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Development of an Expert-Informed Rig State Classifier Using Naïve Bayes 

Algorithm for Invisible Loss Time Measurement. 

Abstract: 

The rig state plays a crucial role in recognizing the operations carried out by the drilling crew and 

quantifying Invisible Lost Time (ILT). This lost time, often challenging to assess and report manually in 

daily reports, results in delays to the scheduled timeline. In this paper, the Naive Bayes algorithm was used 

to establish a new trustworthy rig state. Training data, consisting of a large set of rules, was generated based 

on drilling experts' recommendations. This dataset was then employed to build a Naive Bayes classifier 

capable of emulating the cognitive processes of skilled drilling engineers and accurately recognizing the 

actual drilling operation from surface data. The developed model was used to process high-frequency 

drilling data collected from three wells, aiming to derive the Key Performance Indicators (KPIs) related to 

each drilling crew’s efficiency and quantify the ILT during the drilling connections. The obtained results 

revealed that the established rig state excelled in automatically recognizing drilling operations, achieving a 

high success rate of 99.747%. The findings of this study offer valuable insights for drillers and rig 

supervisors, enabling real-time visual assessment of efficiency and prompt intervention to reduce ILT. 

Keywords: Rig state; Drilling; Machine learning; Nave Bayes classifier; Invisible Lost Time; key 

Performance Indicator. 
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1. Introduction 

The drilling process is one of the most important, complicated, and expensive procedures 

within oil and gas development projects [1, 2]. Therefore, it is critical to optimize the return on 

investment in drilling operations, particularly during periods of low oil prices. According to project 

management standards, drilling operations must consistently meet deadlines and stay within 

budget constraints. However, challenges such as drilling issues and undesirable events frequently 

induce delays, causing the drilling operation to fall behind schedule. This period spent dealing 

with problems related to drilling activities, such as stuck pipes, waiting for materials, or weather-

related interruptions, is defined as Non-Productive Time (NPT) [3, 4].  

NPT can be broadly described as any time not spent constructing the well [5]. NPT consists 

of visible and Invisible Lost Time (ILT). ILT, specifically, refers to time lost during common 

operations such as tripping and connections, where maximum efficiency is impeded by factors like 

insufficient experience, proficiency, or the absence of appropriate tools [6, 7]. Drilling multiple 

wells with the same rigs under similar conditions indicated that the time required to complete 

certain activities differs from well to well. This divergence is attributed to the fact that only visible 

NPT is assessed and reported in daily reports, while time lost due to process inefficiencies remains 

unaccounted for. 

Despite these inefficiencies translating to only a few seconds or minutes of additional 

operating time per operation, their cumulative effect can lead to a substantial amount of wasted 

time over the entire working timeline. De Oliveira et al. [8] stated that the visible NPT can be 

measured manually, while the ILT assessment necessitates an automated system due to the large 
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amount of real-time data generated, making manual measurement impractical at the well site or 

monitoring center. 

Machine Learning (ML) algorithms have gained substantial popularity as excellent 

alternatives for studying complex systems [9–12]. These techniques play an increasingly vital role 

in addressing challenges related to high-complexity computation and reliability across various 

fields of study. Various researchers have witnessed the practical implementation of intelligent 

modeling approaches in the oil and gas field. Notably, in drilling engineering, researchers [13–16] 

have successfully applied various ML algorithms to classify the severity of stick slips and optimize 

the drilling process. Furthermore, numerous methodologies and approaches, based on 

comprehensive drilling data analysis and machine learning algorithms, have been carried out to 

quantify ILT and help assist operators in managing the drilling operation. The majority of ILT 

measurement methodologies, as reported in the literature, rely on the rig state, which represents an 

intelligent system that can ensure continuous real-time identification of a rig's activities. 

In this paper, a novel robust rig state was developed using the Naive Bayes algorithm. 

Distinguishing itself from prior studies that used surface data for rig state training, our primary 

contribution lies in employing expert-crafted rules. This results in high-quality, trustworthy data 

for training the rig state classifier to mimic the thought process of a drilling expert.The developed 

Naive Bayes classifier model was applied to process and label high-frequency time series data 

collected from the surface sensors across three wells. This analysis aimed to assess the 

performance of many drilling crews and derive the KPIs related to each drilling crew’s efficiency. 

Subsequently, ILT was derived and graphically plotted to highlight the real-time practical 

application of the rig state. 
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The rest of the paper is organized as follows: Section 2 delves into related works and outlines 

the contributions of the current study. Section 3 provides a detailed explanation of the database 

employed in this research. Section 4 explains the workflow involved in the rig state development. 

Results from the evaluation and application of the established rig state are presented and discussed 

in Sections 5 and 6. Finally, Section 7 highlights the main outcomes derived from the study. 

2. Background and literature survey  

The current section is dedicated to discussing the existing research on the enhancement of 

drilling performance through the application of machine learning and other strategies. A significant 

focus in many of these studies lies in the real-time implementation of ML algorithms to detect 

undesirable drilling events and mitigate the effect of these events, which can dramatically increase 

NPT. Muojeke et al. [17] proposed an approach that integrates Artificial Neural Network (ANN) 

and a binary classifier for early kick detection based on downhole parameters. Gurina et al. [18] 

applied ML to forecast the occurrence of six types of drilling accidents. Tran et al. [19] introduced 

a framework that combines the Convolutional Neural Network (CNN) with Long-Short-Term 

Memory (LSTM) for detecting drill bit failures. Furthermore, Mopuri et al. [20] presented a novel 

approach for the early detection of stuck pipe events using deep learning. While these works have 

made a significant effort in mitigating the unwanted drilling events, it is essential to recognize they 

only address the visible lost time. 

Numerous endeavors have been undertaken to establish a foundation for in-depth analysis 

of ILT. De Oliveira et al. [8] provided examples of offshore drilling improvements achieved 

through the automation of the rig state detection technique. Using the automated classification of 

drilling operations, they accurately identified reasons for certain rigs not meeting contractual 
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objectives. Lakhanpal and Samuel [21] proposed a method to measure ILT by analyzing intrinsic 

mode functions of drilling data using empirical mode decomposition. Additionally, Al Ady et al. 

[22] conducted a performance analysis of the entire rig fleet to derive the benefits of monitoring 

the drilling through a set of examined KPIs. Their study highlighted the need for a system capable 

of segregating drilling activities, revealing the significance of developing a rig state model for 

similar tasks. However, it is crucial to note that these studies are primarily regarded as post-

analyses of the drilling performance to extract insights related to the underperforming areas.  

Recognizing the imperative for a robust real-time system to enhance operational efficiency, 

several methodologies have been proposed to develop a classification model capable of 

automatically recognizing drilling operations through strategic application of ML and statistical 

approaches. Zhao et al. [23] devised an approach for automatic slip status and stand detection, 

enabling the computation of KPIs. Although this proposed approach is effective for vertical, 

horizontal, and extended-reach drilling wells, it might not be suitable for inclined wells. Coley 

[24] implemented various supervised ML algorithms to build a classifier identifying rig states from 

surface data. Ben et al. [25] applied Random Forest, CNN, and a hybrid Convolutional Neural 

Network/Recurrent Neural Network (CNN/RNN) to label high-frequency time-series data with 

various rig states The output from their rig-state classifier contributed to generating KPI data for 

supporting ILT Analysis, resulting in significant reductions in connection times.  Yin et al. [26] 

utilized ANN to develop a rig state classification model, enabling real-time identification of rig 

states and subsequent performance evaluation against KPIs for ILT detection. Additional ML 

applications for rig state classification were proposed by Arnaout et al. [27] to detect common 

drilling operations based on polynomial approximation..  
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Despite the high accuracy achieved by the classification models developed in the 

aforementioned studies, it is crucial to note that these models were trained using field data collected 

from surface rig sensors. This surface data is susceptible to noise and lacks the complete insights 

required to distinguish between different rig states. This limitation makes rig state models trained 

with field data prone to inaccuracies in recognizing drilling operations, leading to imprecise 

estimations of KPIs and ILT. 

2.1. Motivation and contribution 

In contrast to prior studies relying on field data for rig state model training, the present study 

employs trustworthy data that provides comprehensive information about rig state identification. 

The dataset introduced in this paper for training the rig state classifier was carefully curated by 

drilling experts, and it consists of a set of rules followed by skilled drilling engineers to identify 

rig states using surface data. This strategic choice in training the rig state classifier aims to achieve 

a higher success rate in the classification of drilling operations. 

Moreover, in this study, the Naive Bayes classifier was employed for the first time, to the 

best of our knowledge, to construct a rig state model, leveraging drilling experts' 

recommendations. The Naive Bayes classifier, known for its simplicity, ease of implementation, 

and high performance, was chosen due to its proficiency in handling categorical data, often 

surpassing more complex classification approaches [28–31].  

By leveraging the efficiency of Naïve Bayes in handling categorical data and employing 

trustworthy training data, the current study aims to build a robust rig state model. This model is 

intended for real-time implementation to accurately recognize drilling operations and seamlessly 
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integrate into the monitoring system for deriving KPIs and measuring ILT. The subsequent section 

provides an in-depth explanation of the data insights, characteristics, and sources. 

3. Database generation for Naive Bayes Classifier training 

The quality of the training data plays a crucial role in developing a robust ML model. 

Training the rig state classifier exclusively with field data may result in a classification model that 

struggles to identify the rig state. This limitation arises from the potential noise in the surface data 

recorded by rig sensors. Additionally, the surface data might lack comprehensive insights needed 

for effective discrimination between various rig states. The paramount contribution of this paper 

lies in the use of reliable data for the development of the rig state. This dataset was generated based 

on the recommendations of drilling experts. It consists of complete information and rules that a 

skilled drilling engineer adheres to when discerning drilling operations through surface data. The 

employment of such trustworthy data holds the potential to create an intelligent system classifier 

that emulates the cognitive processes employed by skilled drilling engineers in the classification 

of drilling operations. 

Table 1 shows a sample of data generated for training a drilling operation classification 

model. The first six columns in Table 1 correspond to input variables for the training data, 

including Drill bit Position, Weight on Hook (WOH), Traveling Block Motion, Revolutions Per 

Minute (RPM), Drilling Torque, and Flow Rate. Each input vector consists of various attributes 

associated with the respective input variable. For instance, the WOH variable has the following 

attributes: "Low" if the weight of the hook equals the weight of the traveling block and its 

accessories, or "High" if the weight of the hook surpasses the weight of the traveling block and its 

accessories. 
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 The variable 'Drill bit Position' can assume the following attributes: ''Null'' when the 

difference between the depth and the drill bit position is zero, and ''Positive'' when the drill bit is 

not positioned at the bottom of the well. The traveling block's motion is described by three 

attributes based on the difference between the current position of the traveling block 𝑃𝑃2 and the 

previous position of the traveling block 𝑃𝑃1: "Up" if the difference between 𝑃𝑃2 and 𝑃𝑃1 is positive, 

"Down" if the difference between 𝑃𝑃2 and 𝑃𝑃1 is negative, and "Fixed" if the difference between 𝑃𝑃2 

and 𝑃𝑃1 is zero. The remaining input variables, RPM, torque, and flow rate are represented by two 

attributes: "Positive" if the value exceeds a predefined threshold, and "Null" otherwise. 

The last column corresponds to the vector of the output variable, which includes various 

classes representing drilling operations such as drilling, back reaming, reaming, in slips, 

circulation, Running In Hole (RIH), and Pulling Of Out Hole (POOH), or the static state 

(stationary).     

Table 1 Data sample for training the Naïve Bayes Classifier 

WOH Drill bit 

Position 

Traveling 

Block Motion 

RPM Drilling  

torque 

Flow 

rate 

Rig state 

High Null Down Positive Positive Positive Drilling 

High Positive Down Null Null Null RIH 

Low Positive Up Null Null Null Inslips 

Low Positive Down Null Null Null Inslips 

Low Positive Fixed Null Null Null Inslips 

High Positive Up Null Null Null POOH 

High Positive Up Positive Positive Positive Back reaming 

High Positive Down Positive Positive Positive Reaming 

High Positive Fixed Null Null Positive Circulation 

High Positive Fixed Null Null Null Stationary 
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It is worth noting that in some cases, sensors may provide positive values (low values) for 

torque, RPM and flow even when there is no longer rotation, and the pumps are turned off. To 

address these potential sensor malfunctions, which can occur at any moment, threshold values are 

set at 15 rpm, 1000 ft.lb, and 100 l/min for RPM, torque, and flow rate, respectively.        

4. Workflow of Rig State Model Development 

4.1. Training the Naive Bayes Classifier 

In this section, the Naive Bayes algorithm was applied to create a robust classifier capable 

of accurately detecting and recognizing the rig state in real time based on surface data. The training 

of the Naive Bayes classifier involves determining the prior probabilities 𝑃𝑃�𝐶𝐶𝑗𝑗� and the likelihood 

𝑃𝑃(𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗) from the data presented in Table 1. Fig. 1 illustrates the computation of probabilities 

𝑃𝑃(𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗) for the variable "Traveling Block Motion". These probabilities measure the possibility 

of having downward, upward, or no motion of the traveling block when the operation type is 

known. 

As depicted in Fig. 1, the likelihood of the traveling block moving upward when the actual 

operation is drilling is zero. Furthermore, the possibility of the traveling block moving during the 

stationary state is also zero. These training results demonstrate the capability of the built Naive 

Bayes classifier to emulate the reasoning of engineers when attempting to determine the drilling 

operation from drilling data. Based on these learning results, it is anticipated that the classifier 

developed in this study will be able to identify drilling operations with a high success rate. 

Similarly, the probabilities P(𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗) for the other variables were calculated from the training data. 
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4.2. Implementation of the developed rig state- Naive Bayes classifier 

Following the determination of prior probabilities, the created Naive Bayes model was 

employed to predict drilling operations based on surface drilling data. However, real-time 

application of the established Naive Bayes classifier necessitates converting surface drilling data 

from numerical to categorical variables. Fig. 2 illustrates the process used in this study to convert 

drilling data into categorical variables before predicting the rig state.  

As depicted in Fig. 2, this data transformation is executed through a conditional structure 

stated in several blocks of code. The first block receives data from sensors, intermediate blocks 

process the data to extract insights, and the last block assigns an attribute to each input variable 

based on the conditional expressions in the if and else statements. 

Fig. 1 The computation of the probabilities 𝑃𝑃(𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗) for the variable " Traveling Block Motion". 
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Following data processing, the posterior probability 𝑃𝑃�𝐶𝐶𝑗𝑗/𝑋𝑋𝑖𝑖� of each class 𝐶𝐶𝑗𝑗 (e.g., the 

probability of detecting a back reaming operation noted 𝐶𝐶𝑗𝑗 knowing that the flow rate 𝑋𝑋𝑖𝑖 is positive) 

is estimated using Bayesian independence theories between the variables. The Bayesian Naive 

classification algorithm then searches through all the drilling operations to find the one with the 

highest posterior probability, as described in the following equation:  

 

𝑀𝑀 = Argmax 
∏  𝑖𝑖 𝑃𝑃�𝑥𝑥𝑖𝑖 ∣ 𝑐𝑐𝑗𝑗�𝑃𝑃�𝑐𝑐𝑗𝑗�

∑  𝑘𝑘𝑗𝑗 ∏  𝑖𝑖 𝑃𝑃�𝑥𝑥𝑖𝑖 ∣ 𝑐𝑐𝑗𝑗�𝑃𝑃�𝑐𝑐𝑗𝑗�
 

(1) 

where M is the operation predicted by the Naive Bayes classifier and k is the number of drilling 

operations k=8. 

Fig. 2 The procedure used for converting surface drilling data from numeric variables to 
categorical variables. 
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5. Model Evaluation: Rig State Performance Assessment  

In this section, the developed Naive Bayes classifier was evaluated using drilling data 

gathered from surface sensors during drilling the section 121/4" of well-A to test its ability to predict 

the rig state in real time. The Naive Bayes model's performance was assessed using two metrics: 

Accuracy (Acc) and precision (P). The accuracy metric measures how the model performs in 

general across all classes. It is calculated by dividing the number of accurate predictions by the 

total number of predictions. The precision metric describes the model's performance within a 

single class 𝐶𝐶𝑗𝑗. It is computed by dividing the number of well-classified operations in class 𝐶𝐶𝑗𝑗 by 

the total number of operations categorized in class 𝐶𝐶𝑗𝑗 (whether correct or incorrect). 

Accuracy =
number of correct predictions

total number of predictions
 

(2) 

Precision =
number of well classified operations in class 𝐶𝐶𝑗𝑗

total number of operations classified in 𝐶𝐶𝑗𝑗
 

(3) 

The performance achieved by the Naive Bayes model is highlighted in Table 2. The testing 

results revealed that the developed Naive Bayes classifier was able to accurately classify the 

drilling operations with a 99.747% accuracy rate. There were instances where the model 

misclassified them as reaming operations instead of circulation operations.  A closer examination 

of the misclassified cases revealed that they involved data points with null torque and rpm values, 

the traveling block position indicating a downward movement, and the created model encountered 

difficulties in distinguishing between reaming and circulation operations, resulting in the 

misclassification. It is worth noting that these instances constituted only 0.253% of the whole 

testing data, underscoring the overall exceptional high performance of the developed rig state 

model, with accurate classification achieved in almost all cases. 
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Fig. 3 depicts the timeline of the automated drilling operation recognition against drilling 

data. The established rig state accurately detected the drilling operation based on surface data. For 

example, when the WOH was reduced, the system successfully recognized the rig state 'in slips', 

as illustrated by the blue line. 

 

The developed Naive Bayes classifier was compared with other ML algorithms such as the 

Support Vector Machine (SVM) and the Decision Tree (DT) algorithm. The training data 

described in Section 2 was used to train the SVM and the DT to build additional rig state classifiers. 

Subsequently, data from well A was used to compare the performance of the three models (NB, 

SVM, and DT).  

To ensure fair competition among the compared ML models, hyperparameter tuning  was 

performed for each model to achieve the best configuration and structure of all the models before 

Table 2 The performance of the established Rig State model 

Rig state Total number of 
predictions 

Number of accurate 
predictions 

Precision 
(%) 

Drilling 31175 31175 100 

Back reaming 9405 9405 100 

Reaming 5008 5008 100 

Stationary 1606 1606 100 

Circulation 11191 11016 98.436 

In slips 8098 8098 100 

POOH 2091 2091 100 

RIH 540 540 100 

Overall 
Total number of 

predictions 
Number of accurate  

predictions 
Accuracy 

(%) 

69114 68939 99.747 
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comparing them. The tuning process involved a trial and error approach, optimizing parameters 

such as the regularization parameter (C), kernel function, kernel coefficient for SVM, and 

parameters including the number of trees, maximum depth, minimum samples split, and minimum 

samples leaf for the DT algorithm. By executing multiple runs and exploring different 

hyperparameter values, the best combination that presented highest accuracy was identified. The 

performance obtained by each model is highlighted in Table 3.  

Here, he DT algorithm was comparatively less accurate with a success rate of 99.6411%. 

NB and SVM achieved accuracy rates of 99.7467% and 99.7395%, respectively. The performance 

of both SVM and NB showed similarity, with SVM failing to correctly identify five instances 

compared to NB. Besides being a less complex classifier, the NB exhibited good performance 

compared to the other ML algorithms. 

 

6. Case Study : Rig State Application 

The present section aims to highlight the significance of the developed rig state model along 

with its practical applications and benefits in the drilling field. The built Naive Bayes classifier 

was implemented in a comprehensive case study to evaluate its effectiveness in accurately labeling 

large drilling data collected from three wells. The primary objective was to extract valuable 

Table 3 A comparison between the ML models. 

Model NB SVM DT 

Total number of predictions 69114 69114 69114 

Number of accurate  predictions 68939 68934 68866 

Accuracy (%) 99.7467 99.7395 99.6411 
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insights, specifically the KPIs and the ILT. These insights can provide drilling engineers with 

enhanced knowledge of drilling efficiency and enable real-time monitoring. 
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6.1. Key performance indicator assessment 

ILT is measured by examining the individual KPI generated by a drilling crew,  equipment, 

or a combination of both. The focus of this case study was on connection time during drilling 

operations for three wells and six crews in an Algerian field. The built rig state was used to process 

and label high-frequency time series data collected from surface sensors during the drilling of the 

16", 121/4"  and the 8½" diameter sections. The main objectives were to identify the drilling activity, 

quantify the time each crew spent on a specific routine drilling operations, and derive KPIs for 

connection time.  

The crew's performance during connection time was assessed in this study through four 

distinct KPIs: namely weight to weight, weight to slip, slip to slip, and slip to weight. During the 

drilling connection, if the formations appeared to have issues with swelling or other issues that 

increase the risk of getting stuck, the driller could ream and back ream the formation to clean out 

the hole before the crew set the slips to grip the drill string [32]. Depending on when they are 

performed, the time spent on reaming, back reaming, circulation, and the well survey is considered 

as part of the weight to slip or slip to weight time. 

• Weight to slip is the time spent putting the drill string into the slips after drilling a stand. 

This time can include the following rig states: stationary, reaming, back reaming, and 

circulation. 

• Slip to weight is the time spent placing the drill bit on the bottom after the drill string has 

been taken out of slips. This time can include the following rig states: stationary, reaming, 

back reaming, and circulation. 

• Slip to slip is the time spent between putting the drill string into slips and taking it out of 

slips. This time can include the following rig states: in slips. 
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• Weight to weight is the time spent picking up the drill bit from the bottom after drilling a 

stand and setting it back on the bottom after making a connection. It represents the sum of 

the three aforementioned KPIs (weight to slip, slip to slip, and slip to weight). 

Fig. 4 shows how the four KPIs are derived using the proposed rig state model. The 

developed rig state processed and labeled high-frequency time series data collected from surface 

sensors. The rig states such as reaming, back reaming, static, and circulation, which are detected 

after drilling a stand and before putting the drill string into the slips were merged inside the weight 

to slip block by the system, and the corresponding KPI was computed. Similarly, the rig states 

such as reaming, back reaming, static, and the circulation that are recognized after taking the drill 

string out of slips until starting to drill a new stand were automatically combined by the  system 

inside the slip to weight block and the relevant KPI was computed. Only the rig state in slips was 

considered for computing the "slip to slip" KPI. 

Finally, the "weight to weight" KPI was calculated by summing up the three KPIs: weight 

to slip, slip to slip, and slip to weight. Following the computation of the KPIs, separate histograms 

for each crew were prepared and displayed in Fig. 5 to compare various KPIs between wells and 

crews. 

The “weight to weight” time represents the most significant duration performed between 

putting the drill string into the slips and repositioning it on the bottom hole after making a 

connection. This is due to the necessity of conducting multiple reaming and back-reaming trips to 

avoid getting stuck.  Although the crews in the three wells were working under similar rig 

performance and conditions, the results revealed a notable disparity in performance during 

connections. The night crew of well-B performed this operation routinely faster than the other 

crews, with an average "weight to weight" time of 31 minutes. The other crews performed poorly 
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compared to the night crew of well-B, with their average "weight to weight" time ranging between 

34 and 43 minutes. The derived "weight to weight" time for drill pipe connections in well C shows 

that the shortest "weight to weight" time is 13 minutes (day crew, standpipe number: 5).  

These results highlight the importance of integrating the proposed rig state into the real-time 

monitoring process. For example, the poor performance of the day crew observed in well A could 

be promptly identified, diagnosed for its underlying causes, and thereby contribute to an 

enhancement in operational efficiency. 

  

Fig. 4 KPIs determination using the rig state 
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Fig. 5 Weight to Weight time Comparison of all crews in the three wells : (a) Day crew in 
well A; (b) Night crew in well A; (c) Day crew in well B; (d) Night crew in well B; (e) Day crew 

in well C; and (f) Night crew in well C.  
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6.2. ILT Measurement 

In order to compute ILT, an optimal KPI for connection time needs to be fixed. This KPI 

serves as a reference or benchmark for real-time monitoring [26, 33]. Various evaluation methods, 

such as the best composite, average, and P50 can be used to determine the target KPI [34].  

In this paper, the P50 distribution and the best composite were applied to define the KPIs for 

connection time. Individual histograms for "weight to slip" KPI, "slip to slip" KPI, and "slip to 

weight" KPI are depicted in Fig. 6. From this Fig. 6, it can be observed that the P50 is 21.33 

minutes for "weight to slip" time, 7.42 minutes for "slip to slip" time, and 4 minutes for "slip to 

weight" time. As a result, the KPI for "weight to weight" is determined to be 32.75 mins.  

Following the selection of the KPI, ILT and the potential saving time were determined using 

the defined weight to slip KPI, slip to slip KPI, and slip to weight KPI. ILT is expressed here as 

the cumulative difference between the actual operation time and the target KPI. Table 3 highlights 

the analysis results of ILT during connection operations. 

Table 4 and Table 5 indicate the total saving if all the connections in the three wells were 

carried out at the KPIs defined in this study. Applying the P50 distribution, the total saving time 

would be 2 days, 16 hours, and 57 minutes, representing 29.96% of the total time spent in the three 

wells for the connection operation. Applying the best composite, the total saving time would be 6 

days, 4 hours, and 53 minutes, representing 68.67% of the total time spent in the three wells for 

the connection operation. 
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Fig. 6 Determination of the KPIs for connection time : (a) weight to slip KPI ; (b) Slip to 
slip KPI; (c) Slip to weight KPI. 
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Table 4 Saving time for weight to weight connection in the three wells using the P50 
distribution. 

 

 

Table 5 Saving time for weight to weight connection in the three wells using the best composite. 

 

7. Conclusions 

The present work applied the Naive Bayes algorithm to create a novel robust rig state, 

leveraging training data generated from drilling experts' recommendations. The developed model 

demonstrated an impressive 99.747% success rate in accurately identifying drilling operations. 

The following are the main findings that can be drawn from this study: 

1. Instead of relying on surface data for training rig state models, the study emphasized the 

significance of employing data that contains insights into the cognitive processes of drilling 

engineers for recognizing drilling operations using surface data. 

 slip to weight slip to slip slip to weight weight to weight 

Operation time 5 days, 12 
hrs, 39 mins 

2 days, 3 hrs, 
53 mins 

1 day, 8 hrs, 
16 mins 9 days, 49 min 

KPI 7.58 mins 2.41 mins 1 mins 8 mins 
Savings 

potential time 
3 days, 21 

hrs, 21 mins 
1 day, 7 hrs, 

31 mins 1 day 6 days, 4 hrs, 53 
mins 

Savings 
potential time (%) 70.38% 60.75% 74.36% 68.67% 

 slip to weight slip to slip slip to weight weight to weight 

Operation time 5 day, 12 hrs, 
39 mins 

2 day, 3 hrs, 
53 mins 

1 day, 8 hrs, 
16 mins 9 days, 49 min 

KPI 21.33 mins 7.42 mins 4 mins 34 mins 
Savings 

potential time 
1 day, 9 hrs, 7 

mins 
17 hrs, 34 

mins 
14 hrs, 16 

mins 
2 day, 16 hrs, 57 

mins 
Savings 

potential time (%) 24.97% 33.87% 44.21% 29.96% 
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2. The Naive Bayes algorithm, known for its simplicity and ease of implementation, 

demonstrated excellent performance in recognizing the rig state compared to other complex 

classification approaches. 

3. The established rig state successfully processed high-frequency time series data collected 

from surface sensors in three wells. This enabled the analysis of drilling crew performance 

and the derivation of KPIs related to efficiency. 

4. The finding of this study highlights the effectiveness of the established rig state model in 

supporting drilling supervisors in achieving efficiency gains and making decisions. 

Integrating this model in Real-Time Operation Monitoring (RTOM) projects holds promise 

for continual improvements in operational performance, contributing to time and cost 

savings. 

5. The proposed rig state model is not applicable for directional drilling since it does not 

consider some rig states encountered in drilling with mud motors. Further work should 

address this limitation by updating the training data and extending its application. 

6. Overall, this research has demonstrated the potential of ML algorithms in monitoring 

drilling operation and enhancing its efficiency. Future investigations should explore 

additional data-driven models and diverse data sources to further improve the accuracy and 

robustness of rig state models. 
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Abbreviations 

ANN Artificial Neural Network 

Acc Accuracy 

CNN Convolutional Neural Network 

DT Decision Tree 

KPI    Key Performance Indicator 

LSTM Long-Short-Term Memory 

ILT Invisible Lost Time 

ML         Machine Learning 

NB Naive Bayes 

NPT        Non-Productive Time 

POOH       Pulling Of Out Hole 

RIH        Running In Hole 

RNN           Recurrent Neural Network 

RPM        Revolutions Per Minute 

RTOM Real Time Operation Monitoring 

WOH     Weight On Hook 

Highlights 

• A novel robust rig state was developed using the Naive Bayes classifier. 

• Trustworthy data that provides sufficient insights into rig state recognition was used in this 

paper to train the rig state classifier. 

• The developed rig state model was applied to label comprehensive field data and extract 

valuable insights, such as the KPIs and ILT. 
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• The findings of this study demonstrate the vital role of integrating the developed rig state 

model into Real-Time Operation Monitoring projects. 

 

Appendix A. Theory: rig state 

The rig state classifier is a system that uses the data recorded by the surface sensors to 

automatically detect the drilling operation performed by the drilling crew. By setting the KPI as 

the maximum time to be respected throughout the execution of each operation, the real-time 

automatic detection of the rig state has the potential to quantify the invisible lost time. Furthermore, 

the rig state classifier facilitates the data segmentation for any drilling data processing task. For 

example, a well drilled for over 60 days with a sample rate of 1 Hz will generate big data (nearly 

5 million data points). To segment this data, the user must manually filter the data, which is both 

complex and time-consuming. Using an automatic drilling operations classifier, this process 

becomes fairly simple and may be completed in a matter of seconds. In this paper, the Naïve Bayes 

algorithm was employed to create a trustworthy classifier that can accurately detect and recognize 

the drilling operation based on surface data. 

Appendix B. Theory: Naive Bayes Classifier 

The Naive Bayes method relies on the Bayes theorem with the assumption of strong 

independence between variables [35, 36]. The latter assumes that the existence of one object's 

feature (attribute) in a class is independent of the presence of another feature, which means that all 

the features contribute independently to the classification of an object even if they are dependent 

on each other [37, 38], and this is why this approach is referred to as naive. 
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Assuming a classification problem in which 𝑋𝑋=𝑋𝑋1,𝑋𝑋2,⋯,𝑋𝑋𝑋𝑋 represents an observation with 

𝑛𝑛 independent attributes, and 𝐶𝐶𝑗𝑗 is one of 𝐾𝐾 classes. Using Bayes' theorem, the Naive Bayes 

Classifier computes conditional probabilities 𝑃𝑃(𝐶𝐶𝐶𝐶/𝑋𝑋1,𝑋𝑋2, ,𝑋𝑋𝑋𝑋) for each class. From previous 

knowledge, Bayes' theorem allows us to determine the posterior probability of the class 𝐶𝐶𝑗𝑗 knowing 

the attribute X of an object or individual as follows [31, 39]: 

𝑃𝑃�𝐶𝐶𝑗𝑗/𝑋𝑋� =
𝑃𝑃�𝐶𝐶𝑗𝑗�𝑃𝑃�𝑋𝑋/𝐶𝐶𝑗𝑗�

𝑃𝑃(𝑋𝑋)
 

(B.1) 

where 𝑃𝑃�𝐶𝐶𝑗𝑗� stands for the priori probability of 𝐶𝐶𝐶𝐶, 𝑃𝑃(𝑋𝑋) is the prior probability of 𝑋𝑋 or the 

marginal probability, 𝑃𝑃(𝑋𝑋/𝐶𝐶𝑗𝑗) is the likelihood of observing 𝑋𝑋 knowing that the class is 𝐶𝐶𝑗𝑗. 

Applying the assumption of the independence of variables 𝑋𝑋=𝑋𝑋1,𝑋𝑋2,⋯,𝑋𝑋𝑋𝑋, the likelihood 

𝑃𝑃�𝑋𝑋/𝐶𝐶𝑗𝑗� can be computed using the following expression : 

𝑃𝑃�𝑋𝑋/𝐶𝐶𝑗𝑗� = � 
𝑛𝑛

𝑖𝑖=1

𝑃𝑃�𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗� 
(B.2) 

by substituting the posterior probability of the class 𝐶𝐶𝑗𝑗 with its expression, Eq.(B.1) can be 

expressed as follows : 

𝑃𝑃�𝐶𝐶𝑗𝑗/𝑋𝑋� =
𝑃𝑃�𝐶𝐶𝑗𝑗�∏  𝑛𝑛

𝑖𝑖=1 𝑃𝑃�𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗�
𝑃𝑃(𝑋𝑋)

 
(B.3) 

Following the computation of conditional probabilities 𝑃𝑃�𝐶𝐶𝑗𝑗/𝑋𝑋� for K classes, the observation X 

will be attributed to the class C if the following condition is met: 
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𝑃𝑃(𝐶𝐶/𝑋𝑋) ≥ 𝑃𝑃�𝐶𝐶𝑗𝑗/𝑋𝑋� for each 0 ≤ 𝑗𝑗 ≤ 1 (B.4) 

A Naive Bayes model is trained by computing and storing a set of probabilities based on the 

training data. This list includes: 

• The prior probabilities 𝑃𝑃�𝐶𝐶𝑗𝑗�: are simply the number of observations belonging to the class 

𝐶𝐶𝑗𝑗 divided by the total number of observations 𝑚𝑚. 

𝑃𝑃�𝐶𝐶𝑗𝑗� =
∑  𝑚𝑚
𝑖𝑖=1 𝐼𝐼�𝑦𝑦𝑖𝑖 = 𝐶𝐶𝑗𝑗�

𝑚𝑚
 

(B.5) 

• The likelihoods 𝑃𝑃�𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗�: Given that each feature 𝑋𝑋 can take on a large number of possible 

values, the likelihood ratio of 𝐶𝐶𝑗𝑗 for a given feature value 𝑎𝑎𝑑𝑑 is calculated by dividing the 

frequency of observations in which that feature value belongs to the class 𝐶𝐶𝑗𝑗 by the 

frequency of all observations belonging to the same class 𝐶𝐶𝑗𝑗. 

𝑃𝑃�𝑋𝑋1 = 𝑎𝑎𝑑𝑑/𝐶𝐶𝑗𝑗� =
∑  𝑚𝑚
𝑖𝑖=1 𝐼𝐼�𝑋𝑋1𝑖𝑖 = 𝑎𝑎𝑑𝑑,𝑦𝑦𝑖𝑖 = 𝐶𝐶𝑗𝑗�

∑  𝑚𝑚
𝑖𝑖=1 𝐼𝐼�𝑦𝑦𝑖𝑖 = 𝐶𝐶𝑗𝑗�

 
(B.6) 

After the training phase, the developed Naive Bayes model predicts the class 𝑦𝑦 of the observation 

𝑋𝑋 as follows [40]: 

𝑦𝑦 = 𝐶𝐶       if      P(𝐶𝐶)� 
𝑛𝑛

𝑖𝑖=1

𝑃𝑃(𝑋𝑋𝑖𝑖/𝐶𝐶) = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑃𝑃�𝐶𝐶𝑗𝑗��  
𝑛𝑛

𝑖𝑖=1

𝑃𝑃�𝑋𝑋𝑖𝑖/𝐶𝐶𝑗𝑗�� 
(B.7) 
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