometric area}{\# active sites/cm^2 geometric area}$$
(2)

The total number of formate turnovers was estimated by using the following equations (3),

$$\# \text{ HCOO} = \left(j\frac{\text{mA}}{\text{cm}^2}\right) \left(\frac{\frac{1\text{C}}{\text{s}}}{1000 \text{ mA}}\right) \left(\frac{1\text{mol } \text{e}^-}{96485 \text{ C}}\right) \left(\frac{1\text{mol } \text{HCOO}^-}{2 \text{ mol } \text{e}^-}\right) \left(\frac{6.022 \times 10^{23} \text{mol } \text{HCOO}^-}{2 \text{mol } \text{e}}\right)$$
$$= 1.56 \times 10^{15} \frac{\text{HCOO} -}{\text{cm}^2} \text{ per } \frac{\text{mA}}{\text{cm}^2}$$
(3)

Further, the Ce and Bi, S content of the Bi_2O_3 , S- Bi_2O_3 , and Ce@S- Bi_2O_3 catalyst was quantified using FE-SEM analysis. The Bi_2O_3 at about ~34.12 wt, Accordingly, the density of active sites based on the Bi, is:

HCOO =
$$\left(\frac{34.12}{208.98}\right) \times \frac{1 \text{mmol}}{100 \text{ mg}} \times 3 \frac{\text{mg}}{cm^2} \times 6.022 \times 10^{20} \frac{\text{sites}}{\text{mmol}}$$

= $(0.1632) \times \frac{1 \text{mmol}}{100 \text{ mg}} \times 3 \frac{\text{mg}}{cm^2} \times 6.022 \times 10^{20} \frac{\text{sites}}{\text{mmol}}$

$$= 2.94 \times 10^{18}$$
 sites cm⁻²

For example, the TOF of the catalyst at -1.16 vs RHE was evaluated below,

$$\text{TOF} = \frac{22.05 \times 3.12 \times 10^{15} \frac{\text{HCOO}^{-}/\text{s}}{\text{cm}^{2}}}{2.94 \times 10^{18} \text{ sites cm}^{-2}} = 0.0234 \text{ s}^{-1}$$

TOF and active sites calculation of those S-Bi₂O₃ electrocatalysts

The Formate TOF per site of the S-Bi₂O₃ catalyst was calculated using the following equations (2):

TOF per site = $\frac{\text{# total formate turnovers/cm}^2 \text{ geometric area}}{\text{# active sites/cm}^2 \text{ geometric area}}$

The total number of formate turnovers was estimated by using the following equations (3),

HCOO =
$$\left(j\frac{mA}{cm^2}\right)\left(\frac{\frac{1C}{s}}{1000 \text{ mA}}\right)\left(\frac{1 \text{mol } e^-}{96485 \text{ C}}\right)\left(\frac{1 \text{mol } \text{HCOO}^-}{2 \text{ mol } e^-}\right)\left(\frac{6.022 \times 10^{23} \text{ mol } \text{HCOO}^-}{2 \text{ mol } e}\right)$$

$$= 1.56 \times 10^{15} \frac{\frac{HC00}{s}}{cm^2} \text{ per } \frac{mA}{cm^2} \quad (3)$$

Further, Bi the and S, O content of the S-Bi₂O₃, catalyst was quantified using FE-SEM analysis. The S-Bi₂O₃ at about \sim 32.87 wt. Accordingly, the density of active sites based on the Bi is:

HC00-=
$$\left(\frac{32.87}{208.980}\right) \times \frac{1 \text{mmol}}{100 \text{ mg}} \times 3 \frac{\text{mg}}{cm^2} \times 6.022 \times 10^{20} \frac{\text{sites}}{\text{mmol}}$$

= $(0.15728) \times \frac{1 \text{mmol}}{100 \text{ mg}} \times 3 \frac{\text{mg}}{cm^2} \times 6.022 \times 10^{20} \frac{\text{sites}}{\text{mmol}}$
= $2.8414 \times 10^{18} \text{ sites cm}^{-2}$

For example, the TOF of the catalyst at -1.16 vs RHE was evaluated below,

$$TOF = \frac{27.02 \times 3.12 \times 10^{15} \frac{\text{HCOO}^{-}/\text{s}}{\text{cm}^{2}}}{2.8414 \times 10^{18} \text{ sites cm}^{-2}} = 0.0296 \text{ s}^{-1}$$

TOF and active sites calculation of those Ce@S-Bi2O3 electrocatalysts

The Formate TOF per site of the Ce@S-Bi₂O₃ catalyst was calculated using the following equations (2):

TOF per site =
$$\frac{\# \text{ total formate turnovers/cm}^2 \text{ geometric area}}{\# \text{ active sites/cm}^2 \text{ geometric area}}$$

The total number of formate turnovers was estimated by using the following equations (3),

HCOO =
$$\left(j\frac{\mathrm{mA}}{\mathrm{cm}^2}\right)\left(\frac{\frac{1\mathrm{C}}{\mathrm{s}}}{1000 \mathrm{mA}}\right)\left(\frac{1\mathrm{mol} \mathrm{e}^-}{96485 \mathrm{C}}\right)\left(\frac{1\mathrm{mol} \mathrm{HCOO}^-}{2 \mathrm{mol} \mathrm{e}^-}\right)\left(\frac{6.022 \times 10^{23} \mathrm{mol} \mathrm{HCOO}^-}{2\mathrm{mol} \mathrm{e}}\right)$$

= $1.56 \times 10^{15} \frac{\mathrm{HCOO}^-}{\mathrm{cm}^2} \mathrm{per} \frac{\mathrm{mA}}{\mathrm{cm}^2}$

Further, Ce and Bi the S, O content of the Ce@S-Bi₂O₃, catalyst was quantified using FE-SEM analysis. The Ce@S-Bi₂O₃ at about ~27.62 wt., 2.95 wt. Accordingly, the density of active sites based on the Bi and Ce is:

$$\text{HC00} = \left(\frac{27.62}{208.980} + \frac{2.95}{140.116}\right) \times \frac{1\text{mmol}}{100 \text{ mg}} \times 3 \frac{\text{mg}}{\text{cm}^2} \times 6.022 \times 10^{20} \frac{\text{sites}}{\text{mmol}}$$
$$= (0.15321) \times \frac{1\text{mmol}}{100 \text{ mg}} \times 3 \frac{\text{mg}}{\text{cm}^2} \times 6.022 \times 10^{20} \frac{\text{sites}}{\text{mmol}}$$
$$= 2.76789 \times 10^{18} \text{ sites cm}^{-2}$$

For example, the TOF of the catalyst at -1.16 vs RHE was evaluated below,

$$\text{TOF} = \frac{49.9 \times 3.12 \times 10^{15} \frac{\text{HCOO}^{-}/\text{s}}{\text{cm}^{2}}}{2.76789 \times 10^{18} \text{ sites cm}^{-2}} = 0.05624 \text{ s}^{-1}$$

2.3 Product analysis from H-cell system

Liquid phase products were quantified using a ¹H-NMR spectrometer (Avance III 400, Bruker, USA) as per previous literature.^{[2] [3]} Initially, the standard calibration curve obtained by measuring NMR readings with different concentration HCOOH with known concentration of internal standard solvent of DMSO (peak at 2.6 ppm). After ECO₂RR, (120 minutes of chronoamperometry analysis with different applied potential) the catholyte solution was collected and analyzed ¹H-NMR as follows, 400 μ L of catholyte; 120 μ L of D₂O; and 10 μ L of DMSO. The concentration of produced HCOOH was quantitatively analyzed by integration of the measured peak signal and calculated area ration of DMSO and HCOOH.

$$FE(\%) = \frac{N \times n \times F}{Qtotal} \times 100$$
(4)

2.4 Computational methodology

All DFT calculations were performed in Vienna ab initio simulation package,^[4] using the projector augmented wave pseudopotential using a 400 eV cutoff energy for the valence electrons, and the generalized gradient approximation in the form of Perdew-Burke-Ernzerhof (PBE) for the exchange–correlation potentials.^{[5] [6]} Van der Waals interaction was considered with the DFT-D2 method proposed by Grimme and was used to correct the dispersion 3 forces.^[7] The simulation was carried out on a two-dimensional layer and vacuum regions of \approx 15 Å along Z-directions to avoid interaction between the layers. The Brillouin zone was sampled by 4 × 4 × 1 for optimization. The various possible active sites were considered for the adsorption of various intermediates such as CO₂, COOH, OCHO, HCOOH, and CO molecules. The computational hydrogen electrode

(CHE) model8 was employed to specify the Gibbs free energy of the proton-electron pair as the function of electrical potential.

The Gibbs free energy change (ΔG) was calculated for the following reaction mechanism and The change in free energy is calculated by the following formula:

$$\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S \tag{5}$$

Reaction mechanisms for generating formate (6-9), CO (10-13), and H_2 (14-15) were assumed to be

$$cat^* + CO_2 + 2(H^+ + e^-) \leftrightarrow cat^*CO_2 + 2(H^+ + e^-)$$
 (6)

$$cat^*CO_2 + 2(H^+ + e^-) \leftrightarrow cat^*OCHO + (H^+ + e^-)$$
 (7)

$$cat^*OCHO + (H^+ + e^-) \leftrightarrow cat^*HCOOH$$
 (8)

$$cat^*OCHO \leftrightarrow cat^* + HCOOH$$
 (9)

$$cat^* + CO_2 + 2(H^+ + e^-) \leftrightarrow cat^*CO_2 + 2(H^+ + e^-)$$
 (10)

$$cat^*CO_2 + 2(H^+ + e^-) \leftrightarrow cat^*COOH + (H^+ + e^-)$$
 (11)

$$cat^*COOH + (H^+ + e^-) \leftrightarrow cat^*CO + H_2O \tag{12}$$

$$cat^*CO + H_2O \leftrightarrow cat^* + CO + H_2O \tag{13}$$

$$* + H^+ + e^- \leftrightarrow * H \tag{14}$$

$$*H \leftrightarrow * + \frac{1}{2}H_2 \tag{15}$$

where cat* represents either a vacant surface catalytic active site or intermediate species adsorbed on the active site.

Figure, S1(a) illustrates the FESEM image of the Bi_2O_3 structure. b) It's certainly revealing the formation of a uniform hierarchical microsphere shape of Bi_2O_3 in the dimension of 3-4 µm. The Bi_2O_3 microsphere structure was homogenously distributed in the overall prepared catalyst. Moreover, the magnified FESEM image confirms the formation of highly porous microspheres with hierarchical nanosheet structures. The corresponding EDS analysis confirms the presence of Bi and O elements in the overall prepared catalyst.

Figure, S2 (a-c) shows FE-SEM images and elemental mapping of sulfur-doped S-Bi₂O₃ nanostructure. After doping with sulfur, there is not much change in the shape of the hierarchical microsphere nanosheets and the morphology of the Bi₂O₃. The corresponding elemental mapping and EDS analysis reveal the uniform doping of sulfur in the overall Bi₂O₃ up to 1.2 at%.

Figure, S3 (a-b) illustrates the FE-SEM micrographs of cerium-doped S-Bi₂O₃ and their corresponding elemental mapping. It confirmed the doping of the cerium atom with S-Bi₂O₃ without delaminating the hierarchical nanosheet morphology of the Bi₂O₃ structure. The corresponding element mapping and EDS analysis show the uniform distribution of elements Bi, Ce, O, and S throughout the catalyst. c) represents the low intensities of the S and Ce signals indicating a relatively low content of these elements present in the catalyst.

Figure, S4 (a-b) HR-TEM and TEM images of Ce@S-Bi₂O₃ hierarchical nanosheets. **(c-f)** reveals the FFT pattern and IFFT pattern of the corresponding catalyst for ECO₂RR.

Figure, S5 (a-b) illustrates the HAADF-STEM, and elemental color mapping of Ce@S-Bi₂O₃ hierarchical nanosheets. **(c-h)** The overall elemental mapping and corresponding EDS elemental mapping with FFT image.

Figure, S6 illustrates the (HAADF-STEM) of Ce@S-Bi₂O₃, it further identifies the structure of Bi nanosheets showing that the nanoparticles are making well-defined flexible hierarchical nanosheets appear.

Figure, S7 (a-c) Nitrogen adsorption - desorption isotherms and pore size distributions of Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalyst.

Figure, S8 represents the XPS spectrum of core Ce 3d.

Figure, S9 (a-b) the FT-IR and Raman spectrum of Ce@S-Bi₂O₃ electrocatalyst

Figure, S10 (a-b) shows a LSV curve of obtained Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalyst.

Figure, S11 ¹H-NMR analysis of formate with DMSO as an internal standard obtained from the Ce@S-Bi₂O₃ electrocatalyst.

Figure, S12 (a-b) shows the chronoamperometry of corresponding electrocatalysts of Bi₂O₃ and S-Bi₂O₃.

Figure, S13 (a-c) Tafel slope of Bi₂O₃, S-Bi₂O₃, and Ce@S-Bi₂O₃ electrocatalysts.

Figure, S14 (a-d) Double layer capacitance (C_{dl}) measurements curve of Bi_2O_3 , S- Bi_2O_3 , and Ce@S- Bi_2O_3 electrocatalysts.

Figure, S15(a) After the ECO₂RR the FE-SEM images show a Ce@S-Bi₂O₃ catalyst. (b) reveals the overlap of catalysts in the present electrode areas and the evidence of respective EDS elemental mapping of the catalysts was presents Bi, Ce, S, O the corresponding elemental mapping.

Figure, S16 (a-c) represents the HRTEM images of Ce@S-Bi₂O₃ and the corresponding d-spacing plane and SAED patterns with crystal planes. (**d-f**) shows the HR-TEM image and the corresponding EDS mapping spectrum after the ECO₂RR performance.

Figure, S17 (a) Time-dependent XRD curve of the Ce@S-Bi₂O₃ electrocatalyst during the ECO₂RR. (b-d) Before and after (2 h) electrochemical CO₂RR shows the XPS spectra of Bi4f and O1s, Ce 3d survey spectrum of Ce@S-Bi₂O electrocatalysts.

Figure S18 (a) Faradaic efficiency, **(b)** current density of Ce@S-Bi₂O₃ at -1.2 V vs RHE during the continuous stability test up to 5 hours.

Figure, S19 Optimized configurations of *CO₂, *COOH, *CO, *OCHO, and *HCOOH on (111) planes of Bi₂O₃.

Figure, S20 Optimized configurations of *CO₂, *COOH, *CO, *OCHO, and *HCOOH on (111) planes of S doped on Bi₂O₃.

Figure, S21 Optimized configurations of *CO₂, *COOH, *CO, *OCHO, and *HCOOH on (111) planes of Ce@S-doped on Bi₂O₃ (On top of Bi).

Figure, S22 Optimized configurations of *CO₂, *COOH, *CO, *OCHO, and *HCOOH on (111) planes of Ce@S-doped on Bi₂O₃ (On top of Ce).

Figure, S23 shows several models for Ce and S doping in $\mathrm{Bi}_2\mathrm{O}_3$

Figure, S24 Limiting potential difference between CO_2RR and HER for Bi_2O_3 , S- Bi_2O_3 , and $Ce@S-Bi_2O_3$ at each site.

Table S1: BET surface area, pore volume, and diameter of electrocatalysts

Materials	BET surface	Pore volume	Pore diameter (nm)
	area (m ² g ⁻¹)	$(cm^3 g^{-1})$	
Bi ₂ O ₃	30.403	0.2129	28.005
S-Bi ₂ O ₃	44.019	0.2447	22.232
Ce@S-Bi ₂ O ₃	50.482	0.2716	21.522

Ce@S-Bi ₂ O ₃	Bi (At. %)	Ce (At. %)	S (At. %)
Electrocatalyst			
Before ECO ₂ RR	27.8	3.3	1.2
After ECO ₂ RR	17.0	2.5	0.8

Table S2: The ICP-OES results of Ce@S-Bi₂O₃ (At. %) electrocatalyst before and after ECO₂RR.

Table S3: Gibbs free energy changes (ΔG) in the reaction steps formation of HCOOH

materials	$\Delta G1(*CO_2)$	ΔG2(*OCHO)	ΔG3(*HCOOH)
Bi ₂ O ₃	-1.52099	-0.54595	-1.87043
S-Bi ₂ O ₃	0.19033	0.63571	0.14487
Ce/S-Bi ₂ O ₃	0.50134	0.49527	0.60952
Ce/S-Bi ₂ O ₃	0.4032	-0.3081	1.10412

Table S4: Gibbs free energy changes (ΔG) in the reaction steps formation of CO

materials	$\Delta G1(*CO_2)$	$\Delta G2(*COOH)$	$\Delta G3(*CO)$
Bi ₂ O ₃	-1.52099	1.03843	-0.05979
S-Bi ₂ O ₃	0.19033	2.72785	0.79759
Ce/S-Bi ₂ O ₃	0.50134	1.8057	2.3497
Ce/S-Bi ₂ O ₃	0.4032	1.65222	2.22612

Table S5: Gibbs free energy changes (ΔG) in the reaction steps formation of HCOOH for Ce/S doping in Bi₂O₃

materials	$\Delta G1(*CO_2)$	$\Delta G2(*OCHO)$	ΔG3(*HCOOH)
Ce/S- dope1	0.10336	-0.9782	2.18534
Ce/S- dope2	0.59413	-2.09397	0.14357
Ce/S- dope3	0.50134	0.49527	0.60952
Ce/S- dope4	0.45647	-0.3976	0.80099
Ce/S- dope5	0.4032	-0.3081	1.10412
Ce/S- dope6	0.39233	-0.75867	0.91896
Ce/S- dope7	0.48238	0.01174	1.38861

Materials	Cell configuration	electrolyte	Potential (V vs.	Jformate (mA cm ⁻²)	FEformate	Ref
Co@S Dio	II coll	0.5 M	KHE)	142.00	1 02 59/	Thia
Сещ5-Б12О3	n-cen		-1.10	±42.09	± 92.5%	1 IIIS work
Bi /BioOo CP	H cell	0.5 M	1 1 7	72	90.4	[8]
DI/DI203-CI	11-0011	KHCO ₂	-1.17	12	J0. 4	
Cux-	H-cell	0.5 M	-0.94	10.1	93	[9]
Bi/Bi2O2@C	11 cen	KHCO ₂	0.74	10.1	75	
Bi-NAs	H-cell	0.5 M	-0.95	45	90	[10]
DITUID		KHCO ₃	0.50	10	20	
Bi /Bi ₂ O ₃	H-cell	0.5 M	-1.3	87.14	90	[11]
2 3		KHCO ₃	_			
Bi-	H-cell	0.5 M	-0.83	54	86	[12]
PVP/CC600		KHCO ₃				
Bi-MOF	Home-made	0.5 M	-0.9	41.0	92.2	[13]
	three-	KHCO ₃				
	electrode cell					
OD-BiNSs	H-cell	0.5 M	-0.95	62	93	[14]
		KHCO ₃				
Bi	H-cell	0.5 M	-0.9	18	92	[15]
nanostructure		KHCO ₃				
Bi ₂ O ₂ CO ₃	H-cell	0.5M	-0.7	11	95	[16]
		NaHCO ₃				[17]
Bi nanotubes	H-cell	0.1M	-1.0	22	95	[17]
		KHCO ₃				[10]
Bi_2S_3 -	H-cell	0.5M	-0.9	3.5	90	[18]
Bi ₂ O ₃ @rGO		KHCO ₃				[10]
Bi-Sn/CF	H-cell	0.5M	-1.14	43.2	96	[19]
	TT 11	KHCO ₃		2 0 17	0 - 0 6	[20]
$S-B_{12}O_{3}-$	H-cell	0.5M	-0.9	28.17	97.06	[20]
	TT 11	KHCO ₃	0.0		02	[21]
$B_{12}O_3(a)C$	H-cell	0.5M	-0.9	7.5	92	[21]
	TT 11	KHCO3	0.02		02	[22]
$B_{12}O_3 NP$	H-cell	U.5M	-0.83	3.4	92	[22]
		KHCO3				

 Table S6: Performance comparison of various Bi-electrocatalyst ECO2 RR in H-cell.

Reference:

- [1] T. Chatterjee, E. Boutin, M. Robert, *Dalton Transactions* **2020**, 49, 4257.
- [2] C. S. Chen, A. D. Handoko, J. H. Wan, L. Ma, D. Ren, B. S. Yeo, *Catalysis Science & Technology* 2015, 5, 161.
- [3] D. Ren, J. Gao, L. Pan, Z. Wang, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, *Angewandte Chemie International Edition* 2019, 58, 15036.
- [4] a) G. Kresse, J. Furthmüller, *Computational Materials Science* 1996, 6, 15
 b) G. Kresse, J. Furthmüller, *Physical Review B* 1996, 54, 11169.
- [5] J. P. Perdew, M. Ernzerhof, K. Burke, *The Journal of Chemical Physics* 1996, 105, 9982.
- [6] J. P. Perdew, K. Burke, M. Ernzerhof, *Physical Review Letters* 1996, 77, 3865.
- [7] S. Grimme, *Journal of Computational Chemistry* **2006**, 27, 1787.
- [8] D. Wu, G. Huo, W. Y. Chen, X. Z. Fu, J. L. Luo, *Applied Catalysis B: Environmental* 2020, 271, 118957.
- [9] Y. Xue, C. Li, X. Zhou, Z. Kuang, W. Zhao, Q. Zhang, H. Chen, *ChemElectroChem* 2022, 9, e202101648.
- [10] J. Fan, X. Zhao, X. Mao, J. Xu, N. Han, H. Yang, B. Pan, Y. Li, L. Wang, Y. Li, *Advanced Materials* 2021, 33, 2100910.
- [11] W. Wang, G. Ruan, X. Wang, C. Wu, Q. Wang, *New Journal of Chemistry* 2023, 47, 8894.
- [12] D. Wu, X. Wang, X.Z. Fu, J.L. Luo, *Applied Catalysis B: Environmental* 2021, 284, 119723.
- F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T.S. Wu, Y.L. Soo, J. Masa, S. Mukerjee, Y. Jung, J. Qiu, Z. Sun, *Applied Catalysis B: Environmental* 2020, 277, 119241.
- [14] J. Lee, H. Liu, Y. Chen, W. Li, ACS Applied Materials & Interfaces 2022, 14, 14210.

- [15] P. Lu, D. Gao, H. He, Q. Wang, Z. Liu, S. Dipazir, M. Yuan, W. Zu, G. Zhang, *Nanoscale* 2019, 11, 7805.
- [16] Y. Zhang, X. Zhang, Y. Ling, F. Li, A. M. Bond, J. Zhang, Angewandte Chemie International Edition 2018, 57, 13283.
- [17] K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catalysis 2020, 10, 358.
- [18] X. Yang, P. Deng, D. Liu, S. Zhao, D. Li, H. Wu, Y. Ma, B. Y. Xia, M. Li, C. Xiao, S. Ding, *Journal of Materials Chemistry A* 2020, 8, 2472.
- G. Wen, D. U. Lee, B. Ren, F. M. Hassan, G. Jiang, Z. P. Cano, J. Gostick, E. Croiset, Z.
 Bai, L. Yang, Z. Chen, *Advanced Energy Materials* 2018, 8, 1802427.
- [20] S.Q. Liu, M.-R. Gao, R.F. Feng, L. Gong, H. Zeng, J.L. Luo, ACS Catalysis 2021, 11, 7604.
- [21] P. Deng, F. Yang, Z. Wang, S. Chen, Y. Zhou, S. Zaman, B. Y. Xia, Angewandte Chemie International Edition 2020, 59, 10807.
- [22] C.C. Miao, G.Q. Yuan, *ChemElectroChem* **2018**, 5, 3741.