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Abstract. Hyperspectral change detection plays a critical role in remote sensing
by leveraging spectral and spatial information for accurate land cover variation
identification. Long short-term memory (LSTM) has demonstrated its effective-
ness in capturing dependencies and handling long sequences in hyperspectral data.
Building on these strengths, a multilayer memory learning model based on LSTM
for hyperspectral changedetection is proposed, calledMLM-LSTMfor hyperspec-
tral change detection is proposed. It incorporates shallow memory learning and
deep memory learning. The deep memory learning module performs deep feature
extraction of long-term and short-term memory separately. Then fully connected
layers will be used to fuse the features followed by binary classification for change
detection. Notably, our model has higher detection accuracy compared to other
state-of-the-art deep learning-basedmodels. Through comprehensive experiments
on publicly available datasets, we have successfully validated the effectiveness and
efficiency of the proposed MLM-LSTM approach.
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1 Introduction

Change detection (CD) is a fundamental approach for monitoring land-cover changes, 
involving the analysis of disparities between bi-temporal remote sensing images of the 
same geographic area [1]. Hyperspectral images (HSIs) provide a comprehensive repre-
sentation of objects by combining pixel-wise 1-D spectral data with spatial information 
in the form of a standard 2-D image. The integration of spectral and spatial data in 
HSIs enables a more detailed and accurate assessment of changes occurring within the 
observed area [2]. Therefore, hyperspectral change detection (HCD) has emerged as a 
prominent research area in recent years.

Despite the abundance of spatial and spectral information, HSIs often plagued by 
highly redundancy information and various noise that primarily due to sensor limitations 
and atmospheric effects during the data acquisition step. As a result, processing HSIs
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data poses significant challenges [3]. Over the past two decades, numerous methods for
hyperspectral change detection (HCD) have been proposed to address these challenges,
encompassing both unsupervised and supervised approaches [4].

Recently, the application of deep learning-based methods to HCD tasks has emerged
as a new trend in extracting more effective and representative spectral, spatial, and
spatial-spectral features. In [5], a cross-temporal interaction symmetric attention (CSA)
network was proposed that employed a Siamese module to hierarchically extract change
information in a symmetric manner. A cross-temporal self-attention module was incor-
porated to joint spatial-spectral-temporal features and enhance the feature representa-
tion ability. In [6], a novel end-to-end 2-D CNN was introduced that utilizes a mixed
affinity matrix and subpixel representation to effectively extract cross-band gradients.
In addition, some deep learning-based methods based on recurrent neural networks
(RNN) and Long Short-Term memory (LSTM) have been proposed, for example, in
[7], Re3FCN was proposed that leverages 3-D CNN layers to extract spatial-spectral
features, while LSTM is utilized for extracting comprehensive features and screening
significantly changed features. In [8], a novel multilevel encoder-decoder attention net-
work is introduced to extract hierarchical spatial-spectral features more effectively. In
this approach, the extracted features are transferred to a LSTM module for analysing
temporal dependencies. Although deep learning models have yielded impressive results,
they often rely on a substantial amount of training data, which is difficult to acquire.
Consequently, the computational cost becomes exceptionally high, thus needs further
efforts to address this issue.

Although LSTM has shown good performance in hyperspectral change detection
(HCD), it has limitations:

1. Difficulty handling long sequence data: HSIs have hundreds of consecutive bands,
which can lead to issues like gradient explosion when processing with LSTMmodels,
hindering the capture of long-term dependencies effectively.

2. Information omission: Traditional LSTMmethods only utilize the final output result,
neglecting the full utilization of memory from the last hidden state.

To address these limitations, we propose an end-to-end multi-layer memory learn-
ing framework based on LSTM. It incorporates unsupervised PCA for dimensionality
reduction, retaining essential features while reducing dimensionality and mitigating the
gradient explosion risk. Multi-layer LSTM modules are employed for initial feature
extraction, with long-term and short-term memories integrated separately for fusion in
subsequent layers. This facilitates the identification of significant change features.

The remainder of this paper is organized as follows. Section 2 describes the details of
the proposedMLM-LSTM. Section 3 presents the experimental results and assessments.
Finally, some remarkable conclusions are summarized in Sect. 4.



Fig. 1. The architecture of the proposed MLM-LSTM model

2 The Proposed Approach

Figure 1 shows the architecture of the proposed MLM-LSTM method, which is com-
posed of two main steps, i.e., 1) spectral feature extraction and dimension reduction, 2)
shallow memory learning and hierarchical deep memory learning.

2.1 Spectral Feature Extraction and Dimension Reduction

Given two HSIs T 1,T 2 ∈ RW∗H∗B acquired on the same geographical area at times t1
and t2, where W , H and B denote the numbers of rows, columns and spectral bands,
respectively. To analyze the behaviors of spectral differences between the two images,
let us compute the HS difference image TD by subtracting bitemporal images from each
other pixel by pixel, i.e.,

TD =
∣
∣
∣T 2 − T 1

∣
∣
∣ (1)

Then principal component analysis (PCA) is introduced to reduce the high-
dimensional original inputwhile retainingmore spatial and spectral features. The spectral
feature of TD can be represented as TD(PCA) ∈ RH∗W∗qPCA , where qPCA is the number
of bands after PCA dimensionality reduction. TD will be feed into LSTM modules in
the next stage.



2.2 Shallow and Deep Memory Learning

2.2.1 LSTM Unit
An LSTM unit comprises a forget gate ft, an input gate it , and an output gate Ot . The  
LSTM cell memories values at arbitrary time intervals and these three gates control the 
flow of information at each time step t which can be calculated as follows:

ft = σ(Wxf Xt + Whf ht−1 + Wcf Ct−1 + bf ) (2)

it = σ(WxiXt + Whiht−1 + WciCt−1 + bi) (3)

Ot = σ(WxoXt + Whoht−1 + WciCt + bo) (4)

whereW , b, σ represent the coefficient matrix, bias vector and sigmoid function, respec-
tively. These three gates are crucial parts of the LSTM unit, which is used to update
the current memory state of this unit, obtain the short-term memory Ct and long-term
memory ht , that can be represented as:

C̃t = tanh(W∼
C ht−1 + W∼

C ht−1Xt + b∼
C ) (5)

Ct = ftCt−1 + it ∗ C̃t (6)

ht = Ot ∗ tanh(Ct) (7)

2.2.2 MLM-LSTM: Multi-layer Memory Feature Extraction

TD Will be divided into a group of overlapped 3-D neighboring patches denoted as
Z(α,β) ∈ RS∗S∗qPCA , where S is the patch size of Z, (α, β) denote the coordinates of
the patch centre in the spatial domain where αε[1,W ], βε[1,H ] (we set S = 3 in this
study). The total number of 3-D patches from TD will be (W − S + 1) × (H − S + 1).
If we split the patched across the spectral channels, then Z can be considered as an
qPCA-length sequence {(Z1

(α,β),Z
2
(α,β), . . . ,Z

qPCA
(α,β))| Z

q
(α,β) ∈ RS∗S∗1, 1 ≤ q ≤ qPCA}

The image patches in the sequence are fed into the memory feature extraction module
one by one to extract the spectral feature via a recurrent operator. The proposed memory
feature extraction module is composed of three LSTM layers with t hidden size and m
LSTM layers. In order to fully extract all the features of the input, we set t = 256 and
m = 2 in this study. The first LSTM is used to extract long-term memory h1, short-term
memoryC1

t and outputO
1
t from the input patches, ho andCo are initialized to zero. After

initial feature extraction by using the shallow memory learning, the extracted outputs
O1
t , h

1
t ,C

1
t have the same size as Z .

Next, we used two LSTMmodules for deep extraction of the long-term memory and
short-term memory, respectively. The outputs O2

t ,O
3
t can be obtained by Eqs. (8–9).

O2
t = σ(WxoO

1
t + Whoh

1
t + WciC0 + bo) (8)



O3
t = σ(WxoO

1
t + Whoh0 + WciC

1
t + bo) (9)

O2
t ,O

3
t are used to extract the deep hierarchical feature from the long-term and

short-term spatial-spectral memories, respectively. Then these two outputs are further
concatenated together and fed into to a linear layer for feature integration.

Since change detection can be considered as a binary classification problem of dis-
tinguishing the change and non-change pixels, the cross entropy, which is commonly
used for classification, is adopted as the loss function.

Loss(pred ,label) = −1

u

n
∑

i=1

(l ∗ log(p) + (1 − l) ∗ log(1 − p)) (10)

where u denotes the number of samples, l represents the ground truth value where 0 and
1 represent unchanged and changed regions. p represents the probability predicted by
the Linear function. The selected optimizer is the adaptive momentum (Adam) with the
initial learning rate of 0.0001.

3 Experiments and Results

3.1 Experimental Settings

Change detection task can be treated as a binary classification problem, therefore,
three commonly used evaluation metrics for classification, including the overall accu-
racy (OA), average accuracy (AA), and Kappa coefficient (KP), were adopted in our
experiments for quantitative performance assessment [9]. Two datasets (i.e., River and
Hermiston) shown in Fig. 2 [10] are adopted in this study for performance evaluation.

(a) (b) (c) (d)

Fig. 2. Pseudo-colored images of the three datasets, including the River dataset captured on May
3, 2013 (a) and December 31, 2013 (b) and the Hermiston dataset captured on May 1, 2004 (c)
and May 8, 2007 (d), respectively.



3.2 Results and Analysis

In this session, we evaluate the effectiveness of the proposed method by comparing
it with a few start-of-the-art unsupervised methods, which include the change vector
analysis (CVA) [11], principal component analysis (PCA-KM) [12] and absolute distance
(AD) [13] as well as several deep-learning based methods such as 2-D-CNN [14], 3-
D-CNN [15], HybridSN [16], and Traditional Long-short-term-memory (LSTM) [17].
The proposed MLM-LSTM and all other DL-based methods are trained based on the
PyTorch on an NVIDIA RTX A2000, with the batch size set to 128 and the number of
training epoch as 200. We randomly select 20% pixels in the changed and unchanged
pixels as the training set, and the remaining for testing. To make a fairer and more
reliable comparison, all DL algorithms are repeated ten times in each experiment, and
the averaged results with the standard deviations are reported. In the produced change
maps, false alarms and missing pixels are marked in red and green respectively for ease
of comparison, white areas represent correctly detected and black area for true negatives.
The quantitative assessment results of OA and KP on River and Hermiston datasets are
shown in Table 1.

Table 1. Quantitative assessment of different methods on River and Hermiston datasets

River Hermiston

OA KP OA KP

AD 0.9431 0.7137 0.9342 0.7904

CVA 0.9253 0.6528 0.9287 0.7705

PCA-KM 0.9517 0.7476 0.9224 0.7472

LSTM 0.9569 ± 0.0011 0.7216 ± 0.0070 0.9537 ± 0.0024 0.8580 ± 0.0009

HybridSN 0.9671 ± 0.0019 0.7826 ± 0.0087 0.9579 ± 0.0007 0.8789 ± 0.0005

3-D-CNN 0.9700 ± 0.0008 0.8045 ± 0.0053 0.9639 ± 0.0002 0.8966 ± 0.0047

2-D-CNN 0.9682 ± 0.0007 0.7946 ± 0.0033 0.9585 ± 0.0013 0.8794 ± 0.0050

MLM-LSTM 0.9723 ± 0.0005 0.8248 ± 0.0023 0.9708 ± 0.0014 0.9194 ± 0.0013

3.2.1 Results on River Dataset

Table 1 presents the quantitative assessment results and Fig. 3 provides visual com-
parison maps for the River dataset. The ground truth map in Fig. 3(i) reveals noticeable
changes such as sediment accumulation and alterations in building cover along the river-
bank. Figures 3(a–c) demonstrate that the unsupervised algorithms yield numerous false
alarms, particularly in the lower left and upper left corners of the maps where non-
changing pixels are incorrectly classified as changed. As a result, the KP values for all
unsupervised methods remain below 80%. In contrast, DL-based algorithms effectively
classify most of the false alarms. Among the benchmarked DL methods, traditional
LSTM performs the worst with an average KP of 0.7261 and OA of 95.69%, indicating



the highest number of missing pixels. The 2-D CNN and 3-D CNN produce similar
detection results, with an OA of around 97% and KP of approximately 0.80, slightly
outperforming the unsupervised methods. Our proposed MLM-LSTMmethod achieves
the highest OA andKP among all comparedmethods, with anOAvalue of 0.9723 andKP
value of 0.8248, surpassing the second-place method by 3%. Additionally, MLM-LSTM
exhibits the smallest variance, further confirming its effectiveness.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 3. Extracted change maps on the River Dataset from different methods of AD (a), CVA
(b), PCA-KM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 2-DCNN (g), MLM-LSTM (h) in
comparison to the Ground-truth map (i), where the false alarms and missing pixels are labelled in
red and green. (Color figure online)

3.2.2 Results on Hermiston Dataset

The Hermiston dataset’s quantitative assessment results and extracted change maps are
presented in Table 1 and Fig. 4, respectively. The changing areas mainly consist of crop
regions characterized by simple round shapes. Among the unsupervised methods, there
is a significant number of undetected pixels, resulting in OA values below 94% and
KP values lower than 0.8. The CNN-based methods, including 2-D CNN, 3-D CNN,
and HybridSN, exhibit similar detection results, with OA around 97% and KP values
below 0.9. However, both 2-D CNN and 3-D CNN show significant variance, leading
to unstable detection performance. Traditional LSTM consistently demonstrates the
lowest detection results among all DL-based benchmarks. In contrast, our MLM-LSTM
method shows a significant improvement in performance, achieving the highest detection
accuracy among all methods. It achieves an OA value of 0.9708, which is 0.23% higher
than the second-place method, and a KP value of 0.9194, which is 6.14% higher than the



KP of the traditional LSTMmethod. This demonstrates the effectiveness and robustness
of our proposed MLM-LSTM in handling variations in different sizes of changes.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Fig. 4. Extracted change maps on the Hermiston Dataset from different methods of AD (a), CVA
(b), PCA-KM (c), LSTM (d), HybridSN (e), 3-DCNN (f), 2-DCNN (g), MLM-LSTM (h) in
comparison to the Ground-truth map (i), where the false alarms and missing pixels are labelled in
red and green. (Color figure online)

3.3 Ablation Experiments

In our experiments, we investigated the impact of different factors on the performance
of the MLM-LSTMmodel. Firstly, we tested patch sizes of 3 × 3, 5 × 5, 7 × 7, and 9 ×
9, finding that increasing the patch size had minimal impact on KP and OA (Fig. 5(a)). A
patch size of 5× 5 showed improved performance on the River dataset but lacked robust-
ness on the Hermiston dataset. Considering computational efficiency, a patch size of 3
× 3 struck a suitable balance. We also explored the optimal number of layers and found
that 3 layers maximized KP on the River dataset, while 2 layers performed best on the
Hermiston dataset (Fig. 5(b)). In terms of hidden size (Fig. 5(c)), increasing the size in
the LSTMmodule resulted in higher KP values, and a hidden size of 256was selected for
optimal accuracy. Finally, we varied the training ratios from 10% to 50% and observed
that increasing the number of training pixels improved detection accuracy (Fig. 5(d)).
Our MLM-LSTM consistently outperformed other methods, achieving exceptional per-
formance with a highest KP of 0.8656 on the River dataset. These results highlight the
robustness and effectiveness of MLM-LSTM in hyperspectral change detection tasks.

3.4 Hyperparameter Analysis

To assess the efficiency of our proposed MLM-LSTM, we compared the hyperparame-
ters and floating-point operations (FLOPs) of different methods, as shown in Table 2. It is



(a) (b)

(c) (d)

Fig. 5. Ablation experiments and results od the MLM-LSTM in different setting, including the
KP values of different patch sizes (a), different number of layers (b), different hidden sizes (c) and
different training ratios on the River dataset (d)

evident that the 3-D CNN and HybridSN methods have significantly more hyperparam-
eters compared to the LSTM-based methods. Furthermore, the FLOPs associated with
CNN-based methods are several dozen or even hundreds of times higher than those of
LSTM-based methods. This discrepancy arises from the nature of convolutional layers
used in CNN, which involve convolution operations, pooling operations, and non-linear
activations. Image analysis tasks often require a large number of filters and larger input
sizes, resulting in higher FLOPs for CNN. In contrast, LSTM primarily involves matrix
multiplication and element-wise operations, resulting in lower FLOPs.

Table 2. Comparing the parameters of different DL-based methods on River dataset

LSTM HybridSN 3-D CNN 2-D CNN Proposed

Hyperparameters (k) 213.79 5128.74 1613.03 607.43 1411.46

FLOPs 3.51 1579.24 215.35 368.21 12.77



4 Conclusion

This paper introduces a novel end-to-end DL-based network called MLM-LSTM for
HCD. The proposed MLM-LSTM leverages shallow memory learning and hierarchical
long-term and short-term memory learning modules to effectively capture the spectral-
spatial features. This leads to more precise binary classification. Experimental results
on two publicly available HCD datasets demonstrate that the proposed MLM-LSTM
surpasses other benchmark models in terms of performance. It exhibits better stability
compared to benchmark methods. These results provide comprehensive validation of
the effectiveness and efficiency of the proposed model for HCD tasks.

There are still some limitations of our proposed method. For example, in the deep
memory extraction modules of long-term memory and short-term memory, the model
parameters are relatively large, and the outputs after long-term memory extraction and
short-term memory extraction are not fully utilized. To address this limitation, we plan
to incorporate a Siamese network [18] in our future work. This approach will allow us
to share parameters during the extraction of long-term memory and short-term memory,
enabling the extraction of distinctive change features in a more efficient manner. Addi-
tionally, we intend to explore the inclusion of more LSTM layers to further improve the
feature representation ability of the network.
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