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A robust self‑supervised approach 
for fine‑grained crack detection 
in concrete structures
Muhammad Sohaib 1,2, Md Junayed Hasan 3, Mohd Asif Shah 4,5* & Zhonglong Zheng 1*

This work addresses a critical issue: the deterioration of concrete structures due to fine‑grained 
cracks, which compromises their strength and longevity. To tackle this problem, experts have 
turned to computer vision (CV) based automated strategies, incorporating object detection and 
image segmentation techniques. Recent efforts have integrated complex techniques such as deep 
convolutional neural networks (DCNNs) and transformers for this task. However, these techniques 
encounter challenges in localizing fine‑grained cracks. This paper presents a self‑supervised ’you only 
look once’ (SS‑YOLO) approach that utilizes a YOLOv8 model. The novel methodology amalgamates 
different attention approaches and pseudo‑labeling techniques, effectively addressing challenges in 
fine‑grained crack detection and segmentation in concrete structures. It utilizes convolution block 
attention (CBAM) and Gaussian adaptive weight distribution multi‑head self‑attention (GAWD‑MHSA) 
modules to accurately identify and segment fine‑grained cracks in concrete buildings. Additionally, 
the assimilation of curriculum learning‑based self‑supervised pseudo‑labeling (CL‑SSPL) enhances the 
model’s ability when applied to limited‑size data. The efficacy and viability of the proposed approach 
are demonstrated through experimentation, results, and ablation analysis. Experimental results 
indicate a mean average precision (mAP) of at least 90.01%, an F1 score of 87%, and an intersection 
over union threshold greater than 85%. It is evident from the results that the proposed method 
yielded at least 2.62% and 4.40% improvement in mAP and F1 values, respectively, when tested on 
three diverse datasets. Moreover, the inference time taken per image is 2 ms less than that of the 
compared methods.

Keywords Concrete cracks detection, Curriculum learning, Gaussian adaptive weights, Pseudo-labeling, 
Structural health monitoring, Self-supervised YOLO

Deterioration of concrete structures due to cracks can happen due to different factors including drying shrinkage, 
stress, chemical reaction, corrosion, substandard construction practices. The strength and durability of concrete 
structures are compromised due to occurrence of  cracks1. Therefore, it is inevitable to properly identify and locate 
the cracks during routine inspections to avoid losses and  catastrophes2. Previously, the evaluation of the concrete 
structures used to be performed manually. However, the manual inspection has its own cons, for instance, reliance 
on the expertise of the inspector, tedious, and substantial time commitment. Moreover, manual inspection is 
coupled with inherent safety risks. Over the years, researchers have implemented various automated techniques 
to assess damage in concrete structures using computer vision (CV)  techniques3.

These techniques can be classified into two classes, i.e., object detection and image  segmentation4. In object 
detection techniques cracks are identified and classified on in concrete structures using bounding boxes. Whereas, 
image segmentation techniques are used to rigorously extract the mask representing the shape and pattern of the 
cracks. The information obtained by the segmented cracks is beneficial for engineers to evaluate the safety of a 
 structure5. Initially, predominantly image processing techniques (IPTs) were used in crack segmentation research. 
However, these IPT-based techniques necessitate a comprehensive feature engineering by experts to efficiently 
identify cracks with complex shapes and improve the generalization ability of the  methods6.
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To mitigate these issues, machine learning and deep learning approaches have been incorporated in intel-
ligent crack detection and segmentation  techniques7,8. The emergence of advance architectures, such as deep 
convolutional neural networks (DCNN)9, U-shape networks (UNets)10,  DeepLab11, W-Segnet12 and you only 
look once (YOLO)13 models, have enormous contribution in the increasing popularity of deep learning-based 
image segmentation. Several improvements have been incorporated into these networks to further improve 
their performance. One of the improvements is to use sophisticated pre-trained models like  ResNet3414,15 and 
 EfficientNet16 to enhance the detection and segmentation accuracy. Similarly, to improve the performance of a 
network inclusion of powerful fusion modules like the multi-scale  fusion17 and the skip-squeeze-and-excitation18 
modules can also be valuable. Likewise, residual  connections19 and attention  mechanisms20 can aid in explor-
ing vital, contextual information. In addition, inclusion of pre-processing21 and post-processing22 modules can 
augment the performance of a model. Recently, numerous experiments have been enacted to elevate the crack 
detection and segmentation efficacy in realistic and obscure scenarios. Xu et al.23 proposed an effectual mecha-
nism for classifying cracks in steel box girders encompassing handwritten inscriptions and welds based on a fused 
convolutional neural network (CNN). To alleviate the impact of obscure backgrounds this approach examined 
small image blocks. Nevertheless, additional effort is required for improving the detection accuracy as it lacks the 
global perception of the cracks. Similarly, Zhong et al.24 developed an algorithm for generating synthetic images 
of grooved concrete pavement cracks using a deeper generative adversarial network. Additionally, they utilized 
U-Net and W-Segnet for achieving pixel-level crack detection. Their findings indicated that both W-Segnet and 
U-Net demonstrated improved pixel-level segmentation results when trained on the synthesized data. Moreo-
ver, Choi et al.25 introduced semantic damage detection network (SDDNet) by incorporating various additional 
modules into the CNN. The proposed model alleviated the impact of intricate backgrounds and crack-like 
properties. In addition, Zhong proposed a pavement distress detection network and applied it to the images 
captured through unmanned aerial vehicle. The designed approach worked better than R-CNN, U-Net, and 
W-segnet26. The aforementioned models exhibit promising crack detection results under certain circumstances, 
but the incorporation of additional efforts is essential for more reliable crack detection in broader  contexts27.

These segmentation models had encoder-decoder architectures with CNN as a backbone  network28. It is dif-
ficult for these models to accurately model the global features of cracks under complex and practical detection 
 situations29,30. Moreover, the encoder which implements convolution operations in a sequential manner could 
lead to forfeiting the localization and contextual information of a target during the down sampling process. 
Furthermore, the decoder relies on the mapping of higher-order features, often ignoring the feature mappings 
of lower-order features that could provide detailed spatial  information31. An increment in the receptive field 
of a network using deeper or atrous convolution can mitigated this issue. Ali et al. proposed a mechanism to 
expand the receptive field and retrieve global characteristics by utilizing different dilation  ratios32. However, 
this method can lead to certain issues including a loss of local information, challenges with feature reuse during 
training, and a reduced spatial resolution of the images. Thus, there is a gradual amelioration in the capability 
of the model to explore global  features33. Alternatively, attention mechanism is used to enhance the capability 
of a network to explore global features. Nonetheless, the subtleties of nearby object may distract or confuse dur-
ing crack segmentation, making it more challenging to build a global pattern at the object level. Additionally, 
convoluting local features and incorporation of standard attention mechanism for global features may cause 
ambiguity during training. It can hinder the network from leveraging the two aforementioned methods for subtle 
information exploration at different  scales34. Therefore, crack segmentation requires more effective mechanism 
for representing global contextual information and extract details regarding low-level features.

One of the most innovative and compelling approaches to resolve this dilemma is the incorporation of a 
transformer. Transformers are deep learning networks that incorporate both self-attention and embedding which 
makes them different from  CNNs35. In natural language processing (NLP), transformers are known for long-
range modelling and global information  extraction36. Likewise, transformers are frequently applied in computer 
vision applications, for instance, images classification, target identification, and semantic segmentation. The 
first computer vision application of transformer network was introduced by Vision Transformer (ViT)37. Recent 
research indicates that transformer models can excel in crack detection and segmentation as compare to CNN 
models. Yan et al.38 proposed an end-to-end crack detection network based on transformer, which excelled the 
performance of traditional deep networks. Analogously, a vision transformer (Vit)-based approach is introduced 
by Shamsabadi et al.39 has been utilized as an encoder-decoder manner to generate better crack detection results. 
Moreover, Guo et al. proposed SegFormer and swin-transformer based approach, which demonstrated higher 
performance in cracks segmentation  task40. In their computationally efficient approach, SegFormer was used as 
a multilayer perceptual decoder and the swin-transformer was used as encoder. Various hybrid approaches, inte-
grating CNN-transformer for segmenting cracks have been proposed to address the issues transformer models 
encounter when acquiring local information. In crack detection and segmentation improved transformer based 
models such as  SegCrack41 and CGTr-Net42 have shown encouraging results.

Despite the availability of models incorporating CNN as backbone in transformer networks, more sophisti-
cated approaches are still needed to solve the challenges of crack segmentation. Whereas a transformer receiv-
ing inputs in a sequence may replicate the global context of each phase, its capability to capture local details is 
 restricted43. Additionally, the process of upsampling is uncapable of restoring low-resolution feature maps, as sole 
reliance on transformer is insufficient to provide accurate localization of fine-grained cracks. Moreover, contrary 
to the available crack detection and segmentation datasets, transformer based model necessitates a substantial 
dataset to effectively used its self-attention  mechanism32. Furthermore, practical scenario necessitates crack 
detection and segmentation models with low latency and high inference  speed44.

In several studies, different variants of You only Look once (YOLO) network have been utilized as a remedy for 
the real-time crack detection and segmentation problem due to their high inference speed and low latency. Qiu 
et al.45 explored that ResNet based YOLOv3 and YOLOv4-tine are suitable for unmanned aerial vehicle (UAV) 
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based real-time detection of cracks. Likewise, maintaining the original dimension-YOLO (MOD-YOLO) based 
crack detection techniques is presented which enhanced accuracy and generalizability for the task. Although, 
these algorithms provide satisfactory results under certain conditions, yet, there are a few issues associate with 
these approaches. The first and foremost issue is to improve the performance of a model in the presence of 
limited-size dataset, as it is the case with crack detection and segmentation datasets in concrete structures. 
Secondly, the presence of fine-grained cracks, i.e., cracks with small, narrow, and subtle nature poses a chal-
lenge for automated detection process and can adversely affect the performance of a designed model. Lastly, the 
ability to detect cracks of these algorithms deteriorates with varying complex backgrounds implying the low 
generalizability of algorithms.

An effectual approach is proposed in this work to infer and segment fine-grained cracks. The aim is to 
improve the performance of the model with limited-size dataset having varying complex backgrounds with strong 
generalization to diverse scenarios. The proposed approach uses a YOLOv8 model integrating concepts of self-
supervised labeling and attention mechanism to design self-supervised you only look once (SS-YOLO) model. It 
incorporates convolution block attention module (CBAM) and Gaussian adaptive weight distribution multi-head 
self-attention module (GAWD-MHSA). The inclusion of attention modules empowers the model to efficaciously 
attain subtle information and variations coupled with fine-grained cracks by prioritizing relevant information. In 
addition, it uses curriculum learning based self-supervised pseudo-labeling (CL-SSPL) to improve the learning 
ability of the network on limited-size dataset ensuring high generalizability. The prime contributions of this 
paper are presented as follow:

1. The utilization of pseudo-labeling approach in the presence of a limited-size dataset to elevate the 
generalizability of the proposed model. It augments the training data by leveraging predictions on unlabeled 
dataset. As a result, representation learning capability of the model improves and address data imbalance. The 
CL-SSPL also serves as a method of regularization, and aids in the adaptation to varying data distributions.

2. Integration of CBAM, and GAWD-MHSA modules to explore meaningful insights and variations associated 
with these cracks in a better way. These attention modules empower the proposed model to highlight 
pertinent details, making the model more resilient in coping intricate backgrounds and salient information.

The next section presents the overview of YOLOv8 segmentation network followed by the proposed the 
description of self-supervised adaptive muti-attention YOLOv8 model. The details of experimental setup are 
given in “Experimental setup”. Section “Results and analysis” illustrates the analysis of the key results and 
“Discussion” is regarding the discussion on this work. Lastly, the paper is concluded in “Conclusion”.

YOLOv8 segmentation network
YOLOv8 is a member of the family of you only look once (YOLO) networks introduced by  Ultralytics46. It is 
the same organization that introduced YOLOv5. There are five versions of YOLOv8, namely YOLOv8n (nano-
version), YOLOv8s (small-version), YOLOv8m (medium-version), YOLOv8l (large-version) and YOLOv8x 
(extra-large-version). These variants are suitable for various computer vision tasks including pose estimation, 
object detection, segmentation, and classification. The main features in the architecture of YOLOv8 presented in 
Fig. 1 are discussed in the following subsections. In this study, to avoid computational overhead, we considered 
the smaller version of YOLOv8, namely YOLOv8s.

Backbone network
In YOLOv8, inputs undergo five-phase down sampling process through a backbone network based on a 
customized CSPDarknet53, producing five distinct feature scales. One of the key modifications introduced in 
YOLOv8 is the replacement of traditional Cross-Stage Partial (CSP) bottleneck modules with a more efficient 
architecture known as the C2f module, which consists of two convolutional operations. This modification aims 
to improve processing speed while maintaining effectiveness. The C2f module integrates features extracted by the 
backbone CSPDarknet53 network with Spatial Pyramid Pooling Fast (SPPF), facilitating robust object detection 
by combining semantic and multiscale information from the backbone network and Feature Pyramid Network 
(FPN), respectively. With two parallel branches for gradient flow, the C2f module enhances robustness and 
computational efficiency. Leveraging fewer convolutional operations and a refined information flow mechanism, 
the resulting network is lightweight with reduced computational complexity. The use of the Sigmoid-weighted 
Linear Unit (SiLU) aids in acquiring outputs from the C2f module. Additionally, constant-size feature maps 
produced by SPPF expedite the pooling process and enable adjustable output dimensions. The architecture also 
includes a decoupled head structure to independently compute classification, objectiveness, and regression 
 losses47.

Neck module
The neck module in YOLOv8 incorporates the Path Aggregation Network as well as Feature Pyramid Network 
(PAN-FPN), inspired by the PANet architecture. In contrast to its predecessors, namely YOLOv5 and YOLOv6, 
the convolution operation proceeding up sampling proceeding is excluded in YOLOv8, making the network more 
streamlined and lightweight model. It also creates a diverse and comprehensive feature pool by concatenating 
semantic information from shallow as well as deep levels.
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Head module
The architecture of the head module of YOLOv8 works in a decoupled fashion. It contains distinct routes for 
classification and bounding box regression. As it adopts an anchor-free approach, the head module is able to 
efficiently identifying the positive and negative samples. A dynamic assignment approach called Task-Aligned 
Assigner (TAA) is used to assign samples during the detection process, enhancing overall accuracy.

Calculation of the loss
The decoupled head structure is efficient but has a tendency of potential misalignment when it performs 
localization and classification operations simultaneously. The TAA helps the head detection module to navigate 
through this problem by helping the model in distinguishing between positive and negative samples. It measures 
the accuracy of predicted bounding box by combining the classification score (CS) with the Intersection over 
Union (IoU) score. The estimated alignment score helps in the selection of top k number of positive samples and 
calculates a classification via Binary Cross-Entropy (BCE), as well as, regression loss with the help of Complete 
Intersection over Union (CIoU)48 and Distributional Focal Loss (DFL)49. BCE quantifies the difference between 
binary predictions and true labels, whereas, CIoU measure the difference between predicted bounding box 
and ground truth in terms of center point and aspect ratio. Moreover, DFL helps in the optimization of the 
distribution of the predicted bounding box boundaries by highlighting misclassified false negative samples. The 
mathematical formulation of the CIoU  and DFL is given as  follows48,49.

 where, IoU is the shortform of intersection over union. It denotes the ratio of intersection between the predicted 
and actual bounding boxes. Furthermore, the Euclidean distance between the predicted and the actual bounding 
boxes is represented by D

(

bx, bxGT
)

 . The height and width of the predicted box are denoted by ph and pw , 
whereas, the height of the actual bonding box is denoted by hGT and width by wGT . Similarly, MBw and MBh 
identify the width and height of the minimum box that encloses the prediction and true boxes.

In addition to the CIoU YOlOV8 also takes advantage of the DFL to rapidly regress over the values near a label 
l  by enlarging the probabilities for li and li+1 . As a result, it increases the optimization efficiency of the model 

(1)
Loss − CIoU = 1− IoU +

D2
(

bx, bxGT
)

(MBw)
2 + (MBh)

2
+

4

π2

(

tan−1w
GT

hGT
− tan−1w

h

)

DFL(Pr(li), Pr(li+1)) =
(

(li+1 − l)logPr(Li)+ (l − li)logPr(li+1)
)

Figure 1.  The illustration of the basic architecture of YOLOv8.
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by predicting the label with high confidence. In this equation, Pr(li) and Pr(li+1) represent the distribution of 
labels li and li+1.

The YOLOv8 model has a limitation in that it relies solely on labeled data for training, which can be a 
hindrance in situations where labeled data is scarce or insufficient. Since the model depends exclusively on 
annotated data, it may struggle to generalize well to diverse and unforeseen environments, leading to difficulties 
in capturing robust features and patterns. Additionally, the process of obtaining a large amount of labeled data can 
be slow and expensive, limiting the scalability and real-world applicability of YOLOv8. Furthermore, YOLOv8 
lacks the adaptability and flexibility required to handle unlabeled data, which can pose challenges in complex 
situations and potentially reduce its performance. These issues can be addressed by introducing a self-supervised 
pseudo-labeling approach during the training phase of the network.

The self‑supervised YOLO (SS‑YOLO) segmentation network
The approach used for the segmentation of fine-grained cracks namely self-supervised YOLO (SS-YOLO) is pre-
sented in Fig. 2. The structure of the proposed SS-YOLO that builds upon the YOLOv8 architecture is illustrated 
in Fig. 3. The model introduces a self-supervised pseudo-labeling training mechanism for proficient representa-
tion learning through the network. It also utilizes innovative techniques to enhance its capability in processing 
features from different layers, with a particular focus on discriminating crack and background details. This 
improvement involves the assimilation of path aggregation network with GAWD-MHSAM. The incorporation 
of CBAM attention module in the backbone refines the its output features map to accentuate the attention on 
the regions associated with cracks. These augmentations collectively form the foundational framework of the 
SS-YOLO network.

Self‑supervised pseudo‑labeling
In this study self-supervised pseudo-labeling approach is utilized due to the access to a limited-size training 
dataset as it is the case with crack detection and segmentation datasets. The process of standard pseudo-labeling 
approach is demonstrated in Fig. 4. The pseudo-labeling is semi-supervised process in which a model is trained 
on a combination of annotated and un-annotated  data50. In semi-supervised learning, an annotated dataset 
DA = {(i, l)|i ∈ I, l ∈ L} and un annotated dataset DUA = {i|i ∈ I} are used, where i  denotes the inputs and l  
denotes the labels. Typically, DA is much less than DUA , i.e., |DA| ≪ |DUA| . Pseudo-labeling approach is based 
upon the general principle of self-training51, where a model iteratively train itself by leveraging its previous pre-
dictions. Initially, model utilizes annotated data DA for its training, whereas, subsequently, uses DA and a pseudo-
labeled subset of DUA in the previous cycle. In the standard pseudo-labeling approach, the results are prone to 
data distribution and conformation  bias52. To mitigate these issues, a curriculum learning based self-supervised 
pseudo-labelling (CL-SSPL) technique introduced in Ref.53 is employed in this study. The pseudo-code of this 
self-supervised pseudo-labeling techniques is given below in Figs. 5 and 6 depicts the process of this enhanced 
self-supervised pseudo-labelling technique. This technique is based on the following two adjustments in the basic 

Figure 2.  The Proposed self-supervised approach for the segmentation of fine-grained cracks.
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Figure 3.  The illustration of the proposed SS-YOLO architecture.

Figure 4.  The depiction of traditional pseudo-labelling operation.
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pseudo-labeling approach: (1) employing the principle of curriculum learning (CL), and (2) mitigating concept 
drift by resetting the parameters of the model at the inception of each cycle.

YOLOv8 and CL-SSPL based YOLOv8 employ different training approaches and methods for utilizing 
unlabeled data. The detection performance of YOLOv8 may be constrained by its reliance on manually labeled 
data, which may not generalize well to diverse or unseen scenarios. In contrast, the CL-SSPL based YOLOv8 
model adopts a curriculum learning approach, gradually introducing unlabeled data with varying difficulty levels 
during training. This allows the model to learn from both labeled and unlabeled data, enhancing its adaptability 
and ability to generalize to various obscure and challenging conditions. By integrating curriculum learning and 
pseudo-labeling techniques, the CL-SSPL based YOLOv8, demonstrates improved robustness and performance, 
particularly in scenarios with limited availability of labeled data.

Figure 5.  Curriculum learning algorithm for pseudo-labeling.

Figure 6.  The Curriculum Labeling (CL) algorithm. Initially, the labeled instances are used to train the 
model, after which the trained model is utilized for predictions and the assignment of pseudo-labels to the 
unlabeled samples. Subsequently, a subset of pseudo-labeled instances is selected based on the distribution of 
the prediction scores. Following this, a new model is re-trained using the newly created dataset of labeled and 
pseudo-labeled instances. This process of relabeling unlabeled instances is iterated until all the instances in the 
datasets have been utilized.
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CBAM attention mechanism
The backbone network incorporates convolutional block attention module (CBAM) at the end of the module 
to evade loss of the vital subtle information and filter output features maps produced by the hierarchical deep 
network. Unlike efficient Channel attention (ECA) and excitation (SE) modules, CBAM can simultaneously 
screening channel as well as spatial features. IN CBAM, weights are assigned to an input feature map via channel 
attention and spatial attention processes.

The illustration of a CBAM attention module, shown in Fig. 7, is applied after the backbone feature extrac-
tion network. It weights the input feature map F , through combined channel and spatial attention operations. 
The weights are multiplied with the feature map to acquire the specific weight adjusted feature map. It helps in 
exploring the vibrant characteristics of fine-grained cracks. This approach has an advantage over other attention 
mechanisms, contributing to improved abstract feature exploration and discrimination capabilities within the 
SS-YOLO network.

Gaussian adaptive weight distribution multi‑head self‑attention module
Addressing the complexity of fine-grained cracks in diverse intricate background images, a Gaussian adaptive 
weight distribution multi-head self-attention module (GAWD-MHSA) given in Fig. 8 is incorporated in the 
Neck module of the SS-YOLO. The fine-grained cracks vary significantly in scale, aspect ratio, distribution pat-
tern, and appearance. These variations portray a challenge for traditional YOLOv8 to effectually identify fine-
grained cracks. The multi-head self-attention mechanism helps the SS-YOLO to specialize in capturing subtle 
details regarding crack and background, making crack detection process more effective. The integration of the 
GAWD-MHSA augments the ability of the model in combining and weighing different features during training. 
Especially, the Gaussian adaptive weight distribution (GAWD) mechanism enables it to collectively model prob-
ability distribution for dynamic recalibration of feature significance. This adaptive multi-head attention approach 
empowers the model in distinguishing fine-grained cracks from background pixels, expediting convergence.

The local feature map which is denoted by x is used as an input. Moreover, the three 1 × 1 convolution 
operations on x generate three feature vectors shown as q , k , and v in the figure. These vectors contain positional 

Figure 7.  The representation of convolution block attention module.

Figure 8.  The architecture of adaptive weight mixing multi-head self-attention module.
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information of each input feature vector. Therefore, these vectors are beneficial in strengthening the perception 
of sequence structure of the model. Next, expressions in Eq. (2) are used to formulate the correlations denoted 
by Q , K , and V  . These are the correlations between corresponding local area features and global features.

During feature extraction GAWD alleviates the imbalance of local and semantic information. The GAWD 
computes the attention weights through Gaussian probability density function (GPDF). In GPDF, the mean, µ , 
is adjusted by an offset, � , and scaled variance, ξ , is a parameter which is learned. For each feature vector the 
mean “ µ ” and the variance “ σ 2 ” is computed using the following expressions.

The µ is adjusted using an offset, o, to derive ϕ shown in Eq. (4). This helps the attention module to dynamically 
adjust the focus according to the distribution of input data. The aim is to compute the population mean not 
necessarily reflecting the characteristics of the current inputs. A vital normalization process is conducted on 
the input feature vector x using adjusted mean, ϕ , as given in Eq. (5), where � > 0 for stability. This process is 
essential to stabilize the learning process and enhance the performance of the model.

To compute the attention weights, the Gaussian function is applied to the norm and learnable scaled variance 
for each input vector. The computation of the attention weights through the application of Gaussian function is 
given in the following expression.

The output feature map of self-attention mechanism is acquired through a series of equations, leading to the 
final output as shown in Eq. (9).

Integrating CL-SSPL with CBAM and GAWD-MHSA into YOLOv8 yields several practical benefits. Firstly, 
the curriculum learning approach incorporates unlabeled data of increasing complexity levels, enabling the 
model to sequentially understand and learn more complex features, thereby enhancing its adaptability and 
generalization in various real-world scenarios. Secondly, CBAM, employing joint spatial and channel attention 
mechanisms, improves its ability to focus on region of images with key feature information. Thirdly, the fusion 
of GAWD-MHSA enhances feature representability through adaptive attention mechanisms, enabling the model 
to focus on relevant information while suppressing noise, resulting in improved detection precision, especially 
in complex or ambiguous environments. This integration enhances YOLOv8 with better performance, making 
it more robust, scalable, and applicable for detecting objects across a variety of tasks.

Experimental setup
Experimental setup and data description
For methodological transparency and contextual understanding, the experimental setup and datasets used in 
this research work are described in the subsequent sections. Familiarity with the experimental setup and data is 
also beneficial for reproducing the experiment and making comparison with previous work.

Experimental setup
The experimental hardware configuration included an Apple chipset featuring 12 cores for general processing 
and an additional 18 cores dedicated to graphics processing, equipped with 36 GB of video memory. The software 
environment utilized the macOS operating system version 14.1.2 and PyCharm 2023.3.
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Evaluation metrics
The proposed SS-YOLO approach uses F1 score, recall, precision, mean average precision (mAP-0.5), Inference 
threshold in terms of intersection over union (IoU) and inference speed as evaluation metrices. The formula for 
the calculation of F1 score is stated below.

Additionally, Eq. (11) demonstrates the formulation of mean average precision ( mAP ) calculation. It is the 
mean of the average precision of the instances in all classes and is used to evaluate the crack detection and 
segmentation performance of the model.

Furthermore, the IoU is calculated by dividing the area of overlap (AoO) between predicted and actual 
bounding boxes with area of union (AoU) between the predicted and actual bounding boxes. To calculate the 
IoU the following expression can be utilized.

Dataset description
To device and weigh the efficacy and generalization capacity of the proposed model, three distinct datasets 
containing surface cracks in concrete structures are used in this study. Multiple datasets are considered because 
the publicly available datasets typically consist of limited-size data. Samples from a public  dataset54 are used 
to train the proposed model. The other two datasets, i.e.,  DeepCrack55, and FCN-Crack56 datasets are used 
to check the generalizability of the proposed SS-YOLO model. Figure 9 presents exemplary samples from the 
three datasets. Apart from their small size, fine-grained cracks possess narrow and complex shapes, resulting in 
a cluttered appearance. As evidenced by samples from various datasets, the images contain fine-grained cracks 
that are minute in nature, exhibiting complex skeletons and cluttered views. Additionally, these datasets include 
macro cracks with irregular patterns and complex skeletons. The irregular and complex nature of these skeletons 
poses a challenge for crack detection. Further details regarding these datasets are presented in the subsequent 
sections. Apart from their small size, fine-grained cracks possess narrow and complex shapes, resulting in a 
cluttered appearance. As evidenced by samples from various datasets, the images contain fine-grained cracks 
that are minute in nature, exhibiting complex skeletons and cluttered views. Additionally, a few samples of these 
datasets contain macro cracks with irregular patterns and complex skeletons. The irregular and complex nature 
of these skeletons poses a challenge for crack detection. Further details regarding these datasets are presented 
in the subsequent sections.

Crack detection and segmentation dataset. A comprehensive dataset was compiled  in54, containing images 
with a resolution of 450 × 450 pixels. It consists of images with cracks in a variety of concrete structures suitable 
for crack detection and segmentation task. This diverse dataset includes images from various concrete structures 
such as roads, bridges, and buildings. After preprocessing, 4215 images containing labels suitable for the crack 
segmentation process were utilized in this research. The database serves as both the training set and one of the 
validation datasets to assess the efficacy of the proposed SS-YOLO network for crack detection and segmentation 
in concrete structures. During the training phase, 75% of the instances were used, while the remaining 25% were 
allocated for model validation. The arrangement of the images in the dataset is detailed in Table 1.

Deepcrack dataset. The dataset given in Ref.55 comprises 537 original color images and corresponding manu-
ally annotated segmentation labels. Each segmentation label is represented by a binary image representing pixel-
wise segmentation mask, precisely representing the crack regions. All images share a fixed size of 544 × 384 pixels 
and were used to test the generalization capability of the proposed model.

FCN-crack dataset. A challenging publicly available  dataset56 is also used in this study to check the generaliz-
ability of the proposed model to discern shapes at the image level. It amasses over 800 images containing crack 
widths from one pixel to 100 pixels. To ensure diversity, these images contain pavement cracks as well as cracks 
on concrete walls. The images are captured at varying distances corresponding to their sizes, resulting in resolu-
tions spanning from 72 to 300 dpi. The ground truth data is obtained by manually annotating the images at the 
pixel level. The examiners annotated background pixels as zero, while crack pixels as one.
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During the preparation of this work, the author(s) used Grammarly in order to improve the manuscript 
grammatically. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) 
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Results and analysis
Model parameter optimization
The SS-YOLO model underwent training and testing on a crack image dataset, with a batch size set to 16, an 
initial learning rate of 0.0001, and 150 epochs. The AdaMax optimizer was used for weight optimization, employ-
ing the maximum norm of gradients for dynamic adjustment of the learning rate to achieve better convergence. 
To diversify the data samples, during training of the model, data augmentation procedures including, samples 
flipping, considering various rotations, scaling are considered. Model evaluation, as depicted by the smoothed 
curves in Fig. 10, evidently shows a consistent decay in total losses during training (Fig. 10a) and an enhanced 
mean Average Precision at 0.5 (mAP) of 91.5% (Fig. 10b). The SS-YOLO model demonstrated faster convergence 
and higher accuracy compared to the original YOLOv8, surpassing it by 5.1 percentage points.

Result analysis
This study employs a self-supervised network, namely SS-YOLO, for the detection and segmentation of fine-
grained cracks using limited-size data. To infer cracks on unseen data, an intersection over union (IoU) threshold 
of 0.85 was used. Moreover, to achieve better detection and segmentation results image level data augmentation 
methods such as, varied orientation, rescaling, variance in contrast and noise levels were applied to develop the 
model. Performance metrics, including, precision, recall, mAP, IoU threshold, and inference speed are presented 

Figure 9.  A few images from the three datasets (a) Crack-Detection-and-Segmentation Dataset, (b) DeepCrack 
Dataset, and (c) FCN-Crack Dataset.

Table 1.  The split of the dataset in training, and validation subsets.

Total no. of images in the dataset

Details of the images in the 
subsets

Training (75%) Test (25%)

4215 3161 1054
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in Table 2 for the SS-YOLO model during both training and validation stages. During the training phase it is 
evident that the highest mAP and F1 score achieved are 91.5% and 0.88%, respectively. The proposed SS-YOLO 
model also has the highest precision and recall as compere to the other models. For the traditional YOLOv8s, 
the performance metrics are 88.24% mAP and 0.83% F1. The lowest performance is observed for YOLOv5s, with 
mAP and F1 of 85.6% and 85%, respectively.

In the validation stage, a similar trend can be observed in the performance of the models. The SS-YOLO 
model demonstrates the highest precision and recall values, followed by traditional YOLOv8 and YOLOv5. 
Additionally, the proposed model exhibits slightly longer inference times for detecting cracks in single image 
compared to the other algorithms. However, the difference in inference times is marginal and negligible. These 
optimal evaluation metrics in both phases indicate the readiness of the model for detecting cracks. It is worth 
noting that the proposed model yielded superior inference results using a comparatively higher Intersection 
over Union (IoU) threshold of 0.85.

As discussed in “Experimental setup”, the proposed model is assessed on the test subset comprising 1578 
images. In Fig. 11a–d depict the original images, inference results, segmented masks of the inferred cracks, 
and true labels of the images. The sample images presented in Fig. 11a contain images with cracks from diverse 

Figure 10.  The plots for the segmentation loss and mean average precision (mAP) during training and 
validation phases, (a) segmentation loss for training and validation phases, (b) mAP for training and validation 
phases.

Table 2.  The details of the comparison for various YOLO models in terms of different performance metrices.

Model

Train Validation Inference Time 
(milliseconds per image)mAP (%) Precision (%) Recall (%) F1 score (%) IoU threshold mAP (%) Precision (%) Recall (%) F1 score (%)

YOLOv5s 85.60 92.5 81.2 85.00 0.50 85.10 91.56 77.11 83.72 10

YOLOv6s 85.90 92 80.21 85.70 0.50 89.50 89.91 74.36 81.40 13

YOLOv8s 88.24 91.00 77.00 83.00 0.50 86.50 89.91 78.00 82.00 12

SS-YOLO 91.50 93 83.71 88.11 0.85 90.80 91.14 83.25 87.01 18
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concrete structures. Notably, the varying texture and illumination conditions increases the intricacies of the 
background. Nevertheless, as evident in Fig. 11b, the proposed model inferred cracks in the unseen images with 
intricate backgrounds with high confidence. As a result, there is a high resemblance in the segmented masks 
given in Fig. 11c and true labels shown in Fig. 11d.

Performance comparison of different detection networks
Figure 12a–e illustrate original images and segmented masks produced on the test dataset by different models 
alongside with the true labels. The images in Fig. 12a depict intricate backgrounds and diverse lighting conditions, 
emphasizing the challenge of the segmentation task. Notably, in Fig. 12d, the segmentation masks produced by 
our proposed approach bear a resemblance to the true labels depicted in Fig. 12e. This semblance is despite the 
presence of cracks in images with intricate backgrounds and diverse lighting conditions as shown in Fig. 12a.

Furthermore, the segmentation results of the proposed model are also compared with those of state-of-the-
art (SOTA) crack detection models. These SOTA models specify the advanced version of the deep U-shaped 
Network (U-NET), known as U-NET++, and DeepCrack. These comparisons are showcased in Fig. 12c,d. It is 
evident from the images that the segmentation performance of U-NET++ and DeepCrack visibly diminishes in 
the presence of challenging backgrounds and lighting conditions. The segmentation outcomes given in Fig. 12 
substantiate the preeminence of the proposed SS-YOLO model in accurately segmenting cracks.

Generalizability validation
To validate the generalization power of the proposed model, it was tested on the  DeepCrack55 and FCN-Crack 
 datasets56. The DeepCrack dataset comprises 537 images of concrete structures with a resolution of 544 × 384, 
while the FCN-Crack dataset contains 800 images with resolutions ranging from 72 to 300 dpi.

Detecting and segmenting fine-grained cracks from the DeepCrack and FCN-Crack datasets pose additional 
challenges due to the presence of multi-scale and multi-scene images. These images also contain noise from stains, 
spots, undesired objects, and uneven illumination, increasing the complexity of crack identification, particularly 
in ground regions. The irregular and asymmetrical patterns of cracks, such as diagonal and crazing patterns, 
further complicate the segmentation process. Figure 13b,c demonstrate the commendable ability of the proposed 
model to infer and segment cracks using DeepCrack dataset. The results depict the segmentation efficacy of the 
model on cracks with complex skeleton and distribution tessellations. Furthermore, as shown in Fig. 13c, the 

Figure 11.  The Inference and segmentation of cracks through the proposed SS-YOLO model. (a) original 
images, (b) inferred cracks via SS-YOLO model, (c) Segmented masks of the inferred cracks, (d) the true labels 
of the images.
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segmented masks closely resemble the true labels in Fig. 13d, affirming the effectiveness of our proposed model. 
These outcomes support the notion that our model exhibits strong generalization capabilities, successfully infer-
ring cracks in images with varying scales, illuminations, noise, and intricate backgrounds.

Furthermore, the qualitative results of SS-YOLO model for segmenting images in FCN-Crack dataset are 
presented in Fig. 14a–c. In Fig. 14b,c, it is visible that our SS-YOLO model accurately identifies cracks in com-
plex images but occasionally includes outliers like intersection points due to the complexity added by crazing 
cracks. Nonetheless, the overall segmentation results thoroughly align with the true labels provided in Fig. 14c.

In addition to the qualitative results, the proposed model is evaluated using different training and testing 
configurations as outlined in Table 3. It is evident that the proposed model achieves its highest performance 
when trained with the crack detection and segmentation dataset and tested with the remaining datasets. This can 
be attributed to the diversity and size of the training dataset. During the training phase, the network effectively 
explores diverse and distinct information related to crack detection and segmentation processes. Conversely, 
the network exhibits its lowest performance when trained on the DeepCrack dataset and tested on the other 
datasets. This decline is attributed to the limited size of the dataset. It can be inferred that training on big data 
containing a large number of samples is beneficial for training deep networks, as they can effectively explore 
distinctive information from the input data. To further consolidate the generalizability of the proposed model, 
we conduct a comprehensive examination of mAP, F1 scores, and inference speed and compared to prevailing 
SOTA techniques in Table 4. These metrics are crucial for estimating the performance of the model and were 
computed using three distinct datasets: the crack detection and segmentation  dataset54, the DeepCrack  dataset55, 
and the FCN-Crack  dataset56.

Figure 12.  The comparison results of the SS-YOLO model with other state of the art crack detection models: 
(a) original images, (b) Segmented masks of the inferred cracks through UNET++, (c) Segmented masks of 
the inferred cracks through DeepCrack, (d) Segmented masks of the inferred cracks through the proposed 
SS-YOLO model, (e) the true labels of the images.
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For the Crack Detection and Segmentation Dataset, our proposed model consistently outperforms all the 
other SOTA models across all evaluation metrics, demonstrating noteworthy improvements. Specifically, we 
observe a minimum improvement of 4.40% and 2% in mAP and F1 values, respectively, compared to the models. 
Notably, our model achieves higher mAP while maintaining a shorter inference time, approximately 11 ms 
per image less than the comparative models, except MN-YOLOv557. Inference time is a critical consideration, 
especially in scenarios requiring rapid decision-making or administering large image volumes in real-time.

Similarly, in the DeepCrack and FCN-Crack datasets, the proposed SS-YOLO model demonstrates superior 
performance. It achieves the highest mAP and F1 scores while maintaining a faster inference speed. Compared 
to other networks on both datasets, the proposed SS-YOLO model shows a minimum mAP improvement of 
2.62%. Additionally, enhancement of at least 6.83% was observed in F1 score. Moreover, the inference time 
taken per image by the proposed SS-YOLO is model at least 2 ms less on both datasets. The outperformance of 
the proposed SS-YOLO model across different evaluation metrics highlights its crack inference capability using 
diverse datasets, substantiating its generalization ability.

Ablation analysis
Table 5 highlights the performance of the model under different configurations. It is evident that the base model, 
without any architectural or training process augmentation, is the least efficient. In this configuration, the highest 
values for mAP, F1 score, and inference time are 86.16%, 81.34, and 12 ms, respectively. Furthermore, when data 
augmentation is employed during model training, there is a noticeable improvement in evaluation metrics. This 
improvement is evidenced by a 2.08% increase in mAP value and a 1.66% increase in the F1 score.

The significance of incorporating GAWD-MHSA and CBAM modules is also apparent from the table. The 
CBAM module, in conjunction with data augmentation, enhances the mAP value by 2.69% and the F1 score by 
1.79% compared to the base model. Similarly, when comparing to the base model, the GAWD-MHSA module 
with data augmentation elevates the mAP and F1 values by 2.89% and 2.35%, respectively.

Moreover, the integration of both modules significantly improves the performance of the conventional 
YOLOv8s model. This improvement is substantiated by a 4.01% increase in mAP and a 5.66% increase in F1 
values compared to the base model. These architectural updates, especially GAWD, collectively model the 
probability distribution for dynamic recalibration of feature significance, enhancing the model’s ability to 
combine and weigh different features during training.

Figure 13.  The results of the proposed SS-YOLO model on deep crack dataset: (a) the original images, (b) 
the inferred cracks via SS-YOLO model, (c) Segmented masks of the inferred cracks, (d) the true labels of the 
images.
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Additionally, CL-SSPL positively impacts the performance of the YOLOv8 model, as observed by a 2.08% 
increase in mAP and a 1.66% increase in the F1 score compared to the base model, considering the constraint 
of limited-size training data.

Moreover, the proposed SS-YOLO approach, which incorporates both attention mechanisms and CL-SSPL, 
demonstrates outstanding performance. The F1 score and mAP are boosted by 6.66% and 4.64%, respectively. 
The crack inference time of the proposed SS-YOLO model is slightly higher due to the incorporation of a higher 
number of additional modules compared to other configurations. However, the increase in inference time is 

Figure 14.  The results of the proposed SS-YOLO model on FCN-crack dataset: (a) the original images, (b) 
the inferred cracks via SS-YOLO model, (c) Segmented masks of the inferred cracks, (d) the true labels of the 
images.

Table 3.  The details of the evaluation metrics for the proposed SS-YOLO model under different training and 
testing configurations.

Train dataset
Inference 
threshold (%) Test dataset Precision (%) Recall (%) F1-score (%)

Crack detection and segmentation 
dataset

85%

Deep crack 90.53 83.77 87.01

FCN-crack 89.91 82.81 86.21

Deep crack dataset
Crack detection and segmentation 
dataset 87.42 79.18 83.09

FCN-crack 87.63 80.04 83.66

FCN-crack dataset
Crack detection and segmentation 
dataset 88.79 81.83 85.16

Deep crack 88.86 82.04 85.48
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negligible, as it is slightly higher than the base model. This trade-off in inference time is justified by the superior 
performance of the model in detection and segmentation of fine-grained cracks with high generalization power.

Discussion
The ingress of cracks is considered an early sign of deterioration in a concrete structure. Identifying cracks 
in civil infrastructures is inevitable, as stability and resilience are compromised by their presence. Although 
numerous crack detection and segmentation techniques have been proposed over time, these techniques 
experience difficulties under challenging detection scenarios. The presence of written inscriptions, debris, extra 
objects, background shadows, and varying textures adds to the complexity of background pixels. In practice, it is 
cumbersome to detect and segment fine-grained cracks with state-of-the-art (SOTA) techniques in their standard 
form, as described in Fig. 12. The description is complemented by the results presented in Table 3. These results 
emphasize that architectural amendments are vital in precisely inferring fine-grained cracks in complex scenarios.

One architectural amendment to boost the detection accuracy of a network is to introduce a sophisticated 
attention mechanism. The attention mechanism emphasizes the foreground pixels, in this case, the pixels of 
fine-grained cracks during the detection process. Hence, it significantly improves the performance of a detection 
network. In this case, the integration of CBAM and GAWD-MHSA modules has assisted the model in exploring 
meaningful insights and variations associated with these cracks. These attention modules empower the proposed 
model to highlight pertinent details, making the model more resilient in coping with intricate backgrounds 
and salient information. The results presented in Figs. 11, 12, 13 and 14 and the ablation analysis performed in 
Table 4 support this statement.

Table 4.  The details of the evaluation metrics for the proposed model and other state-of-the-art models.

Method mAP (%) F1 Score (%) Inference time (milliseconds per image)

Crack detection and segmentation dataset

 U-NET 82.50 83.12 29.00

 U-NET++ 83.43 86.00 30.00

 YOLOv5-MobileNetv357 87.10 84.00 15.19

  EfficientDet58 50.00 46.00 37.03

 Proposed 90.80 88.00 18

Deepcrack dataset

 U-NET 81.96 80.88 27.00

 U-NET++ 82.67 82.82 28.00

 YOLOv5&MobileNetv357 87.24 84.56 15.00

  EfficientDet58 51.07 46.15 35.01

 Proposed 89.93 88.93 18

FCN-Crack dataset

 U-NET 82.00 80.10 23.68

 U-NET++ 83.63 81.93 25.01

 MN-YOLOv557 87.00 83.99 14.73

  EfficientDet58 49.90 46.00 34.96

 Proposed 89.62 88.76 17.42

Table 5.  The effect of the CL-SSPL and the attention modules on performance metrics.

Ablation setting mAP (%) F1 score (%)
Inference time (millisecond 
per image)

YOLOv8s (w/o Data Augmentation, w/o CL-SSPL and the Attention Modules) 86.16 81.34 12

YOLOv8s (with Data Augmentation, w/o CL-SSPL and the Attention Modules) 88.24 83.00 12

YOLOv8x (with Data Augmentation and CL-SSPL and w/o Attention Modules) 88.26 83.14 12

YOLOv8s (with Data Augmentation, CBAM Attention Module and w/o 
CL-SSPL) 88.85 83.13 15

YOLOv8s (with Data Augmentation, GAWD-MHSA Module and w/o CL-SSPL) 89.05 83.69 16

YOLOv8s (with Data Augmentation, both the Attention Modules and w/o 
CL-SSPL) 90.17 87 18

YOLOv8s (with Data Augmentation, CBAM Attention Module and CL-SSPL) 89.28 83.44 15

YOLOv8s (with Data Augmentation, GAWD-MHSA Module and CL-SSPL) 89.54 85.06 16

SS-YOLO 90.80 88 18
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Furthermore, the performance of a supervised model is compromised when trained on a limited-size dataset. 
In such cases, the model does not have exposure to diverse samples during the training process. As a result, 
due to the lack of diversity in the samples, the model learns limited information associated with a uniform set 
of samples. This obstruction can be avoided using the pseudo-labeling concept, where the model is iteratively 
trained on the predictions made by the model with high confidence. In this regard, the integration of CL-SSPL 
has a significant impact on the crack detection and segmentation performance of the model. This is justified by 
the results presented in Table 4 when the CL-SSPL module is incorporated for training the network.

Moreover, data augmentation such as flipping of samples, varying rotations, and scaling can also have a 
positive impact on the performance of the model. These operations adversely affect the training time taken by 
the model but introduce variations in the training samples. Therefore, through these variations, the learning 
ability of the model is significantly improved.

Although the proposed SS-YOLO model could introduce self-supervised learning ability by leveraging 
CL-SSPL, it still requires labeled data at the initial stage for training the network. The CL-SSPL technique is 
applied to diversify the dataset by using unlabeled data at a later stage for better training of the network. However, 
in practical scenarios, labels for a given dataset are often unknown. Under such circumstances, developing a base 
model using the proposed approach can be challenging. Nevertheless, the proposed approach has the potential 
to incorporate source-free unsupervised learning criteria into its framework.

Conclusion
This work proposes a robust methodology based on self-supervised Yolov8 model referred to as SS-YOLO 
for inferring and segmenting fine-grained cracks using limited-size dataset containing images with complex 
backgrounds. The training process of the designed network is streamlined with a curriculum learning-based 
self-supervised pseudo-labeling (CL-SSPL) technique. The adaptation of CL-SSPL considerably augments 
the learning ability of the proposed model on limited-size datasets, mitigating the data imbalance issue and 
enhancing generalizability. It also regulates the training process and assist in adapting to varying distributions 
of the data. Additionally, attention mechanism is introduced in traditional YOLOv8 model in the form of 
Convolutional Block Attention Module (CBAM) and the Gaussian adaptive weight distribution multi-head 
self-attention module (GAWD-MHSA). The integration of these two attention modules supplements the ability of 
the YOLOv8 model to effectively capture subtle details associated with fine-grained cracks. Hence, the proposed 
model prioritizes relevant information through attention process.

The efficacy and generalizability of the proposed model is assessed on three distinct datasets. These datasets 
were enriched with images in diverse concrete structures such as buildings, pavements, and roadways. The images 
contained obstructions such as varying background shadows and texture, debris, and presence of unwanted 
objects that made the crack detection and segmentation process challenging. The primacy of the proposed model 
in terms evaluation metrics is evident from the experimental results. With the proposed model an increment 
of at least 2.89% and 4%, was observed in the mAP and F1 score. The ability of the proposed model to infer and 
segment fine-grained cracks in images with complex backgrounds is justifiable though enhanced segmentation 
results accompanied with ablation analysis. Moreover, the inference time per image of the proposed model is 
also at least 11 ms faster than other models in comparison, making it adaptable in practical scenarios.

In conclusion, primarily this paper contributes to the training process of a network by using the CL-SSPL 
technique as well as the inclusion of CBAM and MHSAM modules for exploring subtle details associated with 
fine-grained cracks amidst complex backgrounds. These amendments in the basic YOLOv8 model reduces the 
possibility of overfitting and enhances the detection performance of fine-grained crack with optimal inference 
time suitable for real-time applications.

Data availability
This work is conducted by using open-access dataset. The details are included in the dataset description section. 
Kindly refer to that and follow the cited references.
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